ГЛАВНАЯ РЕДАКЦИЯ
ГЕОГРАФИЧЕСКОЙ ЛИТЕРАТУРЫ
В книге рассказывается о том, как пользоваться для определения своего положения во времени и в пространстве самыми разнообразными природными ориентирами — от далеких звезд, Солнца и Луны до полевого цветка; она учит ориентироваться без специальных приборов в любых природных условиях, днем и ночью, в разное время года, независимо от погоды.
Книга знакомит читателя с особенностями поведения и ориентирования животных.
Все, кто любит природу — будь то ботаник или турист, геолог или охотник, географ или рыболов, геофизик или альпинист,— с интересом и пользой прочтут эту книгу.
Недавно компас и карта положили начало новому виду спорта — ориентированию. Спортсмены-ориентировщики также найдут в книге много полезных сведений.
В третье издание автор внес ряд исправлений и значительно пополнил «мир ориентиров».
2—7—2
216—66
Человек часто испытывает необходимость определять свое положение во времени и в пространстве — ориентироваться. Для этого применяются точнейшие приборы и разнообразные научные методы. Они, например, дают возможность решить очень сложную проблему ориентирования искусственных спутников Земли, космических ракет и кораблей.
Однако не следует думать, что умение ориентироваться без приборов в наши дни утратило свое практическое значение. Люди самых разнообразных профессий — географы, топографы, геологи, ботаники, лесоводы, охотники — часто могут оказатвся в условиях, когда знание природы, умение находить нужное направление, предвидеть изменения погоды имеют весьма важное, а иногда и решающее значение. Большой опыт, накопленный человечеством в этой области, дает возможность использовать для ориентирования самые разнообразные предметы и явления природы — от звезд до цветочного лепестка.
Календарь, часы, номера домов, троллейбусов, названия улиц, светофоры, уличные знаки, вывески магазинов, афиши театров — все это помогает нам с наименьшей затратой сил и времени ориентироваться в городских условиях. В степи и в горах, в пустыне или в лесу появляется необходимость в выборе естественных, природных ориентиров и в умении ими пользоваться.
Путешественник В. К. Арсеньев не раз выслушивал справедливый упрек от своего проводника, искусного следопыта Дерсу У зала: «Глаза есть — посмотри нету».
Редко кто из нас не примет и на свой счет этот упрек.
Что же такое ориентирование?
Древнейшие зарисовки местности на камнях, костях, кусках дерева говорят о том, что человек уже на ранней ступени развития стремился определить место своего положения относительно окружающих предметов.
В средние века в монастырях начали изготовлять географические карты, на которых восток обозначался вверху, поскольку так называемые святые места (например, для христиан Иерусалим в Палестине) по отношению к Европе находились на востоке.
Тогда и возник термин «ориентирование», который происходит от латинского слова «oriens» и французского слова «orient», означающих «восток».
Можно также предположить, что это понятие связано еще с тем периодом, когда люди пользовались для определения направлений видимым местом восхода Солнца.
Ориентироваться — значит определить свое местоположение в пространстве по отношению к сторонам горизонта и к предмету — ориентиру, видимому из точки местонахождения, а также во времени, т. е. умение определить время.
Человеку приходится ориентироваться на поверхности земли, под землей, на воде, под водой и в воздухе в любое время суток, года и при любой погоде. А теперь, после выхода из корабля в открытый космос летчика-космонавта СССР Леонова и повторения этого эксперимента американским космонавтом Эдуардом Уайтом, можно сказать, что и в космосе.
Во время ориентирования можно прибегать к помощи косвенных показателей — различных признаков, естественных и искусственных, к помощи случайных предметов и специальных приборов.
В этой книге рассматриваются приемы ориентирования, в которых используются простейшие приборы или вспомогательные случайные предметы, например карандаш, монета, спичка, камень, травинка и др.
Одна из древнейших наук, астрономия, дала человеку средства для точного измерения времени, нахождения направлений по сторонам горизонта, для определения положения на суше, на море, в воздухе и в космосе. Для ориентирования можно также использовать характерные очертания рельефа, водную поверхность, грунты, животных, растения, звуки, свет, тени, запахи, дым, пыль и многие другие ориентиры.
Без большого преувеличения можно сказать, что использование для ориентирования разнообразных предметов и явлений почти безгранично. По сути дела весь окружающий нас мир в какой-то степени является «миром ориентиров».
Автор рассматривает свою работу как попытку собрать и систематизировать наиболее полезные для читателя сведения об ориентировании человека и животных.
ОКРУЖАЮЩАЯ НАС ПРИРОДА
Благодаря достижениям в освоении космического пространства человек получил возможность наблюдать земной шар с огромных расстояний и наблюдать вселенную за пределами земной атмосферы.
По словам наших летчиков-космонавтов, Земля и космос необычайно красивы. Они рассказывают, что над линией горизонта на высоте примерно 100 километров простирается слой яркости бело-желтых тонов, а под ним просвечиваются звезды. Этот слой хорошо виден в освещении Луны. А над ним — тоже звезды, словно горсти алмазов, рассыпанных на агатово-черном небе. Такие слои яркости, иной раз повисшие над Землей несколькими ярусами, космонавтам довелось видеть не раз.
Яркость Солнца в космосе необычайная. Один из них попробовал посмотреть на него так, как это иногда делается на Земле: вытянув руку, прикрыл солнечный диск большим пальцем. Если на Земле во время подобной простейшей пробы вокруг пальца образовывается лучистый ореол, то в космосе его не видно — все по-прежнему заливает нестерпимый для глаз солнечный свет.
...В районе Антарктиды перпендикулярно черному горизонту над вторым слоем яркости, прикрывающим Землю, слегка покачиваясь, возвышались темновато-желтые столбы света высотой в несколько сотен километров. Они, как частокол разной высоты, окаймляли видимый горизонт тысячи на две километров. Это было столь величественно и столь неожиданно, что космонавты не сразу догадались, с каким явлением природы встретился «Восход». Это было южное полярное сияние... Перед их восхищенными взорами сияла золотая корона планеты!
В кабине корабля прямо перед космонавтами вращался умнейший прибор — маленький земной шар, по которому они могли в каждый момент определить точные координаты своего местонахождения. Если «Глобус» показывал горные цепи Анд или Кордильер, то, обращая свои взоры в иллюминаторы, они видели эти горные вершины далеко внизу.
До чего же прекрасна наша планета с ее материками, океанами, могучими реками!
С высоты, на которой шел «Восход», глаз сразу охватывал большие пространства. Космонавты видели зеленые прерии Америки, айсберги Антарктиды, Индию с отчетливой полосой полноводного Ганга...
Сильное впечатление при взгляде из космоса производят горы. Словно застывшие ряды океанских волн, покрытых пеной, выглядят заснеженные Гималаи. Подобно морозному узору на стекле проступают в зелени лесов сибирские хребты...
А вот что рассказывает А. А. Леонов: «Фал, посредством которого я был прикреплен к кораблю, растянулся на всю длину, и мое движение от корабля
Рис. 1. Типы климатов земного шара (по Л. С. Бергу)
прекратилось... перед моими глазами медленно стал разворачиваться наш чудесный космический аппарат. Я ожидал увидеть резкие контрасты света и теней, но ничего подобного не было. Находящиеся в тени части корабля были достаточно хорошо освещены отраженными от Земли лучами Солнца...
...Яркие немигающие звезды на фоне темно-фиолетового с переходом в бархатную черноту бездонного неба сменялись видом Земли. Передо мною проплывали величавые зеленые массивы, я узнал Волгу, горный хребет седого Урала, потом видел Обь, Енисей, как будто я проплывал над огромной красочной картой... Солнце, яркое, как бы вколоченное в черноту неба, проникая лучами через забрало гермошлема, ощутимо согревало лицо. Затем опять звезды, земные просторы».
Такие значительные и глубокие по цели эксперименты переносят человечество на следующую, высшую ступень в его вечном стремлении, в его неистребимой потребности понимания окружающего материального мира.
Много столетий потребовалось человечеству, чтобы описать земной шар, выявить особенности природы разных его районов. И в наши дни ученые трудятся над проблемой изучения всей Земли и отдельных ее частей. Исследования, проведенные во время Международного геофизического года, значительно пополнили сокровищницу знаний о Земле и особенно об окружающей Землю атмосфере, а также о наиболее слабо изученном материке — Антарктиде.
Видимая часть поверхности Земли представляется нам кругом, ограниченным со всех сторон линией горизонта. Человек, ведущий наблюдения на ровном месте, видит перед собой только очень малую часть
Земли. Общая же ее поверхность равна примерно 510 млн. кв. км при среднем диаметре шара 12 735 км.
Весьма важным для Земли является постоянный наклон оси ее вращения к плоскости орбиты. Угол наклона оси остается практически неизменным и равен 66° 33' 15". В результате этого продолжительность дня и ночи на различных широтах Земли в разные моменты ее движения по орбите неодинакова, от чего зависит и неодинаковое количество тепла, получаемого поверхностью Земли от Солнца, а следовательно, и смена времен года.
Смена времен года, неравномерное распределение суши и моря и газовая оболочка — атмосфера, окутывающая земной шар,— все это создает исключительную сложность природных явлений. Явления и процессы, происходящие в неживой природе, усложняются жизнедеятельностью многообразного животного и растительного мира.
Природа не представляет собой случайного скопления предметов и явлений. Она характеризуется их единством, взаимосвязью и взаимообусловленностью. Это единство, взаимосвязь и взаимообусловленность есть форма существования, «жизнь» природы, что проявляется в любом природном процессе или явлении.
Распределение солнечного тепла по земной поверхности зависит от шарообразной формы Земли. Распределение температур влияет на испарение, а следовательно, на облачность и осадки; в зависимости от температуры находятся и особенности распределения атмосферного давления — «барический рельеф» (приложение 1). Атмосферное давление непосредственно связано с ветрами, а ветры обусловливают морские течения. Все это создает те или иные особенности климата, с которыми неразрывно связаны рельеф, почвы и органический мир, в свою очередь влияющие на климат. Так, находясь в прямой зависимости от почвенно-климатических условий, растительность в то же время оказывает влияние на климат, создавая в каждом отдельном случае микроклиматические различия; воздействует она и на почвы, определяя в той или иной степени процесс почвообразования, и на поверхностные и грунтовые воды, иссушая или увлажняя территорию. Вместе с тем почвообразовательный процесс и воды влияют на горные породы, характер рельефа местности и на растительность. Для иллюстрации единства природы можно привести множество конкретных примеров.
Например, если среди растительного покрова на участке встречаются влаголюбивые растения (камыш, осока и др.), то это указывает, что грунтовые воды здесь находятся близко к земной поверхности.
В равнинных безводных местностях летом после захода солнца в отдельных местах можно наблюдать роение комаров или мошек. Такое роение насекомых происходит обычно над участками, где грунтовые воды расположены близко к поверхности. После захода солнца над этими местами появляются признаки тумана, особенно когда жаркий день сменяется прохладным вечером.
В тех местах, где содержащая железо грунтовая вода находится неглубоко, наблюдается выделение его солей на поверхности земли.
Еще более интересны связи растений со структурными особенностями местности и химическим составом грунтов.
Так, например, в районах с небогатой растительностью и небольшой мощностью современных рыхлых отложений расположение отдельных групп деревьев или кустарников иногда указывает на наличие определенных элементов геологических структур. В безлесных горах южной Армении узкие полосы кустарников почти всегда совпадают с тектоническими зонами разломов. В приповерхностных частях таких зон горные породы раздроблены и превращены в почву, а сами зоны более водоносны, чем прилегающие участки, и поэтому благоприятны для роста кустарников. Наличие же тектонических разломов учитывается при инженерно-геологических изысканиях, так как к подобным местам нередко тяготеют залежи различных металлов.
Существуют растения-индикаторы, которые обладают резко выраженным «пристрастием» к почвам, содержащим определенные химические элементы. Поэтому они часто располагаются в таких местах, где под почвенным слоем есть залежи руд. В одном из районов Алтая было установлено, что растение качим извлекает корнями медь и растет на тех местах, где под наносами залегают меденосные порфиры. Открытие этой закономерности оказало большую помощь геологам: по зарослям качима они почти безошибочно вскрывали рудные залежи.
Есть и другие растения-разведчики. Например, некоторые виды анемон активно поглощают никель, и по ним иногда можно выявить никелевые месторождения, а пастбищные растения — донник лекарственный и астрагал концентрируют молибден, которого в них в 1000 раз больше, чем в других растениях.
В Америке по некоторым видам астрагала были найдены значительные залежи урановых руд.
Приведенные примеры являются одним из многочисленных доказательств того, что взаимосвязь компонентов природы представляет собой основу ориентирования, применяемого человеком в самых различных целях.
Характерной особенностью природы, выражением взаимозависимости ее компонентов служит зональность, которая обусловлена главным образом шарообразной формой Земли и ее вращением вокруг оси. Из-за шарообразности Земли ее поверхность нагревается на различных широтах неодинаково, в то время как вращение Земли ставит в одинаковые условия нагревания определенные зоны земной поверхности, расположенные параллельно плоскости экватора.
Неравномерность распределения солнечного тепла по поверхности нашей планеты в сочетании с отклоняющим влиянием вращения Земли вызывает общую циркуляцию атмосферы, что приводит к зональности всего комплекса климатических условий. Широтная зональность климатов, и прежде всего смена тепловых условий в сочетании с различными условиями увлажнения, представляет собой главную причину зонального распределения многих других явлений природы — процессов выветривания и почвообразования, растительности и животного мира, гидрографической сети, солености поверхностных слоев воды и насыщенности ее газами и т. д. Так как все эти явления существуют не изолированно, а в виде взаимосвязанных природных комплексов, то широтная зональность климатов лежит в основе зональности распределения ландшафтов (рис 1).
Лучший показатель зональных различий — растительность. Поэтому почти все природные географические зоны называются соответственно типу растительности, который в них преобладает. Например, разли
чают зоны тундр, лесов, степей, субтропических лесов, пустынь и т. д.
Географические зоны, как правило, переходят одна в другую постепенно, образуя иногда хорошо выраженные переходные зоны. Например, между зонами тундр и лесов умеренного пояса расположена лесотундра, между лесами и степями — лесостепная зона, между степями и пустынями — зона полупустынь.
Географические зоны существуют и в океанах, но из-за подвижности водной среды границы между ними выражены гораздо менее четко, чем на суше.
В Мировом океане выделяют пять географических зон: тропическую, две умеренные и две холодные. Океанические зоны отличаются друг от друга температурами и соленостью поверхностных слоев воды, характером течений, животным и растительным миром.
Географическая зональность проявляется и в горных районах. Природные зоны располагаются в горах на разных абсолютных высотах. Они как бы опоясывают горные системы, сменяясь по вертикали. В зависимости от высоты гор и их расположения иногда наблюдается несколько таких высотных поясов.
Отличительная особенность горных районов заключается в резкой смене природных явлений в зависимости от высоты. С увеличением высоты местности понижается температура воздуха, изменяются условия конденсации. Увлажнение воздуха до определенной высоты (зоны максимальных осадков) возрастает, а выше этого уровня убывает. Выше снеговой границы происходит накопление снега и льда.
Изменение климатических условий с высотой приводит к изменению режима рек и особенностей стока, геоморфологических и почвообразовательных процессов, характера растительного и животного мира.
Высотные поясы гор имеют много общего с широтными зонами равнин в том смысле, что сменяются при движении вверх примерно в том же порядке (начиная от широтной зоны, в которой расположена горная страна), в каком сменяются широтные зоны при движении от экватора к полюсам. Высотные поясы, конечно, не являются точными копиями аналогичных широтных зон как вследствие различий в условиях солнечной радиации, так и потому, что на них оказывают влияние местные условия (удаленность гор от океанов, степень расчленения рельефа, различие экспозиции склонов, высота гор, история их развития и т. д.). Наиболее полными системами высотной поясности (от ледников на вершинах гор до тропических лесов у подножий) отличаются горные массивы тропических широтных зон.
Что же представляют собой природные зоны? Ответ на этот вопрос необходим потому, что знание особенностей природы различных районов земного шара имеет большое значение для ориентирования, так как помогает правильно выбирать из многообразия природных явлений те из них, по которым можно было бы ориентироваться.
Области полюсов земного шара — обширные пространства многолетних льдов.
Арктика — северная полярная область, примыкающая к Северному полюсу. Название Арктики связано с ее положением под созвездием Большой Медведицы (греческое — Арктос).
В районе Северного полюса раскинулся океан медленно дрейфующих льдов. Во время продолжительной полярной ночи здесь господствуют сильные мо
розы и снежные метели. Летом, когда лучи незаходящего солнца обогревают поверхность льдов, природа несколько оживает. Вся жизнь здесь тесно связана с Ледовитым океаном (рис. 2).
Антарктика — южная полярная область земного шара, примыкающая к Южному полюсу. Антарктика противолежит Арктике, откуда и произошло ее название.
Антарктида — материк в центральной части южной полярной области — обширное ледяное плато, высоко поднимающееся над водой. Его берега омываются водами Тихого, Атлантического и Индийского океанов.
В течение всего года здесь свирепствуют страшные штормы и сильные морозы сковывают ледяную пустыню. Даже летом средняя температура воздуха не превышает 0°. Скудный растительный и животный мир отличается приспособленностью к суровому климату. Чрезвычайно низкорослые растения (мхи, лишайники) образуют небольшие оазисы. Насекомые (мухи и жуки) не имеют крыльев, что спасает их от гибели, так как при полете их уносило бы в море.
В морях, омывающих Антарктиду, водятся киты и тюлени, а на ее побережьях — несколько видов птиц, из которых наиболее интересны пингвины (рис. 3).
В 1957 году в соответствии с программой Международного геофизического года в Антарктиде начаты крупнейшие научные исследования экспедициями многих стран.
Исследователям Антарктики приходится сталкиваться с огромными трудностями. Страшные ветры, скорость которых нередко превышает 200 км в час, бушуют над ледяной пустыней. Высокогорный рельеф с высотами до 5000 м усугубляет суровость антаркти-
Р и п. z. Арктика. Белый медведь во льдах
ческого климата. Морозы здесь доходят до 87,4° Ц, среднегодовая температура держится около 25° ниже нуля.
Околополярные зоны ледяных (арктических и антарктических) пустынь сменяются тундрой и лесотундрой (рис. 4).
Тундра — страна холода. Морозы сковывают землю от полугода до восьми месяцев. В полярный день солнце не заходит за горизонт от 32 суток (на 67°) до 97 суток (на 73°), а в полярную ночь солнце не поднимается над горизонтом от 10 суток (67°) до 77 суток (73°).
Продолжительные зимы (до восьми месяцев) сопровождаются сильными ветрами. Средняя темпера-
Рис. 3. Антарктида. Район обсерватории «Мирный»
тура самого холодного месяца в тундрах Азии —33, - 37°, а в Америке до —33°. Лето короткое и прохладное. В течение всего лета наблюдаются заморозки. Средние температуры самого теплого месяца от 4—5° на севере до 10—12° на юге зоны.
Относительно большое количество осадков (в Европе до 400 мм в год) и низкие температуры обусловливают большую относительную влажность воздуха и резко сокращают величину испарения влаги с поверхности тундр. Как правило, огромные площади тундр переувлажнены и заболочены, чему способствуют также водонепроницаемые мерзлые грунты.
В безлесных пространствах тундр наибольшая приспособленность к суровым условиям существования наблюдается у мхов и лишайников. Все растения отличаются малыми размерами и низким ростом. Среди высших господствуют многолетние (частью вечнозе-
леные) морозо- и засухоустойчивые растения, размещающие свои корневые системы в поверхностном слое почвы.
Короткое лето — пора бурного цветения трав. Ковры крупной незабудки голубеют на фоне мха, целыми лужайками белеет куропаточья трава, светло- желтые полярные маки, синюха, вероника и сотни других цветов украшают тундру. К осени густые мхи и лишайники покрыты красочными шапками морошки, голубики, черники. Среди мхов и травы тянутся нити клюквенных стеблей с гроздьями темно-красных ягод, похожих на яркие бусы.
Из-за недостатка кормов зимой и их однообразия животный мир тундры беден в видовом отношении. Характерны северный олень (олень карибу в канадской тундре), овцебык, песец, тундряной волк, мелкиегрызуны, а из птиц — тундряная и белая куропатки. Летом в тундру возвращаются животные и птицы, откочевывавшие на зиму в южные районы. В это время здесь много насекомых — комаров, мошек.
Сравнительно неширокая полоса лесотундры отделяет тундру от лесов умеренного пояса, которые занимают значительные площади в Азии, Европе и Северной Америке.
Наиболее широко распространены леса в Азии. Западная и Восточная Сибирь, Дальний Восток, горные массивы Урала, Алтая, Саян, Прибайкалья, Си- хотэ-Алиня, Большого Хингана покрыты таежными лесами. На востоке Азиатского материка развиты широколиственные леса, далеко спускающиеся на юг почти до реки Хуанхэ.
По составу древесной растительности среди лесов умеренного пояса обычно выделяют тайгу, смешанные хвойно-широколиственные и широколиственные леса. Так, например, в Западной Европе различают: таежные леса на Скандинавском полуострове и в Финляндии, хвойно-широколиственные леса на юге Скандинавского полуострова и в Прибалтике, широколиственные леса (вытянуты широкой сужающейся к востоку полосой от Бискайского залива вплоть до Урала), горные широколиственные и хвойно-широколиственные леса в Альпах и Карпатах.
Различные природные условия в лесных районах влияют на характер растительности. На севере преобладают хвойные, таежного типа леса, на юге — лиственные с подзонами смешанных и широколиственных лесов.
Угрюма и сумрачна тайга (рис. 5). Густые кроны деревьев, тесно смыкаясь ветвями, пропускают мало света. Зимой и летом здесь царит полумрак.
Огромные ели, перемежаясь с сухостойным некрупным лесом, растут удивительно неправильно. Точно какая-то невидимая сила сдвигает под ними землю, и они, наклонившись, так и растут как-то наискось. Между деревьями лежит валежник, через который чрезвычайно трудно пробраться. То тут, то там путь преграждают умершие деревья, застрявшие при своем падении среди густых ветвей соседних елей. Искривленный молодняк тянется среди поваленных защемленных стволов.
Каждое дерево тайги выбирает наиболее благоприятные условия обитания, например: даурская лиственница не может жить без яркого солнца, не выносит сырости и поэтому растет на возвышенных местах, и наоборот, излюбленными местами елей и пихт являются сырые низины и ложбины.
гг
Лучшим примером смешанных лесов могут служить наши Брянские леса, состоящие из могучих раскидистых дубов, ясеней, сосен, елей, берез, лип, кленов, тополей, осин и густого подлеска из орешника, бузины, жимолости и других кустарников.
Чрезвычайно разнообразны смешанные леса Дальнего Востока, где наряду с различными видами широколиственных деревьев (монгольский дуб, желтый, маньчжурский и другие клены, амурская липа и др.) уживаются хвойные — корейский кедр, сосна, цельнолистная пихта.
Кормовые богатства лесов (плоды, семена, молодые побеги, почки растений и т. п.) обеспечивают существование разнообразного животного мира, приспособленного к обитанию не только на земле, но и в земляных норах, а также на деревьях и кустарниках.
В лесах обитают крупные травоядные животные (лось, олень, косуля, кабан), лазающие (росомаха, белка, бурундук, соболь, куница и др.), широко распространены также бурый медведь, волк, рысь, лисица, горностай, ласка, заяц-беляк.
Лесная зона к югу сменяется лесостепью, которая переходит затем в обширные травяные пространства — степи.
Наиболее ярко степи выражены на наших равнинах (юг Западной Сибири и север Казахстана, Заволжье, юг Средне-Русской и Приволжской возвышенностей, Предкавказье, Приазовье и Причерноморье).
Зимой в степях наблюдается холодная, малоснежная, с сильными ветрами, а иногда и с буранами погода. Средняя температура января в разных местах различна и колеблется в пределах от —2° до —20°. После сравнительно суровой зимы наступает короткая весна, отличающаяся в степях бурным снеготаянием.
Большая часть зимних запасов влаги за несколько дней стекает в реки. Почвы подвергаются значительному размыву. Широко развиты овраги.
Лето в степях жаркое (средняя температура июля 21—27°) и сухое (ежегодно выпадает от 250 до 450 мм осадков), что нередко приводит к пересыханию рек и сильному обмелению озер.
Необъятные равнины юга нашей страны с сохранившимися участками степной целины в начале лета кажутся серебристыми от цветущего ковыля, который,словно море, колышется при легком дуновении ветра (рис. 6).
Облик степи в течение лета меняется, представляя ряд различных, последовательно сменяющих одна другую картин, обусловленных развитием тех или иных растений.
Ранней весной в северной разнотравной степи появляются многочисленные луковичные и клубневые растения: желтые тюльпаны, бледно-голубые гиацинты, золотистые гусиные луки, снежно-белые птицемлечники, беленькие крокусы и др.
В мае степь совершенно преображается: это время пышного развития злаков, и в частности ковыля. Июнь — время цветения двудольных растений. Почти все злаки к этому времени отцвели. Степь отливает золотисто-зеленым оттенком, так как ковыль смешивается с другими травами.
Особенно красочна картина в солнечный июньский день, рано поутру: многочисленные растения раскрывают свежие лепестки своих цветов, обращенных к солнцу. Пройдет час-другой, и венчики многих цветов закроются, к полудню пестрый травянистый ковер значительно потускнеет. В августе число цветущих растений сильно уменьшается. В это время расцветают степная астра, полынь, одуванчик.
В степях Северной Америки (североамериканские прерии) преобладают невысокие злаки — грама и би- зонова трава.
В Южной Америке, в бассейне реки Параны, располагаются степи, называемые пампой. Пампа — волнующееся море травы, где порой на далеком расстоянии не встречается ни одного дерева, ни одного кустика. Богатая, но сухая почва пампы покрыта жесткими травами в метр-полтора высотой, которые густой массой покрывают степь и сохраняют зеленый цвет в течение круглого года.
По количеству растительных видов флора пампы очень бедна, лучшее украшение ее — роскошная трава, серебристый гинерий, стебли которого часто достигают высоты 2 и даже 2,5 м.
Фауна степей Европы и Азии небогата видами. Наиболее характерны антилопы сайга и джейран, волк, лисица, барсук, тушканчик, степной хорек, степная пеструшка, а из птиц — дрофа, стрепет, степная тиркушка, серая куропатка, степной орел, кобчик, степной лунь и др. Встречаются и пресмыкающиеся: степная гадюка, пестрая ящурка, желтобрюхий полоз.
Полупустыни и пустыни распространены на пяти континентах земного шара и занимают значительные площади как в умеренном, так и в жарком поясах. Полупустыни располагаются обычно по периферии пустынь, представляя собой переходную зону от степей к пустыням.
Пустыни умеренных широт занимают огромные области во внутренних частях Европы и Азии. От Каспийского моря через Среднюю Азию до южных районов Гоби они почти сплошь покрывают равнинные пространства. В Северной Америке пустыни занимают обширные межгорные понижения на западе материка.
Субтропические и тропические пустыни расположены на западе Индии, в Пакистане, Иране, в центральной части полуострова Малая Азия, в Африке (на севере материка — Сахара, на юго-западе — Намиб), в Южной Америке (в северной части Чили и на северо- западе Аргентины), в Австралии.
Пустыни отличаются ничтожным количеством осадков (до 60—80 мм в год). Лето жаркое со сред-
ними температурами наиболее теплых месяцев до 30— 40° и с максимумом до 58° (Аравия). Характерны большие суточные и годовые амплитуды температур воздуха и почвы. Летом по ночам нередко отмечаются температуры, близкие к 0°, а зимой наблюдаются морозы даже в Сахаре. Кроме того, для климата пустынь обычны сильные ветры (свыше 10 м/сек), нередко имеющие постоянное направление (афганец, шамсин).
Пустыни — обширные безводные районы. Главные запасы вод сохраняются в грунтах на значительной глубине. Громадные пространства голого камня сменяются пространствами песка — своеобразными песчаными морями, поверхность которых всхолмлена ветром в виде песчаных гряд и барханов (рис. 7).
С представлением о пустыне связывается понятие о песках, вечно опаляемых солнцем, где нет никакой жизни. А между тем даже Сахара хотя и редко, но населена. В самом центре ее возвышаются горы, покрытые зеленью. Однако растительность не образует здесь сплошного покрова. Растения ведут неустанную борьбу с сухостью. Много растений-эфемеров, прекрасно приспособленных к условиям пустынь: их семена прорастают почти через сутки после выпадения дождя. Широко развиты ксерофиты-многолетники, у которых густая сеть длинных корней добывает влагу с больших глубин. Некоторые растения приспособлены к сохранению в своих телах больших запасов воды — кактусы, молочаи и др.
Животный мир пустынь отличается чрезвычайной приспособленностью к суровым условиям существования: животные быстро передвигаются, окраска их имитирует цвет пустыни. Нередко можно наблюдать, как среди скудно растущей травы быстро бегают птицы величиной с голубя. Почувствовав опасность, они на глазах вдруг куда-то исчезают. Ни одна из них не убежала, ни одна не улетела, а между тем их нет. Они точно растаяли. Оказывается, птицы доверились земле. Они распластались на песке, плотно прильнув к нему, и в ту же минуту перестали быть видимыми, точно превратились в камушки или кучки песка.
Для фауны пустыни характерно относительно большое число видов млекопитающих (главным образом копытные и грызуны): антилопы, дикие лошади, куланы, суслики, песчанки, тушканчики и др. Довольно много в пустыне пресмыкающихся (ящерицы, змеи и черепахи), насекомых (двукрылые, перепончатокрылые) и паукообразных — фаланги, тарантулы, скорпионы.
Зона субтропиков хорошо выражена в обоих полушариях Земли между 30 и 40° с. и ю. ш. В СССР субтропики распространены на Черноморском побережье Кавказа и Южном береге Крыма, на западном побережье Каспийского моря и в Средней Азии.
Субтропики имеют термические времена года и вместе с тем такие климатические условия (температура самого холодного месяца от 0° до +5°), при которых возможна непрерывная вегетация растений, что отличает их от других зон умеренного пояса.
В зависимости от количества атмосферных осадков и режима их выпадения различают средиземноморские, или полусухие, субтропики (сухое лето и дождливая зима); муссонные, или влажные, субтропики (холодная ясная сухая зима и теплое влажное лето); сухие субтропики (расположены обычно в глубине континентов и получают до 200—500 мм осадков в год).
Субтропики отличаются богатством растительности. В полусухих субтропиках распространены леса из вечнозеленых дубов (каменного, пробкового), бука, сосен, кедров; формации жестколистных вечнозеленых кустарников нередко в сочетании с такого же типа деревьями (маквис, гаррига, пальмитос); формации мелколистных кустарников с опадающей листвой (шибляк). В муссонных субтропиках распространены влажные субтропические леса из вечнозеленых дубов, камфорного лавра, магнолий; обильны бамбуки, лианы, эпифиты. В сухих субтропиках развиты быстро расцветающие и быстро выгорающие весенние растения- эфемеры.
Между тропическими пустынями и зоной вечнозеленых тропических лесов расположены саванны. Для них характерно преобладание травянистого покрова в сочетании с отдельными деревьями или груп-
пами деревьев, преимущественно ксерофитных (рис. 8).
Наиболее широко саванны распространены в Африке, Южной Америке и Австралии. Климат саванн имеет два четко выраженных сезона (сухой и влажный), от которых главным образом зависит ритм природных процессов и проявлений жизни.
В сухое время года саванны Африки мало чем отличаются от пустынь. Жара, доходящая до 50°, иссушает все. Одно облако пыли за другим поднимается вверх, ни аромата цветов, ни пения птиц, ни ярких красок. Деревья, растущие группами, не оживляют картину. Желтые засохшие травы поломаны и оборваны ветром. Всякая работа утомляет, каждое движение обессиливает, самая легкая одежда кажется тяжелой и обременяет.
Но вот приходит дождливое время года. Первый ливень. Растрескавшаяся почва жадно впитывает влагу. На деревьях набухают почки. Проходит 2—3 дня.
После второго ливня раскрываются листочки на деревьях и появляется молодая трава. После третьего дождя раскрываются цветы. То, что у нас совершается за 1,5—2 месяца, в саваннах протекает за 5—6 дней.
В растительном покрове саванн преобладают злаки, достигающие 3—4 м высоты. Деревья саванн преимущественно низкорослые; широко распространена зонтиковидная форма крон, особенно у акаций. Из деревьев и кустарников в Африке типичны баобаб, пальмы (масличная, веерная, пальма дум), акации, мимозы и др. Для саванн Австралии характерны эвкалипты, казуарины, акации, «травяное» и «бутылочное» деревья, заросли колючих кустарников — скрэбы.
Животный мир саванн чрезвычайно богат и разнообразен. Наиболее характерны копытные, хищные млекопитающие, бегающие и хищные птицы, пресмыкающиеся (особенно ящерицы). В саваннах обитают наиболее крупные представители животных: слоны, жирафы, бегемоты, буйволы, носороги и др. Жизнь животных в саваннах имеет сезонный ритм, подчиненный чередованию сухого и влажного времени года. В сухой сезон часть животных впадает в спячку или зарывается в норы.
В экваториальных странах, где круглый год выпадает не менее 400 мм осадков и держатся высокие температуры в течение всего года, распространены богатейшие влажные тропические леса.
В Африке влажные тропические леса растут по берегам Гвинейского залива до гор Камеруна. Есть они и в Южной и Центральной Америке, особенно в бассейне реки Амазонки. В Азии эти леса распространены по долинам рек Ганга и Брамапутры, по восточному побережью Бенгальского залива, на полуострове Малакка, на островах Цейлон, Суматра и Ява.
В Австралии влажные тропические леса встречаются по Тихоокеанскому побережью.
Влажные тропические леса, вечнозеленые, многоярусные, труднопроходимые, отличаются обилием видов, множеством внеярусных видов растений (лианы и эпифиты). Деревья в таких лесах стройны, достигают высоты 80 м и 3—4 м в диаметре, со слаборазвитой корой (гладкой, блестящей, нередко зеленого цвета), иногда с досковидными корнями у оснований стволов. Листья у деревьев большие, кожистые, блестящие. Стволы деревьев, как правило, густо обвиты лианами, которые создают непроходимые «сети» в тропических лесах. Травянистый покров во влажных тропических лесах отсутствует и развит только по опушкам и полянам.
Приведем краткое описание тропического леса на острове Суматра по В. Фольцу 1. «Высокие деревья перемешаны с низкими, тонкие — с толстыми, молодые — с древними. Они растут ярусами, достигают высоты 70—80 м и больше.
Идя по лесу, трудно осознать их колоссальный рост. Только когда река, змеясь по лесу, открывает вверху просвет или дерево, падая, пробивает в чаще брешь, получаешь представление о высоте деревьев. Стволы, высящиеся стройными колоннами, так широки, что пять-шесть человек едва могут их обхватить. Сколько видит глаз, на них нет ни одного сучка, ни одной ветки, они гладки, как мачты чудовищного корабля, и только на самом верху увенчаны лиственной кроной.
Некоторые стволы, расчленившись, снова начинают расти книзу и, опираясь на пучкообразные корни, образуют огромные ниши...
Листья умопомрачительно разнородны: одни нежные, тонкие, другие — грубые, похожие на тарелки; одни ланцетовидные, другие — острозубчатые. Но все имеют общий признак — все темно-зеленого цвета, толстые и блестящие, как будто кожаные.
Земля густо заросла кустарником... Через сплошную заросль нельзя пробраться без помощи ножа.
Не удивительно, что большей частью почва в лесу гола и покрыта сгнившими листьями. Густую траву можно увидеть очень редко, чаще мхи, лишаи и цветущие сорные травы.
Малейшие промежутки между стволами заполнены лианами и ползучими растениями. С ветки на ветвь, со ствола на ствол тянутся они, заползают в каждую щель, поднимаются до самых верхушек. Они бывают тонкие, как нитки, едва покрытые листьями, толстые, как канаты, как эластичные стволы. Они свешиваются с деревьев узлами и петлями, цепко обвивают деревья узкими спиралями, сжимают так крепко, что душат их, и, глубоко впиваясь в кору, обрекают на смерть. Ползучие растения заткали сплошными зелеными пестроцветными коврами сучья, стволы и ветви».
Растительность тропических лесов на разных материках весьма различна. Для влажных тропических лесов Африки, например, характерны деревья из семейства бобовых, комбретовых, ананасовых и др. В подлеске — дерево кофе, а также лекарственная лиана — строфант, каучуконосная ландольфия и из эпифитов — папоротники. Широко распространена масличная пальма.
В австралийских влажнотропических лесах наиболее характерны элеокарпус, цедрела, алеуритес; из лиан — пальма ротанг, ломонос, жасмин, сассапариль,
текома; из эпифитов — разные виды орхидей и папоротников.
В бескрайнем море зелени тропических лесов, богатых сочными и вкусными плодами, обитает множество чрезвычайно разнообразных животных. От исполинского слона до едва заметного насекомого — все находят себе здесь убежище, уют и пищу.
В заключение надо заметить, что знание особенностей природы того или иного района земного шара приобретается не сразу. Для этого необходимо много читать, изучать географию, путешествовать и внимательно наблюдать окружающую нас природу.
НЕКОТОРЫЕ ОСОБЕННОСТИ НАБЛЮДЕНИЯ ПРИРОДЫ
Много интереснейших явлений раскрывает перед нами природа, когда мы близко соприкасаемся с ней в наших туристических походах, путешествиях, прогулках, экспедициях.
Наблюдение природы связано с некоторыми особенностями, свойственными, с одной стороны, самой природе, а с другой — человеческому организму.
Познакомимся с некоторыми из этих особенностей, знание которых может упростить восприятие предметов и явлений природы и способствовать лучшему ориентированию на местности.
Различают два вида восприятий: невольные, возникающие помимо нашего желания, и сложные волевые восприятия, направляемые нашей волей и желанием в соответствии с теми целями, которые мы перед собой ставим.
В процессе узнавания предметов значительную роль играет воображение наблюдателя, его способность «дорисовать» предмет наблюдения.
Воспринятые нами ранее предметы и явления запечатлеваются в памяти, и мы можем воспроизводить
их в воображении. Так, разговаривая по междугороднему телефону со знакомым человеком, мы хорошо представляем себе его лицо. Иногда при восприятии предмета разные органы чувств как бы заменяют друг друга. Например, не видя вороны, а слыша карканье, мы благодаря предыдущему опыту мысленно представляем ее вид, цвет оперения и т. д.
В многообразии человеческих восприятий большое значение имеют зрительные ощущения — световые,
Рис. 9. Поле зрения
цветовые, пространственные, которых насчитывается до 35 000 видов, и слуховые — звуковая окраска, шумы и тона, их около 20 000 видов. Роль некоторых видов восприятий в определенных условиях сильно возрастает. Примером могут служить восприятия равновесия и положения тела в пространстве, имеющие большое значение в мореплавании, альпинизме, авиации, или осязательно-двигательные ощущения прикосновения, связанные с движением ног, рук и пальцев, если человек находится в полной темноте.
Пространство, охватываемое неподвижным глазом, называется полем зрения. Поле зрения ограничено пределами 120° по вертикали и 150° по горизонтали (рис. 9). Благодаря подвижности глаз наше поле зрения несравненно обширнее и охватывает большое пространство.
Человек зрительно воспринимает глубину пространства на расстоянии около 500 м. Дальше предметы сливаются (так как практически оси глаз параллельны), и о том, какой из них расположен ближе и какой дальше, человек уже судит, сопоставляя частичное прикрытие одного предмета другим, форму и величину теней, расплывчатость очертаний дальних предметов.
Угол, образуемый направлениями световых лучей от крайних точек рассматриваемого предмета к оптическому центру глаза наблюдателя, называется углом зрения, угловой величиной или угловым размером предмета (рис. 10). Кажущиеся размеры рассматриваемого предмета зависят от расстояния его до наблюдателя: чем дальше расположен предмет, тем он выглядит ниже и уже.
Любой предмет, удаленный от глаза наблюдателя на расстояние, в 57,3 раза большее своей величины (а),
Рис 10 Угол зрении
виден под углом зрения в 1°, а при угле зрения в дуговую минуту, или 1°: 60, т. е. когда предмет удален на расстояние, в 3438 раз (57,3 X 60) большее своей величины, он перестает различаться глазом (рис. 11). Человек может видеть отчетливо только тогда, когда угол зрения его глаза не менее 3°.
По мере подъема видимый горизонт равномерно расширяется во все стороны. Предел видимости, или математический горизонт, определяется по следующей формуле: Д = }/~ 2 X Р X В, где Д — дальность горизонта, Р — радиус Земли (округленно — 6400 км) и
В — высота наблюдателя. Отсюда следует: чтобы увидеть в 2 раза дальше, надо подняться приблизительно в 4 раза йыше.
Формулу можно упростить, если извлечь корень из величины радиуса Земли и из 2, тогда она примет следующий вид: Д = 113 ~\/~ В.
Пример. Для плывущего человека, глаза которого находятся на высоте 20 см (0,0002 км) над спокойной поверхностью воды, Д = 113]/^ 0,0002 = 1,6 км.
Для человека среднего роста, стоящего на ровной местности (высота его глаз над поверхностью равна 1,6 м, или 0,0016 км), Д = 4,6 км.
Рис. 12. Испытание остроты зрения в древности у арабов
Если учитывать рефракцию 2, которая увеличивает дальность видимости на 6%, Д = 4,77 км.
Зачастую наблюдателю недостаточно увидеть вдали какое-либо пятно или тень, а надо разглядеть детали предмета и узнать его. Способность лучше или хуже различать удаленные предметы зависит от остроты зрения.
Остротой зрения, или, иначе, разрешающей силой, глаза называется способность глаза раздельно воспринимать предметы, расположенные на близком расстоянии один от другого, четко различать их детали.
Любопытным было в древности испытание остроты зрения у арабских воинов. На этом своеобразном экзамене требовалось ясно различать простым глазом на небе звезду Суха, или Алькор, расположенную рядом со звездой Мицар в созвездии Большая Медведица (рис. 12).
В темноте человек может видеть пламя свечи на расстоянии более километра. Острота его зрения ночью такая же, как у совы, но в 4 раза хуже, чем у кошки. Зато днем зрение кошки в 5 раз слабее, чем у человека.
Для каждого человека существует граница естественного зрения, и вы сами можете ее определить. На листе белой бумаги начертите прямоугольник со сторонами 4,1 и 5 см, в нем прочертите черной тушью 20 параллельных линий в 1 мм толщиной каждая с такими же просветами между ними (рис. 13).
Повесьте этот лист на освещенной стене примерно на высоте глаз так, чтобы линии располагались горизонтально. Встаньте лицом к листу, а затем, закрыв один глаз, отходите от стены до тех пор, пока линии не сольются в сплошной темный фон. Измерьте расстояние от себя до стены и вычислите, какова острота вашего зрения.
Например, линии сливаются для правого глаза на расстоянии 3 м. Известно, что на расстоянии 57,3 мм линия в 1 мм ширины видна под углом 1°, или 60'. Значит, на расстоянии 3 м (3000 мм) она видна под углом А, который определяется из следующей пропорции: А : 60 = 57,3 : 3000, следовательно, А = 1,14'. Острота зрения правого глаза 1 : 1,14 = 0,8, т. е. ниже нормальной (за единицу принимается острота нормального зрения). Так же можно определить остроту зрения левого глаза или обоих сразу.
Оценивая видимость предметов, необходимо учитывать некоторые правила и условия наблюдения,
Рис. 13 Прямоугольник для определения остроты зрения
главные из которых следующие: дальние предметы представляются обыкновенно менее ясными, чем ближние, они видны как бы сквозь дымку; крупные предметы кажутся ближе, чем мелкие; на одном и том же расстоянии лежащий человек кажется дальше, чем когда он стоит; поваленное дерево кажется более длинным, чем на корню.
Человеческий глаз точнее определяет величину предметов, расположенных на его уровне, чем находящихся выше. Расстояния могут казаться гораздо короче действительных, особенно в тех случаях, когдаприходится их оценивать через открытые водные пространства. Противоположный берег реки или озера кажется всегда ближе его действительного положения.
Долина или река с крутого берега кажется менее широкой, чем с пологого. Расстояния на пространствах, покрытых снегом, также искажаются. При взгляде снизу вверх, из долины на вершину горы, предметы кажутся ближе, чем при наблюдении сверху вниз. От подошвы гора выглядит менее крутой, чем в действительности.
Наблюдая предметы одинаковой высоты, расположенные на одной линии, мы видим их уменьшающимися по мере отдаления, причем линия, проходящая по их верхушкам, будет казаться наклонной к горизонту, а линия, лежащая на уровне нашего глаза, останется горизонтальной. Если мы влезем на дерево, то получится обратное явление: линия вершин останется горизонтальной, а линия оснований стволов покажется наклонной.
Ряд одинаковых по высоте (телеграфные столбы) или по длине (шпалы) предметов, располагающихся от наблюдателя в глубь поля зрения, кажутся ему рядом постепенно уменьшающихся по высоте или по длине предметов.
При восприятии движения могут быть два случая: наблюдатель неподвижен или он сам перемещается. Из повседневного опыта каждому известно, что видимые из окна идущего поезда деревья и дома кажутся движущимися навстречу наблюдателю.
Наблюдая природу, изучая взаимосвязь явлений, человек издавна сознавал решающее значение Солнца для жизни на Земле. Вращение Земли вокруг оси обусловливает смену дня и ночи, изменение освещенности в течение суток, которое характеризуется следующей последовательностью: дневные часы — высокая освещенность, вечерние сумерки — постепенное наступление темноты, ночные часы — очень низкая освещенность и рассвет — постепенное ее увеличение.
Продолжительность дня и ночи летом и зимой на разных географических широтах неодинакова. Например, в северном полушарии она характеризуется следующей таблицей:
В южном полушарии наблюдается то же самое. Длительная эволюция выработала у глаза способность адаптации — постепенного приспособления к сме
не дневной и ночной освещенности. В темноте глаза человека во много раз чувствительнее к слабому свету. В них накапливается особое вещество, так называемый зрительный пурпур, который улучшает восприятие слабо освещенных предметов. На ярком свете большая часть зрительного пурпура разрушается, и для его полного восстановления (в темноте) требуется около часа. Поэтому перед началом ночного похода не рекомендуется смотреть на яркую лампу или костер.
В сумерки и ночью ухудшается способность ориентироваться: падает контрастная чувствительность, уменьшается острота зрения, выпадают цветовые восприятия, ухудшается узнавание предмета и т. п.
В настоящее время началом вечерних астрономических сумерек считается тот момент, когда солнце опустилось под горизонт на 18°. С этого момента на безоблачном и безлунном небе для невооруженного глаза становятся видимыми слабые звезды 6-й величины.
От астрономических сумерек отличают гражданские, в момент начала которых солнце ниже горизонта на 7°. В это время становятся видимыми наиболее яркие звезды.
На экваторе гражданские сумерки длятся 24 минуты, на полюсе они достигают 15—16 суток. В Ленинграде астрономические сумерки продолжаются всю ночь с середины апреля до середины августа (белые ночи), что образно отражено в поэме А. С. Пушкина «Медный всадник»:
И, не пуская тьму ночную На золотые небеса,
Одна заря сменить другую Спешит, дав ночи полчаса...
С широты 67° 24' начинается область полярных ночей, где зимой заря с зарей сливается через полдень, а не через полночь.
Продолжительность сплошных сумерек характеризует следующая таблица:
В обстановке белых ночей и незаходящего солнца человек чувствует себя непривычно. Теряется представление о дне и ночи, и первое время новички долго не спят, ожидая темноты, которая не наступает.
* 3·
*
Ярко освещенные и светящиеся предметы (например, свет автомобильной фары) ночью кажутся нам всегда ближе их действительного положения.
Степень видимости удаленных предметов обусловливается их контрастом * на окружающем фоне.
Яркость предмета зависит не только от его освещенности, но и от отражательной способности его поверхности, которая для разных поверхностей весьма различна.
Если бы поверхность, на которую воздействует солнечная радиация, была абсолютно черной, то она практически поглощала бы всю радиацию, но в природе такой поверхности нет. Поэтому при изученииместности необходимо учитывать отражательную способность наблюдаемых поверхностей: воды, зеленой травы, песка, снега и т. п. (рис. 14).
Так как отражательная способность тел различна, то даже на местности, освещенной равномерно, предметы оказываются неодинаковыми по своей яркости, а следовательно, и по величине контраста с окружающим фоном. Величина же контраста определяет различимость предмета.
Глаз может отличить предмет от фона лишь в случае достаточной контрастности, что зависит от так называемой контрастной чувствительности глаза, которая при нормальных, дневных условиях освещения составляет в среднем около 0,02 (разность между яркостью предмета и яркостью фона). Следовательно, глаз отличает предмет от фона при контрасте в 2%.
Яркость удаленных предметов оценивается путем сравнения с близким предметом и фоном неба на
горизонте ПО десятибалль- Рис. 14. Отражательная „ способность некоторых но-
НОИ шкале. верхностей
Дальность видимости абсолютно черного предмета больших размеров на фоне неба у горизонта принято называть иллюстративной дальностью видимости. Для ее определения надо расстояние до далекого предмета, измеренное по плану местности или карте, умножить на число, соответствующее оценочному баллу. Например, расстояние до далекого леса — 7,4 км, а его яркость оценена баллом 4. Отсюда иллюстративная дальность видимости равна 7,4 X 8,3 (см. таблицу), т. е. = 61,42 км.
Сильно контрастирующие земные ориентиры видны издалека (белое здание на фоне зеленого луга), а предметы с малым контрастом относительно окружающей местности плохо видны даже на малых расстояниях. Чем светлее фон, на котором рассматривается предмет, тем он кажется ближе (кирпичный дом на фоне неба кажется ближе, чем кирпичный дом, за которым расположен лес или горы).
На темном фоне луга или леса человек едва виден за 3 км или совсем неразличим, а на вершине горы его видно на очень большом расстоянии.
Когда наблюдатель смотрит на предмет, стоя лицом к солнцу, то определенное им расстояние оказывается меньше, а когда солнце сзади — то больше действительного.
Предметы, окрашенные в яркие цвета (белый, желтый, красный), видны яснее и кажутся ближе, чем окрашенные в темные цвета (черный, синий, коричневый), особенно когда контраст между цветом предмета и цветом фона резкий.
Цветовое различие зависит от длины и частоты световых волн. Луч света — это электромагнитные волны, которые мы воспринимаем только в пределах от 0,40 до 0,76 микрона (мк) 4 длины. Длина световых волн видимой части солнечного спектра изменяется в очень узких границах, всего в !/з мк, в пределах которой заключен богатейший мир, сверкающий великолепием множества красок и оттенков.
На севере и юге, под тропиками и знойным экватором, в лесу, в саду, на огороде — всюду разнообразию окраски и оттенков цветов, ягод, овощей, грибов и плодов неизменно сопутствует жизнедеятельная зелень листьев и травы.
Глаз человека способен различать до 150 оттенков цвета. Максимум цветовой различимости приходится на зеленые и желтые лучи с длиной волны 0,56 мк.
Условия видимости в значительной степени зависят от прозрачности атмосферы.
Главная причина помутнения воздуха и возникновения туманов — сгущение водяного пара и насыщенность воздуха пылью и газами. Чем больше мутность атмосферы, тем хуже видны отдаленные предметы и тем короче расстояние, на котором их удается рассмотреть. При тумане видимость уменьшается до полного исчезновения предмета из поля зрения. Светлая мутная пелена атмосферы называется воздушной дымкой. Она тоже уменьшает дальность видимости. Помутнение воздуха и ухудшение видимости, вызванные запыленностью или задымленностью воздуха, принято называть мглой. В общем, какую бы природу ни имели появившиеся в атмосфере частицы, они всегда уменьшают ее прозрачность, и тем сильнее, чем их больше и чем они крупнее.
При малой видимости на морях и реках вместо обычных знаков ограждения принято включать сирены и другие звуковые сигналы, извещающие судоводителей об опасности; на железных дорогах на рельсы кладут петарды, которые взрываются при прохождении поезда, предупреждая машиниста о необходимости снижения скорости; на аэродромах прекращают прием и отправку самолетов и т. п.
Исторический пример знаменитого Ютландского боя 31 мая 1916 года между английским «Большим флотом» и немецким «Флотом открытого моря» наглядно показывает значение видимости.
Английский флот, несмотря на громадное численное превосходство, понес серьезные потери. По мнению
исследователей боя, причина этого состояла исключительно в разных условиях видимости в западном (безоблачное, ясное небо) и восточном (дождь и туман) направлениях.
Английский адмирал Битти так описывает первую фазу боя: «Силуэты наших кораблей резко выделялись на ясном небе в западном направлении, тогда как противник был по большей части скрыт от нас туманом... обнаруживая себя лишь вспышками выстрелов и появляясь иногда в моменты прояснений» *.
Нередко нам приходится наблюдать в условиях очень плохой видимости. В густых туманах видимость снижается из-за того, что при малых яркостях пред-
* В. А. Гаврилов. Видимость. Л., 1951, стр. 37.
мета и фона контрастная чувствительность глаза ухудшается.
Капли тумана рассеивают свет в разных направлениях, но преимущественно в направлении падения света вперед. Разница в силе светорассеяния может быть очень большой, что можно использовать при наблюдении. Чаще всего мы наблюдаем за местностью, которая освещается естественным светом. Яркость тумана, снижающая контраст, образуется рассеянием света туманом. Учитывая это, и при низкой освещенности иногда можно создавать более или менее благоприятные условия наблюдения.
Допустим, что на местности в районе пункта А должен появиться человек (рис. 15). Предположим, что мы можем пбставить наблюдателя либо в точке В, либо в точке С под холмом. Если солнце светит справа (левая подошва холма находится в тени) и наблюдения ведутся в условиях тумана или дымки, то пункт С более выгоден для наблюдателя, так как пространство между А и С не освещается прямыми солнечными лучами. Поэтому здесь в тени яркость тумана будет мала и, следовательно, контраст будет больше. Из точки С наблюдателю легче увидеть появление человека в пункте А.
Такие же условия создаются вдоль опушки леса и т. д.
Когда местность не позволяет использовать затененное пространство и приходится наблюдать в совершенно открытом районе, то следует правильно расположиться относительно солнца. Если солнечные лучи идут справа и нужно держать под наблюдением пункт А, то выгоднее для улучшения видимости сквозь туман расположиться не в пункте В, а в пункте С, так как для наблюдателя, находящегося в пункте В, яркость тумана будет больше, чем для находящегося в пункте С.
Ограниченность остроты зрения и большая зависимость ее от освещения, недостаточная контрастная чувствительность, неспособность различать цвета в условиях низкой освещенности, весьма несовершенное восприятие очень быстрых движений, значительные ошибки в «дальнем» глазомере и в определении направления звуков — таков далеко не полный перечень дефектов наших зрительных и слуховых восприятий.
Для их преодоления человек изучает методы, расширяющие сферу действенности наших органов чувств. Немалое значение в них имеет ориентирование, тесно связанное с многообразной деятельностью человека. Необходимо всегда и везде пополнять свой личный опыт, упорно учиться искусству видеть, проявлять любознательность и пытливость, интересоваться каждым явлением, выясняя, чем оно может быть интересным и практически полезным.
ПРОСТЕЙШИЕ СПОСОБЫ ГЕОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ НА МЕСТНОСТИ
Пространственное видение есть видение измерительное с самого начала своего развития.
Я. М. Сеченов
ГЛАЗОМЕР
Способность человека оценивать на глаз, без помощи приборов, расстояния до окружающих его предметов и размеры предметов называется глазомером.
Точность определения расстояний глазомером весьма различна. На дистанции в 1 км и далее ошибки достигают 50% и больше, на малых дистанциях они значительно меньше, а у людей опытных не превышают 10%. При этом относительные расстояния (ближе, дальше, выше, ниже) глаз оценивает гораздо точнее, чем абсолютные.
Величина ошибок при определении расстояний невооруженным глазом характеризуется следующей таблицей:
У каждого человека существуют присущие лишь ему особенности различения предметов. Их необходимо выяснить путем личных наблюдений. Умение глазомерно оценивать расстояния по показателям видимости отдельных предметов приобретается путем использования индивидуальных особенностей видимости, которые устанавливаются следующим образом.
Наблюдатель определяет на глаз различные расстояния, пользуясь для этой цели приведенной ниже таблицей; в ней дается степень уменьшения предметов по высоте в зависимости от расстояния.
При этом учитывается влияние перечисленных Выше факторов на видимость предметов. Затем установленные глазомерным способом расстояния проверяются по карте или непосредственно измерением шагами и определяется величина погрешности. Такие определения расстояний и их проверка повторяются в различных условиях видимости до тех пор, пока наблюдатель не приобретет соответствующих навыков, при которых ошибка не будет превышать 10%.
Установленные таким способом особенности видимости наблюдатель заносит в памятку расстояний, с которых он начинает различать окружающие предметы.
Памятку надо постоянно проверять, корректировать и пополнять новыми данными, которые помогут наиболее точно определить расстояния.
Полезно отмечать в графе «прочие факторы» атмосферные явления, при которых ведется наблюдение, пользуясь следующими условными обозначениями, принятыми в метеорологии (см. знаки на стр. 57).
Глазомер — индивидуальная способность человека, которую можно развить путем постоянных и терпеливых упражнений.
Житель равнины неплохо оценивает расстояние на ровном месте, но делает грубые ошибки в горах и на море. Горожанин часто теряется, когда ему надо определить расстояние в естественных природных условиях. Для развития глазомера надо в разных условиях местности, в разную погоду упражнять свой глаз в
ы
определении расстояний, сравнивая результаты с показателями расстояний, измеренных каким-либо точным приемом. В развитии глазомера огромную роль играет туризм, альпинизм, охота, различные спортивные игры: футбол, хоккей, теннис, городки, баскетбол, волейбол и другие виды спорта.
Чтобы уметь правильно ориентироваться, необходимо овладеть навыками быстрого и наиболее точного определения простейшими способами расстояний и размеров наблюдаемых предметов — необходимых элементов ориентирования на местности. Рассмотрим некоторые из этих способов.
ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ Измерение расстояний шагами
Многие при ходьбе делают настолько одинаковые шаги, что они могут служить единицей при измерении расстояний. Обыкновенно длина шага равна половине человеческого роста, считая до уровня глаз, т. е. в среднем 0,7—0,8 м.
Если приучить себя считать не отдельные шаги, а через два шага на третий, производя счет попеременно под правую и левую ногу, то пройденное расстояние получится непосредственно в метрах. Некоторые считают шаги не тройками, а парами. Постоянно упражняясь, можно привыкнуть считать в уме почти механически.
После каждой сотни троек шагов счет начинают снова из-за сложности повторения больших трехзначных чисел. Для облегчения запоминания пройденных сотен троек шагов прибегают к последовательному загибанию пальцев, отстегиванию пуговиц, перекладыванию спичек из одного кармана в другой или отметкам на бумаге.
Для получения наиболее точных результатов необходимо проверить длину своего шага, узнать так называемую цену шага. Проверку лучше всего производить на шоссейной дороге с километровыми столбами. Расстояние между ними проходят несколько раз и выводят среднюю величину шага.
Пусть, например, в 1000 м среднее количество шагов оказалось равным 450 тройкам. Тогда 1000:450 = = 20: 9. Каждые 9 троек шагов считаем за 20 м, т. е. в 100 тройках шагов заключается приблизительно 222 м.
Точность этого способа измерения расстояний зависит как от характера рельефа местности, так и от опытности наблюдателя. На ровной местности шаги почти одинаковы и измерение приближается к точному.
В среднем можно принять, что ошибка в измерении отрезка пути шагами составляет около 0,02 пройденного расстояния. При этом надо стараться делать ровные шаги, не уклоняться в сторону от намеченного направления и не топтаться на месте. Несмотря на относительную неточность измерения шагами, к этому простому способу прибегают очень часто.
Расстояния можно измерять и временем, затраченным на ходьбу или езду. Для этого нужно заметить количество часов или минут, необходимых для прохождения или проезда известного расстояния.
Человек проходит в час столько километров, сколько делает шагов в 3 секунды (при шаге длиной 0,83 м). Шагом человек и лошадь проходят около 5—6 км в час, рысью лошадь пробегает 10—13 км в час.
Многие естественные препятствия влияют на ритмичность, равномерность шагов, и скорость ходьбы от разных неблагоприятных условий снижается.
На высоте в 2500—3500 м над уровнем моря скорость движения уменьшается примерно на 25%; выше 3500-на 50%.
Движение в распутицу, по глинистому и солонцеватому грунту замедляется примерно на 50%, по кочковатому лугу или целине с густым травяным покровом — до 25%.
Сильный встречный ветер с густой пылью может снизить скорость движения человека на 50%, ливень, метель — на 10—15%.
Скорость движения без лыж при отсутствии твердой снежной корки, выдерживающей вес человека, составляет:
Вдоль железнодорожного полотна нередко встречаются косые дощечки с дробной надписью. Это укло- ноуказатели, показывающие числителем дроби размер уклона (0,003 или 0,005 — путь поднимается или опускается на 3 или на 5 мм на каждую 1000 мм), а знаменателем— протяженность уклона (150 или 200 — уклон идет на протяжении 150 или 200 м). Читая дроби, мы можем легко сосчитать пройденное расстояние и вычислить разность высот двух соседних точек пути.
Для данных величин разность высот составляет: 0,003 X 150 = 0,45 м и 0,005 X 200 = 1 м.
Следуя вдоль железнодорожного пути и учитывая знаки уклоноуказателя, можно ориентироваться не
только в пройденном расстоянии, но и вычислить, на какую высоту в общей сложности пешеход поднялся или опустился на местности.
Уклон местности под ногами начинает ощущаться, когда он превышает 2,5°.
Определение расстояний по видимым деталям предмета
Наблюдая человека с разных расстояний, легко заметить, что по мере его удаления отдельные подробности одежды, лица, фигуры делаются для наблюдателя неразличимыми, а затем исчезают. Видимость деталей меняется в зависимости от времени суток, состояния погоды, яркости фона и самого предмета. Так, например, в сумерки, в дождливый день в тени леса все предметы будут казаться дальше и, наоборот, в ясный солнечный день на открытой местности — ближе.
Для распознавания предметов при нормальном зрении может служить руководством следующая таблица, составленная по многолетним наблюдениям.
Таблица расстояний начала видимости предметов
Определение расстояний по угловым величинам предметов
Приближенное определение расстояний может быть произведено по угловой величине видимых объектов, если их линейная величина нам заранее известна.
Видимая или кажущаяся величина объекта зависит от угла зрения или от угловой величины этого объекта, которая уменьшается по мере его удаления от нашего глаза и увеличивается по мере его приближения к наблюдателю.
Если известны высота или размер объекта П (см. таблицу средних размеров некоторых предметов), величина подручного предмета Н и расстояние до него
ную, например, 3 м, то расстояние Д будет равно 100 X X 3 = 300 м.
В качестве постоянного расстояния от глаза наблюдателя до предмета Н для удобства принимают длину вытянутой руки Л, равную примерно 60 см.
Тогда величина предмета Н при постоянной величине отношения ЛЩ = 100 должна быть равна 60: 100 = 0,6 см = 6 мм, т. е. примерно ширине граненого или диаметру круглого карандаша.
Пример. Мы видим велосипедиста, высота которого принимается равной 1,75 м. Ставим перед собой горизонтально карандаш на расстоянии вытянутой руки. Видим, что он по своей толщине точно покрывает рост человека. Тогда расстояние до этого человека равно 1,75 X 100 = 175 м.
Если карандаш покрывает объект с высотой, в 2 раза большей роста человека, то расстояние равно примерно 2 X 1,75 X 100 = 350 м.
Если нет предмета, в 100 раз меньшего длины вытянутой руки, можно воспользоваться случайными предметами, находящимися в другом соотношении с длиной вытянутой руки (приложение 2).
Дальномеры «Лилипут» и «Пионер»
Для определения расстояния до предмета по его высоте Звескиным были предложены простейшие подручные приборы — дальномеры «Лилипут» (в 1948 г.) и «Пионер» (в 1949 г.).
Конструкция дальномера «Лилипут» очень проста, и им легко пользоваться по следующему правилу: искомое приблизительное расстояние до предмета в метрах (Д) равно известной высоте предмета в сантимет-
pax, умноженной на посто- Счегная
янное число 6 и деленной на число миллиметров, отсчитанных на линейке «Лилипута» (рис. 16).
Для этого берем дальномер в левую руку и, вытянув ее вперед, совмещаем верхний край дальномера с основанием предмета, а верхний срез линейки при ее выдвижении — с вершиной предмета. Отсчитав число миллиметров от верхнего края линейки до дощечки прибора, подсчитываем расстояние по указанному выше правилу.
П р и м е р. Высота железнодорожной будки —
400 см, длина руки — 60 см.
На линейке прибора «Лилипут» отсчитано 40 мм. Тогда расстояние до предмета Д = 400 X 6/40 = 60 см.
Дальномер «Пионер» дает представление о пространственном размещении объектов по отношению к наблюдателю, развивает глазомер, приучает к правильному ориентированию в расстояниях. Пользоваться им довольно просто. Приставляют коробочку проколотым отверстием к глазу, а затем, приближая и удаляя ее от лица, добиваются такого положения, когда предмет умещается в одной из прорезей. Тогда известную нам высоту предмета умножаем на число, указанное под данной прорезью, и получаем расстояние до предмета в метрах (рис. 17).
Пример. Железнодорожная будка высотой 4 м умещается в прорези с числом 20. Следовательно, расстояние до нее равно 4 X 20 = 80 м.
Пластинка Лионде
Если в формулу Д = Л X П/Н подставить длину вытянутой руки Л — 0,6 м, а рост человека П принять равным 167 см, то формула для частного случая — определения расстояния до видимого во весь рост человека — может быть очень упрощена:
Д = 0,6 м X 167 см! 11 мм = 10020 см21Н мм.
После превращения в километры и деления на 1000 формула примет вид: Д км = 1Щ мм, т. е. расстоя^ ние в километрах до человека равно единице, деленной
Рис. 18. Пластинка Лионде
на число миллиметров, отсчитанных по линейке на вытянутой руке (на расстоянии 60 см).
Пример. Если человек закрывается спичкой толщиной в 2 мм, то расстояние до него равно 7г км, или 500 м, а если тонким круглым карандашом толщиной 4 мм, то Д = XU км = 250 м.
Для упрощения измерения расстояний этим способом профессор Ф. Г. Де-Лионде предложил применять подручный прибор из алюминиевой пластипки со ступенчатыми вырезами, размеры которых соответствуют кажущейся величине человека среднего роста, находящегося на разных расстояниях от наблюдателя (рис. 18).
Пример. Направив на человека пластинку в вытянутой руке, устанавливаем, что фигура целиком заполняет четвертый слева вырез пластинки с надписью «125». Это значит, что расстояние от наблюдателя до объекта равно 125 м.
Измерение расстояний по угловой величине предметов с применением подручных приспособлений не зависит от рельефа местности и почти не зависит от освещения и окраски предметов. Погрешности таких измерений носят более постоянный характер и после тренировки и приобретения соответствующего навыка не должны превышать 10%.
Определение расстояний с помощью «тысячных»
Одним из способов измерения расстояний по угловой величине предмета является определение их с помощью «тысячных». Он заключается в следующем.
Круг содержит 360°. Каждый градус делится на 60', а минута — на 60", т. е. окружность содержит 21 600', или 1 296 000".
Для получения простейшей зависимости между линейными и угловыми величинами надо разделить окружность на 6000 равных частей, называемых «тысячные». В таком случае угловые величины будут измеряться не в градусах, минутах и секундах, а в «тысячных» 5.
Угол в одну «тысячную» в обычном градусном измерении равен: 360 градусов : 6000 = 0,06 градуса =
= 3,6 минуты = 216 секундам и обозначается 0—01. 1° обычного углового измерения равен 6000 : 360° = 16,7, округленно 17 «тысячных», или 0—17.
Угол в 30 «тысячных» обозначают 0—30, в 123 «тысячных» — 1—23 и т. д.
Если в формуле Д = Л X П/Н заменить Л = 1000, Н = У (угол зрения), то получится следующая зависимость между угловой и истинной величинами предмета и расстоянием до него:
Д = 1000 X П/У.
Всегда имеется достаточное количество подручных мер, величину которых в «тысячных» можно видеть на рисунках или вычислить самим (рис. 19).
Угловая величина, или угломерная «цена», пальцев, кулака, спичечной коробки, спички, карандаша,
Рис. 19. Рука и пальцы в «тысячных»
двадцатикопеечной монеты, гильзы и других подручных предметов в «тысячных» определяется следующим способом.
Измеряется длина вытянутой руки наблюдателя, т. е. расстояние в миллиметрах от глаза наблюдателя до подручного предмета, что можно сделать с помощью нитки (рис. 20). Затем измеряется величина этого подручного предмета в миллиметрах и делится на длину вытянутой руки.
Число тысячных долей в десятичной дроби, полученной от этого деления, и дает угломерную «цену» данного предмета в «тысячных» (приложение 2).
Рис. 20. Измерение длины вытянутой руки
Р и с. 21 Определение расстояния по высоте предмета
Пример. Ширина обыкновенной спичечной коробки равна 37 мм. Если принять длину вытянутой руки в 600 мм, то угломерная «цена» ширины спичечной коробки будет равна 37 :600 = 0,061, т. е. 61 «тысячная», или 0—61.
Пользоваться этими мерами надо так: взяв копейку в вытянутую руку, смотрим, закрывает ли она по ее диаметру высоту железнодорожной будки (рис. 21). Если высота будки нам известна (4 м), то это значит, что мы видим ее под углом 0—25 (приложение 2). Находим величину одной «тысячной» (4:25 = 0,16м). Следовательно, расстояние до будки будет равно 160 м (0,16 X 1000).
Пример. Надо измерить расстояние до дома, длина которого известна и составляет 40 м. Опреде-
Рис. 22. Определение расстояния по длине предмета
ляем его угловую величину в 50 «тысячных». Тогда расстояние до дома Д = (П X 1000) : У = (40 X 1000) : : 50 = 800 м (рис. 22).
Если измерение угловой величины предмета в «тысячных» производить с помощью спички или линейки с делениями на миллиметры, то ее надо удалять от глаз на 500 мм (50 см), тогда деление в 1 мм будет равно Vsoo, или 2/юоо, т. е. двум «тысячным» (0—02).
Определение расстояний по измеренным углам
Каждый предмет, видимый под углом 1°, удален на расстояние, в 57 раз большее своего размера в по-
Рис. 23. Определение расстояния но углу между предметами
перечнике (точнее в 57,3 раза). Палка длиной 1 м на расстоянии 57 м или длиной 1 см на расстоянии 57 см видна под углом в 1°.
Для измерения углов можно воспользоваться следующим правилом. Каждый предмет, который покрывается ногтем указательного пальца (1 см), виден под углом 1° и отстоит на расстоянии, в 57 раз большем своего поперечника. Если ноготь покрывает половину предмета, значит, угловая его величина равна 2°, а расстояние — 28 поперечникам.
При угле в 1' расстояние в 3438 раз больше размера предмета, в V20 — в 114 раз, при угле в 5°— в И раз, в 7° — в 8 раз.
Расстояние между концами большого и указательного пальцев, максимально раздвинутых, соответствует углу в 15°. Ширина четырех пальцев у ладони равна 7° (рис. 23).
Пример. Вдали виден пассажирский вагон, который закрывается примерно половиной сустава большого пальца, i. е. виден под углом 2°. Длина вагона известна и равна 20 ле, следовательно, он находится на расстоянии 20 X 28 = 560 м. Если он покрывается указательным пальцем, то расстояние равно величине предмета, умноженной на 30.
Если предмет закрывается граненым карандашом, то расстояние до него равно величине предмета, умноженной на 100.
Определение расстояний до недоступных предметов
На противоположном берегу реки человек идет параллельно берегу слева направо. Вытянув руку по направлению движения пешехода, смотрите одним правым глазом на конец пальца, ожидая, когда человек заслонится им В тот же момент закройте правый глаз и откройте левый — человек словно отскочит назад. Сейчас же считайте, сколько шагов сделает пешеход, прежде чем снова поравняется с вашим пальцем (рис. 24).
Расстояние от вас до человека на другом берегу реки определяется из пропорции Д: П = Л: Г, откуда Д = П X (Л : Г).
Пример. Расстояние между зрачками глаз Г = 6 см, от конца вытянутой руки до глаза Л — 60 см. Пешеход прошел расстояние /7, равное 18 шагам; в среднем шаг равен 75 см. Подставляя эти величины в формулу, получим Д = 18 X (60:6) = 180 шагам, или 180 X 0,75 = 135 м.
Рис. 24. Определение расстояния до недоступных предметов
Измерив расстояния между зрачками и от глаз до конца вытянутой руки, надо получить и запомнить их отношение, которое в среднем у большинства людей равно 10. Это дает возможность точнее определять расстояния до недоступных предметов.
Затруднение может возникнуть лишь в определении пройденного расстояния, так как не всегда можно воспользоваться шагами человека. В этом случае нужно запомнить длину наиболее распространенных предметов. Таким образом, можно оценпть пройденное человеком расстояние, сравнив его с длиной дома, вагона, шириной окна и других предметов, до которых надо определить расстояние. Остается только умножить их длину на полученное отношение (Л: Г).
Определение расстояний путем мысленного последовательного отложения известного отрезка
Вы видите опору линии электропередачи и, не доходя до нее, столбик. Становитесь с ними в створ. Оцениваете расстояние от себя до столбика в 100 м. Эту длину мысленно переносите на участок между столбиком и опорой, учитывая, что расстояние кажется тем меньшим, чем далее от наблюдателя оно откладывается. В данном случае первый отрезок оказался равным второму. Таким образом, расстояние от вас до опоры равно 200 м (рис. 25).
Искусство определять расстояние таким способом достигается только путем упражнения. Ошибки бы-
Р и с. 25. Определение расстояния путем мысленного последовательного отложения известного отрезка
вают очень грубые при резкой перемене обстановки, например при переходе с заросшей кустарником поляны на пашню, ночью при лунном свете на городских улицах, при определении расстояния до предмета, основание которого заслонено каким-нибудь возвышением (холм, дом и т. п.).
Определение ширины реки с помощью травинки
Выберите на противоположном берегу, в непосредственной близости от него, два заметных предмета и, стоя по другую сторону реки с вытянутыми руками, в которых зажата травинка, закройте промежуток между выбранными предметами. Один глаз у вас должен быть закрыт.
После этого, сложив травинку пополам, отходите
от берега реки до тех пор, пока расстояние между выбранными предметами не закроется сложенной травинкой. Затем измерьте промежуток между двумя точками своего стояния. Расстояние между ними будет равно ширине реки (рис. 26).
Определение ширины реки шагами
Выбираем на противоположном берегу какой-нибудь заметный предмет, например лодку. Становимся против нее и под прямым углом к этому направлению, вдоль берега, отсчитываем определенное число шагов, например 50; ставим здесь палку, затем в том же направлении снова отсчитываем теперь уже половинное число шагов (в нашем примере 25) и от этого места идем под прямым углом от берега до тех пор, пока не окажемся на одной прямой с палкой и лодкой. Удвоенное количество шагов от берега до нашей остановки в створе, т. е. 30 X 2 = 60 шагов, и есть ширина реки (рис. 27).
Если после установки палки, как и до ее установки, мы отсчитали 50 шагов, то расстояние от берега до створа равно ширине реки.
ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПРЕДМЕТОВ Определение высоты предмета по его тени
Ставим отвесно палку в тени дерева недалеко от ее верхушки и измеряем длину части палки, покрытой тенью (рис. 28). Тогда ВБ : АБ = ДГ: АГ, откуда ДГ = АГ X (ВВ:АВ), т. е., разделив длину покрытой
тенью части палки на расстояние от нее до верхушки тени дерева и помножив это число на длину тени, получим высоту дерева или любого другого предмета.
Высоту предмета можно определить также по его тени с помощью вспомогательного предмета, например палки, следующим образом. Высота измеряемого предмета во столько раз больше известной высоты палки, во сколько раз тень от него больше тени от палки.
Пример. Длина палки — 2 ле, а ее тень на 0,5 м меньше самой палки; следовательно, высота предмета в 1,5 раза больше, чем длина его тени.
Когда тень от палки равна ее длине, то высота предмета также равна длине своей тени (рис. 29).
Рис. 29. Определение высоты предмета по теням 80
Определение высоты предмета по своему росту
Отойдя от дерева на известное расстояние АД, ложимся головой к точке А и ногами, между которыми зажата палка, к дереву в точке В так, чтобы наш луч зрения проходил через верх палки на вершину дерева. Тогда ЕД = АД х (СВ: АВ) (рис. 30).
Высотомер Сысоева
Линейный высотомер конструкции Сысоева служит для определения высоты предмета без измерения расстояния до него.
Диапазон применения высотомера довольно обширен. Им очень легко измерить высоту деревьев, построек, естественных возвышений на местности и т. д.
Взяв прибор вертикально двумя пальцами левой руки, приближают или удаляют его от глаза до тех пор, пока не добьются, чтобы поставленная ранее у
объекта измерения вешка высотой в 1 м точно совпала с расстоянием в 1 см между основанием прорези и проволочкой. Следовательно, 1 см прибора будет закрывать 1 м измеряемого предмета. Не изменяя положения прибора, замечают, на какую цифру деления приходится верхушка измеряемого предмета. Это число сантиметров и составит высоту предмета, выраженную в метрах (рис. 31).
Устройство прибора можно несколько видоизменить, уменьшая или увеличивая расстояние между проволочкой и основанием
прорези. Пусть это расстояние будет равно 0,5 или 2 см. Теперь нужно лишь сосчитать, сколько раз по 0,5 или по 2 см заключается в числе деления, с которым совпадает вершина предмета. Очевидно, столько же метров этот предмет будет иметь в высоту.
Можно, наоборот, брать вешку в 2—3 м для более далеких и высоких предметов, считая в 1 см прибора по 2 или 3 м и т. д.
ОРИЕНТИРОВАНИЕ С КАРТОЙ
ОПРЕДЕЛЕНИЕ ШИРОТЫ И ДОЛГОТЫ
Положение любой точки земной поверхности определяется географическими координатами — широтой и долготой.
При мысленном пересечении земного шара плоскостями, параллельными экватору, получаются окружности — параллели.
Расстояние от экватора до каждого из полюсов составляет 90°. Полушарие, обращенное своим полюсом в сторону Полярной звезды, находящейся в созвездии Малая Медведица, принято называть северным, противоположное — южным.
Земной шар можно мысленно пересечь перпендикулярными к экватору и проходящими через земную ось плоскостями, которые носят название плоскостей меридианов. Линии же, образованные их пересечением с поверхностью земного шара, называются меридианами (рис. 32).
От нулевого, условно принятого меридиана, проходящего через Гринвичскую обсерваторию, расположенную в предместье Лондона, ведут определение градусного расстояния на восток (от 0 до 180° —восточная долгота) и на запад (от 0 до 180° — западная долгота). Широта и долгота позволяют определить координаты, т. е. положение любой точки на поверхности земного шара.
Система меридианов и параллелей составляет координатную сетку. Каждая линия параллели и мери-
диана представляет собой воображаемую окружность на поверхности земного шара, которая делится на 360°.
Расстояние, отсчитанное в градусах от экватора к Северному полюсу, называется северной широтой и имеет знак плюс, а от экватора — к Южному полюсу называется южной широтой и имеет знак минус.
Например, широта Ашхабада +37° 57', а широта Мельбурна в Австралии —37° 50'.
Географическая широта измеряется углом между плоскостью экватора и отвесной линией в данном месте Земли, т. е. равна высоте Полюса мира 6 над горизонтом места наблюдения. Полярная звезда имеет угловое расстояние от Полюса мира в 1°, и широта по ней может быть грубо определена в ± 1°.
Градусом географической широты называется Vieo часть меридиана (или Viso часть половины окружности)
Округленная длина градуса дуги меридиана для разных широт
Средняя длина дуги одного градуса географической широты (Viso часть меридиана) составляет 111,12 км.
Длина одной минуты среднего градуса широты равна 1852 м. Она принимается за основу морских измерений и носит название морской мили. Ею пользуются в морском деле, где все расчеты принято вести в градусах, минутах и секундах. Известна еще сухопутная, так называемая статутная миля, равная 1608 м, и другие мили.
Диаметр Земли между полюсами с севера на юг (длина земной оси) равен 12 713,7 км.
Расстояние, отсчитанное в градусах от меридиана Гринвича к востоку по параллели, проведенной через данную точку поверхности Земли, до географического меридиана, проходящего через эту же точку, называется восточной долготой данной точки. Западная долгота от меридиана Гринвича отсчитывается к западу.
Например, долгота Москвы — восточная, 37° 37', или 2 часа 30 минут; долгота Мосоро в Бразилии — западная, 37° 18', или 2 часа 29 минут.
Географическая долгота измеряется дугой экватора или параллели, заключенной между начальным меридианом Гринвича и меридианом, проведенным через точку места наблюдения.
Диаметр земного экватора равен 12 756,5 км.
Градусом долготы называется 1/зво часть экватора или параллельного экватору круга. Долгота измеряется в градусах илп во времени, нужпом Земле для того, чтобы повернуться вокруг оси на угол, который соответствует дуге, измеряющей долготу, т. е. долгота есть двугранный угол между плоскостями меридианов — начального и местного.
Так как полный оборот в 360° Земля совершает за 24 часа, то каждым 15° долготы соответствует 1 час времени. Из соотношения угловых мер и времени полезно помнить, что:
1 дуговой градус = 4 минутам времени;
1 дуговая минута — 4 секундам времени;
1 дуговая секунда = 7п секунды времени;
1 минута времени =15 дуговым минутам;
1 секунда времени =15 дуговым секундам
Чтобы определить долготу, надо, имея часы, поставленные по времени места с известной долготой, узнать их показание в местный полдень. Разница во времени обеих точек, переведенная в градусные меры, и даст долготу места наблюдения.
Пример. Пусть часы, поставленные по меридиану 77° западной долготы, показали в местный полдень 5 часов. Солнце проходит 1° в 4 минуты, а 15° — в 1 час. Определяем количество градусов, пройденное солнцем за 5 часов: 15 X 5 = 75°.
Следовательно, место наблюдения расположено на 2° (77°—75°) западной долготы.
ЧТО ТАКОЕ КАРТА?
Карта — уменьшенное, обобщенное изображение (на плоскости) земной поверхности или ее частей. Подробность обозначений на карте и ее точность определяются в основном назначением карты и масштабом. Чем меньше масштаб карты, тем больше деталей местности отсутствует на ней.
Существует множество самых разнообразных карт. По содержанию их деляг на две основные группы:
Общегеографические, к которым относят топографические и обзорные карты, различающиеся между собой по степени подробности нанесения географических объектов и масштабу. Топографическая карта — это общегеографическая карта крупного масштаба,
Округленная длина градуса для дуг разных параллелей
Указанные выше масштабы не являются стандартными, встречаются и другие.
До революции в России издавались карты крупного и среднего масштабов на основе прежних мер длины: 1 верста = 500 саженям = 42 000 дюймов.
Невооруженный глаз, обладающий нормальным зрением, едва различает точки, удаленные друг от друга на 0,01 см (0,1 мм). Меньшие расстояния различить и измерить обычными способами нельзя. Такое же предельное расстояние для старых русских мер принимают равным V200 дюйма.
Расстояние на местности, которое соответствует 0,1 мм, или V200 дюйма на карте, и не может быть измерено по ней, называется предельной точностью масштаба карты. Она различна для разных масштабов.
Предельная точность масштаба карт в метрической системе и в старых русских мерах составляет для масштаба:
1:25 000 — 2,5 ле; 1/2 версты в 1 дюйме — 1,25 саж. 1:50 000 — 5 ле; 1 верста в 1 дюйме — 2,5 саж 1:100 000 — 10 2 версты в 1 дюйме — 5 саж.
и так же для других масштабов
Как перейти от численного масштаба к линейному!
Масштаб показывает, во сколько раз на карте уменьшены действительные расстояния на местности. Если в знаменателе численного масштаба отбросить два последних нуля, то оставшееся число покажет, сколько метров содержится в одном сантиметре карты. Поэтому, чтобы от численного масштаба перейти к линейному, надо для карт, составленных в метрических мерах, разделить знаменатель на 100 (количество сантиметров в 1 ж), а для карт, составленных в старых русских мерах, разделить знаменатель на 84 (количество дюймов в 1 сажени).
Как перевести масштаб карты из старых русских мер в метрические!
Для перевода карт из старых русских мер численного масштаба 1 :84 000 в линейный метрический масштаб берем за основание масштаба такое число сантиметров, которое отвечало бы круглому числу сотен метров. Поскольку в данном случае линейный масштаб (840 ж в 1 см) в своем основании заключает не целое число сотен метров и пользоваться им неудобно, возьмем 1000 ж. Так как в примере 1 см на карте соответствует 840 ж на местности, то расстоянию в 1000 ж на местности будет соответствовать расстояние на карте 1000: 840 = 1,19 = 1,2 см. За основание масштаба принимаем длину линии, равную 1,2 см, и строим линейный масштаб 1000 ж в 1,2 см.
НОМЕНКЛАТУРА ТОПОГРАФИЧЕСКИХ КАРТ
Система обозначения и нумерации отдельных листов топографических карт в соответствии с принятым делением международной карты масштаба 1:1000 000 называется номенклатурой карты.
Согласно принятой разграфке, изображение поверхности Земли делится меридианами, проведенными через каждые 6°, на колонны (всего получится 360 : 6 = 60 колонн), а параллелями, проведенными через каждые 4°,— на ряды, которые считаются от
экватора к северу и югу и обозначаются заглавными буквами латинского алфавита.
Каждая колонна пронумерована арабскими цифрами от 1 до 60 и ведет свой счет к востоку от меридиана 180°.
Таким образом, вся поверхность Земли разбивается на клетки в 6° по долготе и в 4° по широте. Такие размеры одного листа установлены разграфкой до 64° широты. От 64 до 80° широты размер листа по долгоае берется в 12°, от 80 до 88° широты — в 24°. Листы, охватывающие 12° по долготе, считаются сдвоенными, а 24° — учетверенными. По широте все листы простираются на 4°. Карты приполярных областей имеют вид круга, ограниченного параллелью с широтой 88°, с полюсом в центре.
Весь земной шар покрывается 2640 трапециями- листами (60 колонн, 44 ряда), изображающими на бумаге с уменьшением в 1 млн. раз определенный участок земной поверхности.
Для подбора нужных листов карты определенного масштаба пользуются сборными таблицами — схематическими, разделенными на прямоугольники или квадраты картами, каждая из которых изображает в уменьшенном виде лист соответствующего масштаба. Чтобы узнать номенклатуру какого-либо листа, надо по сборной таблице прочесть букву, обозначающую ряд, и номер вертикальной колонны, в пересечении которых расположен этот лист (рис. 37).
Номенклатура листов карт читается так:
Основной лист международной карты масштаба 1 : 1 000 000, например, лист с городами Москва и Рязань имеет номенклатуру N — 37 (Москва) 7.
N — 37 — 6 — Б, N — 37 — 6 — В и N — 37 — 6 — Г. Листы карт масштаба 1 : 50 000 имеют размеры рамки в 15' по долготе и 10' по широте.
В каждом листе карты масштаба 1 : 50 000 содержится четыре листа карт масштаба 1 : 25 000, номенклатура которых будет: N — 37 — 6 — В — а,
N — 37 —6 —В —б, N — 37 —6 —В —в, N — 37 — 6- — В — г. Листы карт масштаба 1 : 25 000 имеют размеры рамки в 7,5' по долготе и 5' по широте.
В каждом листе карты масштаба 1 : 25 000 содержится четыре листа карт масштаба 1:10 000, номен- клатура которых будет: N — 37 — 6 — В — в — 1, N — 37 — 6 — В — в — 2, N — 37 — 6 — В — в — 3 и N — 37 — 6 — В — в — 4. Листы карт масштаба
1 : 10 000 имеют размеры рамки в 3' 45" по долготе и 20' 30" по широте.
В каждом листе карт масштаба 1 : 100 000 содержится 256 листов карт масштаба 1 : 5000, номенклатура которых будет N — 37 — 129 — (110) и т. п. Листы карт масштаба 1 : 5000 имеют размеры рамки в V 52,5" по долготе и 1' 15" по широте.
В каждом листе карты масштаба 1 : 5000 содержится девять листов карт масштаба 1 : 2000, номенклатура которых будет N — 37 — 129—(110-е) и т. п.
Листы карт масштаба 1 :2000 имеют размеры рамки в 37,5" по долготе и 25" по широте.
Общие схемы разграфки листа миллионной карты и листа масштаба 1 : 100 000 приведены на рис. 33 и 34.
ОЗНАКОМЛЕНИЕ С КАРТОЙ
Получив необходимую для работы карту, надо хорошо ее изучить: установить год составления и издания карты; ознакомиться с принятыми условными знаками; узнать величину магнитного склонения, которое обычно выносится за рамку карты; определить масштаб; выяснить величину сечения рельефа; изучить шкалу заложений и выделить для большей наглядности интересующий район цветными карандашами: леса — зеленым, водоемы — синим, дороги — коричневым, мосты и гати — черным, различные ориентиры — красным и т. д.
Численный и линейный масштабы карт обычно помещаются внизу карты, под рамкой. Если почему- либо масштаб на карте отсутствует и его необходимо определить, можно воспользоваться одним из следующих способов.
Рис. 33. Общая схема разграфки листа миллионной карты
Определение масштаба по номенклатуре листа
В зависимости от положения листа карты буквы и числа, составляющие ее номенклатуру, различны, но порядок и количество их в номенклатуре данного масштаба всегда одинаковы. Поэтому, прочитав но-
менклатуру листа карты, можно сказать, какого она масштаба, например:
О—41 масштаб 1:1 000 000 0—41 — НО—Б масштаб 1:50 000
0-41 —В » 1: 500 000 0—41 —110-Б-а » 1:25 000
VII—0-41 » 1: 300 000 0—41—НО—Б—а-3» 1:10 000
0-41—XXV» 1: 200 000 XVI—36 двухверстка 1:84 000
0—41 — НО » 1: 100 000 0 — 41 — 110 (100) масштаб 1:5000
0—41 — ПО—(100—а) масштаб 1:2000
Определение масштаба по длине частей меридиана
Известно, что в средних широтах СССР длина дуги 1° меридиана равна 111,1 км (104 версты), а длина дуги 1' равна примерно 1855 м (869 сажен). У рамок карт подписываются их широты (параллели) и долготы (меридианы), а рамки крупномасштабных карт разбиваются на минуты.
Чтобы определить масштаб карты, измеряют в сантиметрах (или дюймах) длину отрезка меридиана между параллелями или длину одной его минуты. Допустим, что измеренные расстояния оказались равными 1,8 см на одной карте и 5 дюймам на другой карте. Отсюда масштабы этих карт вычисляются следующим образом:
1855 м : 1,8 = 1 855 000 : 18 - 103 055 сж = 1030 м;
52 версты : 5 = 10,4 версты.
Из-за допускаемых неточностей при измерении циркулем, а может быть, и некоторой деформации карты здесь получены приближенные значения масштабов. Так как карты издаются в определенных масштабах, то нетрудно догадаться, что первая карта имеет масштаб 1: 100 000, т. е. в 1 см 1 км, а вторая карта — десятиверстка — 10 верст в 1 дюйме.
Определение масштаба по координатной сетке
Измеряем расстояние между линиями координатной сетки и определяем но обозначенным числам (например, по западной рамке — 28, 30, 32, 34 или по южной рамке — 06, 08, 10), через сколько километров они проведены. Этим и определяется масштаб карты. Ясно, что линии проведены через 2 км.
Расстояние на карте между соседними линиями равно 2 см, следовательно, 2 см на карте соответствуют 2 км на местности. Масштаб карты 1 : 100 000.
Определение масштаба по расстояниям между местными предметами
Если на карте обозначены два предмета, например, километровые столбы вдоль дороги, расстояние между которыми на местности известно, то для определения масштаба нужно число метров между этими предметами на местности разделить на число сантиметров между их изображениями на карте.
Пример. Расстояние между смежными километровыми столбами на карте равно 2 см, на местности — 1000 м. Следовательно, масштаб карты 1 : 50 000, или 1 см карты соответствует 500 м на местности.
Определение масштаба карты по другой карте, масштаб которой известен
Сравнивая измеренные расстояния между двумя одинаковыми пунктами на обеих картах и зная масштаб одной из них, определяем масштаб другой.
Пример. На карте, масштаб которой неизвестен, расстояние между пунктами равно 6,5 см. То же расстояние, измеренное по карте, масштаб которой известен, равно 3 км 250 м. Отсюда масштаб определяемой карты будет 3 км 250 м : 6,5 см — 50 000 см, или в 1 см 500 м.
Определение масштаба непосредственным измерением расстояний на местности
Когда ни один из предыдущих способов почему- либо не подходит, а мы находимся на местности, изображенной на карте с неизвестным масштабом, выбираем на более или менее равном участке два предмета, лежащие недалеко друг от друга, и измеряем расстояние между ними на местности в шагах и на карте в сантиметрах.
Пример. От километрового столба у дороги до силосной башни примерно 400 шагов, или 300 м, так как 1 шаг равен 75 см. На карте между этими же предметами измерено 3 см. Отсюда масштаб нашей карты 300 : 3 = 100 м в 1 см, или 1: 10 000.
Определение величины сечения рельефа
Обычно величина сечения горизонталей проставляется над линейным масштабом или под ним. Если же такая надпись отсутствует, то определить высоту сечения горизонталей можно по их отметкам, или по отметкам точек.
Для определения высоты сечения по отметкам горизонталей надо разность двух соседних отметок
смежных горизонталей, выражающих один и тот же скат (например, 60—50 = 10), разделить на число промежутков между горизонталями (5). Частное от деления (10: 5 = 2) даст выраженную в метрах или саженях высоту сечения рельефа для данного листа карты. В данном случае она равна 2 м.
Для определения высоты сечения горизонталей по отметкам точек надо разность отметок двух точек (например, 54,1—42,7 = 11,4) разделить на разность между числами промежутков (4—2 = 2) от ближайших к точкам горизонталей до общей для обеих точек горизонтали (Г). Частное от деления (11,4:2 = 5,7) обычно бывает не в целых числах, и его округляют до цифр, кратных 5, 10, 20 при метрических мерах, или до цифр, кратных 2 и 4 при старых русских мерах. Отсюда высота сечения горизонталей для данной карты 5 м.
Сечение горизонталей зависит от масштаба съемки и от характера рельефа местности, например:
где h — расстояние между горизонтальными плоскостями, секущими рельеф.
Шкала заложений и определение крутизны скатов
Каждая карта имеет свою шкалу заложений, по которой определяют крутизну скатов. В полевых условиях заложение можно узнать при помощи края
Р и с. 35. Определение крутизны ската по шкале заложений с помощью полоски бумаги
листа бумаги. Его прикладывают к тому месту на карте, крутизну которого необходимо определить, и черточками отмечают расстояние между смежными горизонталями. Затем бумагу прикладывают к шкале заложений так, чтобы одна черточка совпала с основанием, а другая — с кривой линией шкалы, после чего в ее основании читают величину крутизны. В нашем случае крутизна дороги равна 1° (рис. 35).
Для приближенного определения крутизны ската можно пользоваться следующим правилом: во сколько раз заложение меньше 1 см, во столько раз крутизна ската больше 1°.
Чтобы определить крутизну ската на местности, надо встать сбоку ската, взять две равные палочки и, поставив их на уровне глаз (одну горизонтально, что
Рис. 36 Определение крутизны ската на глаз
должно соответствовать заложению ската, а другую вертикально, что должно соответствовать его высоте), оценить, во сколько раз высота ската меньше его заложения.
Пример. Предположим, высота ската меньше его заложения в 4 раза. Определим крутизну ската в градусах. Для этого надо 60 8 разделить на полученное число 4. Крутизна ската 15°.
На глаз оценить крутизну ската можно при помощи пальцев руки (рис. 36).
КОМПАС. ВЕЛИЧИНА МАГНИТНОГО СКЛОНЕНИЯ. МЕРИДИАНЫ И АЗИМУТ
Земной шар представляет собой огромный магнит, имеющий два хорошо выраженных магнитных полюса. Это точки на поверхности Земли, в которых горизон-
Рис. 37. Сборная таблица листов карты северного полушария в масштабе 1 : 1 000 000
тальная составляющая земного магнетизма равна нулю. Северный магнитный полюс расположен на 74,9° с. ш. и 101° з. д., Южный — на 67,2° ю. ш. и 142° в. д.9
Линии магнитных сил, идущие от одного магнитного полюса до другого, образуют так называемые магнитные меридианы.
В конце XII века в Европе появился компас — магнитная игла, укрепленная на пробке, плавающей в сосуде с водой.
В наше время компас — всем известный прибор для определения сторон горизонта. Он широко используется в топографии, геологии, морской и летной практике.
Магнитный компас состоит из магнитной стрелки, которая свободно вращается в горизонтальной плоскости и под действием земного магнетизма устанавливается вдоль магнитного меридиана. Свойство магнитной стрелки постоянно сохранять определенное направление на север и используется при ориентировании.
Компас не рекомендуется применять в грозу, когда под ее влиянием магнитная стрелка может сразу отклониться на 2°. Нельзя пользоваться им в местах, где находятся большие залежи магнитного железняка, притяжение которого превосходит влияние магнитного поля Земли. Такие магнитные аномалии особенно резко выражены у нас в Курской и Белгородской областях (КМА).
Пересечение плоскости географического (истинного) меридиана с горизонтальной плоскостью называется полуденной линией. Направление полуденной линии можно получить, наблюдая за длиной солнечной тени, падающей на горизонтальную плоскость от вертикального шеста. До полудня длина тени постепенно уменьшается, а после полудня — возрастает. Следовательно, в полдень тень будет самой короткой и ее направление в нашем северном полушарии совпадает в этот момент с полуденной линией.
Определять на местности полуденную линию долго, а иногда и невозможно, поэтому за постоянное направление, относительно которого определяется положение линий на местности, принимают направление прямой, проходящей через концы магнитной стрелки компаса и называемой магнитным меридианом.
Компасом пользуются в тех случаях, когда при ориентировании за начальное направление принимают магнитный меридиан. Им можно определить любое направление на местности посредством измерения азимута, т. е. горизонтального угла, образованного магнитным меридианом и направлением на ориентир.
Магнитный меридиан с истинным (географическим) не совпадает и образует угол, называемый магнитным склонением. Склонение бывает восточное и западное (рис. 38).
Для удобства измерений на земной поверхности геодезистами была введена система прямоугольных координат. Но так как на сферической поверхности Земли не может быть точно «уложена» прямоугольная система, вертикальные линии сетки на топографических картах обычно составляют с направлением истинного меридиана некоторый угол, который называется сближением меридианов. Величины магнитного
Юг
Рис 38. Склонения магнитной стрелки и азимуты
склонения и сближения меридианов обычно указываются на полях карты.
Две линии нулевого склонения, называемые агоническими, разделяют всю земную поверхность на две области. В одной из них находятся Атлантический и Индийский океаны, Африка и западная часть Европы — склонение западное; в другой области находятся Тихий океан, почти вся Азия и значительная часть Северной и Южной Америки — склонение восточное. В Москве, например, восточное склонение около 7°.
В зависимости от того, от какого меридиана отсчитывается азимут, он называется магнитным или истинным.
На местности магнитные азимуты определяются с помощью компаса. Для этого становятся лицом к заданному направлению, приводят компас в горизонтальное положение и осторожно поворачивают его до тех пор, пока ‘северный конец стрелки (черный или синий) не совпадет с точкой севера, нанесенной внутри компаса. Затем, приложив к центру компаса линейку или карандаш, нацеливают их вдоль данного направления. Градусный отсчет по направлению движения часовой стрелки у дальнего конца карандаша выразит азимут данного направления.
Азимутами пользуются для ориентирования при передвижениях ночью или на закрытой местности (в лесу, в горах и т. п.).
Для грубого измерения величины азимута, если известно направление на север, можно пользоваться часами, зная, что деление циферблата в одну минуту соответствует углу в 6° (660/бо).
Ориентирование карты
Для быстрой ориентировки на местности с помощью карты надо предварительно изучить тот участок земной поверхности, на котором нам предстоит побывать или где мы уже находимся.
Приступая к ориентированию, необходимо прежде всего ориентировать карту, т. е. придать ей такое горизонтальное положение, когда все ее линии будут параллельны соответствующим линиям на местности и продолжение направления на карте, проведенное от точки стояния к какому-либо объекту, совпадет с соответствующим направлением на местности.
Находясь на полуоткрытой или открытой местности, узнают в натуре ряд географических объектов, изображенных на карте, и поворачивают карту до тех пор, пока направление изображенного на ней оврага, дороги или какого-либо отдаленного объекта не совпадет с действительным направлением*на местности. После этого проверяют ориентировку карты по другим объектам.
В закрытой местности карту ориентируют по компасу, прикладывая его к западной или восточной рамке карты, и, установив ее в горизонтальном положении, вращают вместе с компасом до тех пор, пока темный конец стрелки (при отсутствии склонения) не установится против буквы «С» или (при наличии склонения) против отсчета, равного величине склонения с учетом его знака.
В обоих случаях карта будет ориентирована для решения всех последующих задач, стоящих перед наблюдателем.
Определение географических координат точки стояния
В начале II века нашей эры римский географ Марин Тирский для удобства ориентации на поверхности нашей планеты предложил на рисунках, изображающих Землю, нанести сетку из параллельных кругов — параллелей и исходящих от полюсов дуг — меридианов.