В этой главе читатель ознакомится с не существующими пока летательными аппаратами «космической» авиации будущего — солнцелетами, кислородолетами, атомолетами — ив заключение совершит полет на Терру-Межпланетный научно-исследовательский институт и станцию отправления космических кораблей, — недвижно висящую над земным экватором.
Без плодотворного союза автоматики, кибернетики, радиоэлектроники, радиотехники и телемеханики с авиацией невозможно развитие и такой новой отрасли, какой будет авиация космическая. Между тем ей принадлежит большое будущее.
Мы говорим здесь не об астронавтике, не о межпланетных сообщениях, хотя, судя по тому, как ведется подготовка к осуществлению этой дерзновенной мечты человечества, и астронавтика станет лишь одним из ответвлений авиации. Космическая авиация — это промежуточное звено между обычной авиацией и астронавтикой. Она сохранит и даже упрочит свое положение по мере того, как будет развиваться астронавтика. Ведь межпланетные корабли будут стартовать в свой далекий путь, конечно, не с Земли, а с искусственных межпланетных станций, обращающихся вокруг Земли по разнообразным орбитам. К тем же станциям будут приставать корабли, возвращающиеся из рейсов на Марс или Венеру. Связь же межпланетных «вокзалов» с Землей будет делом космической авиации. Но это лишь один из примеров использования космической авиации в будущем.
Как установить границу между авиацией и астронавтикой? Первой встретилась с этой задачей Международная авиационная федерация, призванная регистрировать все вновь устанавливаемые рекорды, как авиационные, так и космические. Действительно, какой полет считать авиационным, а какой космическим? С момента первого полета Ю. А. Гагарина ответ на такой вопрос оказался совсем не простым.
Решение Федерации, которое она приняла в 1963 году, было, конечно, по-своему убедительным: условная граница проведена ею на высоте 100 километров, поскольку эту высоту можно считать границей сколько-нибудь плотной атмосферы. Впрочем, вероятно, прельстило и круглое число… Так или иначе, но теперь любой полет на высоте меньше 100 километров считается авиационным, а выше — космическим. Поэтому-то, как уже упоминалось выше, рекордный полет самолета «Х-15» на высоту более 95 километров близок к предельно возможному для авиации, а другой его полет, на высоту более 107 километров, является уже не авиационным, а космическим.
Но нас в этой книге заботят не рекорды и их регистрация. Если говорить о завтрашнем дне авиации и астронавтики, то, пожалуй, правильно было бы считать, что астронавтика начинается там, где корабль окончательно рвет цепи земного тяготения. Если же он продолжает оставаться в пределах сферы земного тяготения, которая простирается примерно на миллион километров от Земли (эта сфера определяется тем, что на ее границе притяжение к Земле становится пренебрежимо малым, примерно в 20 тысяч раз меньшим, чем у земной поверхности), то такой корабль принадлежит еще авиации. Это относится, очевидно, не только к тем кораблям, которые находятся в полете лишь сравнительно короткое время, но и к кораблям, чей полет может длиться дни и месяцы, а то и годы. Значит, авиация будет заниматься также сооружением и эксплуатацией искусственных спутников Земли — автоматических и населенных.
Кстати сказать, семейство спутников будет весьма многочисленным. И не только потому, что появятся новые автоматические спутники, оснащенные различными приборами и установками, играющими большую роль как в астронавтике, так и в жизни на Земле. Наряду с «космическими» спутниками, обращающимися вокруг Земли на расстояниях в сотни километров, появится много спутников, высота полета которых будет значительно меньшей.
Вот, например, спутники «среднего пояса», или, как их называют иногда сейчас, сателлоиды. Последним названием подчеркивается и сходство и различие между этими и «настоящими» спутниками, сателлитами Земли. Сателлоиды будут обращаться на высотах от 100 до 200 километров, где воздушное сопротивление сказывается еще достаточно сильно. Чтобы они могли находиться в полете длительное время, придется устанавливать двигатели. Именно этим и будут отличаться сателлоиды от спутников. Задачи же у них во многом одни и те же. И обращаться вокруг Земли они будут по одним и тем же законам небесной механики: со строго определенной скоростью, по строго определенным орбитам. Только спутники, двигающиеся там, где сопротивления воздуха практически нет, не будут затрачивать никакой энергии, а сателлоидам придется расходовать топливо на восстановление скорости, уменьшившейся под влиянием воздушного сопротивления. Значение сателлоидов и будет заключаться именно в том, что они находятся ближе к Земле, в более плотной атмосфере.
Но еще ближе к Земле будут совершать свои полеты «спутники нижнего пояса». Эти летательные аппараты будут снабжены крыльями. На высотах, доступных таким спутникам, крыло становится союзником скорости, тогда как у «настоящих» спутников одна только скорость поддерживает постоянную высоту полета. Крылья «спутников нижнего пояса» способны уже создавать некоторую подъемную силу, отчего скорость «спутника нижнего пояса», летящего на постоянной высоте, может быть меньше. Вместо 25–28 тысяч километров в час, характерных для «настоящих» спутников, «спутники нижнего пояса» могут летать со скоростью от 5 до 15 тысяч километров в час.
Кроме того, по сравнению с обычными, «спутники нижнего пояса» будут обладать и еще одним преимуществом. Они совсем не обязательно должны летать в плоскости большого круга, то есть в одной из плоскостей, проходящих через центр земного шара. Это необходимо только для «настоящих» спутников и сателлоидов, так как только при этом центробежная сила равна и противоположно направлена силе земного тяготения. «Спутники нижнего пояса» могут избрать любую траекторию полета, как и обычный самолет. Но для них нужно предусмотреть соответствующие органы управления, которых лишены «настоящие» спутники. В общем «спутники нижнего пояса» правильнее было бы назвать, вероятно, космическими самолетами. Правда, космическими самолетами принято называть самолеты другого типа — способные взлетать с земли, как обычные самолеты, выходить в космос и совершать в нем длительный управляемый полет. Но и таких самолетов, впрочем, тоже мало напоминающих обычные, пока еще нет.
…Выше всех «спутников нижнего пояса» поднимутся, вероятно, аппараты, которые можно было бы назвать солнцелетами. Им понадобится наименее мощный двигатель — сопротивление воздуха на большой высоте незначительное. Вот почему на них удастся установить солнечные двигатели.
Солнце — вечный источник бесплатной энергии, но мощность солнечных двигателей может быть лишь очень небольшой. Кроме того, Солнце светит только днем, и орбиту солнцелета придется выбирать так,' чтобы для него Солнце никогда не заходило. Для этого нужно, чтобы солнцелет никогда не оказывался в конусе тени, отбрасываемой Землей. Таких путей-орбит для солнцелета существует множество. Их называют обычно «орбитами Полярного круга». Они очень близки к меридианам, а если и отклоняются от них, то обязательно проходят через точку, лежащую в пределах Полярного круга. Но если на Земле за Полярным кругом день длится полгода, а остальные полгода — ночь, то для солнцелета будет существовать всегда день. Секрет этого — в угле наклона орбиты солнцелета к эклиптике, то есть к плоскости, в которой Земля движется вокруг Солнца. Плоскость орбиты солнцелета будет перпендикулярна к эклиптике или наклонена к ней лишь под небольшим углом. Правда, возможны и солнцелеты, способные забираться на некоторое время в земную тень. В этом случае их выручат электрические аккумуляторы, или же потом, после выхода из тени, солнечному двигателю придется восстанавливать потерянную высоту.
«Спутники нижнего пояса».
Внешне солнцелет будет представлять собой, вероятно, нечто среднее между самолетом и ракетой. Цилиндрический фюзеляж — большого диаметра, полый внутри и открытый спереди и сзади. Примерно посредине — огромное крестообразное крыло. Внутренность фюзеляжа — воздушно-реактивный электрический двигатель. Через него протекает наружный воздух, который сжимается скоростным напором, затем нагревается и, наконец, вытекает наружу с большой скоростью, создавая тягу. Но только, в отличие от обычных прямоточных двигателей, где происходят те же процессы, воздух здесь подогревается не в результате сгорания топлива (на таких высотах это невозможно). В двигателе неугасимо пылает электрическая дуга — она-то и накаляет протекающий воздух. Могут быть использованы и специальные электрические ускорители, тогда из двигателя будет вытекать наружу струя электрически заряженных частиц — ионов. Такие реактивные двигатели называют, как мы уже говорили, ионными.
Но откуда же берется на солнцелете электрический ток?
Вот для этого-то и служит солнечный двигатель. Вся поверхность обшивки самолета, обращенная к Солнцу, покрыта пластинками полупроводниковых фотоэлементов или термоэлементов. Вертикальное крыло солнцелета предназначается для увеличения поверхности этих элементов.
На аппарате средней величины поверхность солнечных элементов достигнет 100–150 квадратных метров. Как известно, один квадратный метр поверхности, на которую вне атмосферы отвесно падают солнечные лучи, получает примерно 1,8 лошадиной силы солнечной энергии. Совершенные термо- и фотоэлементы, которые будут использованы на солнцелетах, могут иметь коэффициент полезного действия 25–30 %, почти вдвое превышающий современные значения этого коэффициента. Нетрудно подсчитать, что мощность двигателя солнцелета получается равной примерно 50 лошадиным силам. И такой ничтожной мощности, равной мощности автомобиля «Победа», может оказаться достаточно, чтобы солнцелет развил скорость в 4–5 тысяч километров в час. Вот что значит разреженный воздух!
Конечно, солнцелеты должны иметь очень небольшой вес (их придется строить из самых легких материалов). На заданную высоту солнцелет будет поднят ракетой или космическим самолетом, причем, конечно, в сложенном, «упакованном» виде, — только на большой высоте солнцелет примет свою обычную форму.
Другой тип «спутника нижнего пояса» можно назвать кислородолетом. Впрочем, и этот спутник тоже можно было бы назвать солнцелетом. И вот почему.
Уже давно установлено, что на высотах более 100 километров солнечные лучи расщепляют молекулы атмосферного кислорода на отдельные атомы. Это расщепление, или диссоциация, требует затраты большого количества энергии. Зато потом, когда Солнце заходит, атомы кислорода начинают беспрепятственно соединяться снова в молекулы, и затраченная энергия выделяется. В результате такого воссоединения, или, как говорят ученые, рекомбинации части атомов в молекулы, температура воздуха на этих высотах повышается, и он начинает светиться. Этим объясняется известное явление свечения ночного неба, долгое время представлявшее загадку для ученых.
В течение ночи в молекулы воссоединяется очень небольшая часть всех атомов. Если бы можно было сразу слить все атомы в молекулы, то ночное небо озарилось бы вспышкой ярчайшего огня.
Опыты доказали принципиальную возможность создания реактивных двигателей, которые работали бы на «даровой» энергии, выделяющейся при рекомбинации атомов кислорода. Такие двигатели могут быть использованы для кислородолетов.
В двигателе кислородолета камеру сгорания заменяет большая камера, стенки которой выложены слоем катализатора, например тончайшим слоем золота. (Этот металл, как показали исследования, является лучшим катализатором.) Но катализатор только помогает реакции рекомбинации, так как при огромной скорости кислородолета встречный воздух, заторможенный внутри двигателя, сжимается и нагревается до температуры в несколько тысяч градусов. В таких условиях реакция рекомбинации идет уже самопроизвольно, при этом выделяется большое количество тепла и из двигателя вытекает струя раскаленного кислорода, создающая реактивную тягу.
Запасы атомарного кислорода в верхних слоях атмосферы неисчерпаемы, так как они постоянно возобновляются Солнцем, и продолжительность полета кислородолета будет сколь угодно большой.
К сожалению, концентрация атомов кислорода в верхних слоях атмосферы столь мала, что с помощью кислородного двигателя может быть создана лишь небольшая тяга. Поэтому использование кислородолетов, как и солнцелетов, для пассажирского сообщения и вообще для полета человека кажется сомнительным. Вероятнее всего, кислородолеты и солнцелеты будут применяться лишь для научно- исследовательских целей: только они в состоянии находиться неограниченно долго в полете в верхних слоях атмосферы. А такой полет может оказаться исключительно важным для исследования и наблюдения за процессами в них. Ведь выяснилось, что эти процессы оказывают сильное влияние на многие явления, происходящие в нижних, плотных слоях атмосферы, в частности, метеорологические, то есть определяющие погоду на Земле.
В семью «спутников нижнего пояса» могут входить и такие космические самолеты, которые при неограниченной продолжительности полета имеют двигатели большой тяги и несут большую полезную нагрузку. Если солнечная энергия не позволяет создать подобные двигатели, то это под силу другой практически неисчерпаемой энергии — атомной.
Вот, например, один из таких самолетов, его можно назвать, пожалуй, атомным кислородолетом. Двигатель самолета работает на ядерной энергии, она питает электрическую дугу, которая раскаляет протекающий через двигатель воздух, заставляя его вытекать с большой скоростью наружу для создания реактивной тяги. Но так как этот электродуговой двигатель может быть весьма мощным в отличие от подобного же двигателя солнцелета, то атомный кислородолет может иметь значительно большие размеры и вес. Кислородолетом же мы его назвали потому, что он представляет собой летающий кислородный. . завод. Внутри самолета расположена работающая на атомной энергии установка для сжижения воздуха и отделения от него жидкого кислорода. Этот кислород накапливается в огромных баках самолета и затем, когда понадобится, будет перелит в полете в баки стартующей с земли космической ракеты. Проекты подобных самолетов разрабатываются за рубежом 1*.
Атомолеты другого типа займут, вероятно, «нижний этаж» зоны космической авиации, будут летать на высотах 40–60 километров. Эти самолеты будут, наверное, сравнительно большими беспилотными самолетами с турбореактивными и прямоточными двигателями. А если нет экипажа, значит, атомные реакторы можно снабдить лишь незначительной защитной экранировкой — это сильно уменьшит вес самолета и лозволит увеличить полезный груз.
Возможно, что атомолеты будут построены почти исключительно из… бетона. Не потому, конечно, что бетон издавна применяется для защитной оболочки атомных котлов, хотя здесь и это его свойство полезно. Просто бетон, внутри которого проложены предварительно натянутые металлические струны (отчего он называется часто струнобетоном), может оказаться в данном случае самым удобным материалом. Это кажется парадоксальным, и, однако, не только атомолеты, но и многие тяжелые самолеты будущего полетят на крыльях из такого бетона. Широко также будут применяться для атомолетов, как и для других «спутников нижнего пояса», специальные пластмассы.
Атомолеты помчатся безостановочно по различным маршрутам, то опоясывающим Землю, то связывающим основные населенные пункты нашей и других стран. Каждый из них будет снабжен автопилотом, которому заранее задан определенный маршрут, записанный на магнитную пленку. Какие бы неожиданности ни случились, атомолет не отклонится ни на йоту от заданной трассы и графика движения. При желании можно с Земли по радио «стереть» записанную на магнитную пленку программу и нанести новую. Тогда самолет станет летать по другому маршруту.
Раз в год атомолет так же автоматически совершит посадку на уединенном, специально оборудованном аэродроме. Этот аэродром будет напоминать «горячие лаборатории» современных атомных центров. Сложные механизмы, управляемые на расстоянии с помощью телевизионных установок, произведут осмотр и ремонт самолета, заменят «выгоревшее» атомное топливо, а потом снова поднимут самолет в воздух.
Атомолеты могут использоваться для грузовых перевозок на большие расстояния. За мчащимся с огромной скоростью атомолетом будет тянуться несколько буксирных тросов длиной в сотни метров. Эти легкие, из пластмассы, более прочной, чем сталь, тросы способны выдержать колоссальную нагрузку. С их помощью атомолеты будут буксировать беспилотные грузовые самолеты, перебрасывая срочные грузы с высокой скоростью на большие расстояния.
Но как будут взлетать грузовые самолеты, как прицепить их к атомолету, а потом посадить у места назначения? Вероятно, после того как будет накоплен значительный опыт эксплуатации атомолетов, эти операции смогут выполняться автоматически, по радиокоманде с Земли. Однако в первое время придется, по-видимому, использовать летчиков — своеобразных «лифтеров», совершающих полеты только вверх и вниз.
Возможно, «лифтеры» будут летать на сравнительно небольшом лифтовом самолете, приспособленном для того, чтобы совершать в воздухе «посадку» на грузовые самолеты. Ведь такая посадка и взлет с летящего более тяжелого самолета уже давно применяются в авиации. Именно так, в частности, поступают иногда с истребителями обороны, сопровождающими тяжелые бомбардировщики в дальнем полете. Без этого истребители не в состоянии, конечно, продержаться долго в воздухе.
На земле лифтовый самолет подвешивается под грузовым и вместе с ним взлетает. Управляет обоими самолетами летчик лифтового. Когда достигнуты нужная высота, скорость и направление полета, летчик приближает свой самолет к атомолету. Быстро срабатывает автосцепка буксирного троса с грузовым самолетом, — здесь большую пользу может принести опыт, накопленный при заправке самолетов топливом в полете. Затем лифтовый самолет отделяется от грузового и уходит к Земле. Только так удастся сделать практически неопасным радиоактивное излучение атомолета. Конечно, поможет и то, что лифтер прикрыт всей массой грузового самолета.
Когда нужно совершить посадку грузового самолета в пункте назначения, лифтер встретит «поезд», «сядет» под нужный грузовой самолет и отцепит его от атомного буксира…
Можно думать, что атомолеты найдут широкое применение, и земной шар будет опутан невидимой сетью их трасс. Однако все же основой космической авиации явятся, вероятно, не эти долголетающие самолеты. Большая часть космических самолетов будет совершать такие же кратковременные рейсы, как и ныне существующие.
Уже сейчас строятся самолеты, предназначенные для полетов на высотах более 100 километров и в космосе, например, самолет «Х-20» в США. С помощью этих воздушно-космических самолетов предстоит изучить сверхвысотный полет, исследовать его влияние на человека. Такие самолеты — пионеры космической авиации — помогут человеку проникнуть в космос. Все выше будут забираться космические самолеты в глубь мирового пространства, все дольше находиться там, подготавливая свершение заветной мечты о межпланетном полете.
Следует подчеркнуть, что агрессивные круги США связывают с самолетами типа «Х-20» далеко идущие цели превращения космоса в арену военных действий. Им хотелось бы иметь на вооружении космические штурмовики и истребители, разведчики и бомбардировщики. Однако наше государство последовательно и неутомимо борется за то, чтобы космос стал не полем боя, а ареной научного сотрудничества, направленного на все более полное исследование и освоение мирового пространства. Мирный космос должен служить людям.
Перед космическими самолетами будущего стоят не только исследовательские цели. Не за горами время, когда начнут сооружаться огромные межпланетные станции, целые города в космосе. Это будут научно-исследовательские институты, топливохранилища, заводы по строительству и снаряжению в далекий путь межпланетных кораблей.
Строительство этих гигантских сооружений будет вестись по нескольку лет и потребует преодоления невиданных трудностей. Все необходимые части отдельных зданий («здания» — без фундамента и крыши, но зато мчащиеся со скоростью в десятки тысяч километров в час!) будут доставляться с Земли и только собираться на месте. Работники этой стройки поселятся в пассажирских кораблях, доставивших их с Большой Земли и тоже превратившихся на время в ее спутников.
Сотни, тысячи кораблей будут совершать рейсы между Землей и строительной площадкой. Они займутся перевозкой грузов и людей, сменяющихся на стройке каждые две недели: условия на стройке будут тяжелыми и главное — непривычными. Все это грузо-пассажирское сообщение станет задачей космической авиации — космических ракет и космических самолетов. Впрочем, разница между ними, и сейчас стирающаяся с каждым годом, станет скорее условной…
.. Но, может быть, лучше самим совершить фантастический полет на космическом самолете к той далекой звездочке, которая светится вон там на небе? Эта звездочка — новая межпланетная станция, сооружаемая на суточной орбите, то есть на высоте 35 800 километров, как раз над экватором. Она висит над Индийским океаном, но видна со значительной части земного шара. Сооружение станции быстро продвигается, а основное здание уже закончено. По этому поводу завтра там состоится праздник, прилетит много гостей с Земли.
… Громадный космический самолет подлетает к строительной площадке, где сооружается младшая сестра Земли, ее тезка — Терра. Позади ракетодром, минуты взлета, когда свинцовой тяжестью наливалось все тело, первые мгновения невесомости… Наш самолет почти остановился, он еле-еле передвигается. Главный двигатель умолк, едва рокочут рулевые движки на концах крыльев.
Мы осторожно пробираемся по строительной площадке, на которой бурлит незнакомая нам жизнь. Конечно, в действительности наш самолет вместе со всей стройкой мчится вокруг Земли со скоростью примерно 11 тысяч километров в час, но с такой же скоростью поверхность Земли уходит из-под наших ног, так что мы теперь висим почти над одной и той же точкой земной поверхности — городом Понтианак, на острове Калимантан, более известном под названием Борнео. Неугасимая и незаходящая искусственная звезда была видна здесь
1* Сообщение журнала «Авиэйшн Уик», 31 октября 1960 г., и др.
«Строительная площадка» в космосе.
в самом зените всю ночь, с вечера до утра, и медленно проплывала среди других звезд с востока на запад. В действительности, конечно, это было обычное вращение звездного неба, а Терра почти неподвижно висела над Землей.
Со всех сторон нас окружают фермы и другие части строящихся сооружений. Всюду снуют фигурки в скафандрах, занимающие самые неожиданные положения в пространстве. Стремительно носятся во всех направлениях «ракетокары», вроде наших заводских электрокаров, юркие межпланетные «грузовички» и другие машины. А внизу — огромный диск Земли, на фоне которого развернулась эта картина строительства. Ослепительное Солнце заливает своими лучами стройку. То тут, то там вспыхивают молнии электросварки, особенно яркие в теневых местах. Во все стороны простирается черное небо, на котором, если подольше на него глядеть, отвернувшись от Солнца и светящихся предметов, можно увидеть немигающие звезды.
В самом центре гигантской стройки видно главное здание института- огромное, метров 150 в поперечнике, колесо, «бублик», с шаром большого диаметра в центре. Это колесо вращается вокруг своей оси, делая один оборот ровно за одну минуту, то есть со скоростью секундной стрелки часов. В результате такого вращения в жилых и рабочих помещениях Терры, расположенных внутри обода колеса, создается искусственная тяжесть, без которой жизнь на Терре была бы затруднена. Правда, эта тяжесть раз в 10 меньше земной, так что человек на Терре весит всего 6–7 килограммов. Опыт показал, что такая тяжесть является самой благоприятной для здоровья человека, и в то же время не испытываешь неудобств, связанных с невесомостью, ощущаешь необычную для Земли легкость движений и какую-то «воздушность» тела, если можно так выразиться.
Несколько часов заняли беглый осмотр главного здания Терры и официальная часть праздника. Затем все перешли в спортивный зал — это и был шар, расположенный в центре «бублика», увиденный нами сразу по прибытии сюда. Этот шар диаметром 30 метров был связан с колесом Терры четырьмя спицами, поперечник которых достигал трех метров. Внутри «спиц» ходили лифты, доставившие нас в спортивный зал.
Из-за близости зала к центру вращающегося «бублика» сила тяжести в нем была совсем ничтожной. Средний человек весил там чуть больше килограмма. А в центре шаровидного зала царила полная невесомость. Вот это свойство космического стадиона и позволяло устраивать увлекательные спортивные соревнования, участники которых «плавали» в воздухе.
Такое соревнование — игра в космический мяч, отдаленно напоминающая обычный земной футбол, — и было устроено в честь гостей с Земли. Мы расположились не в самом зале, а в специальной галерее для зрителей, кольцом охватывавшей зал по его вертикальному меридиану, то есть в плоскости, перпендикулярной экватору. Перед нами была высокая, снизу доверху стеклянная стена, через которую отлично было видно все спортивное сооружение.
Межпланетный корабль отправляется с Терры в полет на Марс.
Мы стали свидетелями необычайно интересного, невиданного на Земле зрелища, о котором долго потом вспоминали. Но еще больше запомнились нам замечательные советские люди, построившие эту удивительную межпланетную станцию…
… И вот мы снова подлетаем к знакомым местам. Прошло еще несколько лет с тех пор, как мы были здесь на официальном празднике открытия Терры. Теперь нас ждет неизмеримо более увлекательное и необычное зрелище: завтра с Терры в первый полет на Марс отправляется межпланетный корабль.
Весь мир ждет этого старта. С Земли уже прилетели на Терру кинооператоры, фотокорреспонденты, работники телевидения, — все человечество сможет увидеть картину отлета корабля.
Полгода шло строительство астроплана в доке Терры. Теперь уже все готово к путешествию — и корабль и люди. Но разве можно все учесть в таком полете? Правда, автоматические разведчики уже дважды облетали Марс и даже совершали посадку на него. Дорога облетана. Но ведь то — машины, а не люди! Полеты на Луну, уже переставшие волновать своей необычностью, кажутся теперь простой забавой по сравнению с этой экспедицией.
Марс! Наконец-то будут раскрыты его тайны, столетиями будоражившие воображение.
Красавец корабль недвижно застыл у стартовой площадки в двух километрах от Терры. Но, может быть, только нам он кажется красавцем? Во всяком случае, он не имеет стройных изящных очертаний самолетов и космических ракет. Все в нем не похоже на привычные формы кораблей, предназначенных для скоростного полета, а между тем его скорость больше, чем когда-либо достигнутая до сих пор.
На первый взгляд корабль представляет собой необъяснимое сочетание геометрических фигур.
Вот, например, фигура, похожая на шар, диаметром метров семь или восемь. Из нее выступают в различных направлениях сдвоенные цилиндрические трубы с решетчатыми торцами. К шару приставлен огромный «бублик» — тор. От этого шара параллельно друг другу тянутся четыре тонкие металлические трубы длиной метров двадцать — двадцать пять. На другом конце этих труб снова нагромождение геометрических фигур — большое тело, похожее на усеченную четырехгранную пирамиду с прозрачными боковыми стенками — торцами; вплотную к нему примыкает какой-то снаряд, очень напоминающий крылатую ракету с почти сложенными крыльями. Примерно посредине между шаром и цилиндром — чечевицеобразный диск, пронизанный трубами.
Но формы корабля кажутся странными только непосвященному. На самом деле, все в нем целесообразно, взвешено и обдумано. Конечно, корабль «неудобообтекаем», но зачем обтекаемость, если летать ему суждено только в «пустоте» мирового пространства? Ведь корабль станет на время спутником Марса, а посадка на планету будет совершена на специальном посадочном корабле — он-то и имеет форму крылатой ракеты.
Где же передняя и задняя части корабля? Сразу и не скажешь. Да и незачем это — в пути ему придется лететь то одним своим «концом» вперед, то другим. Экипаж будет располагаться в пассажирской кабине — пирамиде с прозрачными торцами. Из этой кабины можно попасть в кабину подвешенного к ней посадочного корабля. Шар на другом конце труб — силовая установка корабля, его замечательный атомно-электрический двигатель. Чечевица между двигателем и экипажем — биологическая защита от излучения двигателя и некоторые вспомогательные устройства, в частности и механизм для управления кораблем в полете.
Наиболее интересная часть корабля — его двигатель. Это — не обычный жидкостный двигатель, как на других космических ракетах, а электрический, ионный. Для создания реактивной тяги из него вытекают наружу ионы — электрически заряженные частицы. В «бублике», приставленном к шару сзади, находится запас «топлива» для двигателя — металла цезия, ионы которого будут вытекать со скоростью около 100 километров в секунду. Для этого атомы цезия сначала превратятся в ионы, а потом образовавшиеся ионы будут разгоняться специальными ускорителями.
Питание электроэнергией ускорителей и всех других электрических устройств корабля — «печек», холодильников, кондиционеров, радио- и телевизионных установок, электронных вычислительных устройств и других — осуществляется атомно-электрическим двигателем, расположенным в шаре. Торчащие из него в разных направлениях трубы — выводные каналы ускорителей, заменяющие сопла обычных ракетных двигателей. Атомный двигатель корабля — замечательное устройство, в нем нет никаких движущихся частей, атомная энергия непосредственно преобразуется в электрический ток.
Необычность двигателя корабля объясняет и необычность его маршрута. Вместо эллиптического пути, по которому летят обычные ракеты (так летели и автоматические разведчики Марса), корабль полетит по сложной кривой, близкой к спирали. И в течение всего времени полета двигатель будет работать, развивая тягу. Только первую половину пути он будет постепенно разгонять корабль, а вторую — так же постепенно его тормозить. (Это совсем не похоже на полет ракеты, двигатель которой работает лишь считанные минуты в начале и в конце полета.)
Тяга двигателя очень мала, всего несколько десятков килограммов. И так как общий вес корабля составляет примерно 800 тонн (столько бы весил корабль на Земле), то ускорение корабля при работе двигателя будет очень небольшим, примерно в 10 000 раз меньше обычного ускорения земного тяготения. Но, значит, во столько же раз и вес космонавтов будет меньше обычного — они будут весить в полете всего несколько граммов! И все же, как показали специальные исследования, даже такой ничтожный вес избавит их от некоторых неприятностей невесомости, сделает предстоящий полет более приятным, чем путешествия космонавтов до сих пор, правда, полностью проблем невесомости он все же не решит.
Вот как примерно будет проходить полет. Более полумесяца после старта с Терры корабль будет кружиться вокруг Земли, нанизывая один виток раскручивающейся спирали на другой. После примерно двух десятков витков, в течение которых он будет постепенно удаляться от Терры, скорость корабля превысит скорость отрыва, и он перейдет на пологую спираль вокруг Солнца. Со все увеличивающейся скоростью будет он мчаться вокруг дневного светила, пока, еще примерно через четыре месяца, не наступит время тормозить корабль. И снова несколько месяцев после этого будет длиться полет к Марсу со все уменьшающейся скоростью; в конце концов корабль превратится в его спутника на высоте около 1000 километров. Оттуда четверо из астронавтов (трое других останутся на корабле) высадятся на Марс. Посадочный корабль снабжен мощным и совершенным ракетным двигателем, работающим на сверхкалорийном топливе. Только оно и позволит сесть на Марс, а потом опять взлететь с него; правда, при взлете корабль основательно уменьшится в размерах — ненужные части будут оставлены на Марсе.
Более 450 дней — почти 16 месяцев! — придется путешественникам пробыть на Марсе, пока он не займет того положения на своей орбите, которое необходимо для встречи корабля с Террой во время обратного полета. Этого времени вполне хватит для детального изучения таинственной планеты.
Потом — обратный путь. Он продлится чуть меньше, около 10 месяцев. И только примерно через 38 месяцев, то есть больше чем через три года после старта, корабль снова пристанет к Терре…
… Итак, наступил заветный день. Экипаж в корабле. Чуть в стороне виднеется Терра, откуда за стартом следят сейчас столько глаз. А там дальше — Земля, окутанная туманной дымкой облаков.
Включен двигатель. Из сопел ускорителя вырывается невидимая, чуть светящаяся тонкая струя. Медленно-медленно отделяется корабль от стартовой площадки. Первый полет людей к Марсу начался..
На следующий день мы возвращались на Землю. Было уже довольно поздно, когда наш космический самолет совершил посадку на аэродроме. В вечернем небе зажигались первые звезды. Одна из них горела немигающим, необычно ярким светом. Оттуда мы только что возвратились, проводив в далекий путь первых «марсиан». Над нами простиралось небо завтрашнего дня…
… Но кто может предугадать, когда это «завтра» станет действительностью? Ведь так стремительно развивается теперь авиационная и реактивная техника, что зачастую оставляет позади самые смелые фантазии.
Разве не лучший пример этому — героические полеты советских космонавтов, все другие космические старты советской науки? Наша Родина, строящая светлое будущее всех людей — коммунизм, стала стартовой площадкой человечества в космические дали…..
В этой главе рассказывается о космических «парусниках» будущего, об этом единственно возможном способе межпланетных сообщений, не связанном с реактивным движением.
Если вы плавали когда-либо по каналу имени Москвы, то, наверное, помните третий, Яхромский шлюз на этом канале. Подходишь к нему с нижнего, волжского, бьефа, и еще издали бросаются в глаза два замечательных скульптурных изображения каравелл из бронзы и дерева, установленных на высоких башнях по обе стороны от входа в шлюзовую камеру.
Смотришь на эти каравеллы снизу, с палубы теплохода, и кажутся они гордо парящими в синем небе. Надуты паруса, зачарованно всматриваются в глубь небес бронзовые изваяния мифических чудовищ на носу каравелл, точно выглядывая там далекую цель. Так и кажется, что вот-вот сорвутся эти небесные каравеллы со своих постаментов и умчатся далеко-далеко, в самые глубины космоса.
Но разве можно представить себе каравеллу Колумба, плывущую в глубинах космоса? Каким бы странным ни казался этот вопрос, он далеко не лишен смысла. Вовсе не исключено, что космическим «каравеллам» суждено большое будущее в астронавтике.
Но о каких «каравеллах» или вообще парусных космических судах может идти речь, если ныне всякий школьник знает, что в основе космического полета лежит принцип реактивного движения. Ведь еще Циолковский доказал, что только ракета в состоянии разорвать цепи земного тяготения и вывести человека в космос. Только ракета, потому что в космическом пространстве нет среды, от которой можно было бы оттолкнуться подобно тому, как это делает воздушный винт самолета или гребной винт океанского лайнера. Ракета же отталкивается от газов, вытекающих из нее же самой, она как бы несет с собой ту среду, от которой должна затем отталкиваться.
Какой же ветер может надувать паруса космических «каравелл»?
На память приходит термин «солнечный ветер», в последнее время довольно часто встречающийся на страницах книг, журналов и даже газет. Открытие «солнечного ветра» является одним из замечательных достижений астронавтики. Может быть, этот «солнечный ветер» и есть та сила, которая должна заставить космические «каравеллы» мчаться по невидимым волнам океана мирового пространства?
Увы, появившаяся было надежда сразу же исчезает, как только мы вспоминаем, что представляет собой «солнечный ветер». Ученые присвоили это название потокам мельчайших частиц, извергаемых во все стороны нашим дневным светилом. Эти потоки играют большую роль во многих явлениях на Земле. Из-за них вспыхивают красочные всполохи полярных сияний, они же часто являются виновниками нарушений радиосвязи, вызывают магнитные бури. Но «солнечный ветер» обычно настолько слаб, число извергаемых Солнцем частиц, которые могут быть уловлены парусом космической «каравеллы», так мало, что этот нежнейший космический зефир не в состоянии сослужить службу астронавтике. Выходит, в космосе все же царит мертвый штиль…
И тем не менее именно Солнце рождает ветер, способный надуть космические паруса. Если «солнечный ветер», о котором шла речь выше, стал известен науке совсем недавно, то «ветер», о котором мы говорим сейчас, хорошо знаком каждому человеку с первых дней его жизни. Ибо этим «ветром» является солнечный свет. Ничтожная доля всего потока света, излучаемого Солнцем, служит первопричиной и источником жизни на Земле.
Каравелла в космосе.
Но какой же это ветер — солнечный свет?!
Конечно, лучи Солнца не поднимают волн на море, не срывают крыш с домов и не способны вызвать даже легчайшего шелеста листьев на деревьях. И все же в тончайшем опыте можно заставить повернуться под действием солнечного света крылышки измерительного прибора точно так же, как вертится крыльчатка анемометра — ветромера на любой метеорологической станции. Этот исторический опыт был поставлен на заре нынешнего века одним из искуснейших экспериментаторов всех времен, московским физиком П. Н. Лебедевым.
Так на опыте было подтверждено теоретическое предсказание Максвелла о том, что лучи света давят на ту поверхность, на которую падают, точно так же, как давит на преграду обычный ветер. Мы теперь понимаем, что, собственно говоря, иначе и быть не могло, ибо свет — это поток мчащихся с умопомрачительной скоростью (300 ООО километров в секунду) частиц материи — квантов, или фотонов. Естественно, что остановленные в своем беге фотоны давят на препятствие, причем если они им не поглощаются, а отражаются, то, как легко видеть, сила давления удваивается по величине.
Конечно, эта сила светового давления ничтожна, не зря таким тонким и остроумным был опыт, установивший ее существование. В случае полного поглощения поверхностью тела падающего на нее света (такую поверхность физики называют абсолютно черной) сила светового давления равна примерно полмиллиграмма на квадратный метр. Если же свет полностью отражается идеально зеркальной поверхностью абсолютно белого тела, то сила удваивается и становится немного меньше 1 миллиграмма на квадратный метр.
Однако столь незначительная сила не в состоянии сдвинуть с места даже пушинку. Как же можно рассчитывать, что она заставит мчаться с огромной космической скоростью «каравеллы» межпланетных колумбов?
И все же эта надежда вполне оправданна, ее подтверждает точнейший расчет, учитывающий замечательные, уникальные особенности космического полета, не встречающиеся на Земле. Об этих особенностях, не раз упоминавшихся выше, мы подробнее расскажем в следующей, заключительной главе книги, здесь же напомним лишь, что в космосе часто ничтожная по величине сила способна вызвать ускорение даже очень большой массы. Правда, ускорение будет небольшим, но если время действия его велико, то конечный результат окажется значительным.
Само собой разумеется, что для увеличения ускорения нужно стремиться сделать возможно большей действующую силу. Конечно, давление солнечных лучей увеличить нельзя, но зато можно увеличить «парусность», то есть площадь поверхности, на которую действует это давление. Космические «каравеллы» должны обладать, очевидно, гораздо большей площадью парусов, чем их земные предки. Тут не исключено использование парусов общей площадью в десятки и сотни тысяч квадратных метров.
Но это не единственное отличие. Вряд ли для космических парусников будут годны паруса из обычной ткани, как для какой-нибудь бригантины или шлюпа. Точно так же не удастся использовать и весь обычный такелаж — троссы, тали и прочее. Все это слишком много весит, а секрет успеха космических парусов, как легко видеть, прямо зависит от их веса: при больших размерах они должны быть рекордно легкими.
Мало того, паруса должны идеально отражать солнечный свет, не выходить из строя под действием вакуума, радиоактивного излучения и других необычно тяжелых условий эксплуатации в космосе в течение длительного времени, отвечать многим другим условиям. В общем, создать такие паруса не просто.
Не просто, но можно. Особые перспективы в этом отношении открывают успехи химической промышленности, создающей все новые замечательные синтетические пленки. Эти пленки, например полиэтиленовые и другие, могут быть чрезвычайно тонкими, легкими и в то же время достаточно прочными. Они могли бы служить отличным материалом для космического паруса, если бы не их прозрачность. Кому нужны действительно прозрачные «световые» паруса, разве только космическому варианту «Летучего голландца»…
И все же паруса космических «каравелл» будут изготовлены, вероятно, именно из пленок с нанесенным на них тончайшим слоем легкого металла, например алюминия. Такой сверхтонкий, субмикронный металлический слой на тонкой пленке не сделает ее слишком тяжелой и в то же время лишит ее прозрачности и обеспечит отличное отражение света.
По одному из проектов космических парусников, разработанному в США 2*, парус должен быть изготовлен из выпускаемой промышленностью пленки толщиной 0,1 миллиметра, так что вес одного квадратного метра паруса составит 2,5 грамма 3*. Как полагают, в будущем толщина паруса может быть доведена до 0,2 микрона. Это будет рекордно легкий парус!
Такелаж, очевидно, будет изготовлен из тончайших и очень прочных синтетических пластмассовых волокон-нитей. Химия пластмасс- это фундамент, на котором зиждется идея создания космических парусников.
Представить себе космический парусник, в общем, нетрудно. Само собой разумеется, что взлететь с Земли он не сможет — эта задача под силу только мощному ракетному двигателю. После того как ракета- носитель выведет парусник в космос (естественно, в свернутом виде), он будет- освобожден от своей оболочки, и парус постепенно наполнится солнечным ветром. Конечно, обычных для парусного флота хлопков паруса в космосе не услышишь, наполнение' паруса может растянуться на многие минуты. Парус будет связан такелажем с самим парусником так, что, подтягивая или отпуская различные стропы, можно управлять положением паруса относительно корабля. И в космосе будут неслышно раздаваться столь дорогие сердцу всякого настоящего моряка команды: «Паруса убрать!»
2* По журналу «Джет пропалшн», март 1958 г.
3* Искусственный спутник «Эхо-2», запущенный в США 25 января 1964 г., представляет собой шар диаметром 41 метр, изготовленный из синтетической пленки (майлара) с алюминиевым покрытием общей толщиной менее 18 микронов. Чем не космический парус! (По журналам «Продакт инжиниринг», 6 августа 1962 г.; «Интеравиа», 3 февраля 1964 г.).
Космические парусники смогут лавировать «против ветра».
Нужда в таких командах будет связана, конечно, не с внезапно усилившимся космическим ветром, каким-нибудь налетевшим тайфуном — это не грозит, а с необходимостью в выполнении маневра корабля в полете. Ведь парусное судно космоса будет обладать возможностью маневрирования, как хороший бриг на море. В частности, космические «каравеллы» смогут совершать полет не только по направлению от Солнца, куда дует ветер, но и к нему. Лавирование «против ветра» в космосе будет даже более простым, чем на море, поскольку Солнце всегда притягивает к себе корабль. Поэтому, для того чтобы корабль удалялся от Солнца, его парус должен быть устаковлен под таким углом к солнечным лучам, при котором сила их давления увеличивает скорость корабля. Если же повернуть парус так, чтобы световые лучи не давили на него или даже тормозили, уменьшали скорость, то корабль станет медленно приближаться к Солнцу.
Преимущества космического парусного флота перед обычным ракетным очевидны: космические парусники так же используют «даровую» энергию природы, как и морские парусные суда. Само собой разумеется, что в космосе это преимущество во сто крат более ценно, чем на море: каждый грамм топлива в космосе достается слишком уж дорого. Поэтому космические парусные суда смогут при одном и том же начальном собственном весе доставлять к планете — цели назначения — гораздо больший полезный груз, чем обычные космические ракеты. Ясно, насколько это важно.
Однако в общем случае выгодность космических парусников достанется ценой их медлительности. В этом отношении, видно, парусный флот всюду одинаков — и на море, и в космосе. Правда, в космосе парусникам не грозит неожиданный шторм или такой же неожиданный штиль — там всегда «дует» один и тот же «ветерок», хоть и слабый, но зато постоянный.
Особенности космических парусников определяют и области их возможного применения. Вероятно, это будут автоматические, беспилотные межпланетные «зонды» — разведчики космоса, грузовые межпланетные корабли, а затем, возможно, и корабли с экипажем. Во всяком случае, применение таких парусников кажется вполне возможным, об этом свидетельствуют теоретические и проектные работы, ведущиеся в ряде стран. В океане мирового пространства наряду с многочисленными и разнообразными ракетными кораблями найдут свое место и космические «каравеллы».
Мы могли бы закончить на этом повествование о парусном флоте космоса, если бы не литературный образ, несколько неожиданно пришедший на память. Помните одного из необыкновенных слуг знаменитого Мюнхаузена, того, которого барон называл «делателем ветра»? Этот слуга завоевал право поступить к нему на службу, продемонстрировав в работе свои замечательные… ноздри. Зажав одну из них, он лениво дул через другую, но этого было достаточно, чтобы крылья ветряной мельницы вертелись, как на самом сильном ветру. «Делатель ветра» пришелся по нраву барону и действительно позднее сослужил ему хорошую службу. Когда разгневанный турецкий султан послал вдогонку за кораблем, на котором плыл барон, весь свой парусный флот, то несдобровать бы барону, если бы не его слуга. Он стал на корме корабля и пустил в ход свои ноздри, на этот раз уже обе. Одну ноздрю «делатель ветра» направил на приближавшийся флот, вследствие чего неприятельские корабли стремглав возвратились к родному берегу. А с помощью другой ноздри он наполнил паруса своего собственного корабля таким ветром, что уже на следующий день корабль достиг Италии.
А ведь живи Мюнхаузен в наш космический век, он бы мог, чего доброго, заставить своего «делателя ветров» надувать паруса и межпланетных «каравелл»… Расположился бы такой мастер где-нибудь в Галактике и, хохоча во все горло, гнал космические парусники в любых направлениях.
Как не позавидовать Мюнхаузену, неистощимая фантазия которого запросто «разрешала» даже «невозможные» научно-технические проблемы…
И все же современная наука и техника, смело вступая в единоборство с самой изощренной фантазией, часто заставляет ее отступить. Новые научные достижения иной раз оказываются фантастичными в самом безупречном смысле этого слова.
Это относится и к космическому «делателю ветра», так и не придуманному Мюнхаузеном. Современная наука не только легко представляет себе создание подобных «источников космического ветра», но и всерьез рассматривает раскрывающиеся при этом необыкновенные возможности.
Действительно, если обычные космические парусники могут крейсировать лишь в окрестностях Солнца, где много испускаемых им лучей, то создание искусственных источников светового «ветра» безгранично расширило бы возможности парусного флота космоса. Легко представить себе цепочку подобных источников «ветра», двигаясь вдоль которой космический парусник мог бы забираться в самые глубины мирового пространства.
Но о каких искусственных источниках «светового ветра» идет речь? Ведь, для того чтобы давление света было достаточно большим и могло надуть космические паруса, он должен излучаться Солнцем или другой звездой — небесным телом, раскаленным до температуры в миллионы градусов. Разве наука в состоянии создать такие искусственные звезды?
Нет, конечно, источники космического «ветра», о которых здесь говорится, не представляют собой искусственные солнца, их создание пока не под силу науке.
Речь идет о так называемых лазерах, или квантово-механических генераторах света. Теория этих необыкновенных «светильников» разработана московским физиком профессором В. Фабрикантом и его сотрудниками. За разработку первых квантово-механических систем московские физики Н. Басов и А. Прохоров получили Ленинскую премию, а в 1964 году московские же физики Б. Вул, О. Крохин и др. получили Ленинскую премию за создание особенно перспективных полупроводниковых квантовых генераторов. Лазеры привлекли к себе огромное внимание науки и техники, столь необычны их свойства и разносторонни перспективы использования.
Конечно, служба лазеров в качестве источников «космического ветра» далеко не самое главное и актуальное их применение. Однако в этой книге нас интересует именно оно.
Уже созданные лазеры чаще всего представляют собой небольшое по размерам устройство, главным элементом которого является кристалл искусственного рубина. Именно здесь, в недрах этого магического кристалла, рождается световой «ветер». Он-то и сможет, как полагают ученые, надуть паруса космических кораблей будущего.
Мы не станем здесь описывать в деталях принцип устройства и работы лазеров, рекомендуя ознакомиться с какой-либо из посвященных им научно-популярных книг 4*. Как известно, свет излучают атомы, когда электроны на их электронной оболочке совершают переход на орбиту, расположенную ближе к ядру. В лазерах такой переход происходит одновременно и согласованно в бесчисленном множестве атомов. Поэтому все они испускают световые волны «в унисон», или, как говорят ученые, когерентно. Результатом действия такого мощного «хора» является луч света необычайных качеств. Ярко-красный, тонкий, как иголка, ослепительно светящийся и несущий в себе жар миллионов градусов, этот луч уже совершил немало чудес, а способен еще на большее.
За ничтожные доли секунды луч лазера прожигает тончайшее сквозное отверстие в алмазе или броневой плите, сваривает детали, не поддающиеся сварке никаким другим способом, служит отличным хирургическим скальпелем. Посланный с Земли, он достиг поверхности Луны и, отраженный от нее, возвратился на Землю и был принят, многократно ослабленный, телескопом.
Ученые рассчитывают с помощью лазеров осуществить сверхдальнюю космическую радиосвязь, может быть, даже межзвездную связь, предполагают получить точнейшие карты лунной поверхности, ощупывая ее лучом лазера, посланным с Земли, и определяя таким образом высоту горных вершин и глубину впадин и расщелин с точностью до долей метра.
Много других поистине фантастических задач сможет разрешить лазер, и, в частности, он оставит далеко позади мюнхаузеновского «делателя ветров». Создаваемый лазером световой «ветер» может пронизывать космос на расстояния в миллионы километров с силой, все еще достаточной, чтобы заставить двигаться космический парусник.
Правда, пока еще мощность светового луча существующих лазеров недостаточна, она должна быть и может быть многократно увеличена. И тогда этот луч превратится в «ветер» неизмеримо большей силы, чем создаваемый Солнцем.
Уже сейчас имеются проекты использования лазерного «светового ветра», например, для корректировки орбиты искусственных спутников Земли. Известно, что под действием сопротивления атмосферы, хотя и крайне разреженной на огромных высотах, траектория движения спутника отклоняется от эллипса — он постепенно тормозится и снижается. В особенности сильно это проявляется в случае спутников с малой высотой перигея; их срок жизни из-за этого оказывается небольшим. Чтобы его увеличить, достаточно какой-нибудь, даже ничтожной по величине силы, действующей на спутник против силы земного тяготения, то есть вверх, от Земли.
Конечно, для этого можно установить на спутнике специальные миниатюрные ракетные двигатели, но тогда потребуется и топливо для них. Лучше всего для такой цели подходят электрические ракетные двигатели — они расходуют гораздо меньше топлива, но все же расходуют. Зато луч лазера, направленный с Земли и нашедший в бездонном небе летящий там спутник, будет толкать его вверх, и спутник не истратит при этом ни капли топлива.
4* См., например, книгу В. А. Фабриканта «Луч идет в космос», 1961 г., изд. «Знание».
Межзвездный космический парусник на «лазерном ветре».
Но это будет только началом службы лазерного «ветра» в астронавтике. Одно из чудесных свойств луча света, испускаемого лазером, заключается в том, что он строго параллелен и почти не расходится, как, например, луч света обычного прожектора. Многие из вас, вероятно, обращали внимание на то, как узкий луч света, отбрасываемого прожектором, превращается в расплывшееся туманное пятно, когда он упирается в облако. А ведь облако так близко к Земле. Будь оно на расстоянии Луны, диаметр светового пятна от прожекторного луча равнялся бы десяткам тысяч километров. Луч же лазера, посланный с Земли, осветил на Луне участок поверхности всего в несколько километров.
Это его свойство и позволяет рассчитывать на то, что в будущем излучаемые лазерами «реки» света, своеобразные световые «аэродинамические трубы», протянутся в космосе на огромные расстояния. Они-то и окажутся в состоянии направлять космические парусники «от звезды до звезды». Чего доброго, этим парусникам будут завидовать и их скоростные ракетные собратья по космическому флоту будущего..
В этой главе, последней в книге, речь идет о «космических тихоходах» — электрических межпланетных кораблях будущего, которым суждено стать основным средством дальних космических сообщений.
Представьте себе на московских улицах странный экипаж. Он может внешне ничем не отличаться от снующих мимо автомобилей, но все же несомненно вызовет всеобщий оживленный интерес.
Давайте понаблюдаем за нашим гипотетическим экипажем. Вот он замер перед красным огоньком светофора в ряду других машин. Внимание, красный цвет сменился желтым, потом зеленым — путь открыт. Стоящие рядом автомашины словно срываются с места и уносятся вдаль, но наш «подопечный» недвижим. Пешеходы оглядываются, водители стоящих сзади машин, чертыхаясь, объезжают злополучный экипаж, вот уже и страж порядка — орудовец не спеша направляется к нарушителю движения. Дело, кажется, пахнет штрафом, а то и проколом талона».
Но мы замечаем, что экипаж не стоит более на месте, он двинулся и постепенно выбирается в самый центр перекрестка. Видимо, водителю удалось все-таки запустить двигатель и устранить неполадки. Но почему его машина движется так удивительно медленно?
Снова мигнул глазок светофора, движение опять остановлено, а странный автомобиль все еще на перекрестке и движется прямо на красный свет. Кажется, уличного скандала все же не избежать. Остановившийся было милиционер решительно двинулся снова вперед, его лицо побагровело от гнева — что за безобразие на подведомственном ему перекрестке!
А экипаж тем временем неспешно, едва заметно продвигается вперед. За первую секунду движения он переместился, оказывается, всего на полмиллиметра, понятно, что он казался неподвижным, хотя тронулся с места одновременно с соседними автомобилями. За вторую секунду экипаж прошел полтора миллиметра, за третью еще на миллиметр больше, то есть два с половиной миллиметра, за четвертую — опять на миллиметр больше и т. д.
Судя по этому, экипаж движется равноускоренно, с постоянным ускорением, равным 1 мм/сек2, то есть в 10 000 раз меньшим, чем ускорение свободно падающего тела. Неудивительно, что при столь малой скорости движения экипаж надолго застрял на перекрестке, вызвав справедливый гнев регулировщика.
Чтобы объехать на подобной машине вокруг Москвы даже по новой кольцевой автомобильной дороге, где совсем нет светофоров, понадобилось бы, чего доброго, несколько месяцев. Кому нужен такой, по меньшей мере, странный автомобиль, уличный «тихоход»?
Не диким ли покажется после этого утверждение, что/экипажи такого рода станут в будущем основным видом сообщения по дорогам… космоса? Что именно им суждено решить проблему межпланетных сообщений и превратиться в рейсовые линейные машины космических трасс?
Это в космосе-то, где проходимые пути в тысячи и миллионы раз больше, чем протяженность московской кольцевой дороги?! Какой абсурд!
И все же это так. Чтобы убедиться в этом, совершим на нашем необычном автомобиле поездку по кольцевой дороге вокруг Москвы. Рискнем даже превратить эту поездку в своеобразную гонку, для чего вызовем на соревнование какую-нибудь новенькую «Волгу». Смешно, конечно, улитка — и «Волга», но… попробуем. Запасемся терпением и продуктами в расчете на длительное путешествие (ведь мы-то на «улитке») — и в путь.
За первую минуту после старта гонки мы проедем на своем «тихоходе» (вспомните, что он движется равноускоренно, так что его скорость возрастает каждую секунду на 1 миллиметр в секунду) всего 1,8 метра, тогда как «Волга» умчится почти на километр. Обескураживающее начало… Правда, путь, пройденный за каждую следующую минуту, будет возрастать на 3,6 метра, но ведь впереди-то 109 километров — такова протяженность московского окружного автомобильного «проспекта».
Однако мы условились запастись терпением. Через час наше расстояние от места старта составит примерно 6,5 километра, «Волга» же пройдет половину всего пути, даже если ее скорость будет равна всего 55 километрам в час. И все же наша средняя скорость за этот первый час оказалась уже намного больше, чем у улитки, она примерно равна скорости пешехода. Все-таки прогресс.
Ободренные подобным оборотом дела, продолжим гонку, учитывая, что каждый следующий час мы будем проезжать на 13 километров больше, чем за предыдущий, — таков закон нашего равноускоренного движения. После четырех часов непрерывной езды мы закончим дистанцию и прибудем к месту старта. Если соревнующаяся с нами «Волга» не прекратит гонки после финиша, то второй раз она финиширует одновременно с нами, пройдя вместо одного — два круга.
И все же продолжительность поездки оказалась неожиданно не такой большой — вместо предполагавшихся нескольких месяцев всего 4 часа. Во всяком случае, запасы продовольствия пока остались неприкосновенными. Медленнее, конечно, чем «Волга», но… терпимо — средняя скорость нашего движения равнялась примерно 26 километрам в час.
А что, если продолжить проигранную на первых этапах гонку? Двинемся-ка дальше, не теряя надежды, хотя у наших соперников целый круг фору. И действительно, на девятом часу гонки мы наконец нагоним соперников. А с этого момента наше превосходство будет становиться все более подавляющим: ведь они проезжают каждый час все те же 55 километров, а мы непрерывно увеличиваем скорость своего движения. К исходу первых суток длительной гонки мы финишируем в 34-й раз, тогда как соперники сумеют сделать это только 12 раз. Разгром!
«Московская кругосветка» — гонка «тихохода» с «Волгой».
Интересно, что к этому моменту непрерывно возрастающая скорость нашего движения превысит 300 километров в час. Куда там «Волга»! В действительности, вероятно, с подобной скоростью по кольцевой дороге нам ездить не разрешат, она лишь иллюстрирует замечательные возможности равноускоренного движения, даже если величина ускорения очень мала.
Помните древнюю легенду о мудреце, который изобрел игру в шахматы, и радже, предложившем ему за это любую награду? Раджа был очень удивлен, когда мудрец попросил всего лишь горстку пшеничных зерен: одно зерно на первую клетку шахматной доски, два — на вторую, четыре — на третью, и т. д., все время удваивая количество зерен, пока не будет заполнена последняя, 64-я клетка. Но уплатить обещанное раджа не смог — нужного количества зерен нельзя было бы собрать во всем его государстве. Таково коварное свойство геометрической прогрессии, использованное мудрецом.
Не таит ли в себе и наш «уличный тихоход» нечто от этого свойства? Ведь переход от ничтожной скорости в начале до огромной — в конце гонки оказался неожиданно быстрым.
Естественна мысль о возможности использования равноускоренного движения в космических полетах. Конечно, межпланетная ракета — не «Волга», ведь уже достигнуты космические скорости порядка 40 000 километров в час. Так что скорость, которую приобрел наш «тихоход» после суточной гонки, все еще во много раз меньше необходимой. Разгон «тихохода» до космической скорости должен длиться гораздо дольше, примерно 130 суток. Не многовато ли?
А пожалуй, и нет. Правда, космическая ракета набирает нужную скорость всего за несколько минут с того мгновения, как она отрывается от пускового стола. Но ведь затем она летит с неработающими двигателями многие часы, дни, а иногда и месяцы подряд. Времени в космосе, как видно, много, дело не за ним. Пожалуй, и не скажешь, что же лучше — сразу разогнать ракету до нужной космической скорости или же разгонять ее постепенно, используя «космический тихоход»..
А что значит — лучше? Спросите любого автомобилиста, он вам ответит, что лучше та машина, которая расходует меньше топлива на километр пути. То же скажет и летчик о самолете. Расходом топлива определяют в этих случаях экономичность, совершенство машины. Чем лучше экономичность, тем дальше с тем же запасом топлива уедет автомобиль, улетит самолет. Если нужно увеличить дальность, придется вместо полезного груза брать с собой в путь лишнее топливо. Так обстоит дело на Земле.
А в космосе? Разумеется, и здесь расход топлива играет важную роль, пожалуй, решающую. И не потому, что космическое ракетное топливо гораздо дороже обычного или что общая затрата его на совершение полета велика, отчего каждый процент экономии становится весьма весомым.
Главное в другом. Если во всех видах земного транспорта нехватку топлива обычно можно восполнить заправкой в пути, то для космического полета это пока еще только мечта. Правда, идея Циолковского о космических «заправочных колонках», мчащихся вокруг Земли по орбитам искусственных спутников и служащих для пополнения опустевших баков космических кораблей, стартующих с Земли, несомненно будет осуществлена. Мало того, ее осуществление не за горами. Уже не только исследуются многочисленные связанные с ней проблемы, но и готовятся различные эксперименты в космосе (например, в США — опыты с двухместными кораблями-спутниками «Джеминай», в ходе которых предполагается произвести стыковку двух выведенных на орбиту космических аппаратов).
Но все же пока таких космических заправочных станций нет. Да и если они будут созданы, то это только несколько облегчит задачу, но не решит ее до конца. Ибо даже в случае, когда межпланетный корабль стартует с орбитальной станции, заполнив на ней свои топливные баки, потребное количество топлива на борту корабля все же оказывается чрезмерно большим. Что поделаешь, так велика затрата энергии на разрыв цепей тяготения, оттого-то энергия — ключ к космосу. И, кстати сказать, особенно возрастает затрата топлива, когда полет должен длиться меньше времени, — курьерские сообщения в космосе достанутся дорогой ценой.
Поэтому-то расход топлива в космосе играет решающую роль. Величина потребного запаса топлива на борту обычно сразу показывает, можно ли вообще осуществить данный полет, и если можно, то каким может быть полезный груз на корабле, то есть какова практическая целесообразность полета. Легко видеть, какое значение имеет даже небольшое уменьшение потребного запаса топлива, — ведь сейчас вес полезного груза на корабле в несколько десятков, а то и в сотни раз меньше веса топлива. Значит, уменьшение запаса топлива всего на 1 % может удвоить вес полезного груза! На Земле ничего подобного не бывает.
Так что же, в конце концов, выгоднее с точки зрения затраты топлива- обычная современная ракета или «космический тихоход»?
Наша гонка вокруг Москвы не дает ответа на этот вопрос, хотя бы потому, что взлет космической ракеты осуществляется, как известно, вертикально вверх. Поэтому соревнование «тихохода» с такой ракетой должно представлять собой уже гонку по вертикали, что вносит существенные поправки.
Чтобы ракета оторвалась от пускового стола и взлетела, на нее должна действовать вверх сила, превосходящая собственный вес ракеты. Такой силой является реактивная тяга двигателя — сила реакции вытекающей из него струи газов. Если эта сила будет в точности равна весу ракеты, то ракета не взлетит или же, взлетев, повиснет неподвижно в воздухе, подобно вертолету. Чуть возрастет сила — и ракета станет подниматься. Если сила постоянна, то и ускорение ракеты будет постоянным (если не учитывать изменения массы ракеты из-за расходования топлива, а также влияния сопротивления воздуха), то есть ракета будет двигаться равноускоренно. Но ведь именно таков закон движения «тихохода». Разве ракета и есть «тихоход»?
Действительно, в самом начале взлетающая ракета движется с очень небольшой скоростью, как и наш «тихоход». Создается даже впечатление, будто она и не движется вовсе, а находится в каком-то раздумье: не то взлетать, не то нет. Но потом она летит все быстрее, и очень скоро ее след тает в небе. Это стремительное нарастание скорости объясняется тем, что обычно сила тяги значительно превосходит вес ракеты. Помните, какие огромные перегрузки действовали на наших космонавтов в кабине корабля «Восток» в момент взлета? Увеличенный в несколько раз собственный вес вжимал, вдавливал их в сиденье. Это объяснялось тем, что ускорение ракеты в несколько раз превосходило ускорение свободного падения тел, то есть то нормальное ускорение силы тяжести, с которым связано появление обычного веса каждого из нас здесь, на Земле.
Если, например, вес взлетающей ракеты равен 100 тоннам, а сила тяги двигателя равна 200 тоннам, то и вес космонавта при взлете будет из-за перегрузки вдвое больше обычного, а ракета будет взлетать вверх с ускорением, равным нормальному, — скорость ракеты будет возрастать каждую секунду на 10 метров в секунду. Обратите внимание, это важно — ускорение взлетающей ракеты не в два раза больше обычного, а только равно ему, хотя перегрузка равна двум. Это легко объяснимо: чтобы ракета не падала вниз под действием силы тяжести, двигатель должен создавать тягу, равную весу ракеты. Значит, эта тяга не будет создавать ускорения ракеты, хотя топливо будет расходоваться. Только тяга, избыточная над весом, начнет разгон ракеты.
Но зачем нужно осуществлять разгон ракеты с таким большим ускорением, если перегрузки очень неприятно действуют на космонавтов да и на ракету тоже? Не лучше ли не торопиться й несколько увеличить продолжительность взлета, хотя бы, например, вдвое? Кстати, это будет выгоднее и потому, что понадобится менее мощный, а следовательно, и более легкий двигатель, да и вес ракеты будет меньше. Что же этому мешает?
Может быть, ракетные двигатели не в состоянии работать вдвое большее время, допустим, не 5–6, а 10–12 минут подряд? Действительно, создание таких долгоработающих двигателей — сложная задача, ибо ракетные двигатели работают в невиданно сложных условиях, не встречающихся в двигателях других типов. Но все же современная ракетная техника в состоянии создать нужные двигатели.
Тогда, может быть, нельзя осуществить такой замедленный взлет потому, что трудно управлять медленно взлетающей ракетой? Действительно, это очень плохо, что в течение большого времени после старта ракета движется с очень малой скоростью. Ведь даже небольшой порыв ветра может оказаться в этом случае губительным. И все же и с этой трудностью современная техника тоже может справиться.
Выходит, можно попробовать устроить нужную нам гонку по вертикали. Вот стоят рядышком на пусковых столах обычная ракета и наш «тихоход». Мерно отсчитывает метроном секунды: «…Три… Два… Один… Старт!» Первые мгновения оба соревнующиеся аппарата движутся, кажется, одинаково медленно, затем дело резко меняется — ведь ускорение «тихохода» (мы его считаем прежним) в 30 000 раз меньше, чем ракеты, если для нее оно равно 30 м/сек?. Прошла минута, и ракета, давно скрывшаяся в небе, мчится уже со скоростью 1,8 километра в секунду, тогда как скорость «тихохода» равна всего 6 сантиметрам в секунду. За эту минуту он поднимется всего на 1,8 сантиметра, а ракета умчится на 54 километра. Но нас теперь все это уже не пугает, мы знаем, что «тихоход» похож на улитку только в начале пути, а потом берет свое. Кто же все-таки победит в соревновании?
Мы догадываемся, что в конце концов победа будет на стороне того, кто совершит взлет с меньшей затратой топлива, и начинаем думать, что тут-то победителем окажется «тихоход» — иначе зачем было автору рассказывать все это? Но оказывается, что «тихоход» безнадежно проиграет…
Помните, ваше внимание было специально обращено на несоответствие между тягой и ускорением взлетающей ракеты? Когда двигатель ракеты развивает тягу, в точности равную весу, то хотя он ежесекундно поглощает целую реку топлива, ракета будет висеть в воздухе неподвижно, опираясь на огненный водопад вытекающих из двигателя газов. Стоит чуть увеличить тягу, и ракета тронется вверх, появится ускорение. Неудивительно, что при малом ускорении, как в случае «тихохода», оно достается ценой очень большой траты топлива, — так сильно сказывается обязательный «довесок» в виде расхода топлива на создание тяги, равной весу ракеты. Когда ускорение возрастает, то относительное влияние этого «довеска» становится, естественно, меньше. Следовательно, уменьшается и затрата топлива на единицу ускорения ракеты (ученые говорят, что уменьшаются гравитационные потери при взлете).
Если весь взлет с разгоном ракеты осуществляется вертикально, то «тихоход» затратит на него примерно в 7500 раз больше топлива, чем ракета. Такой взлет не просто невыгоден, он, невозможен. Выходит, вертикальную гонку «тихоход» действительно проигрывает по всем статьям…
Значит, идея применения «тихохода» в космосе абсурдна?
Конечно, рассказ этот ведется не зря, на «тихоходах» еще рано ставить крест. Прежде всего, вертикальный взлет космических ракет длится, в общем, недолго. Как только они пересекают нижние, плотные слои атмосферы, так тотчас же переходят с вертикального на наклонный, а затем и горизонтальный полет. Собственно, невыгодный вертикальный взлет и нужен лишь для того, чтобы как можно быстрее пересечь толщу плотной атмосферы, полет в которой связан, в свою очередь, со значительными дополнительными потерями топлива на преодоление сопротивления воздуха. Но как только плотный воздух позади, можно переходить на полет по горизонтали, когда вредное действие земного тяготения уже не сказывается и гравитационные потери отсутствуют. Тут уже можно бы найти применение и «тихоходу», но все же он будет уступать обычной ракете.
Область, где «тихоход» ни в чем не уступит, иная. Представьте себе, что космический корабль уже вышел на орбиту искусственного спутника Земли. Позади — трудный взлет, атмосфера, перегрузки. Достигнута орбитальная, или первая космическая скорость. Теперь уже, если двигатель будет выключен, корабль станет бесконечно долго обращаться вокруг Земли. А если снова включить двигатель? Раз двигатель уже не должен своей тягой компенсировать вес корабля и преодолевать сопротивление воздуха, то любая, даже самая небольшая тяга вызовет ускорение. «Довеска», о котором говорилось выше, более не будет.
Значит, тут уже нет необходимости в сверхмощных ракетных двигателях, развивающих тягу в сотни тонн и поглощающих ежесекундно тонны топлива. Даже самый крохотный двигатель с тягой, меньшей веса корабля в тысячи раз, заставит корабль двигаться с ускорением (вспомните космические «каравеллы», о которых шла речь в предыдущей главе). И пусть это ускорение будет очень небольшим, все же со временем оно сильно увеличит скорость корабля, например, до скорости отрыва, когда корабль полностью разорвет цепи земного тяготения и отправится в межпланетный полет, от орбиты вокруг Земли к орбите вокруг Марса или другой планеты назначения. В таком межорбитном полете действительно годится и «тихоход», тут уж вовсе не обязательно разгонять корабль быстро, можно и медленно.
Но разве медленно — значит лучше? Верно, что двигатели малой тяги будут проще и надежнее, но ведь зато они должны будут работать уже не минуты, а многие дни и месяцы подряд. Они будут, естественно, легче и меньше по размерам, но и это не решающее обстоятельство. Главное, конечно, как будет обстоять дело с расходом топлива. И здесь-то мы подходим к самому существенному.
Оказывается, расход топлива на полет не будет зависеть от того, как долго он продолжается. Еще Циолковский установил, что не тяга двигателя и не продолжительность его работы, а скорость истечения газов из двигателя — вот что, прежде всего, определяет затрату топлива на полет. Почему так?
Потому, что чем меньше скорость истечения, тем больше должен быть расход топлива для получения той же тяги. Любая сила, в том числе и тяга двигателя, есть произведение массы на величину изменения скорости за время действия силы. Один и тот же толчок заставит катиться легкий алюминиевый шарик быстрее, чем тяжелый стальной. Выплюньте вишневую косточку — она полетит с большой скоростью, потому что ее масса мала. Но та же сила (ибо действие равно противодействию, и косточка действует на вас с той же силой, что и вы на нее) даже не сдвинет вас с места — ваша масса велика.
Если каждую секунду из двигателя вытекает один килограмм газов со скоростью 1000 метров в секунду, то сила тяги будет равняться 1000 ньютонам (или примерно 100 килограммам). Если же скорость истечения возрастет до 2000 метров в секунду, то для сохранения тяги расход газов должен уменьшиться вдвое, то есть до 0,5 килограмма. Значит, самый простой и прямой путь уменьшения расхода топлива — увеличение скорости истечения.
Но это тривиальная истина, и вся история ракетной техники — это, в значительной мерю, борьба за увеличение скорости истечения. К сожалению, успехи, одержанные на этом фронте, весьма скромны. По существу, скорость истечения газов из лучших современных двигателей превышает эту скорость в самых ранних двигателях не более чем в полтора раза. За тридцать лет — и всего в полтора раза!
Это, конечно, не случайно, и, что хуже всего, даже перспективы на будущее здесь тоже, в общем, весьма скромны. Рост еще раза в полтора — это, пожалуй, максимум, на который можно рассчитывать. Больше, чем примерно 4500 метров в секунду, самый лучший ракетный двигатель дать, очевидно, не сможет. Но, значит, этим устанавливается и предел для экономии топлива со всеми вытекающими отсюда последствиями, прежде всего, в отношении величины полезного груза, а также длительности полета. Так на пути человека в космос возникает незримый «барьер скорости истечения».
Природа этого барьера, представляющего собой главное препятствие дальнейшему освоению космоса и организации межпланетных сообщений, заключается в особенностях химической энергии ракетных топлив. Это топливо выполняет в двигателе сразу две различные функции, играет двойную роль. С одной стороны, топливо — источник энергии, его химическая энергия выделяется в двигателе и в результате происходящих в нем рабочих процессов преобразуется в конце концов в кинетическую энергию струи газов. Но, с другой стороны, топливо, или точнее — продукты его сгорания, являются и источником массы, тем рабочим веществом, истечение которого из двигателя непосредственно создает тягу. Поскольку величина химической энергии ограниченна, а состав вытекающих из двигателя газов определяется характером химической реакции сгорания, то есть не может быть избран произвольно по желанию конструктора, то ограниченной оказывается и величина предельно достижимой скорости истечения.
Правда, возможности химии здесь использованы пока еще далеко не полностью, впереди, несомненно, новые замечательные победы, которые с помощью химии одержит ракетная техника. Но все же ясно, что «барьер скорости истечения» химии взять не удастся. Вот так же в свое время развитие авиации подписало смертный приговор поршневым двигателям, хотя авиация обязана им многими успехами. Поршневые авиационные двигатели спасовали перед «звуковым барьером», химические ракетные двигатели пасуют теперь перед «барьером скорости истечения», перекрывающим путь в глубины космоса.
Один возможный способ преодоления встретившейся трудности напрашивается сам собой. Если суть дела — в совмещении функций химического топлива, то нельзя ли отказаться от такого «совместительства»? Нельзя ли отделить источник энергии от источника массы, то есть рабочего вещества? Правда, такое разделение потребует введения в двигатель специального механизма для подвода энергии к рабочему веществу, механизма, от которого так счастливо избавлены существующие «химические» двигатели, — именно это делает их такими небольшими и легкими. Но, хочешь выиграть в одном, мирись с проигрышем в другом. Если введение подобного передаточного механизма, хоть и весьма нежелательного, позволит существенно увеличить скорость истечения, то плата за это может оказаться приемлемой.
Однако, прежде всего нужно найти новый источник энергии, более мощной, чем химическая. Первая мысль в этой связи — о внутриядерной энергии атомов, в миллионы раз большей химической. Действительно, если бы удалось эффективно сообщить удачно избранному рабочему веществу, например водороду, энергию, таящуюся в ядрах атомов урана и некоторых других химических элементов, то проблема «барьера скорости истечения» была бы, по существу, снята. Однако практически реализовать эту возможность, к сожалению, исключительно трудно, если не невозможно. Основная трудность — именно в механизме передачи атомной энергии рабочему веществу.
Проектов здесь много, некоторые из них были рассмотрены выше, в главе VI, но нужно заметить, что, в общем, все они далеки и от реализации, и от совершенства. По наиболее распространенному мнению специалистов, атомные ракетные двигатели позволят увеличить скорость истечения по сравнению с химическими примерно вдвое. Подобные двигатели будут наверняка созданы, ибо это сильно расширит возможности астронавтики. И все же «барьер скорости истечения» взят с их помощью не будет, он будет лишь несколько отодвинут.
В атомных ракетных двигателях, как и в обычных химических, для достижения высокой скорости истечения рабочее вещество нагревается до весьма высокой температуры. Такой нагрев происходит либо в ходе химической реакции, либо же в атомном реакторе, в котором рабочее вещество получает тепло, выделяющееся в результате ядерных реакций.
Но науке известна еще одна чудодейственная природная сила, способная нагреть газ до колоссальных температур, это — сила электрическая. С помощью электричества даже в производстве удается получать температуру в десятки тысяч градусов, — кто не слышал об электрической дуге, применяющейся, например, при сварке металлов?
«Барьер скорости истечения».
В лабораториях же, в частности, в работах по управляемым термоядерным реакциям, мощный электрический разряд в газе превращает его в плазму, то есть в смесь электрически заряженных частиц — электронов и ионов, нагретую до температуры в миллионы и десятки миллионов градусов. При такой температуре и скорость истечения может быть практически как угодно большой. Уж не открывается ли здесь туннель в «барьере скорости истечения»?
Впрочем, электричество знает и иные пути разгона заряженных частиц до колоссальных скоростей, помимо высокой температуры. Хорошо известны, например, силы, возникающие между электрическим проводником, в котором течет ток, и окружающим его магнитным полем, — на использовании этих сил зиждется бесконечное число разнообразных электрических двигателей, верно служащих человеку. Но поскольку сильно нагретый газ превращается в токопроводящую плазму, то, воздействуя на эту плазму, по которой течет ток, магнитными полями, можно заставить ее двигаться с очень большой скоростью и вытекать наружу из ракетного двигателя.
Кстати сказать, как обычный электродвигатель легко может быть превращен в генератор тока, так и здесь движение струи плазмы между полюсами магнитов может привести к возникновению электрического тока в цепи, соединяющей омываемые плазмой электроды. На этом принципе устроены так называемые магнитогидродинамические генераторы тока, не имеющие, в отличие от обычных динамо-машин, никаких движущихся частей и обладающие существенно большим коэффициентом полезного действия. Не зря с этими МГД-генераторами, как их называют, связывают перспективы грядущей революции в области электроэнергетики.
Хорошо известен и еще один метод разгона заряженных частиц с помощью электричества до колоссальных, субсветовых скоростей. Этот метод используется в целой армаде разнообразных ускорителей элементарных частиц в лабораториях ядерной физики. Названия подобных ускорителей — циклотрон, синхрофазотрон и другие — стали своеобразным символом нашего атомно-космического века. В вакууме рабочей камеры ускорителей разгон элементарных частиц — электронов, протонов и других — осуществляется электростатическим полем, действующим на основе хорошо известного каждому школьнику закона: одноименные заряды отталкиваются, разноименные притягиваются. Нельзя ли использовать тот же метод и для разгона рабочего вещества ракетного двигателя?
Что же, все три указанных метода, с помощью которых электричество в состоянии ускорить частицы рабочего вещества, действительно исследуются и даже уже используются ракетной техникой. Создаются и испытываются разные типы электрических ракетных двигателей, делящихся на три группы в зависимости от примененного метода разгона. Об этих двигателях уже упоминалось выше, в главе VI, в которой шла речь о новых типах «экзотических» реактивных двигателей.
В электротермических (или электродуговых) ракетных двигателях рабочее вещество нагревается до высокой температуры в электрической дуге, а затем вытекает с большой скоростью, расширяясь в реактивном сопле обычного типа.
В плазменных (или электромагнитных, еще — магнитогидродинамических) ракетных двигателях созданная тем или иным способом плазма рабочего вещества разгоняется до очень больших скоростей путем взаимодействия с электромагнитным полем.
В ионных (или электростатических) ракетных двигателях, более подробно описанных в главе VI, частицы рабочего вещества сначала ионизируются, то есть приобретают электрический заряд, а затем разгоняются до весьма больших скоростей в электрическом поле.
Как бы ни были устроены электрические ракетные двигатели космического корабля, на его борту должен находиться источник электрического тока для питания двигателей. Это, конечно, очень неприятная особенность электрических межпланетных кораблей, ибо в обычных химических двигателях «энергостанция» как бы находится внутри самого двигателя, в его камере сгорания. Здесь же нужна специальная установка, в которой должна генерироваться электрическая энергия за счет расходования энергии какого-нибудь другого вида.
В общем случае возможны три вида такой энергии — химическая, атомная и солнечная. Но легко видеть, что для электростанции достаточно большой мощности ни химическая, ни солнечная энергия не годится. Первая требует слишком больших количеств топлива на борту корабля, и мы возвращаемся, таким образом, и в сильно ухудшенном виде, к основным недостаткам обычных ракетных двигателей. Вторая просто недостаточна по величине, ее улавливание в больших количествах требует столь огромных поверхностей солнечных коллекторов, что становится практически неприемлемым.
Только атомные реакторы, широко применяющиеся уже на атомных электростанциях, атомных надводных и подводных судах, могут решить задачу. Конечно, это должны быть специально спроектированные легкие и мощные реакторы, но по характеру происходящих ядерных реакций они будут такими же. Эти реакторы будут основой атомной электростанции, питающей электрические ракетные двигатели корабля.
Но одного реактора мало. Как преобразовать выделяющееся в нем тепло в электрическую энергию? Такие преобразователи могут быть различными по типу, даже если говорить только об уже разрабатываемых. Наиболее реально, по крайней мере на первое время, применение обычного турбогенераторного преобразователя, как и во всех других уже существующих атомных силовых установках. В этом случае какое-либо рабочее вещество (правда, не вода, как обычно, а, вероятно, некоторые расплавленные металлы, например натрий, или калий, или же ртуть) испаряется в атомном реакторе, затем расширяется, производя полезную работу, в турбине, приводящей во вращение электрогенератор, и наконец снова превращается в жидкость в огромном конденсаторе-радиаторе, отдавая тепло конденсации излучением в космос.
В будущем же более вероятно использование различных методов непосредственного, безмашинного преобразования тепла, выделяющегося в атомном реакторе, в электроэнергию. Тут могут найти применение термоэлектрические, термоэмиссионные и другие преобразователи, в которых используются многие новые достижения современной физики.
Так или иначе, атомная электростанция будет непрерывно подавать по проводам ток в электроракетный двигатель корабля, в котором чудесная сила электричества создаст стремительную реактивную струю вытекающих из двигателя частиц. Сам по себе этот двигатель — » ускоритель частиц и представляет собой третью (после атомного реактора и преобразователя энергии), основную, заключительную часть электроракетной силовой установки межпланетного корабля.
Мы лишь вскользь упомянули о необходимой большой мощности бортовой космйческой электростанции корабля. Однако это замечание не просто заслуживает расшифровки, но и касается, пожалуй, самого уязвимого места электроракетных двигателей.
Проект атомной электроракетной автоматической межпланетной станции (США). Внизу — принципиальная схема атомной электроракетной силовой установки (по журналу «Микеникел инжиниринг», август 1962 г.).
Легко видеть, что мощность бортовой электростанции должна быть больше, чем полезная мощность самого двигателя, — ведь неизбежны различные потери мощности. Но отвлечемся, простоты ради, от потерь и будем считать, что эти мощности одинаковы. Какова же их величина?
Обычно, когда речь идет о всем многоликом и обширном семействе реактивных двигателей, то о мощности не упоминают вовсе. Это об автомобильном, тепловозном, судовом двигателе, не говоря уже об установленном на электростанции или где-нибудь на заводе, разговор начинают всегда с мощности. В таких случаях мощность — первая и главная характеристика двигателя, ибо он и предназначается именно для того, чтобы развивать мощность на валу.
Другое дело — реактивный двигатель. Его задача — создавать реактивную тягу, и величина тяги есть основная характеристика любого такого двигателя. Мощностью же реактивного двигателя обычно интересуются разве что в каких-либо специальных случаях.
Но электрические ракетные двигатели нуждаются в бортовой электростанции, ничем принципиально не отличающейся от любой другой, земной. Естественно, что основной характеристикой такой станции должна быть мощность. Потребная величина этой мощности полностью определяется мощностью самого ракетного двигателя — как видите, здесь уж, хочешь не хочешь, приходится интересоваться такой мало привычной для ракетной техники величиной, как мощность двигателя.
Полезная мощность ракетного двигателя равна той кинетической энергии, которую несет с собой струя вытекающих из двигателя газов. Ведь именно в эту энергию переходит в результате работы двигателя расходуемая в нем энергия какого-либо другого вида — химическая, ядерная или электрическая. Но, как известно, кинетическая, или скоростная, энергия струи газов определяется (при неизменном количестве этих газов) квадратом скорости газов в струе. Когда скорость возрастает вдвое, кинетическая энергия струи и, следовательно, мощность двигателя увеличивается в 4 раза.
Это делает совершенно очевидной следующую роковую закономерность: если при прежней тяге скорость истечения возросла, то настолько же возрастет и мощность двигателя. Понятно, почему такая закономерность является действительно роковой. Ведь мы заботимся о преодолении «барьера скорости истечения», то есть о всемерном увеличении этой скорости, что, оказывается, неизбежно связано со столь же быстрым увеличением мощности.
Помните сообщение о величине мощности двигателей советской ракеты, с помощью которой был выведен на орбиту космический корабль-спутник «Восток» с Ю. А. Гагариным на борту? Эта мощность равнялась 20 миллионам лошадиных сил. Если сохранить величину тяги двигателей и увеличить скорость истечения, допустим, в 100 раз (примерно такова непосредственная цель электроракетных двигателей), то мощность возрастет до 2 миллиардов лошадиных сил! Стоит ли говорить о том, что подобную мощность, в сотни раз превосходящую мощность крупнейших ГЭС, вроде Братской, бортовая электростанция иметь не может?
Как же быть? Неужели туннель в «барьере», о котором мы мечтали, оказался призрачным?
Нет, один путь преодоления трудности, возникшей в связи с потребной мощностью, все же есть. Он заключается в уменьшении тяги двигателя с тем, чтобы, несмотря на рост скорости истечения, мощность не только не возрастала, но даже и уменьшалась. И вот тут-то мы снова возвращаемся к мысли об использовании «тихохода». Ведь в космосе, как уже отмечалось, нет необходимости в большой тяге. Там пригодны и очень малые тяги, создающие ничтожные ускорения корабля, то есть превращающие его в космический «тихоход». Выходит, преодоление «барьера» под силу «тихоходу»!
Чтобы ускорение равнялось 1 мм/сек? как в нашей гонке вокруг Москвы, двигатель космического «тихохода» должен развивать тягу, в 10 ООО раз меньшую его веса (то есть веса корабля, который он имел бы на Земле), следовательно, тягу в 1 килограмм на каждые 10 тонн веса. На корабле весом 10 тонн (пока еще такой вес не достигнут астронавтикой) должен быть установлен именно такой двигатель тягой всего 1 килограмм. Отличие от современных мощных ракетных двигателей разительное.
Электроракетный двигатель тягой 1 килограмм потребует наличия на борту корабля электростанции мощностью в сотни и даже тысячи киловатт. И это, конечно, много, но уже приемлемо. Так появляется реальная возможность использования «тихохода» для межпланетных сообщений.
Электрические корабли — ионолеты, плазмолеты и другие — оказываются, пожалуй, единственным средством преодоления «барьера скорости истечения» и совершения межпланетных рейсов с большим полезным грузом. Некоторые из этих кораблей могут позволить совершить и простейшие межзвездные перелеты, что особенно важно в виду пока еще чрезмерной проблематичности фотонных ракет, в которых вместо вещества из двигателя «вытекает» луч света, то есть поток фотонов. Как известно, скорость света, равная 300 000 километров в секунду, является максимально возможной в природе, вследствие чего фотонный двигатель, о котором также шла речь в главе VI, обеспечивает самое радикальное решение проблемы «барьера скорости истечения» и, таким образом, максимальную величину полезного груза. Это был бы идеальный звездолет, если бы он мог быть… создан. Пока фотонная ракета — не более чем интересная теоретическая перспектива. А электрические ракетные двигатели уже испытываются на стендах…
С помощью межпланетной тихоходной «электрички» станут возможными космические полеты, которые не под силу обычным ракетам. Прежде всего это касается, конечно, величины полезного груза: она может быть в десятки раз больше, чем на обычных ракетах; вряд ли есть нужда подчеркивать все значение этого для астронавтики, оно поистине решающе. Но не только это. Если в полете на Луну «электрический тихоход» сильно уступает обычной ракете в отношении продолжительности полета, то уже в полете к Марсу и Венере длительность окажется примерно одинаковой. Что же касается более дальних рейсов — к Юпитеру, Меркурию, Сатурну и еще дальше, то здесь «электричка» окажется значительно расторопней: она обгонит обычный ракетный «экспресс» в пути, как наш «тихоход» обогнал «Волгу». Полет же к окраинам солнечной системы или, например, с выходом из плоскости эклиптики практически возможен лишь с помощью такой «электрички».
Так межпланетная «электричка-тихоход» превращается в единственное потенциально пригодное средство осуществления дальних межпланетных перелетов. Да и не только их одних — во многих случаях она в состоянии выполнить задачу космического полета гораздо лучше, чем обычная ракета. Так будет, например, обстоять дело с организацией грузовых перевозок на Луну или на высокорасположенные орбиты, по которым станут двигаться большие населенные спутники Земли.
Межпланетный полет космического электрического «тихохода» (рисунок атомного ионолета по проекту Локхид. Ядерный реактор не имеет экранировки и поэтому светится при работе).
Появление «межпланетной электрички» будет означать революцию в астронавтике, станет новым, качественным скачком на пути человека в космос. Неудивительно, что этим космическим «тихоходам» и их электрическим ракетным двигателям ученые уделяют столь большое внимание. Создаются, изучаются и испытываются десятки типов подобных двигателей. Характерно, что в США часто утешают себя на страницах специальной и общей прессы, что, уступив Советскому Союзу первенство в области космических ракет, они возьмут реванш, когда в космос выйдут электрические ракеты. Это должно произойти, по их мнению, в будущем десятилетии. Что ж, посмотрим, какое оно будет, это десятилетие..
Несомненно одно: пройдет несколько лет, и от орбитальной станции-спутника, обращающегося вокруг Земли (вспомните Терру, описанную в главе XVIII), возьмет старт на Марс или Венеру, подобно тому как это уже происходило с советскими автоматическими межпланетными станциями в 1961 и 1962 годах, новая автоматическая станция, на этот раз — электрическая. Сначала много суток станция будет описывать вокруг Земли витки полого расходящейся спирали, а затем перейдет на такую же спираль вокруг Солнца. Почти год будет лететь станция, и все это время или, во всяком случае, значительную часть его будет работать электрический ракетный двигатель. Чуть светящаяся, прозрачная струя электрически заряженных частиц, вытекающих из двигателя, сначала будет слабо-слабо, но зато непрерывно толкать вперед станцию, разгоняя ее до очень большой скорости, гораздо большей, чем для обычной ракеты. А потом столько же времени двигатель будет тормозить станцию, снижая скорость до необходимой для того, чтобы перейти снова на спираль, но теперь уже полого накручивающуюся на планету — цель назначения.
Взлет — дело мощных химических или атомных ракет.
Полет — задача электрических «тихоходов».
Сначала, естественно, такая станция будет автоматической, потом последуют обитаемые электрические межпланетные корабли, а затем и весь космический межпланетный транспорт станет электрическим. Только взлет с Земли и планет, а также посадка будут по-прежнему происходить с помощью грандиозных сверхмощных ракет с обычными химическими или атомными двигателями.
Так будут поделены функции между различными «локомотивами Вселенной»: обычные ракеты-«тепловозы» (ведь химический ракетный двигатель — тепловой) останутся в качестве «маневровых», а на далекие космические магистрали выйдет «межпланетная электричка».
Как ни безгранична тема рассказа об авиации и астронавтике будущего, автору приходится закончить его. Однако сделать этого нельзя, не упомянув о тех, кто сегодня создает это будущее.
Наверное, многие читатели, особенно юные, не раз с завистью смотрели на тех, кто по-хозяйски входит в проходные авиационных заводов. Там, в цехах и конструкторских бюро, воплощаются в жизнь дерзновенные мечты, там творится будущее.
Однако не только за этими стенами создается будущее авиации. Как часто мы проходим мимо самых обычных и, кажется, хорошо знакомых зданий вовсе «не авиационных» заводов, институтов, лабораторий. А ведь и здесь творят авиацию завтрашнего дня. Ибо ее будущее находится в руках огромного коллектива людей, связанных общим делом.
Оно в руках математика, разрабатывающего новые отрасли своей науки, без которой невозможен дальнейший прогресс авиации; бьющегося над решением сложной задачи, вставшей перед конструкторами авиационного завода; создающего электронную математическую машину, нужную работникам конструкторского бюро, завода и экспериментальной лаборатории.
Оно в руках физика, делающего новые открытия в этой науке, являющейся «матерью» всей современной техники, открытия, которые лягут в основу многих замечательных летательных аппаратов будущего, разрабатывающего принципы создания атомных двигателей, изучающего законы прочности металлов.
Оно и в руках химика, создающего новые топлива для реактивных двигателей, «конструирующего» новые пластмассы с заранее заданными, нужными авиации свойствами.
И в руках металлурга, варящего невиданный доселе сплав.
И в руках радиотехника, прибориста, строителя, текстильщика, биолога, врача — в руках сотен и сотен людей всех специальностей. Ведь современная авиация и реактивная техника — это, в конечном счете, вершина прогресса всех отраслей науки и техники; они создаются коллективным трудом работников разных областей науки и промышленности.
Одно, главное, роднит всех этих людей, хотя они и не знают друг друга. Это — их творческий труд, смелые дерзания, покушение на самые, казалось бы, непререкаемые каноны, глубокое проникновение в «суть вещей».
Вот почему всякий, кто мечтает трудиться в области авиационной и реактивной техники, кто хочет посвятить жизнь этому увлекательному, творческому труду, все равно — за лабораторным столом, чертежной доской или токарным станком, — должен не только глубоко изучать уже достигнутое наукой и техникой, но и воспитывать в себе «творческую жилку», нетерпимость к рутине, любовь к новому, передовому.
Для восьмилетней школы
Гильзин Карл Александрович
В НЕБЕ ЗАВТРАШНЕГО ДНЯ