Глава первая, в которой автор, запутавшись в сложности поиска «энергетической капсулы», решил искать ее самым простым путем и, кажется, не ошибся...
Итак, я перебрал почти все идеи, казавшиеся мне сколь-нибудь перспективными, но «капсулы» не нашел. Каждый раз все складывалось вроде бы отлично, появлялись радужные надежды, а затем возникали непредвиденные осложнения, они громоздились друг на друга, и мои надежды в конце концов рушились.
Неужели всякая победа в технике достается только многолетним кропотливым трудом? Известно, что так работал, например, великий Эдисон, тратя на сон и другие «бесполезные», с его точки зрения, занятия минимум времени. Но ему же принадлежат слова: «Огромное большинство людей предпочитает безмерно трудиться, лишь бы немного не подумать».
Разумеется, я был совсем не против того, чтобы найти в природе какой-нибудь аналог накопителя и, отталкиваясь от него, «немного подумать». Однако попробуй найди такой аналог.
Раскаленное Солнце? Было, это же тепловой аккумулятор. Сила гравитации? Тоже было – аккумулятор Армстронга, или попросту поднятый груз. Упругие ветви деревьев? Пружина. Электрический скат? Электроаккумуляторы. Грозовые облака? Конденсаторы.
Шаровая молния? Ею я занимался только что.
Может, метеориты? Они все таки имеют гигантскую скорость, способны насквозь пробить космический корабль, если столкнутся с ним. Пусть даже их скорость будет весьма небольшой по космическим масштабам, километров десять в секунду, тогда кинетическая энергия каждого килограмма массы метеорита составит половину квадрата скорости, или... 50 мегаджоулей. Это ведь столько, сколько накапливает шаровая молния! А есть метеориты гораздо быстрее.
Разгонишь метеорит до вдвое большей скорости – накопишь вчетверо большую энергию.
Я не поверил себе. Решение лежало на самой поверхности. Возможно ли, что никто раньше не додумывался накапливать энергию в бешено мчащемся метеорите?
Ну хорошо, а как эту энергию отобрать у метеорита? Гнаться за ним на космическом корабле? Неудобно, сам при этом превратишься в аккумулятор такой же по величине энергии. Стало быть, надо привязать метеорит тросом к некой оси, и пусть он ходит вокруг нее по кругу. Вращая эту ось, можно будет разгонять метеорит – накапливать в нем энергию и, напротив, замедлять его бег при отборе энергии. Пожалуй, лучше даже взять несколько таких метеоритов на привязи, состыковать их один к одному, чтобы получилось кольцо. И пространство удастся сэкономить, и...
К моему удивлению, вышло нечто очень знакомое. Так это же маховик, обычный маховик в виде тяжелого колеса со спицами! Маховики давным-давно применяют для выравнивания хода машин, они присутствуют в любом автомобильном двигателе, в магнитофонах, в швейных машинах, механических ножницах, прессах... В общем, труднее, наверное, назвать машину, где бы совсем не было маховика или какого-нибудь тяжелого колеса, играющего его роль.
Почему же тогда маховики не используют для накопления больших количеств энергии? Ведь если даже плотность энергии маховика окажется в сотни раз меньше, чем я подсчитал для метеорита, все равно он будет на уровне лучших аккумуляторов, созданных когда-либо человеком!
Любое серьезное дело, как я уже понял, требует основательной подготовки. Мне теперь предстояло подробнее познакомиться с маховиками, и начать я решил прямо с момента их появления.
Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.
В небольшом гончарной мастерской, с виду довольно старой, служившей, вероятно, не одному поколению, перед гончарным станком сидит смуглый мужчина с остроконечной бородкой. Грубая крепкая деревянная тренога поддерживает массивный диск из обожженной глины диаметром около метра. На глаз в нем никак не меньше центнера. Гончар кладет на этот диск кусок размятой глины и принимается колдовать над ней. Диск, несмотря на явную тяжеловесность, легко вращается – по-видимому, он достаточно искусно посажен на ось, подвижно закрепленную в треноге. Но вот его вращение замедлилось. Мастер завел правую руку под диск и, нащупав там рукоятку, с силой потянул ее на себя, откинувшись в мощном движении...
Гончарный круг из Урского могильника: 1 - маховик; 2 - стойка; 3 - ручка.
Эта сценка из далекого прошлого ожила перед нами благодаря знаменитому английскому археологу Леонарду Вулли, который в 1929 году нашел в развалинах Урского могильника не совсем обычный гончарный круг. Гончарное ремесло в те времена получило уже довольно широкое распространение, и найденный диск не должен был особенно заинтересовать археологов. Но Леонард Вулли оказался достаточно проницательным, чтобы не пройти мимо некоторых странностей в устройстве диска. А привлекли внимание ученого два момента.
Во-первых, зачем понадобилось делать гончарный круг столь большим и тяжелым? В Египте, например, находили гончарные круги лет на тысячу старше. Изготовленные из дерева, они были гораздо меньше по размерам, легче и прекрасно служили в качестве простой вращающейся подставки. Такими же кругами пользовались и в Междуречье. И все-таки гончар из Ура сделал свой круг тяжелым и громоздким, как будто назло самому себе.
Во-вторых, для чего было проделано маленькое отверстие в торце диска? Если большое отверстие в центре предназначалось для закрепления в нем оси, то маленькое отверстие сбоку поначалу казалось археологам совсем ненужным.
И тут Вулли высказал блестящую мысль: в маленькое отверстие втыкалась деревянная рукоятка, с помощью которой древний мастер приводил диск во вращение. А массивность и большие размеры диска ему нужны были для того, чтобы подольше сохранить это вращение и работать на своего рода «механизированном» станке.
Гончар из города Ура сделал гениальное открытие – он изобрел маховик! Как и миллионы нынешних маховиков, их предок – гончарный круг, вращаясь, переносил энергию во времени. Именно он, по признанию ученых, положил начало эре механизированного труда.
Спустя 1200 лет после изобретения маховика в Междуречье, в древнем Китае был изготовлен другой гончарный круг маховичного типа. Известно даже имя хозяина гончарной мастерской близ Желтой реки, который, по-видимому, сам дошел до идеи маховика. Звали его Ланг Шан. К чести китайца, его маховик был значительно совершеннее. Вытесанный из камня, что придавало ему большую прочность и долговечность, массивный диск приводился во вращение ногами. Это позволяло развивать немалую скорость – ноги ведь гораздо сильнее рук.
«Большое колесо Мандарина»
Новое маховичное устройство появилось тоже в Китае примерно через полторы тысячи лет. В долине реки Ло Хо постоянно дули сильные ветры, которые сдували слои земли, образуя глубокие овраги. В этих оврагах на глубине 10...12 метров можно было найти воду, необходимую для орошения полей. Китайцы сооружали большие колеса с парусами на шестах, к колесам цепями крепили кожаные ковши для воды. Ветер надувал паруса и вращал колеса, поднимая воду из оврагов.
Однако когда ветер вдруг затихал, такое колесо останавливалось, а затем под тяжестью ковшей с водой начинало крутиться в другую сторону, сливая воду обратно в овраг. Чтобы этого не было, у колеса оставляли дежурить двух рабов, скованных цепью друг с другом. Как только ветер прекращался, они повисали на противоположной наполненным водой ковшам стороне колеса и удерживали его от обратного хода до следующего порыва ветра.
Однажды какой-то хозяин колеса, которому рабы понадобились для другой работы, решил заменить их тяжелым камнем. Ничего не получилось, все равно кто-то должен был в нужный момент привязывать камень к колесу, а потом отвязывать его. Хозяин махнул уже было на свою затею рукой, но тут налетевший ветер раскрутил колесо вместе с камнем, который не успели снять, и оно стало быстро вращаться, поднимая ковши с водой, причем не сразу остановилось, когда ветер опять стих.
Сообразительный хозяин тут же приказал привязать еще камней под каждый парус и стянуть шесты веревками. Так его колесо превратилось в огромный маховик, накапливавший энергию ветра и постепенно расходующий ее во время затишья. Благодаря маховику появилась возможность поднимать воду без постоянного контроля со стороны человека.
Сейчас такое сооружение назвали бы автоматическим водоподъемником маховичного типа, а тогда его именовали «Большое колесо Мандарина». Сохранилось и другое название маховичного колеса, по имени древней китайской цивилизации, на закате которой оно было создано, – колесо Пан-По.
Колесо Пан-По имело, по описаниям того времени, «четыре человеческих роста над землей и два – под землей». Крепкие «спицы», на концах которых были закреплены паруса и тяжелые камни, соединялись между собой распорками и канатами. Вал колеса покоился на подшипниках-втулках из твердых пород дерева, обильно поливаемых водой. Чем не современная жидкостная смазка подшипников?! Да, «Большое колесо Мандарина» было настоящим шедевром древних инженеров, на много лет опережавшим техническую мысль своей эпохи.
Маховики, правда, несравненно меньших размеров, применялись в старинных смычковых сверлилках-дрелях. Здесь роль маховика играл тяжелый диск, насаженный на сверло. Через него, обвиваясь, проходила тетива смычка. Двигая смычком вперед-назад, мастер разгонял маховик, а затем, надавливая на тупой конец сверла камешком с углублением, просверливал отверстия, используя накопленную в маховике энергию. Подобным способом можно было бы не только сверлить, но и добывать огонь трением.
Уже в древности появились первые маховичные игрушки. И раньше других – волчок, который радует детей и сейчас, спустя тысячелетия. Волчок весьма поучительная игрушка: он показывает сразу оба главных свойства маховика – накапливать и сохранять энергию, а также сохранять ось вращения в пространстве – так называемый гироскопический эффект. Эти свойства и обусловили применение маховиков в миллионах современных машин.
Старинная смычковая дрель: 1 - маховик; 2 - ось-сверло; 3 - рукоять; 4 - смычок.
Детство мое и моих сверстников протекало в военные и первые послевоенные годы. Тогда стране было не до игрушек, и мы сами делали их из дерева, глины, отливали из свинца. Иногда волчки получались очень удачные – закрутишь такой, бросишь на пол и подстегиваешь кожаной плетью.
Волчок гудит, подпрыгивает от ударов и крутится, крутится чуть ли не часами.
Не менее интересную игрушку мастерили мы из крупного грецкого ореха. Орех просверливали или прожигали гвоздем в двух местах близ центра так, чтобы расстояние между отверстиями не превышало сантиметра. Потом пропускали в эти отверстия нити, связывали концы – и игрушка готова. Мы называли ее «жужжалкой». Многие из нас в то время считали, что «жужжалку» выдумали недавно, а она, оказывается, описана еще в древних кавказских рукописях.
Для запуска игрушки нужно было надеть концы нитяной петли на пальцы, растянуть ее, а затем, закрутив орех на несколько оборотов, отпустить его. Орех начинал раскручиваться и вскоре по инерции уже сам закручивал нить в другую сторону. Здесь следовало чуть ослабить натяг нити, чтобы дать ей возможность закрутиться на большее число оборотов, и снова растянуть. С каждым разом орех все стремительнее вращался вперед-назад, причем с сердитым жужжанием. Скорость его вращения достигала нескольких тысяч оборотов в минуту.
Еще одна старинная маховичная игрушка – «йо-йо». На глиняный, деревянный или металлический маховик с кольцевой проточкой посередине наматывалась нить длиной около метра. Держа свободный конец нити в руке, маховичок приподнимали над землей и отпускали. Падая, он раскручивался, приобретая все более быстрое вращение. При этом в нем накапливалась энергия, достаточная для его последующего подъема вверх по нити почти до самой руки. Если при падении маховичка нить слегка натягивали, а при подъеме чуть ослабляли, то маховичок наезжал прямо на руку.
По принципу этой игрушки действует хорошо знакомый всем по урокам физики прибор – маятник Максвелла, демонстрирующий переход потенциальной энергии в кинетическую и наоборот.
Маховичные игрушки много дали для развития идеи накопления энергии во вращающихся маховиках. Во все времена не только дети, но и ученые любили наблюдать за ними, изучали их свойства. Например, великий Ньютон, поясняя открытый им закон инерции, описывал вращение волчка. Однако минуло немало лет, пока для маховика нашлась серьезная работа.
Средневековая Европа. Пылают костры инквизиции. По малейшему подозрению в ереси уничтожаются ценнейшие книги. Процветают схоластика, алхимия, не сидят без работы и астрологи. Странный и страшный период в истории Европы, на несколько веков погрузилась она во мрак отсталости и невежества.
О маховиках тогда, конечно, никто и не думал. Да и о каких маховиках могла идти речь, когда «ученые мужи» были заняты поисками «философского камня», изгнанием дьявола, размышлениями на тему: «Сколько ангелов уместится на булавочной головке?»
Но почти через тысячу лет после гибели высокоразвитого античного Рима в Европе постепенно опять начинают заниматься делом. Медленно, но верно развиваются технические науки, появляются машины.
Машины поначалу были несложные, приводимые в движение вручную с помощью рукояток.
Тот, кто пробовал завести двигатель автомобиля рукояткой, хорошо знает, как это трудно. В наши дни такими рукоятками пользуются сравнительно редко. А каково же было людям средневековья? Для того, чтобы машина работала, им приходилось крутить рукоятку постоянно с утра до вечера, изо дня в день, из месяца в месяц, из года в год. Будучи, по существу, «живыми двигателями» средневековых машин, они быстро выбивались из сил, производительность их труда заметно падала. Разумеется, с таким положением нельзя было мириться. И вот однажды кто-то догадался снабдить рукоятку маховиком. Это позволило значительно облегчить труд работников. Отныне маховик стали применять в самых различных технических устройствах.
Характерным примером использования маховика в старинных машинах может служить ковшовый водоподъемник XV века, колесо которого должен был поворачивать вручную специально нанятый для этого работник. В те моменты, когда человеку было удобно вращать рукоятку, укрепленный на ней достаточно большой маховик «принимал» у него часть энергии и возвращал ее тогда, когда крутить рукоятку становилось очень неудобно. В результате и человек меньше утомлялся и машина работала более равномерно.
Старинная лесопильная машина с маховиком
Другой пример – поршневой насос конца XV – начала XVI века. Помимо неудобства пользования рукояткой, здесь требовалось преодолеть еще одну сложность. Когда поршень поднимал воду, крутить рукоятку было намного тяжелее, чем во время его спуска. И нередко случалось так, что при подъеме у работника просто не хватало сил провернуть рукоятку, оказавшуюся в неудобном для него положении. Применение маховика позволило решить эти проблемы.
Даже тогда, когда машины стали приводить в движение с помощью водяного колеса, маховик не утратил своего значения. В XVI веке, например, его использовали в машинах для распиловки досок. Поднимать пилу вверх было легко: в это время она не пилила – наклон зубьев был в другую сторону. Опускать же оказывалось совсем непросто. Ведь при этом и происходила собственно распиловка доски. Без маховика пила бы часто застревала в доске, и водяное колесо не в силах было бы протянуть ее дальше. Теперь же маховик, разгоняясь при свободном ходе пилы вверх, отдавал ей свою энергию при рабочем ходе вниз. Пила не застревала, и дело шло быстро. Маховик здесь был уже гораздо больше по размерам и массе, чем на ручных машинах, – мощность тут требовалась изрядная.
В XVIII веке изобрели паровой двигатель, а в XIX – двигатель внутреннего сгорания. Оба поршневые. Главный же недостаток поршневой машины – неравномерность выделения энергии, неравномерность хода. Машина выделяет энергию лишь в момент подачи пара в цилиндр или в момент сжигания в нем горючего. Все остальное время она только расходует ее на свое прокручивание. Это необходимо, чтобы машина не остановилась.
Тут-то и пригодился маховик. Посаженный на вал двигателя, маховик при сжигании горючего – то есть при рабочем ходе машины – накапливает энергию, а потом за счет нее сам прокручивает машину для подготовки следующего рабочего хода. Если кто-нибудь думает, что едущий автомобиль постоянно приводится в движение двигателем, то он ошибается. Часть времени машину тянет двигатель, а часть – именно маховик. И изрядные расстояния мы, сами того не подозревая, проезжаем на маховичном автомобиле. Правда, такой маховик накапливает очень незначительную энергию по сравнению с другими аккумуляторами той же массы, и поэтому претендовать на роль «энергетической капсулы» он не может.
Один из первых двигателей внутреннего сгорания с маховиком.
Часто маховик присутствует в машинах незримо, он «замаскирован» в них под какую-то деталь, но выполняет самую что ни на есть «маховичную» работу. Те, кто бывали на заводе, наверное, видели там механические ножницы. Мотор с помощью ремня крутит шкив, а от этого шкива приводится в движение нож. На первый взгляд шкив как шкив. А будь он полегче, не такой массивный, каким его изготовили, не сработали бы тогда ножницы – упершись в заготовку, нож сразу бы остановился. Только маховик, «замаскированный» в этом случае под шкив, позволяет за счет накопленной энергии развивать огромные силы и мощности, необходимые для работы.
«Маскируется» маховик обычно под шкивы, муфты, зубчатки, колеса и другие круглые, а подчас и не совсем круглые детали. В самом деле, почему бы и не использовать свободный обод маховика для размещения на нем ремня или зубьев? Это очень даже удобно.
Кстати, уж коли мы заговорили про колеса, то велосипедные колеса – настоящие маховики, на которые надеты шины. Но здесь используется главным образом другое свойство маховика – гироскопический эффект. Это он помогает сохранять устойчивость велосипеду, как и вращающемуся волчку – игрушке, на которой впервые этот эффект был подмечен.
Более чем 200 лет тому назад английский изобретатель Серсон попытался использовать это свойство волчка для создания «искусственного горизонта» – особого прибора, крайне необходимого в мореплавании: ведь нередко из-за тумана естественного горизонта не видно. Этот прибор нужен был морякам для астрономических наблюдений, чтобы выяснить, где находится в данный момент корабль. Раньше применяли для этих целей отвес, но при волнении на море отвес сильно раскачивался наподобие маятника и «поймать» горизонт было невозможно.
Судьба оказалась несправедливо жестокой к изобретению и к самому изобретателю. Фрегат «Виктори», на котором был установлен «искусственный горизонт», потерпел крушение, Серсон погиб. Об его изобретении лет на сто забыли.
Свойство маховика сохранять ось вращения в пространстве поначалу поражало меня, как, впрочем, и каждого, кто с ним впервые сталкивается. Только позже я понял, чем оно объясняется. Но уже до этого, наблюдая гироскопический эффект, я твердо решил применить его, если будет построена маховичная «энергетическая капсула».
Наступил XIX век, век настоящего расцвета машиностроения. Неизменный спутник машин маховик завоевывал себе прочное место на транспорте. А впервые он был использован там в 1791 году гениальным русским механиком-самоучкой И.П. Кулибиным, который применил его в своей знаменитой «самокатке».
Надо сказать, что «самокатки», «самобеглые коляски» и прочие «безлошадные» транспортные средства появились задолго до Кулибина. Но Кулибин не знал об этом и создавал все заново. Не подозревая о предшествующих конструкциях «самокаток», где маховиков и в помине не было, он положил начало новому применению маховичных накопителей.
Еще в Древнем Риме дети катались на досках с приделанными к ним четырьмя колесами. Это были первые примитивные тележки без животной тяги, работающие на мускульной энергии самого пассажира.
В 1257 году английский ученый и общественный деятель Роджер Бэкон предсказал возможность создания больших тележек с мускульной тягой, имеющих практическое значение.
В 1447 году в европейских городах на новогодних празднествах видели закрытую повозку, приводимую в движение «скрытым механизмом» – по-видимому, спрятанными внутри повозки людьми.
Механическая повозка Альбрехта Дюрера (XVI век): 1 - колеса повозки; 2 - ступальное колесо, приводимое в движение мускульной силой человека.
Великий художник А. Дюрер сконструировал целых девять «самобеглых» повозок для императора Максимилиана I. Даже сам Ньютон в ранней молодости построил «самокатку», которая ездила по полу в его доме.
В XVII...XVIII веках были известны не менее десяти разновидностей «безлошадных» самоходных повозок, в том числе «самобеглая коляска» талантливого русского механика Леонтия Шамшуренкова, построенная в 1752 году.
В наш век «самобеглые» получили как бы второе рождение. Люди хотят больше двигаться, ведь не секрет, что мы страдаем от недостатка движения. К тому же мускульные транспортные машины не имеют двигателей, сжигающих горючее, они совершенно безвредны. Сейчас создано много новых конструкций не только велосипедов, уже завоевавших мир, но и мускульных автомобилей – педикаров, которым еще предстоит это сделать. Ряды сегодняшних «изобретателей велосипедов», в лучшем смысле этих слов, множатся с каждым днем.
У всех «самобеглых» есть общий недостаток – они плохо преодолевают подъемы. Велосипедисты знают, как тяжело даже на современных легких педальных машинах ехать в гору. Можно понять, насколько трудно это было для водителей педикебов – велосипедных колясок, в которых, помимо самого водителя, нередко сидели еще два пассажира. Между тем, по отзывам очевидцев, «самокатка» Кулибина в гору шла быстрее, чем по ровной дороге!
Дело здесь в применении маховика, который, разогнавшись, за счет накопленной энергии помогал преодолевать подъемы и, кроме того, снижал скорость «самокатки» на спусках. Водитель, вращая педали, раскручивал маховик, расположенный под сиденьем, а уже от маховика движение посредством механической передачи шло на колеса.
«Самокатка» Кулибина
Маховик – не единственный накопитель энергии, использованный Кулибиным в «самокатке». Он применил тут в качестве тормоза специальные пружины, могущие накапливать энергию экипажа при торможении. Пружины помещались в тормозном барабане, играющем одновременно и роль коробки передач. Можно только удивляться гению Кулибина, почти на полтора столетия опередившего техническую мысль своего времени.
В Политехническом музее в Москве демонстрируется прекрасная действующая модель «самокатки» Кулибина в масштабе 1:5. Измерениями на модели я определил диаметр маховика в полную величину – он был около 1,5 метра, масса обода – 50 килограммов.
Считается, что человек, спокойно работая ногами, способен развить мощность около одной десятой лошадиной силы. Учитывая потери энергии маховика на трение о воздух и в подшипниках, я получил максимальную скорость, до которой может быть разогнан такой маховик, – 500 оборотов в минуту. Это очень низкая скорость для маховиков, но и при этом маховик Кулибина мог накопить около 800 джоулей энергии на килограмм массы, а всего – около 40 килоджоулей. Полагая, что масса экипажа была примерно 400 килограммов и соответственно сила сопротивления его движению по дороге – около 0,1 килоньютона, я определил путь, который могла пройти «самокатка» только на энергии маховика, – он оказался равен 400 метрам. Для преодоления встретившегося подъема «самокатке» достаточно было энергии самого маховика. А ведь при этом человек тоже не переставал работать педалями. Поэтому и казалось, что «самокатка» в гору шла быстрее, чем по равнине.
«Самокатка» Кулибина – прекрасный пример удачного использования маховика на транспорте, даже соотношение масс маховика и экипажа словно взято из современных книг!
Следующим применил маховик на транспорте другой наш соотечественник, инженер-поручик З. Шуберский.
Маховоз Шуберского: 1 - маховики; 2 - колеса; 3 - оси маховиков; 4 - платформа; 5 - подшипники; 6 - рельсы.
В июле 1862 года в газете «Современная летопись» появилась такая заметка: «Два года назад в «Журнале путей сообщения» было заявлено об остроумном изобретении г-на Шуберского. Маховоз господина Шуберского, состоящий из системы маховых колес, предполагается к употреблению при всходе и спуске поездов по крутым скатам железных дорог. Умеряя быстроту движения при спуске с горы и употребляя сбереженную скорость при подъеме в гору, снаряд г-на Шуберского дает возможность проводить железные дороги со значительными склонами, уменьшая количество земляных работ и искусственных сооружений. Опыты над моделью маховоза оказались удовлетворительными, и изобретатель намеревается приступить к опытам в большом виде».
Я разыскал этот журнал и обнаружил подробное описание, расчеты и чертежи первого рельсового маховичного экипажа.
Три пары огромных железных маховиков посажены своими осями на ободы ведущих колес маховоза. Таким образом, вращение передается от ведущих колес на оси маховиков при спуске и, напротив, от осей маховиков ведущим колесам на подъеме только силой трения. Это самый простой и в данном случае наиболее подходящий способ передачи механического движения при высокой мощности и минимальных потерях энергии в опорах и на приводе. Кроме того, оси маховиков помещены в подшипниках и могут быть приподняты в случае торможения маховоза, чтобы не гасить при этом энергию маховиков. Последние в это время будут вращаться вхолостую.
Маховоз предполагалось цеплять позади паровоза, перед вагонами. Предусматривалось также снабдить маховиками паровоз и тендер. Размеры и масса маховиков весьма внушительны: каждый маховик диаметром 12 футов (3,6 м) и около 300 пудов (5 тонн) массой. Сам маховоз имеет массу 2330 пудов (40 тонн). Окружная скорость обода маховика связана со скоростью поезда и превышает ее в 12 раз. Кинетическая энергия, накапливаемая маховиками при этом, – около 2,3 миллиона пудо-футов (114 МДж).
Набирая кинетическую энергию на спусках или на ровном пути посредством «подталкивания» паровозом, маховоз должен был помогать поезду преодолевать крутые подъемы. Допустим, сам паровоз может преодолеть уклон только в 5 тысячных (подъем на 5 метров за 1 километр пути), а с маховозом он взойдет по подъему, в три раза более крутому, на высоту 135 футов (40 м), из которых 2/3 подъема будут преодолены за счет энергии маховоза и лишь 1/3 самим паровозом.
Шуберский предлагал использовать свое изобретение и для поездок «малыми поездами» на небольшие расстояния. Например, если прицепить к маховозу один пассажирский вагон массой 625 пудов (10 тонн), то этот поезд при разгоне его паровозом до скорости 28 верст в час (30 км/ч) на участке в 2 версты (2,1 км) пройдет за счет энергии маховиков внушительное расстояние – 55 верст (60 км) до остановки.
Если не доводить поезд до полной остановки и использовать, скажем, 75 процентов всей кинетической энергии, пробег сократится до 40 верст (43 км). Если же удвоить скорость поезда, то есть довести ее до 60 километров в час, вполне нормальной и даже низкой скорости для поездов, то пробег учетверится и составит уже 170 километров. Это весьма неплохо для поезда, движущегося за счет аккумулированной энергии!
Тщательный расчет, проведенный Шуберским, показал, что расход топлива с применением маховоза может быть снижен не менее чем на 25 процентов. Цифра, удивительно близкая к современным данным по маховичным рельсовым машинам, например, к такому же показателю у поезда с маховиками в нью-йоркском метро.
Свое описание маховоза Шуберский заканчивает словами, полными патриотизма: «Вполне я был бы счастлив, если бы мое изобретение обратило бы на себя внимание и могло послужить в пользу скорейшего развития отечественных железных дорог».
Торпеда Хауэлла: 1 - маховик; 2 - регулятор руля; 3 - руль; 4 - винт; 5 - боевой заряд.
Потом маховиком заинтересовался американец Дж. Хауэлл. Правда, машину, на которую он его поставил, лишь условно можно назвать транспортом, так как это была торпеда, доставляющая взрывчатку к атакуемому кораблю. Маховик торпеды Хауэлла, разработанный в 1883 году, раскручивался паровой машиной за 1 минуту, после чего торпеда проходила около 1,5 километра с достаточно высокой скоростью – 55 километров в час. Маховик имел диаметр 45 сантиметров, массу 160 килограммов, скорость вращения его достигала 21 тысячи оборотов в минуту. Накопленная в маховике энергия составляла 10 мегаджоулей. Вращение от маховика с помощью конических шестерен передавалось на гребной винт с регулируемым углом наклона лопастей.
Если отвлечься от военного назначения торпеды, думаю, что в «мирном» варианте это была бы неплохая прогулочная быстроходная лодка без мотора, горючего, дыма и треска. Ее с успехом можно было бы использовать в черте города, на переправах, в местах отдыха людей. А раскручивать маховик не обязательно паровой машиной – с этим еще лучше справился бы электромотор.
В 1905 году англичанину Ф. Ланчестеру был выдан патент на изобретение, имеющее отношение к «...применению для механического движения мотора в форме тяжелого, быстровращающегося маховика, с целью приведения в движение моторного экипажа». Колеса экипажа Ланчестера соединялись приводом с маховиком или даже с системой из двух маховиков, вращающихся в противоположные стороны. Раскручивали маховики на остановках, где для этого были установлены стационарные двигатели. Ланчестер предусмотрел также разгон маховиков с помощью встроенного электродвигателя, который подключался на остановках к электрической сети.
Инерционный аккумулятор Уфимцева: 1 - маховик; 2 - вал; 3 - кожух; 4 - крышка; 5,6 - малая и большая конические шестерни; 7 - выходной вал; 8 - подшипники с уплотнением.
В 1918 году русский изобретатель-самоучка А.Г. Уфимцев получил патент на маховичный накопитель – инерционный аккумулятор. А в 20-х годах он предложил использовать маховик для приведения в движение трамвая в своем родном городе Курске. Из-за разрухи в народном хозяйстве в те годы проект этот не был осуществлен.
Эпоха современного применения маховиков на транспорте начинается с разработки маховичных тележек для внутризаводских перевозок. В цехах ездить на грузовиках нельзя, мешают выхлопные газы, а электрокары невелики, грузоподъемность их мала. Вот умельцы на заводах и стали делать грузовые тележки с приводом от маховика. В Казани на компрессорном заводе до сих пор работает такая маховичная тележка грузоподъемностью до 10 тонн.
Еще важнее для промышленности оказались маховичные локомотивы, работающие в шахтах и рудниках. Атмосфера некоторых подземных выработок настолько насыщена взрывоопасными газами, что там становится невозможным использование обычных электровозов. Только один вид транспорта – маховичный – дает полную гарантию от искры или пламени, могущих вызвать взрыв.
И вот у нас в стране начался выпуск маховичных локомотивов, способных проходить с одной раскрутки маховика массой 1,5 тонны несколько километров, таща за собой состав вагонеток. Раскручивается маховик от сжатого воздуха, а с колесами локомотива его соединяет механическая передача, полностью гарантирующая от искр.
«Транспортом пороховых складов» прозвали маховичный транспорт за его пожаро- и взрывобезопасность.
И, наконец, применение маховиков на автомобилях началось с изготовления швейцарской фирмой «Эрликон» маховоза-гиробуса, опытный образец которого был построен в 1945 году. Уже в 1953 году фирма выпустила серию гиробусов, добросовестно проработавших 20 лет в самой Швейцарии, в Бельгии и в Африке.
Масса гиробуса была 11 тонн, а с пассажирами – 16 тонн. Его тяговые электродвигатели питались от генератора, приводимого во вращение маховиком. Маховик, выкованный из прочной стали, имел диаметр 1,5 метра и массу 1,5 тонны. Скорость его вращения составляла в начале движения 3000 оборотов в минуту, а по прошествии 4...6 километров пути снижалась вдвое. Из накапливаемых маховиком 33 мегаджоулей энергии использовалось 75 процентов.
Подзаряжался маховик на остановках через 1,2...2 километра в течение 40 секунд. Для этого штанги гиробуса поднимались до соприкосновения с контактами на высокой мачте. Генератор начинал работать в режиме двигателя и разгонял маховик. Хотя КПД гиробуса был невысок – всего 50 процентов, он показал себя очень экономичным транспортом. Расход энергии составлял 1,5 кВт·ч, или 5,5 мегаджоуля на километр пробега. Для сравнения напомню, что автобус того же класса, что и гиробус, расходует на пробег 1 километра не менее 400 граммов бензина, что в переводе на механическую работу в три раза больше – 17 мегаджоулей.
Гиробус на станции подзарядки
Гиробус совершенно не загрязнял окружающую среду. А ведь даже электроаккумулятор выделяет в атмосферу водород и пары, которые содержат в себе такие вредные вещества, как свинец, кадмий, хлор и другие. Гиробус не требовал, как троллейбус, для своего движения контактных проводов, уродующих вид города и создающих опасность поражения током. Он ехал совершенно бесшумно, его штанги не терлись и не искрили при движении.
И все же, несмотря на все эти преимущества, гиробус проиграл соревнование с дорогим, дымящим и шумным автобусом. Это произошло в основном потому, что гиробус приходилось часто подзаряжать. Он мог пройти на энергии маховика в идеальном случае 8 километров, а в действительности – около 6 километров, после чего останавливался. Для городского транспорта это слишком мало.
Я прикинул, что маховику гиробуса, чтобы стать «энергетической капсулой», нужно «похудеть» раз в десять и во столько же раз увеличить количество накапливаемой энергии.
Иначе говоря, требуется повысить плотность энергии маховика ни мало ни много – в сто раз! Это будет, конечно, меньше, чем у «метеорига на привязи», но гораздо больше, чем у самых совершенных аккумуляторов.
Итак, задача ясна. Если мне удастся «закачать» в маховик столько энергии, то проблему создания «энергетической капсулы» можно считать решенной.
Глава вторая, в которой «капсула» обретает не только плоть, но и душу...
Все, что я прочел про маховики, все, что продумал за это время, помогло мне поверить в большие возможности этих накопителей энергии. Однако повысить плотность энергии маховика в сто раз – дело нешуточное. Что же мешает решить эту задачу? Попробуем разобраться.
Швейцарский гиробус проходил до остановки шесть километров. Четыре из них он шел с приличной скоростью, вполне вписываясь в городское движение. Но почему не больше? Почему, например, не двадцать километров, что позволило бы открыть в городах линии маховичных автобусов без двигателя и без горючего?
Чтобы пройти впятеро больший путь, гиробус должен запасать во столько же раз больше энергии. Для этого совершенно не обязательно крутить маховик в пять раз быстрее, достаточно увеличить число оборотов примерно в 2,24 раза. То есть нужно разогнать маховик гиробуса до шести-семи тысяч оборотов в минуту. Казалось бы, чего проще? А вот ученые утверждают, что нет.
Обычно опыты с маховиками проводят на специальном стенде, помещенном глубоко под землей. Маховик там подвешивают в особой камере, из которой выкачивают воздух. Крутят маховик воздушной турбиной, если он легкий, или мощным электромотором, если он тяжелый, как маховик гиробуса.
До четырех-пяти тысяч оборотов в минуту маховик внешне ничем не меняется – если его остановить и измерить самыми точными приборами, все будет как прежде. Но уже при оборотах, близких к пяти тысячам в минуту, маховик как бы «раздается» в стороны, его диаметр сильно увеличивается, и после остановки маховик не возвращается к прежним размерам. Чем это вызвано?
Из физики известно, что каждое массивное тело стремится либо двигаться равномерно и прямолинейно, либо находиться в покое. При вращении маховика сила сцепления его частиц, определяющая прочность данного материала, заставляет эти частицы сворачивать со своего «естественного» прямолинейного пути и «ходить по кругу». И частицы начинают «растягивать» маховик, пытаясь его разорвать, что дало бы им возможность двигаться равномерно и прямолинейно.
Теперь находиться вблизи маховика чрезвычайно опасно. Совсем небольшого увеличения скорости вращения может быть достаточно, чтобы маховик вдруг резко вытянулся и разорвался, как точильный круг. Только если осколки точильного круга легко удерживаются тоненькими защитными кожухами, то осколки маховика массой по полтонны (а маховики почему-то чаще всего разрываются на три части) способны наделать много бед. Я слышал, что при разрыве маховика в подвале одной старой фабрики осколок пробил все междуэтажные перекрытия и вылетел вверх, а уже падая вниз, еще раз пробил крышу.
Стенд для испытания маховиков на разрыв: 1 - пульт управления; 2 - бетонная броня; 3 - свинцовая броня; 4 - люк; 5 - турбина; 6 - гибкий валик; 7 - подшипник с уплотнением; 8 - камера вращения; 9 - маховик; 10 - сжатый воздух; 11 - отсос воздуха из камеры вращения.
Маховик гиробуса в момент разрыва обладал бы энергией, которой хватило бы для пробега машины километров на двенадцать – восемнадцать. Но не доводить же маховик каждый раз до опасного предела. Поэтому, как правило, прочность маховика используют всего на одну треть, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые четыре – шесть километров, о которых упоминалось выше.
Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее его разрыв, если он приключится, и тем больший запас прочности понадобится, чтобы уберечь маховик от разрыва.
«А что, если изменить форму маховика? – подумал я. – Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»
Оказывается, специалисты уже пытались это сделать. По сравнению с кругом древнего гончара и впрямь получалось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, – диски «равной прочности». Как это ни удивительно, но энергии они могли накопить раза в два больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.
Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и от прочности! Математическое доказательство этого я дал позже, когда уже окончил институт, а пока по мере своих возможностей высчитал, что если с изменением формы с самой худшей на самую лучшую прибавка энергии незначительна, максимум в три раза, то, повышая прочность, можно во столько же раз увеличивать плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.
Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому и вынуждены были маховики играть вторую, если не третью, роль среди накопителей энергии...
Решение я нашел не сразу. Долго старался всякими хитроумными способами увеличить прочность маховика – ничего не выходило. Попытки уменьшить последствия разрыва надрезанием обода на мелкие части – чтобы осколки были поменьше размером, тоже ни к чему не привели. Я вспомнил, что так же надрезали корпуса гранат-лимонок, но безопаснее они от этого не стали. Напротив, осколков прибавилось, и граната увеличила убойную силу.
Зависимость энергоемкости (Е) маховиков одинаковой массы от их формы: 1 - диск с отверстием; 2 - обод со спицами; 3 - диск равной прочности.
Помогли мне здесь, как это ни странно, занятия гиревым спортом. Чтобы укрепить кисти рук, мы клали на два крючка ломик и медленно наворачивали на него тоненький стальной тросик с тяжелой гирей на конце. Свитый из проволок, этот тросик никогда не рвался сразу, а всегда постепенно, проволочка за проволочкой. Разумеется, о высокой прочности стальных проволок и тросов из них я знал и раньше, но до сих пор это как-то не увязывалось в сознании с массивным маховиком. И вот теперь, когда заброшенный на антресоли тросик случайно попался мне на глаза, я чуть было не воскликнул: «Эврика!» – и решил: маховик нужно делать из троса!
Я взял кусок троса в метр длиной, зажал его посередине в кольцевом зажиме – оправке, а саму оправку посадил на вал. Получился хоть и необычный, но маховик. Такие маховики в дальнейшем были названы супермаховиками.
В чем преимущества супермаховика? Если вращать вал с оправкой и тросом в ней, то трос, как и обычный маховик, накопит кинетическую энергию. При этом частицы троса, стремясь двигаться по инерции, будут все сильнее растягивать его, пытаясь разорвать. Наибольшая нагрузка тут приходится на середину троса. При увеличении скорости сверх меры трос начнет рваться, но рваться по частям, по одной проволочке. А тоненькие проволочки не способны пробить даже легкий защитный кожух. Стало быть, супермаховик из троса разрывается безопасно!
Однако это еще не все. Дело в том, что огромная прочность проволочек троса дает возможность супермаховику накапливать значительные количества энергии. Если прочность стальной струны выше прочности монолитного стального куска раз в пять, то супермаховик из струны при прочих равных условиях накопит энергии во столько же раз больше, чем обычный маховик с той же массой. Но ведь условия-то совсем не одинаковые!
Обычный литой маховик, разорвавшись, способен наделать много разрушений, а разрыв супермаховика снаружи даже и не заметишь. Выходит, супермаховику не нужен слишком большой запас прочности, и его следует уменьшить примерно вдвое по сравнению с маховиком. То есть получается, что супермаховик из троса может накопить в каждом килограмме массы в десять раз больше энергии, чем обычный стальной маховик. И при этом его разрыв безвреден для окружающих! Эти качества, присущие именно супермаховику, – высокая плотность энергии и безопасность разрыва – приблизили его к «энергетической капсуле».
Несмотря на то, что я был необычайно рад моей находке, идея вращать трос «поперек себя» мне не очень нравилась. Такой трос, помещенный в кожух, оставит там много свободного места, он будет бесцельно взбаламучивать воздух, как пропеллер, затрачивая на это энергию. Да и разорваться подобный супермаховик может, в принципе, целиком – оторвавшаяся проволочка не мешает свободно рваться другим. А это совсем нежелательно.
Поэтому после недолгих раздумий я решил навивать проволоку, из которой изготовляется трос, на барабан, как на катушку. Но вскоре мне в голову пришла мысль, что вместо проволочек можно взять такую же по прочности тонкую стальную ленту, чтобы намотка была плотнее, а для надежности склеить витки ленты между собой. Получится супермаховик, напоминающий по виду обычный маховик, только накапливающий гораздо больше энергии. Я назвал его ободковым, так как вся лента здесь должна была навиваться по ободу барабана.
Супермаховик, навитый из высокопрочной ленты: 1 - ленточный обод; 2 - упругий центр (катушка).
Разрыв ободкового супермаховика обещал быть уже совершенно безопасным. При превышении скорости вращения первой разорвется наиболее нагруженная внешняя лента, которая тотчас же прижмется к корпусу и автоматически затормозит супермаховик. Оторванную ленту можно будет приклеить снова – и супермаховик опять готов к работе. От первоначальной идеи вращающегося троса я без колебаний отказался.
Наверное, я не мог бы так сразу отбросить идею тросового супермаховика, если бы знал тогда, что американские специалисты будут свыше десяти лет разрабатывать такие маховики. Правда, спустя годы они, убедившись в неудобстве подобных конструкций, тоже перешли к ободковым супермаховикам.
Но идея идеей, а пробовать надо – вдруг что-нибудь не так? Начались мои хождения по свалкам вторсырья, химическим и хозяйственным магазинам, по знакомым, работающим на производстве. Наконец я стал обладателем ящика с поржавевшей стальной лентой, банки резинового клея и бутылки бензина. На заводе друзья выточили мне несколько дисков из текстолита, на которые я намеревался навивать ленту. И вот в одно из воскресений я упросил товарища помочь мне изготовить супермаховики.
Мы очищали поверхность ленты бензином, мазали клеем и навивали на диски. Лента часто соскакивала, резала нам руки, падала на пол, так что приходилось всякий раз вновь стирать с нее пыль, но работу мы все равно закончили. Перед нами лежали три супермаховика диаметром по 30 сантиметров. Внешние слои ленты мы закрепили тонкой стальной проволокой и нагрели супермаховики в духовке, чтобы клей окончательно высох.
Я рассчитывал испытать мои супермаховики на разрыв с помощью двигателя от пылесоса. Пылесосный двигатель очень скоростной, вал его делает 15...18 тысяч оборотов в минуту.
Моток стальной ленты, клей и ацетон, которые я использовал для изготовления первого супермаховика.
Надев супермаховик на вал двигателя и закрепив его там, я зажал двигатель в тисках и включил в сеть. Начался разгон супермаховика. Вибрации то нарастали – казалось, что диск уже срывается с оси, – то снова стихали. Скорость вращения увеличивалась, о чем можно было судить по изменяющемуся реву двигателя. Но вот рев стал постоянным по тону, и я понял, что разгон прекратился, а супермаховик остался цел. Дальше двигатель не «тянул» – супермаховик гнал воздух, как вентилятор, от него дуло ветром, вся мощность двигателя уходила на создание этого ветра. Я выключил двигатель. Супермаховик долго, наверное с час, еще вращался, проходя через те же полосы вибраций, что и при разгоне.
Когда впоследствии мне удалось все-таки разорвать мои супермаховики на специальном разгонном стенде, я узнал, что эти кустарные изделия в несколько раз превзошли по плотности энергии маховики гиробуса фирмы «Эрликон» – лучшие по тем временам.
Но самое главное – разрыв, как и ожидалось, не доставлял никаких неприятностей. Разорвавшийся виток ленты не пробивал даже тоненького, как консервная банка, кожуха. Я приклеивал такой виток клеем, обвивал слоем проволоки, и супермаховик снова готов к работе.
А результат был немалый – разрыв наступал при 30 000 оборотах в минуту, что соответствовало почти пятистам метрам в секунду скорости обода или плотности энергии около 0,1 мегаджоуля на килограмм массы. Супермаховик «ручной работы» одним махом обогнал по важнейшему показателю свинцово-кислотные аккумуляторы, совершенствование которых идет уже более ста лет!
Впрочем, это еще не означало, что найдена желанная «энергетическая капсула». Надо было доказать, что супермаховик может стать недосягаемым для других аккумуляторов по плотности энергии так же, как для них недосягаем по плотности мощности обычный маховик. Ведь раскрученный маховик способен развить любую, самую высокую мощность, если его достаточно сильно тормозить. И разогнаться он может практически мгновенно, поглощая при этом мощность хоть целой электростанции. Ни один из накопителей не в состоянии воспринимать и выделять энергию при такой высокой мощности, как маховик.
Действительно, где «потолок» повышения плотности энергии супермаховиков? Только ли прочность материала определяет его? Например, тяжелый чугун и легкий дюралюминий почти одинаково прочны. Из какого же материала выгоднее делать маховик, из легкого или тяжелого?
Как ни парадоксально, но расчеты показали, что из легкого. Оказывается, не просто прочность, а удельная прочность, то есть отношение прочности к удельному весу материала, определяет плотность энергии маховика.
Максимум, что мы можем «выжать» из стали, даже самой совершенной, – это 30...50 килоджоулей на килограмм, дальше маховик разорвется. А маховик из более легких титана, дюралюминия, магниевых сплавов при той же массе накопит до разрыва в полтора раза больше энергии. Неплохим материалом для маховиков являются пластмассы, особенно усиленные стеклонитью, так называемые стеклопластики. Тяжелые же материалы практически не годятся для маховиков. Медный маховик не накопит и десятой доли энергии стального, а свинцовый – и сотой доли энергии титанового или дюралевого маховика.
Раньше мне показалось бы абсурдным изготовление маховиков из дерева или бумаги. Теперь я узнал, что маховики из дерева, фанеры, бумаги, склеенной в несколько слоев, могут накопить больше энергии, чем такой же по массе стальной, и значительно дешевле его.
Супермаховики из проволоки, ленты, стекловолокна.
Например, плотность энергии маховиков из бамбука почти в десять раз выше, чем у стального, и достигает 0,3 мегаджоуля на килограмм. Приблизительно вдвое хуже, но все-таки очень высокие показатели у маховиков из березы, сосны, ели. Плохо только, что объем их слишком велик – дерево очень легко. Объем маховиков с одним и тем же запасом энергии бывает равным лишь при одинаковой их прочности. Выходит, маховики из бамбука, дюраля и чугуна, имеющие одну и ту же прочность, при равном запасе накопленной энергии одинаковы и по объему. Однако дюралевый маховик в 3 раза, а бамбуковый в 10 раз легче, чем чугунный. Это подтвердили как расчеты, так и испытания.
Совершенной неожиданностью для меня были данные, которые я вычитал о таких, казалось бы, хрупких материалах, как стекло и горный хрусталь. Оказывается, специально закаленное стекло, как и лучшая проволока, выдерживает 3 кН/мм2, а хрусталь и даже кварц еще прочнее – 10 кН/мм2. И это при втрое меньшей плотности, чем у стали. В результате маховик из плавленого и закаленного кварца способен накопить в килограмме массы до 5 мегаджоулей энергии, или в 150 раз больше, чем стальной маховик! То есть он уже вполне может стать «капсулой». Автомобилю массой в одну тонну для прохождения ста километров будет достаточно пятикилограммового супермаховика из кварца.
К сожалению, кварц слишком дорог, а разрыв его, как и стекла, опасен. Осколков тут, правда, не образуется, маховик мгновенно разлетается в пыль, но весь и сразу. Это хуже, чем взрыв такого же количества тротила, во всяком случае, энергии при разрыве маховика выделится больше.
А что, если монолитные стекло и кварц заменить волокнами, тончайшими нитями? Прочность у стеклянных и кварцевых волокон гораздо выше, чем у монолита. Например, тонкие волоконца из кварца во время испытаний показали прочность в 3...4 раза большую, чем у литого кварца, и в десять раз большую, чем у стальной проволоки. Супермаховик, навитый из такого волокна, даже с запасом прочности обеспечит плотность энергии в 5 мегаджоулей на килограмм.
Продолжая поиск, я выяснил, что необычайной прочностью обладают волокна из углерода. Да, да, из обычного угля, графита и даже алмаза, который по химическому составу – тот же углерод. И насколько алмаз прочнее мягкого графита, настолько же волокно алмазной структуры прочнее графитового. А ведь графит в виде волокна имеет ту же прочность, что и стальная проволока, при впятеро меньшей плотности! Маховик, навитый из графитового волокна, в 20...30 раз превзойдет стальной по плотности энергии, а навитый из алмазного волокна приобретет фантастическую энергоемкость – 15 мегаджоулей на килограмм!
Но пока цена такого материала тоже фантастическая, нить из него получить очень трудно – на сегодняшний день волоконца имеют длину всего в несколько микрон. Обнадеживает, однако, тот факт, что лет десять назад и графитовое волокно стоило весьма дорого, а теперь, когда его производство отлажено, из него делают даже лыжные палки. Поэтому можно надеяться, что и сверхпрочные волокна из алмаза скоро станут дешевыми, как уже подешевели, например, искусственно получаемые алмазы. Запасов же углерода, кварца, стекла в мире хоть отбавляй.
Высокопрочная проволока, кевлар, метгласс, волокна из сверхпрочных кристаллов, как и углеродные волокна, - отличные материалы для изготовления современных супермаховиков.
Итак, двадцать килограммов супермаховика для пятисоткилометрового пробега автомобиля! Это отличный результат для «капсулы». Но, как оказалось, прочностные возможности материалов еще далеко не исчерпаны.
Профессор А.В. Степанов из Ленинграда предсказал и рассчитал новые «сверхматериалы», как будто специально созданные для супермаховиков. По его мнению, можно так плотно «упаковать» атомы в кристалле углерода – в алмазе, что полученный «сверхалмаз» выдержит небывалую нагрузку – 400 кН/мм2. Но еще больших результатов следует ожидать от «плотноупакованного»... азота. Этот азот будет уже не газом, а металлом, с плотностью большей, чем у платины, – 25 т/м3. Предполагается, что он должен выдерживать нагрузку 2800 кН/мм2. Маховик из «плотноупакованного» азота достигнет плотности энергии, которую даже трудно вообразить, – 60 мегаджоулей на килограмм.
Иначе говоря, небольшой маховичок из «сверхматериала» – диаметром 30 сантиметров и толщиной 6 сантиметров – сможет обеспечить пробег автомобиля на расстояние 30 тысяч километров без подзарядки!
Это даже не «капсула», а «сверхкапсула», такой, пожалуй, пока и не надо. К тому же сверхматериалов, необходимых для ее создания, еще нет, хотя специалисты утверждают, что они появятся в ближайшем будущем. Во всяком случае, меня очень радовало то, что перспектив у супермаховиков стать настоящей «энергетической капсулой» сколько угодно и я не зря связал свои надежды с этим видом накопителя энергии.
Но пора было, что называется, спуститься с небес на землю и посмотреть, на что я со своей идеей «энергетической капсулы» могу рассчитывать сегодня. И вот к каким выводам я в результате пришел.
Имеющихся в промышленности материалов – стальных лент, проволок, стеклянных и кварцевых волокон, волокон из графита, бора, специального дешевого волокна – кевлара, идущего, кстати, на покрышки для автомобилей, – вполне достаточно для создания супермаховичных накопителей с плотностью энергии большей, чем у электроаккумуляторов. По другим полезным показателям – плотности мощности, КПД, долговечности, стоимости – супермаховики тоже намного превзойдут эти аккумуляторы.
«Заряжать» супермаховики можно с помощью обычного электродвигателя. Если требуется быстрая «зарядка», супермаховик нужно соединить с валом большого стационарного двигателя мощностью в сотни киловатт. Такой двигатель разгонит его за считанные минуты или даже секунды. А если время «зарядки» не регламентировано, то сгодится маломощный зарядный двигатель, который можно возить с собой на автомобиле и при необходимости подключать к электросети посредством шнура с вилкой, как мы включаем, например, пылесос.
То есть и по срокам «зарядки» супермаховики гораздо совершеннее электроаккумуляторов, которые, как известно, заряжаются часами. Кроме того, супермаховики воспринимают «зарядку» полнее, чем электроаккумуляторы, и стоимость накопленной в них энергии будет самая низкая по сравнению со всеми другими типами накопителей.
Теперь я уже мог со спокойной совестью работать над супермаховиками дальше, не опасаясь, что мои усилия пропадут впустую, а идея «энергетической капсулы» будет расценена как нереальная или преждевременная.
Чтобы выявить слабые и сильные стороны супермаховиков, я решил построить и испытать несколько образцов из ленты и проволоки. Казалось бы, взял ленту или проволоку, намотал на катушку – и готов супермаховик. Но не тут-то было. При создании супермаховиков я столкнулся со многими трудностями – расслоением ленточного витого обода, спаданием обода с центра – барабана, вибрациями при работе, закреплением последнего витка и другими. Какие хитроумные головоломки приходилось тут решать, я хочу показать на следующем примере.
Когда делаешь супермаховик из проволоки, навиваешь ее на катушку, один конец проволоки оказывается внутри, а другой обязательно выходит наружу. Это естественно – ведь им заканчивается намотка. Однако для супермаховика такой конец очень нежелателен – его негде крепить. Если скрутить конец с предыдущим витком, он этот виток размотает или порвет – каждый миллиграмм массы проволоки при вращении создает огромные силы, разрывающие ее. Самое лучшее было бы «подсунуть» наружный конец под первые витки, но как это сделать? Сначала такое казалось мне невозможным. И все-таки выход нашелся.
Один из способов намотки проволочного супермаховика: 1 - щека катушки; 2 - вал; 3 - обычная навивка; 4 - навивка к центру (стрелками показано направление навивки); 5 и 6 - начало и конец намотки.
Я закрепил оба конца проволоки на катушке, состоящей из двух отдельных половинок на одном валу, и начал крутить эти половинки в разные стороны. Проволока стала навиваться на них как обычно, с той лишь разницей, что когда процесс намотки подошел к концу, оба свободных конца проволоки остались внутри, а последний внешний виток пришелся как раз посередине обмотки. Потом я пропитал обмотку супермаховика клеем и высушил.
Этот способ изготовления супермаховиков и другие найденные мною способы, а также ряд предложений по конструкциям супермаховиков были отмечены авторскими свидетельствами. Изобретения мои оказались более ранними, чем похожие на них зарубежные, авторы которых сделали их совершенно самостоятельно, ничего не зная о моих находках. Просто диву даешься, как одинаково могут думать люди в разных концах света!
Шло время, в каждом килограмме моего самодельного супермаховика уже накапливалось больше энергии, чем в других аккумуляторах. И вот однажды я задумался: несомненно, что в будущем в супермаховиках удастся накапливать столько энергии, сколько ее, например, в летящем с космической скоростью метеорите, однако сможем ли мы «отбирать» эту энергию? Какие трудности здесь встретятся?
Первая же мысль была о подшипниках. Выдержат ли они столь высокие скорости вращения супермаховика? Существуют ли вообще подшипники, способные работать при таких скоростях?
Прежде всего я решил подсчитать скорости, которые могут быть у супермаховика на автомобиле. Для простоты взял супермаховик диаметром в один метр, что вполне годится и для автомобиля, и для автобуса, и для многих других машин.
Каждый материал для супермаховика способен выдержать лишь определенную окружную скорость (скорость на самом отдаленном от центра краю обода). При этом, оказывается, никакого значения не имеет диаметр супермаховика – так распорядилась природа. А прочность материала повышается пропорционально квадрату скорости точно так же, как возрастает и энергия.
Например, стальная лента выдерживала во время испытаний скорость 500 метров в секунду, а кевлар – 1000 метров; Отсюда и энергии в кевларовом супермаховике накапливалось в 4 раза больше, чем в таком же по массе ленточном. Если бы кевлар имел ту же плотность, что и сталь, то напряжения в нем при скорости 1000 метров в секунду были бы соответственно вчетверо больше напряжений в ленте, и супермаховик мог бы разрушиться. Но в действительности с ним ничего не случится. Ведь кевлар почти в пять раз легче стали, и удельная прочность у него значительно выше.
Итак, какие же обороты будут у стального и кевларового маховиков? Если поделить окружную скорость на радиус супермаховика, мы получим его угловую скорость, а по ней уже просто отыскать число оборотов как в секунду, так и в минуту. Ленточный супермаховик будет вращаться со скоростью 1000 радиан в секунду, что соответствует 160 оборотам в секунду, или 9 559 оборотам в минуту. Вращение кевларового супермаховика будет вдвое быстрее – около 19 тысяч оборотов в минуту.
Но ведь такую угловую скорость развивает двигатель даже обычного бытового пылесоса, и его подшипники прекрасно справляются с этим. Скорость вращения мощных газовых турбин бывает свыше 30 тысяч оборотов в минуту, а там есть подшипники, работающие в худших условиях, чем в супермаховике. В турбинах на подшипники действуют нагрев, сильные вибрации и другие отрицательные факторы, которые в супермаховике отсутствуют.
Сейчас есть подшипники, выдерживающие 100...150 и более тысяч оборотов в минуту, этого вполне хватило бы и для супермаховика из алмазного волокна. Если к тому же один подшипник вставить внутрь другого, то можно добиться вдвое большей скорости вращения, так как на каждый из них придется только половина общей скорости.
Хорошо бы, конечно, обойтись совсем без подшипников, ведь на их вращение с нагрузкой, тяжелым супермаховиком, тоже идет энергия, а она нам так дорога...
Схема магнитной подвески супермаховика: 1 - супермаховик; 2 - магниты; 3 - подшипники; 4 - ось.
А что, если закрепить над супермаховиком кольцеобразный магнит, который будет воспринимать его силу тяжести? Правда, в этом случае супермаховик должен быть стальной. Чтобы получить тот же эффект с кевларовым, стеклянным и графитовым маховиками, надо вмонтировать в них подобный же магнит, взаимодействующий с первым. И лучше сделать так, чтобы магниты работали не на притяжение, а на отталкивание, тогда супермаховик сам «вывесится» на определенной высоте и в таком положении будет вращаться.
Нетрудно убедиться в этом, если взять два кольцевых магнита, например от старых динамиков из репродуктора, и надеть их на деревянную или любую другую немагнитную палочку одноименными полюсами друг к другу. Верхний магнит повиснет над нижним, и потребуется большая сила, чтобы сдвинуть их вместе.
Но все-таки и в такой магнитной подвеске нужны подшипники. Во-первых, супермаховик при тряске и толчках может «продавить» магнитную подвеску, достаточно мягкую. Во-вторых, постоянными магнитами нельзя полностью вывесить какое-нибудь тело: супермаховик здесь разгружен только от силы тяжести, а не от боковых сил. Подшипники будут лишь фиксировать подвеску, без нагрузки – ее ведь «нейтрализуют» магниты, – и энергии на их вращение потребуется немного.
Мои магнитные подвески были признаны изобретениями, и на них мне выдали авторские свидетельства.
Надо сказать, эти подвески производили огромное впечатление на тех, кто их видел. Одна из таких подвесок поддерживала супермаховик массой 7 килограммов и диаметром около полуметра. В ней были использованы 10 магнитов, каждый массой около 30 граммов и диаметром 3 сантиметра, и миниатюрные фиксирующие подшипники размером не больше таблетки. Показывая своим гостям устройство подвески, я как бы нечаянно подталкивал супермаховик, и он начинал медленно, со скоростью диска электропроигрывателя вращаться. Но если после выключения проигрывателя его диск через считанные секунды останавливается, мой супермаховик продолжал крутиться в течение всего разговора, и, казалось, скорость его не уменьшалась. Гости уже из принципа ждали час, другой, но супермаховик и не думал останавливаться, «Неужели это вечный двигатель?» – в изумлении спрашивали меня. «Подождите до утра, – отвечал я, – может, и остановится».
Судя по расчетам, такой супермаховик, раскрученный до скорости 30 тысяч оборотов в минуту, крутился бы до остановки многие месяцы! Да и этот срок можно было бы увеличить, если бы не фиксирующие подшипники, которые, несмотря на малый размер и ничтожные потери энергии в них, все же «подтормаживали» супермаховик.
А как вывесить супермаховик совсем без механического контакта в подшипниках? Надо проверить и такую возможность. Для этого подойдут большие кольца из диамагнетиков, – то есть из материалов, отталкивающихся от магнитов, например, из графита, – которые не дадут супермаховику «сваливаться» вбок. Кольца эти будут выполнять роль фиксирующих подшипников. Правда, они займут много места. Но если сам супермаховик изготовлен из графита?.. Над этим стоит подумать!
Чтобы «помочь» постоянным магнитам, можно установить еще и электромагниты. Как только супермаховик задумает «свалиться» вбок, это уловит специальный датчик и включит соответствующий электромагнит, который выправит положение. Такая система называется «следящей». С ее помощью советские ученые добились скорости вращения полностью вывешенного шарика в 800 тысяч оборотов в секунду или почти 50 миллионов оборотов в минуту!
Подвесив подобным образом маховик со значительной массой получим столь малое сопротивление, при котором разогнанный маховик будет вращаться до остановки десятки лет! Однако для этого в камере, где вращается маховик, необходимо создать высокий вакуум, иначе так называемые вентиляционные потери – потери из-за трения маховика о воздух – «съедят» весь запас энергии за считанные часы.
Интересно, что при вращении маховика в вакууме можно практически вообще избавиться от трения в опорах. Нужно подшипники маховика, изготовленные из вполне обычных материалов – графита, полиэтилена или на молибденовой основе, облучать потоком электронов. Это открытие принадлежит советским ученым, которые назвали его «эффектом аномально низкого трения», сокращенно – АНТ. Для облучения подшипников супермаховика достаточно миниатюрной «электронной пушки», наподобие электронно-лучевой трубки (кинескопа) телевизора, только в сотни раз менее сложной, крупной и мощной.
Супермаховик с использованием эффекта АНТ: 1 - магнитная муфта для вывода вращения через герметичную стенку; 2 - витой обод супермаховика; 3 - подшипники с эффектом АНТ (видны окна для электронной пушки); 4 - вакуумная камера вращения.
Тут возникает вопрос: а как же отбирать накопленную энергию через герметичную стенку вакуумной камеры? Ведь вал сквозь нее не пропустишь – никакие сальники и манжеты, как бы плотно они ни обхватывали вал, не смогут помешать доступу воздуха в камеру?
И все-таки есть способ вывести вал маховика наружу. Но для этого придется использовать не обычные уплотняющие устройства в виде сальников или резиновых манжет, а специальные, изготовленные из магнитной жидкости.
Магнитная жидкость – это коллоидный раствор тончайшего порошка феррита в керосине, масле, воде и любой другой жидкости.
Частицы феррита здесь настолько малы, что, выложив их цепочкой, мы на одном миллиметре длины уместили бы их сто тысяч штук!
Иначе и нельзя: если частички будут больше, раствор быстро осядет. Так, например, случается с крупномолотым кофе, размешанным в воде. Растворимый же кофе имеет очень тонкий помол и в воде превращается в стойкий коллоидный раствор. Поэтому и частицы феррита в магнитной жидкости, как правило, не крупнее частиц растворимого кофе.
Для того, чтобы надежно уплотнить стальной вал, нужно надеть на него кольцеобразный магнит, а зазор между магнитом и валом заполнить магнитной жидкостью. Теперь выведенный через стенку вакуумной камеры вал будет вращаться, не нарушая ее герметичности.
Модель, демонстрирующая действие магнитного уплотнения: 1 - кольцевой магнит; 2 - магнитная жидкость.
Я даже сделал модель для демонстрации действия магнитного уплотнения. В надутый прозрачный резиновый шар вставил заводную игрушку, ключ к которой через описанное магнитное уплотнение выходил из шара наружу. Сколько я ни заводил игрушку – уплотнение не пропускало воздуха.
Магнитные уплотнения необходимы, когда требуется именно механическое вращение вала супермаховика. Если же нам нужно получить от супермаховика электроэнергию, то дело проще. Устанавливаем внутри камеры вращения вместе с супермаховиком электрическую машину – генератор, а провода выводим наружу через герметические изоляторы. Подавая ток по проводам в машину, которая в этом случае будет работать в режиме электродвигателя, разгоняем супермаховик. Потом переводим машину в режим генератора, и она начинает выдавать нам электрический ток, отбирая энергию от супермаховика. Такой способ отбора энергии, пожалуй, наилучший. Ведь ток можно использовать для каких угодно целей – и для освещения, и для питания приборов, и для движения электромобилей.
Чтобы получить энергию в виде потока жидкости – например, масла под давлением для приведения в движение механизмов в шахтах, где электрическая искра способна вызвать пожар, – вместо электромашины в камеру вращения нужно поместить гидромашину. Она так же, как и электромашина, может работать в режиме двигателя, разгоняя супермаховик, и в режиме генератора – насосном режиме, качая масло энергией супермаховика. Разумеется, из камеры с супермаховиком будут выходить уже не провода, а трубочки, по которым потечет масло. Энергией потока масла можно приводить в действие гидродвигатели, гидроцилиндры, заряжать гидроаккумуляторы, о которых речь шла в самом начале книги.
Есть еще способ вывести энергию супермаховика наружу – посредством вращения его корпуса.
Супермаховичное «беличье колесо»: 1 - шестерня; 2 - супермаховик; 3 - зубчатый венец; 4 - камера вращения.
Допустим, нам понадобилось пробурить скважину, взять пробу грунта или проделать другую механическую работу на дне океана, на глубине около 5 километров, где давление воды огромно. В таких условиях очень трудно воспользоваться традиционными источниками энергии – двигателями и электроаккумуляторами. Действительно, двигателю нужен воздух, который, однако, с поверхности по трубке не подведешь – ее раздавит. Электрический кабель тоже не выдержит давления – будет пробой. Маховик же выделяет энергию непосредственно в виде вращения вала, без кабелей и труб. Он-то нас и выручит.
Конечно, помещать вращающийся маховик прямо в воду бессмысленно – его сразу же остановит сопротивление воды. Целесообразнее поступить следующим образом. Заключим маховик или, если нам надо много энергии, супермаховик в герметичную вакуумную камеру, лучше сферическую, чтобы она могла противостоять давлению. При этом закрепим его не в центре камеры, а сместив вниз. Супермаховик массой в несколько сот килограммов будет висеть, как маятник, стремящийся под воздействием гравитации сохранить свое наиболее низкое положение. Дальше все просто. Свяжем супермаховик понижающей механической передачей с камерой, и он станет вращать ее, только гораздо медленнее, чем вращается сам. Это очень напоминает бег белки в клетке-колесе. Белка выступает там как бы в роли супермаховика, а колесо – та же вращающаяся камера. Теперь мы можем отбирать энергию не от самого супермаховика, а от вращающейся, правда с меньшей скоростью, камеры.
К этой камере легко приделать любой инструмент – ковши, бур, фрезу – в общем, все, что надо. Когда камера встретит сопротивление (например, бур упрется в твердую породу), супермаховик начнет вращать ее с большим усилием. Но даже если бур и в этом случае не подастся, никакой поломки или аварии не произойдет. Супермаховик просто «заходит» по кругу внутри камеры, пока не уменьшат нагрузку.
Заряжаться – раскручиваться супермаховик сможет от вращения своей же камеры. Достаточно прикрепить прямо к ней, как к валу корабля, гребной винт, и она быстро закрутится во время спуска на дно за счет собственной тяжести и тяжести супермаховика.
Это супермаховичное «беличье колесо» и ряд других придуманных как мной самим, так и вместе с товарищами систем вывода энергии из вакуумной камеры были признаны изобретениями. Еще один шаг к «капсуле» сделан!
Что же удалось достичь? В супермаховике можно накопить огромную энергию, эту энергию несложно надолго «законсервировать», используя вакуумную камеру, магнитные подвески, быстроходные подшипники. Накопленная энергия выводится из вакуумной камеры, причем выводится в любом удобном для нас виде: в виде вращения вала или корпуса, в виде электрического тока, напора жидкости (масла). Но супермаховик, отдавая свою кинетическую энергию, постепенно останавливается. Отразится ли снижение скорости на работе «энергетической капсулы»?
Что касается супермаховиков, от которых энергия отбирается электрическим или гидравлическим путем, то тут все ясно. Электро-и гидроприводы можно регулировать «мягко», так, что «потребитель» и не догадается об изменении скорости супермаховика.
Особенно успешно регулируется гидропривод. Гидронасос состоит из нескольких поршеньков, приводимых в движение шайбой, к которой они шарнирно прикреплены. Шайба обычно наклонена таким образом, что за один ее оборот поршенек проделывает вместе с ней некоторый путь вверх-вниз. Уменьшив угол наклона шайбы, поставив ее почти параллельно поршенькам, ход поршеньков можно сделать едва заметным, с увеличением угла наклона увеличится и ход поршеньков. Такая регулировка позволяет менять скорость вращения вала от нуля до самой высокой.
Предположим, на автомобиле установлены обычный гидродвигатель и супермаховик с гидравлическим приводом, причем на супермаховике – регулируемый насос. Как будет производиться движение машины?
Сначала шайба насоса чуть наклоняется, в гидродвигатель подается немного масла, и он тихонько «трогает» автомобиль. По мере разгона шайба наклоняется все больше и больше, повышая мощность насоса, а стало быть, и скорость автомобиля. Если супермаховик только что «заряжен» и скорость вращения его высока, то можно ограничиться малым наклоном шайбы; если же скорость вращения основательно упала, то надо увеличить угол наклона, и скорость автомобиля не изменится. Конечно, когда шайба дойдет до предельного положения, регулировка будет уже неэффективна.
Обычно допускается снижение скорости вращения супермаховика вдвое, например с 12 до 6 тысяч оборотов в минуту. Но не следует думать, что и энергии его мы используем тоже половину. Так как при снижении скорости вдвое энергия супермаховика уменьшается в 22, то есть в четыре раза, соответственно мы получаем от него 3/4, или 75 процентов, всей энергии. Вот какой «глубокий» отбор полезной энергии можно произвести от маховичных накопителей.
Точно так же обстоит дело и с электроприводом, только роль шайбы здесь играет так называемое импульсное управление. Оно позволяет отбирать ток от генератора и передавать его двигателю не постоянно, а импульсами, различными по величине и по частоте. Пока супермаховик вращается быстро, импульсы могут быть меньше и реже, а если он сбавил обороты, импульсы должны быть больше и чаще.
Чтобы понять суть импульсного управления, можно взять любой электромотор, хотя бы домашний вентилятор, и включать его в сеть через каждую секунду с такой же продолжительностью включения. Лопасти вентилятора будут вращаться почти равномерно, однако с меньшей скоростью, чем если бы прибор был включен постоянно. Попробуем увеличивать паузы между включениями – вентилятор закрутится медленнее, станем их уменьшать – быстрее. При импульсном управлении импульсы тока подаются автоматически. Такое управление тоже обеспечивает 75-процентный отбор энергии от супермаховика.
Но как ни удобны электро- и гидроприводы, они все-таки сложны. КПД гидропривода – около 0,8...0,9, КПД электропривода поменьше. Их масса и стоимость велики. А главное – эти приводы не позволяют отобрать у маховика всю энергию, довести его до остановки. Почему же нельзя получить от маховика больше энергии?
Дело в том, что всякий привод хорошо работает только на какой-то одной скорости, такой, на которую он рассчитан. Если супермаховик сильно снижает свою скорость, то электрогенератор, соединенный с ним, дает слабый ток, а гидронасос – невысокое давление масла. Привод становится маломощным, КПД его падает. Вот потому-то оставшаяся в супермаховике четверть всей накопленной энергии, как правило, не используется совсем.
Сказанное относится к разгону автомобиля. А что происходит при его торможении? Ведь чтобы не потерять при этом кинетическую энергию автомобиля, нам надо перекачать ее в супермаховик.
Для привода безразлично, передавать ли энергию от супермаховика автомобилю или от автомобиля супермаховику. Поэтому на схемах обычно изображают автомобиль в виде супермаховика на одном валу привода, а супермаховик-накопитель – на втором. Так вот, электро- или гидропривод сумеет отобрать от автомобиля, как и от супермаховика, те же 75 процентов энергии, снизив его скорость лишь вдвое. А куда годится такое торможение, после которого автомобиль все еще движется, хотя и с половинной скоростью?!
И я стал придумывать привод, который смог бы «перекачивать» энергию автомобиля в супермаховик и наоборот практически полностью, – своего рода «энергетический насос», способный отбирать энергию от супермаховика до самой его остановки. Причем КПД этого привода-насоса должен быть выше, чем у любого другого типа привода.
Что и говорить, задача была не из легких. Но неожиданно мне повезло. Однажды, когда я сосредоточенно думал о приводе, мой взгляд упал на... магнитофон. Вот этот магнитофон, вернее, его» вращающиеся кассеты и натолкнули меня на правильное решение.
Принцип устройства ленточного вариатора: 1 - маховики; 2 - мотки ленты.
Для проверки мелькнувшей у меня мысли я изготовил специальные кассеты, где намотка начиналась почти от самого вала, и, поставив их на магнитофон, включил его в режиме перемотки ленты. В то время как кассета, на которой ленты было немного, тронулась с места, другая, полная кассета почти не повернулась. Затем, по мере намотки ленты на первую кассету, вторая разгонялась все больше и больше. Наконец, когда первая кассета наполнилась, ее скорость вращения стала едва заметной. Зато вторая кассета, с которой лента смоталась, вращалась очень быстро, совсем как разогнанный супермаховик.
Идея была найдена, далее следовала техническая работа. Не вдаваясь в подробности изготовления привода, скажу лишь, что ленту для него я взял такую же, какую использовал в супермаховиках, – стальную, толщиной 0,1 миллиметра и шириной 40 миллиметров.
«Магнитофонный» привод позволял передавать энергию от автомобиля супермаховику или, что одно и то же, от одного супермаховика другому почти без потерь – 99 процентов! При торможении автомобиля неподвижный супермаховик разгонялся, воспринимая без малого всю энергию автомобиля, доводя его практически до остановки, а затем разгонял неподвижный автомобиль примерно до той же скорости, что была у него до торможения. Сам супермаховик при этом останавливался.
Свое новое изобретение я назвал ленточным вариатором.
Хотя мой вариатор получился значительно легче, меньше и экономичнее любого другого привода для разгона и торможения машин, он работал как бы по заданной программе, всегда одинаково. Регулировать его надо было заранее, до пуска. А ведь автомобиль приходится тормозить и разгонять каждый раз по-другому, в зависимости от ситуации на дороге. Вот для метропоезда, движению которого почти ничего не мешает, ленточный вариатор, наверное, подошел бы. Для автомобиля же лучше поискать что-нибудь иное.
Стенд с маховиками для испытания ленточного вариатора.
Чтобы полнее использовать энергию маховика, регулировать скорость его вращения без какого-либо привода, можно менять расположение массы в маховике, то есть либо отодвигать ее от оси вращения, либо приближать к ней. Всем известно, например, что в танцах на льду, чтобы завращаться быстрее, спортсмену надо сгруппироваться, «собрать» руки и плечи поближе к туловищу. Для замедления вращения ему следует, наоборот, раскинуть руки пошире, отодвинув тем самым часть массы подальше от оси вращения. Так и в маховике: если изготовить его части раздвижными, то при сдвигании масс к центру скорость вращения будет увеличиваться, а при раздвигании – уменьшаться. И это все при постоянном запасе энергии в маховике.
Задача создания «раздвижных» маховиков уже давно привлекает изобретателей. Однако большинство энтузиастов избирают неверный путь. Об этом можно судить хотя бы по тому, что на высоких оборотах их маховики отказываются работать.
Многие устройства – почти точное повторение раздвижного патрона токарного станка. Только грузы в них раздвигаются где винтами, где рычагами. Я уже говорил, что при вращении маховика его частицы, стремясь двигаться по инерции, то есть прямолинейно, а не по кругу, создают настолько большие усилия, что рвут монолитную сталь. А здесь все эти гигантские силы приходятся на винты, рычажки и другие «хлипкие» механизмы. Где им устоять? Поэтому и рвутся «раздвижные» маховики, не достигнув и десятой доли энергоемкости даже обычных маховиков. Авторы будто специально позаботились о размерах и массе осколков, заранее разрезав монолитный маховик на части и скрепив их непрочными связями.
Не лучше показали себя заливные и насыпные маховики. Такие маховики изготовляют полыми, в виде бочки, и для увеличения инертности заполняют водой, ртутью или даже дробью. Когда же нужно уменьшить инертность, заполнитель либо изымают из маховика, либо тем или иным способом «стягивают» к центру.
Но изобретатели не учитывают, что жидкость или дробь сами не несут своей нагрузки. Все усилия, связанные со стремлением «вырваться» из кругового движения, заполнитель перекладывает на тонкую стенку полого маховика. Жидкость, а тем более дробь при вращении создает в маховике давление в тысячи атмосфер (сотни мегапаскалей), которое без труда взрывает тонкостенный сосуд – маховик. Попытки сделать стенку толстой не приносят успеха – слишком мало остается места для жидкости и сосуд превращается в заурядный монолитный маховик.
«Раздвижной» маховик: 1 - цилиндр; 2 - поршень; 3 - пружина; 4 - жидкость.
Другой порок «заливных» маховиков заключается в очень малом КПД. При заливке жидкости на ходу почти половина кинетической энергии маховика переходит в тепло, так как жидкость тормозит маховик, а при изъятии жидкости из маховика теряется вся ее кинетическая энергия – ведь жидкость нужно как бы остановить, сделать неподвижной. Как же быть с изъятием жидкости, если она будет иметь колоссальное давление и сверхзвуковую скорость? Тогда ее никаким насосом не выкачаешь!
Вот если бы жидкость, дробь и прочие заполнители сами несли свою нагрузку да еще были очень прочны... А почему бы не применить в качестве заполнителя стальную ленту, ту, что идет на намотку супермаховика? Пусть она наматывается на вал в центре ленточного же супермаховика, понижая его инертность, и, наоборот, сматывается с вала, прижимается к внутренней поверхности ленточного обода, повышая инертность супермаховика. К тому же лента заполнитель сама несет свою нагрузку.
Вышел обычный ленточный супермаховик, в котором лента, однако, была склеена только на поверхности обода. Отходя от обода в виде двух или нескольких ответвлений, она дальше наматывалась уже без клея. Когда намотка достигла вала супермаховика, я закрепил на нем концы ленты. Сам супермаховик был посажен на этот вал свободно в подшипниках. Стоило теперь остановить вал – лента начинала навиваться на него, уменьшая инертность супермаховика. Скорость его вращения при этом увеличивалась.
Картина получалась парадоксальная – супермаховик никто не разгоняет, он предоставлен самому себе, и все же он разгоняется! И будет разгоняться до тех пор, пока вся энергия, накопленная в супермаховике, не перейдет в тонкий внешний слой и не разорвет его!
Это явление напоминает эффект кнута. При ударе об пол вся кинетическая энергия длинного кнута постепенно переходит в его кончик, поскольку центральные части, прикоснувшись в полу, останавливаются. Сосредоточившись в самом кончике, кинетическая энергия так сильно разгоняет его, что мы слышим резкий взрывообразный звук, а кончик кнута при этом нередко отрывается.
Практическая польза от саморазгоняющегося супермаховика очевидна – время от времени подразгоняя маховик его же энергией, мы обеспечиваем наивыгоднейшие условия работы привода, ведь супермаховик до выделения всей своей энергии вращается с постоянной скоростью. А чтобы отпущенный вал не раскручивался в обратную сторону, его надо связать с супермаховиком храповой муфтой, допускающей вращение только в одну сторону.
«Мягкий» супермаховик: 1 - внешний моток ленты; 2 - промежуточные витки ленты; 3 - барабан.
Соединив вал подобного маховика с машиной мы получим «мягкость» рабочей характеристики, ценнейшую для большинства машин. В чем выражается эта «мягкость»? При торможении вала обычного маховика или двигателя он не замедлится – таково свойство маховиков и многих других двигателей. Если мы затормозим вал слишком сильно, то либо он сломается, либо двигатель заглохнет. Рабочую характеристику в этом случае называют жесткой. Если же мы попытаемся остановить таким образом вал «мягкого» супермаховика, то он сперва подастся, замедлится. Потом мы почувствуем, что вал как бы набирает силу, – на него навиваются все новые и новые витки ленты, диаметр намотки растет, – и мы уже не в силах удержать его – вал прокрутится. Чуть отпустив вал, мы тем самым ослабим нагрузку, и вал раскрутится быстрее супермаховика, передавая ему лишние витки ленты.
«Мягким» супермаховиком можно производить, например, плавные торможения и разгоны машин. Он способен работать даже в режиме «часовой пружины», только в тысячи раз более энергоемкой. Правда, «заводить» такую пружину посложнее, чем обычную.
Мои конструкции «самонесущих» маховиков переменной инертности тоже были признаны изобретениями.
Пока что резервы супермаховиков далеко не израсходованы. Но это не означает, что их еще рано использовать. Уже сегодня супермаховик может дать огромную экономию энергии и горючего, повысить производительность машин, предотвратить загрязнение атмосферы, спасти от аварий.
Глава третья, и последняя, в которой автор, размышляя о будущем «энергетической капсулы», все более укрепляется в своем мнении, что она уже начала приносить людям немалую пользу...
Как быстро пролетело время! Еще пятнадцатилетним юношей я решил искать «энергетическую капсулу», а сегодня мне уже сорок. Прошло четверть века, двадцать пять лет непрерывной работы, но проблема «энергетической капсулы», пожалуй, только сейчас встала передо мной во всей своей грандиозности.
Я не изменил своей мечте – все, что сделано и достигнуто мною, так или иначе связано с ней. К двадцати годам – первые изобретения, научные статьи, модели, к двадцати пяти – степень кандидата наук, первые опытные машины с маховиками, идея супермаховика, к тридцати пяти – докторская степень, звание профессора, испытания новых машин, накопителей. К сорока годам – новые книги, новые изобретения, новые машины. У меня появилось много молодых и талантливых коллег-маховичников, страстно увлеченных своим делом. И это самое приятное.
Не я один мечтал об «энергетической капсуле», не для меня одного она стала целью в жизни. Многое из того, о чем я думал, о чем писал, волновало и других людей, в других странах, причем приблизительно в одно и то же время. Вначале это поражало меня, особенно когда я узнал, что американские ученые почти одновременно со мной пришли к такой же идее супермаховика. Но потом, по мере того как число сообщений о похожих разработках и экспериментах росло, я удивлялся все меньше и даже не огорчался – напротив, это давало мне уверенность, что если одни и те же решения приходят к разным людям, живущим в разных полушариях Земли, то, наверное, эти решения правильны.
И все же понадобились годы опытов, доказательств, выступлений для того, чтобы преодолеть предубеждение скептиков – чтобы в супермаховики поверили.
Помню, когда в 1965 году в журнале «Изобретатель и рационализатор» я рассказал о моих новых изобретениях – супермаховиках из лент, проволок и сверхпрочных волокон, вращающихся в вакууме, да еще с магнитной подвеской, многие говорили, что это фантастика.
Я называл количество энергии, которое сможет накопить такой супермаховик, «серьезные» люди предлагали убрать два нуля сзади.
Мне доказывали, что маховик прокрутится несколько минут и остановится. Приходилось показывать маховик с магнитной подвеской, где за час терялось всего несколько оборотов в минуту.
Спорили, что, разорвавшись, маховик пробивает метровые стены, я демонстрировал фотографию разорванного супермаховика в целеньком кожухе, который был не чем иным, как большой жестяной банкой из-под килек.
Утверждали, что для ленточной передачи маховичного автобуса потребуется лента с рессору толщиной, тогда я клал на стол тоненькую стальную ленточку, из которой делают лезвия для безопасных бритв. Она была отрезана от той самой передачи...
Меньше всего, оказывается, убеждают цифры, формулы, математические доказательства. А вот опыты, фотографии, киносъемки действуют неотразимо, хотя они и не всегда бывают достоверны.
Как-то раз нам нужно было показать одному большому начальнику маховичную машину. Перед его приходом машина прекрасно работала, но только мы стали ее демонстрировать – отказала. Как потом выяснилось, в корпусе маховика открутилась гайка и заклинила маховик. Испытали без маховика. Походил, походил начальник вокруг нашей машины, да и подписал все, что нам требовалось. Математическим же формулам, которые не подвержены так называемому «визит-эффекту», которые не ломаются и не выходят из строя, он не верил. Не подписывал.
Сейчас уже почти все верят в супермаховики. Во много раз увеличилось число научных трудов, посвященных им, значительно возросло количество связанных с ними изобретений. Специалисты считают супермаховики одними из наиболее перспективных среди всех известных ныне накопителей энергии и прочат им блестящее будущее.
Американские ученые подсчитали, что внедрение супермаховиков в американскую технику позволит сэкономить миллиарды долларов в год. Думается, не меньший выигрыш может быть и у нас в стране.
Но главное, что получит человек от внедрения «энергетической капсулы», – это возможность действительно по-хозяйски, бережно использовать Ее Величество Энергию – бесценный дар природы, синоним которого сама Жизнь.
Есть ли уже сегодня машины, на которых установлены «энергетические капсулы» – супермаховики? Да, есть. Может быть, эти машины и не выпускаются пока сериями, как «Жигули» или «Москвичи», но они существуют. Работают, ездят, удивляя всех, кто их видит.
Самым типичным автомобилем, питающимся энергией, накопленной в супермаховике, является, пожалуй, маленький двухместный махомобиль американского ученого-маховичника Дэвида Рабенхорста. Попробуем на его примере разобраться в устройстве махомобилей.
Супермаховик махомобиля соединен с валом разгонного электродвигателя, причем электродвигатель помещен в воздушной среде, чтобы он лучше охлаждался, а супермаховик – в вакууме, чтобы не было лишних потерь энергии. Вал уплотнен при выходе его из вакуумной камеры магнитным уплотнением. В принципе можно даже разрезать вал и вывести вращение специальными магнитными муфтами.
Другой конец вала супермаховика соединен с гидронасосом обратимого типа, который может переходить и на режим работы гидродвигателя; о таких гидромашинах я уже говорил. Жидкость – масло от гидронасоса через распределитель, или, что одно и то же, через механизм управления махомобилем, подается в четыре маленькие гидромашины, встроенные в колеса махомобиля. Таким образом, все колеса махомобиля ведущие, и это очень хорошо – махомобиль быстро разгоняется, движется устойчиво, без заносов.
Легковой махомобиль Рабенхорста: 1 - гидродвигатель колес; 2 - электродвигатель-генератор; 3 - супермаховик.
В махомобиле нет таких привычных автомобильных частей, как сцепление, коробка передач, карданный вал, дифференциал, полуоси, электроаккумуляторы, стартер и генератор; отсутствуют топливный бак и вся топливная система, система охлаждения с вентилятором, глушитель и, наконец, сам двигатель внутреннего сгорания. Махомобиль бесшумен, он не выделяет никаких газов, приводится в движение практически мгновенно. Известно, что супермаховик может развивать громадные мощности, так необходимые автомобилям для быстрого разгона.
Зарядка энергией, или разгон супермаховика, производится включением разгонного электродвигателя в сеть. Время зарядки – 20...25 минут, это в десятки раз быстрее, чем тот же процесс у электромобилей. Для приведения махомобиля в движение повышают наклоном шайбы производительность насоса, и масло начинает поступать в гидродвигатели колес, разгоняя машину. Больше наклон шайбы – больше скорость.
Махомобиль рассчитан на крейсерскую, то есть постоянную скорость 90 километров в час, причем кратковременно эта скорость значительно повышается, например для обгонов. Он может развить скорость 100 километров в час с места за 15 секунд, что не под силу не только электромобилю, но и многим легковым автомобилям.
Путь пробега махомобиля с одной зарядки пока около 60 километров, но его планируется увеличить в три раза. Это при массе супермаховика 100 килограммов, скорости его вращения от 23 700 до 11 900 оборотов в минуту и запасе энергии 24 мегаджоуля. Удельная энергия супермаховика тогда составит 240 килоджоулей на килограмм массы. Правда, уже испытаны супермаховики с удельной энергией в 650 и даже 700 килоджоулей на килограмм, а это значит, что и путь пробега увеличится почти до 500 километров!
Гиротроллейбус: 1 - электродвигатель-генератор с маховиком; 2 - вакуум-насос; 3 - электроприборы управления.
У махомобиля рекордно малая по сравнению с электро- и. автомобилями стоимость пробега – 0,6 доллара, или около 40 копеек, на 100 километров пути. Я думаю, вряд ли какой водитель откажется от такой машины!
Посмотрим теперь, каковы мощности и массы махомобиля Рабенхорста. Разгонный электродвигатель мощностью 30...40 киловатт – 18,4 килограмма, гидронасос мощностью 37,5 киловатта – 11,4 килограмма, четыре гидродвигателя колес такой же общей мощностью – 10 килограммов, приборы управления – 9 килограммов, шасси – 175 килограммов, кузов – 270 килограммов, 2 пассажира – 150 килограммов. Вместе с супермаховиком, его корпусом и подвеской выходит чуть более 600 килограммов.
Махомобиль не боится длительных стоянок – маховик может вращаться до 40 суток, или почти полтора месяца, без остановки. Это тоже не предел, потому что так называемые кольцевые супермаховики, о которых речь будет еще впереди, рассчитываются на более чем годичный выбег, а американский 45-килограммовый маховик в магнитном подвесе имеет столь малые потери, что способен крутиться до остановки свыше 10 лет!
Подвеска супермаховика в махомобиле тоже магнитная, только она практичнее, чем «абсолютный» магнитный подвес, здесь есть и подшипники, воспринимающие усилия при тряске или гироскопическую нагрузку при повороте оси супермаховика.
Маховичный двигатель, установленный на карте.
На сегодняшний день в разных странах уже построено много супермаховичных автомобилей и автобусов. Некоторые из них, как и швейцарский гиробус, оснащены штангами и могут двигаться, как троллейбус. Но при этом раскручивается и супермаховик, который потом питает током тяговые электродвигатели. Такие машины, названные гиротроллейбусами, не тратят время, подобно гиробусу, на раскрутку супермаховика, так как «зарядка» идет на ходу. Затем, после разгона супермаховика, гиротроллейбусы едут на накопленной энергии до конечной остановки через весь город.
Оставим наземный транспорт и спустимся под землю – в метро. И там маховик нашел себе применение. Поезда метро ходят очень быстро, развивая скорость до 80...90 километров в час. А останавливаться им приходится часто. Вот и получается, что не успеет поезд накопить в себе достаточную кинетическую энергию, как ее тут же надо «гасить» в тормозах.
Пробовали отдавать эту энергию в сеть в виде электроэнергии, но выходило не очень хорошо – скачки тока в сети мешали нормально работать остальным поездам. Тогда инженеры решили накапливать кинетическую энергию поезда при торможении в маховиках, близких по своим показателям к супермаховикам, а затем использовать ее при разгоне. Выяснилось, что два маховика массой по 250 килограммов каждый могут накопить при торможении кинетическую энергию одного вагона метро, а потом разогнать такой же вагон почти до первоначальной скорости или, в случае аварии сети, «тянуть» на себе целых два вагона до следующей станции. Маховичный метропоезд испытали в Нью-Йорке, где он экономил около 30 процентов всей затрачиваемой обычно на движение поезда электроэнергии.
Маховичный накопитель для метропоезда: 1 - маховик; 2 - защитное кольцо; 3 - электродвигатель-генератор.
Существуют проекты использования супермаховиков в авиации. В одном из них для взлета сверхзвуковых самолетов предлагают применять маховичную катапульту. Если разогнать крупный маховик электродвигателем, а затем подключить его к лебедке, соединенной тросом с самолетом, то маховик за несколько секунд разовьет гигантскую мощность, в десятки раз превышающую мощность электродвигателя. За считанные секунды самолет разгонится до 400 километров в час и взлетит. При этом путь разгона будет не более 100...150 метров. Такой запуск очень надежен и экономичен.
Двойную пользу можно получить от установки супермаховиков на легких тихоходных самолетах, у которых собственный двигатель развивает мощность не более 90 – 120 киловатт. Супермаховик массой всего 13 килограммов выдаст мощность 115 киловатт в течение 20 секунд, а массой 57 килограммов – 225 киловатт в течение 60 секунд – время, вполне достаточное для взлета. Кроме того, раскрученный супермаховик обеспечит безопасность экипажа в случае остановки мотора самолета. Энергии, накопленной в супермаховике, хватит для трехминутного полета самолета без мотора. Летчики успеют выбрать пригодную для посадки площадку и приземлиться.
Еще в 30-х годах в Шотландии был построен беспилотный маховичный вертолет. Разгоняли маховик на земле вместе с воздушным винтом, лопастям которого задавали нулевой угол атаки, чтобы разгон шел легче. Затем, раскрутив маховик, лопасти устанавливали под нужным углом, и машина взмывала в небо. Когда энергии в маховике оставалось уже мало, вертолет плавно опускался. Не правда ли, очень похоже на игрушечный вертолет, где разгон лопастей-маховиков производится пусковым шнурком?
Маховичная катапульта: 1 - двигатель; 2 - маховик; 3 - муфта включения; 4 - лебедка.
А недавно создали такой же беспилотный вертолет, но с супермаховиками. Два легких кольцевых супермаховика диаметром 1,4 метра, вращающиеся в разные стороны, раскручивают воздушные винты, расположенные внутри колец супермаховиков. Кольца разгоняют до 4 тысяч оборотов в минуту на специальном базовом автомобиле, с которого вертолет стартует. Вертолет быстро поднимается на 100-метровую высоту, зависает там и, имея на борту фото- и телеаппаратуру, производит съемки или телепередачи. Подобный вертолет удобно использовать и для пожарных работ – его двигатель не заглохнет от дыма, а баки с горючим не загорятся, так как на этом вертолете нет ни двигателя, ни баков.
Если нужно попасть на борт вертолета, зависшего высоко над землей, или на какую-нибудь площадку на высоте 100 и более метров, лучше всего воспользоваться для этого маховичным подъемником, который позволяет поднять девять человек подряд, причем в 5 раз быстрее обычных моторных подъемников. Маховик подъемника разгоняется маленьким электродвигателем мощностью 1,5 киловатта до 28 тысяч оборотов в минуту.
Осуществить экстренный спуск с того же вертолета или из окна горящего высотного здания поможет маховичный лифт, в разработке которого довелось участвовать и мне. При пожарах нередко требуется срочно эвакуировать людей с верхних этажей дома, но в это время ток от здания, как правило, отключается и никакие подъемные механизмы не работают. Вот и придумали особое устройство для таких случаев.
Человек надевает специальный пояс с прикрепленной к нему лентой и прыгает вниз. Лента намотана на валу небольшого маховика или супермаховика, как в ленточном вариаторе, о котором речь шла выше. Сматываясь с вала, она разгоняет маховик, сначала медленно, затем все сильнее и сильнее. А человек, наоборот, приближаясь к земле, все больше и больше теряет скорость. И наконец мягко приземляется. Пояс с лентой сам поднимается вверх, за счет энергии маховика, раскрученного спускавшимся человеком. Так маховичный лифт может доставлять на землю одного за другим сколько угодно людей.
Поистине безграничные возможности открываются перед супермаховиками в космосе. В космическом вакууме у супермаховиков совершенно нет потерь на трение о воздух, а невесомость устраняет нагрузки на подшипники. В этом случае подшипники могут быть простыми «сухосмазывающимися» втулками.
Маховичный беспилотный вертолет: 1 - кольцевые супермаховики; 2 - тяговая лопасть; 3 - лопасть управления; 4 - приборы и груз.
К середине 80-х годов на французских спутниках связи предполагается использовать супермаховичные накопители энергии. Дело в том, что спутники связи, транслирующие на большие расстояния телефонные разговоры, телепрограммы и радиопередачи, питаются обычно не только от солнечных батарей. Приходится ставить на них и аккумуляторы энергии, которые дают ток, пока спутник загорожен от Солнца Землей и находится в тени. Однако время жизни электрохимических аккумуляторов невелико, они быстро выходят из строя, а из-за них прекращает существование весь спутник, который мог бы служить еще долго. Вот и пал выбор на супермаховики, которые очень долговечны. Их намечено поместить в магнитную подвеску и вращать со скоростью 40 тысяч оборотов в минуту. Плотность энергии супермаховиков для спутников связи будет примерно 0,1 мегаджоуля на килограмм массы.
Видимо, не обойтись без супермаховиков и в космических станциях, которые отправятся к далеким планетам, где почти нет солнечного света, дающего энергию для питания электронного оборудования станций. По мнению ученых, кратковременных включений пиропатронов будет вполне достаточно, чтобы с помощью газовой турбины так разогнать супермаховик, что его энергии надолго хватит для бесперебойной работы всех приборов.
В космосе супермаховики необходимы и для более прозаических дел – например, для ремонта станций, приведения в движение механизированного инструмента.
Допустим, космонавту нужно просверлить отверстие или завернуть гайку. Если он применит обыкновенные дрель и гайковерт, то реактивный момент, действующий на корпус ручного инструмента, закрутит в первую очередь самого космонавта. На Земле такое не случается благодаря силе тяжести и силе трения, а в условиях невесомости – закономерное явление.
Теперь проделаем следующий опыт. Возьмем самый простой детский волчок – юлу, укрепим на ее кончике сверло и, разогнав юлу, уберем руку. На первый взгляд как будто ничего удивительного – юла стоит на сверле и сама сверлит подставку. А ведь ни с какой из обычных дрелей подобный опыт не получится никогда. Даже у электрической дрели корпус тотчас завертится в противоположную сторону и порвет все провода.
Дело в том, что маховики и супермаховики обладают свойством «безреактивности», то есть при вращении они не оказывают реактивного воздействия на корпус и другие части устройства. Маховик связан с корпусом только подшипниками, которые, свободно проворачиваясь, не передают вращательных усилий.
Изготовленная мною маховичная дрель успешно сверлила любые доски, на которые я ее ставил. При этом она прекрасно выдерживала вертикальное направление благодаря еще одному свойству маховика, о котором уже упоминалось, – сохранять положение своей оси в пространстве.
Маховичный лифт: 1 - маховик; 2 - вал; 3 - втулка; 4 - корпус; 5 - лента; 6 - крепление.
Чтобы прочувствовать это свойство самому, лучше всего снять велосипедное колесо с вилки, взяться за концы оси и, держа колесо на вытянутых руках, попросить товарища раскрутить его. Если колесо раскручено как следует, никакие попытки повернуть ось ни к чему не приведут, несмотря даже на большие усилия. Колесо будет сопротивляться совсем как живое, стараясь вырваться из рук. Суть происходящего состоит в том, что ось вращающего маховика всякий раз стремится повернуться не туда, куда мы хотим, а под прямым углом к этому направлению.
Существует много способов узнать, куда будет поворачиваться ось маховика, но все они трудны и рассчитаны на специалистов. Поэтому я придумал для себя способ попроще, который назвал правилом колеса. Запомнить его ничего не стоит, достаточно иметь в кармане хотя бы одну монетку или колесико. Пустим монетку катиться по столу. Скоро она начнет падать набок, но что для нас особенно важно – она и сворачивать будет в ту же сторону. Теперь представим себе, что монетка – это вращающийся маховик. Допустим, мы пытаемся повернуть ось маховика в ту сторону, куда падает монета. Направление поворота монеты позволит нам определить, куда на самом деле будет сворачивать ось маховика. Вот и все правило.
Маховичная «безреактивная» дрель: 1 - маховик; 2 - корпус; 3 - подшипник; 4 - сверло.
Если никто не воздействует на ось маховика, то она безупречно сохраняет свое положение в пространстве. И это делает маховик незаменимым в навигационных приборах, которые сейчас устанавливают на всех кораблях, самолетах, ракетах. Называют такие приборы гироскопическими. Об этих интереснейших приборах написано много книжек, и я не буду подробно останавливаться здесь на них. А вот об автомобиле, в котором был применен как раз гироскопический эффект вращающегося маховика, думаю, сказать надо. Построил этот «гирокар» в 1914 году русский инженер П. Шиловский. Гирокар демонстрировался в Лондоне, где вызвал огромный интерес. Еще бы, машина Шиловского имела всего два колеса, как велосипед, однако она поддерживалась без каких-либо упоров в устойчивом состоянии, если даже все пассажиры садились на один ее бок. «Держал» машину раскрученный маховик благодаря гироскопическому эффекту.
Гирокар Шиловского: 1 - маховик; 2 - приводное колесо; 3 - рулевое колесо; 4 - двигатель.
Такие автомобили строились и позже. Возможно, что будущий махомобиль с супермаховичной «энергетической капсулой» спроектируют тоже двухколесным, чтобы использовать сразу оба замечательных свойства супермаховика – накапливать энергию и стабилизировать свое положение в пространстве.
Помните, мы говорили, что ученые разрабатывают проекты гигантских накопителей энергии на основе сверхпроводящих катушек – четверть километра диаметром и 50...70 метров высотой. И накапливать они должны десятки миллионов мегаджоулей энергии. Такие накопители нужны для аккумулирования энергии в период ночных недогрузок электростанций и для выделения ее при перегрузках в часы «пик». Наиболее чувствительны к недогрузкам и перегрузкам атомные электростанции, на долю которых с каждым годом будет приходиться все большая и большая часть электроэнергии, вырабатываемой как у нас в стране, так и во всем мире.
А пригодны ли супермаховики для накопления столь огромных количеств энергии и что они будут представлять собой в этом случае?
Применение маховичных накопителей на электростанциях тесно связано с именем известного русского изобретателя-самоучки А.Г. Уфимцева, которого Горький назвал «поэтом техники». Изобретения Уфимцева были необычайно широкого диапазона – от керосиновых ламп до самолетов. Тщательно проанализировав различные способы накопления энергии для ветроэлектростанций, в том числе «водородное» и тепловое аккумулирование, он пришел к выводу, что маховичный накопитель подходит для этих целей лучше других.
Первый маховичный аккумулятор был построен Уфимцевым в 1920 году из паровозного буфера. Маховик имел массу всего 30 килограммов и вращался в вакуумной камере с давлением около 5 гектопаскалей, делая 12 тысяч оборотов в минуту. Вывод мощности из камеры осуществлялся электрическим путем с помощью мотор-генератора.
Электромаховичный накопитель Уфимцева: 1 - маховик; 2 - вал; 3 - упругий подвес; 4 - шаровой шарнир; 5 - подшипник; 6 - кожух; 7 - электродвигатель-генератор.
Более крупную модель накопителя с маховиком массой 320 килограммов Уфимцев создал в 1924 году. После зарядки маховик обеспечивал равномерное горение нескольких электроламп по 1000 свечей в течение часа. Этот накопитель Уфимцев применил на ветроэлектростанции, которая существует в городе Курске и сейчас. Все куряне знают «ветряк Уфимцева» и гордятся им.
Маховик Уфимцева, как и сверхпроводящие накопители, аккумулировал электроэнергию в периоды ее избытка, во время порывов ветра, а затем равномерно распределял ее даже при полном отсутствии ветра. Крутиться он мог без подзарядки около 14 часов, однако, по словам старожилов, еще не было такого случая, чтобы ветер за это время ни разу не подул.
Идеи одаренного русского самоучки воплощены сегодня в любом маховичном накопителе для электростанций. Например, американский изобретатель Аллан Милнер разработал супермаховичный накопитель для солнечной электростанции. Известно, что солнечный свет, преобразованный в электроэнергию, может питать потребителей только днем, да и то в безоблачную погоду. А для того, чтобы использовать эту энергию ночью и в пасмурные дни, ее необходимо предварительно накапливать, и по возможности с минимальными потерями.
Накопитель Милнера состоит из супермаховика диаметром около метра, массой 2 тонны, вращающегося со скоростью 15 000 оборотов в минуту. Супермаховик подвешен на шести магнитных подшипниках, причем подвеска подстрахована обычными шарикоподшипниками. Разгон супермаховика и отбор энергии от него осуществляются мотор-генератором с постоянными магнитами, наиболее экономичным из известных машин подобного типа. Накопитель аккумулирует почти 150 мегаджоулей энергии, при этом потери составляют всего около 12 процентов. Плотность энергии такого накопителя в полтора раза превышает этот показатель у свинцово-кислотных аккумуляторов, а долговечность – во много раз.
Живут идеи Уфимцева и в проекте американского ученого Стивена Поста, предложившего для крупной электростанции гигантский супермаховик массой 200 тонн, диаметром 5 метров, вращающийся со скоростью 3500 оборотов в минуту. Такой супермаховик может накопить уже свыше 70 тысяч мегаджоулей энергии.
Супермаховичный накопитель Поста: 1 - магнитная подвеска; 2 - подшипник; 3 - электродвигатель-генератор; 4 - супермаховик из отдельных колец; 5 - магнитный подпятник.
Супермаховик предполагается собрать из концентрических колец, навитых из кремниевого волокна и насаженных одно на другое с небольшим зазором, заполненным эластичным веществом, например резиной. Затем его заключат в герметичный корпус и соединят с валом мощного мотор-генератора. Сильная магнитная подвеска разгрузит подшипники от громадной тяжести супермаховика.
При внезапном разрыве этого супермаховика может выделиться энергия, равная взрыву тысячи тонн тола, но в момент разрыва корпусу передастся не более 1...2 процентов этой энергии. Остальная энергия будет выделяться достаточно медленно, вызывая лишь нагревание. На всякий случай супермаховик все же намечено установить под землей на безопасной глубине.
Большие перспективы сулят так называемые кольцевые супермаховики, о которых упоминалось выше. Единственной подвижной частью такого супермаховика является кольцо, навитое из высокопрочного волокна и помещенное в вакуумную камеру в форме бублика – тора. Поскольку кольцевой супермаховик лишен центра, в нем наиболее полно реализуются прочностные свойства волокон. Кольцо-супермаховик удерживается в камере в подвешенном состоянии с помощью магнитных опор, размещенных в нескольких местах по окружности. Само кольцо служит ротором мотор-генератора, а те места, в которых стоят обмотки магнитов, – статором. Это упрощает отбор энергии и зарядку супермаховика.
Если сравнивать кольцевой супермаховик со стальным маховиком из самой прочной стали, то выявится следующее. Плотность энергии кольцевого супермаховика в 2...3 раза больше и достигает 0,5 мегаджоуля на килограмм массы. Потери на вращение у него в 50...100 раз меньше, чем у стального, в связи с чем его свободное вращение достигает 750, а в перспективе – 12 тысяч часов. То есть такой супермаховик будет вращаться без остановки 500 суток, или полтора года!
Конструкция кольцевого накопителя привела меня с соавторами к идее «сверхнакопителя» энергии, который тоже был признан изобретением. Мы решили «переложить» с маховика на землю огромные разрывные напряжения, возникающие во вращающемся кольце, что позволит во много раз повысить плотность энергии накопителя. Но практически осуществить это будет возможно только в накопителях гигантских размеров.
Один из проектов кольцевого супермаховичного накопителя: 1 - поддерживающие магнитные системы, совмещенные со статором мотор-генератора; 2 - вакуумированный корпус; 3 - «парящий» кольцевой супермаховик.
В общих чертах идея «сверхнакопителя» такова. Кольцевой маховик в корпусе зарыт в землю горизонтально. На внешней поверхности кольца-супермаховика и на обращенной к ней внутренней поверхности корпуса одноименными полюсами друг к другу уложены сильные постоянные магниты. Взаимодействуя, они сжимают кольцо-супермаховик и растягивают корпус. От корпуса это растяжение передается фундаменту, в котором уложен корпус, а в результате и земле. Так как земля все равно существует и нам создавать ее заново не придется, то почему бы не использовать ее как гигантский и очень прочный корпус?
Может возникнуть вопрос: хватит ли сил у магнитов, чтобы противостоять колоссальному стремлению частей супермаховика удалиться от центра, а если и хватит, то не будет ли супермаховик «раздавлен» этими силами при остановке?
Все дело здесь, оказывается, в размерах, точнее, в диаметре супермаховика. Чем он больше, тем меньше магнитные силы. По мере разгона магниты супермаховика вследствие его растяжения все теснее поджимаются к соответствующим магнитам на корпусе, зазор между ними делается все меньше, а сила отталкивания – все больше. При остановке происходит обратное явление – магниты маховика отходят от корпуса, зазор увеличивается, и сила отталкивания падает. Поэтому маховик и не «раздавливается» в состоянии покоя.
У хороших постоянных магнитов при малых зазорах сила отталкивания может стократно превышать силу тяжести подвешиваемой массы. Постоянные магниты применяют для вывешивания над магнитными «рельсами» вагонов-магнитопланов. Подобные магнитопланы уже в недалеком будущем будут курсировать между городами со скоростями, доступными сейчас лишь самолетам.
Наш супермаховик-кольцо можно представить в виде как бы непрерывной кольцевой сцепки из таких «вагончиков», только гораздо меньших и состоящих почти из одних магнитов. Крутиться это «гибкое» кольцо будет в вакуумированной трубе, уложенной вокруг электростанции, завода или даже города. Если радиус кольца достигает, например, 16 километров (приблизительно столько же у кольцевой автострады вокруг Москвы), то с применением упомянутых постоянных магнитов скорость кольца-супермаховика составит 4 километра в секунду!
Рабочая часть «сверхнакопителя» энергии: 1 - «вагончик»; 2 - магниты подвески «вагончиков»; 3 - основные магниты (слева - стационарный, справа - подвижной); 4 - фундамент.
Плотность энергии нашего кольцевого гиганта должна быть 8 мегаджоулей на килограмм, что при сечении супермаховика всего 0,5 м2 даст полный запас энергии в накопителе – 2·1015 джоулей, или в 200 раз больше, чем в огромном сверхпроводящем накопителе, спроектированном французскими учеными. Этой энергии вполне хватило бы на освещение всех городов мира в течение вечера. А ведь объем французского накопителя вдвое превосходит объем нашего кольца.
Советские ученые из Свердловска разработали магниты, сила которых превышает в тысячу раз их силу тяжести. Если такие магниты поставить на наш сверхнакопитель, то скорость кольца супермаховика достигнет 12,6 километра в секунду и превысит даже вторую космическую скорость. Плотность энергии тогда будет 80 мегаджоулей на килограмм, а вся энергия накопителя составит 2·1016 джоулей. Это значительно больше избыточной или нереализуемой энергии электростанций всего мира. То есть использовать подобный накопитель полностью пока не удастся.
Можно пойти по пути уменьшения размеров накопителя и ограничиться запасом энергии в 1011 джоулей. Получится все-таки достаточно емкий накопитель, могущий обеспечить равномерную работу большой электростанции. При радиусе накопителя 0,5 километра сечение его подвижных магнитов будет всего 5x5 сантиметров. Такой накопитель в виде тонкой кольцевой трубки нетрудно расположить вокруг любой электростанции со всем ее хозяйством.
Накопители энергии издавна помогают друг другу в работе. Если паровой и, скажем, дизельный двигатели ни к чему ставить на автомобиль одновременно, то аккумуляторы разных типов, наоборот целесообразно объединять.
Я уже говорил о том, как тепловые аккумуляторы помогают газовым отдавать больше энергии, – рассказывал про трамвай, который «заправлялся» и сжатым воздухом и кипятком, про свой микромобиль, где газовый аккумулятор – баллон с углекислотой работал вместе с тепловым аккумулятором – кастрюлей с расплавленной солью. А могут ли столь же успешно «сотрудничать» маховичные накопители, ну, хотя бы с электроаккумуляторами?
Оказывается, это сотрудничество одно из самых перспективных. Помните недостатки электромобиля? Он медленно разгоняется, не идет в гору, не может использовать кинетическую энергию, выделяемую при торможении. И всему виной невысокая плотность мощности электроаккумуляторов. По той же причине сами электроаккумуляторы не выносят быстрой зарядки. Они либо портятся, как, например, свинцово-кислотные, либо просто тратят «лишнюю» мощность на нагрев, как щелочные. Обыкновенные же маховики, не говоря об «энергетических капсулах» – супермаховиках, развивают какие угодно мощности, лишь бы выдержал привод, и, кроме того, позволяют сохранять кинетическую энергию транспорта. Соединив эти два накопителя на одном электромобиле, получаем большой выигрыш.
Электроаккумуляторы движут такой электромобиль только по ровным дорогам без уклонов, где не требуется торможений и разгонов, – иными словами, они обеспечивают ему крейсерскую скорость. А там, где нужны разгоны, обгоны, торможения, подъемы в гору, берется за дело супермаховик. По сравнению с обычным электромобилем здесь значительно повышается максимальная скорость, вдвое и больше сокращается время разгона, путь пробега увеличивается почти в два раза.
Так, у последней модели американского «гибридного» электромобиля с супермаховиком длина пробега без подзарядки составляет 112 километров против 63 километров у обычного электромобиля. Масса супермаховика с приводом для полуторатонного электромобиля – всего 75 килограммов. Выпуск этих электромобилей «второго поколения», оснащенных супермаховиками, предполагается начать примерно с 1985 года.
Неплохой «гибрид» получается из электроаккумуляторов и гидрогазовых накопителей. Последние также помогают использовать кинетическую энергию машины, значительно повышают путь пробега, скорость электромобилей, сокращают время их разгона.
На маленьких электромобилях эффективны даже резиновые накопители. Они просты и вполне применимы для накопления небольшой энергии. Я совсем было собрался поставить на самодельный электромобиль для накопления энергии торможения свой накопитель от резиномобиля. Но когда узнал, что подобное уже сделали английские инженеры, раздумал – не хотелось повторять чужой эксперимент.
Можно соединять вместе и аккумуляторы одного вида. В Японии, например, на электромобиле установили два типа электроаккумуляторов – стартерные и тяговые батареи. Первые, хорошо переносящие большие токи и мощности, работают на разгонах и обгонах, а вторые, имеющие более высокие КПД и плотность энергии, – на крейсерской скорости, питая электромобиль на ровной дороге без подъемов и разгонов. Конечно, стартерные электроаккумуляторы по плотности мощности не идут ни в какое сравнение с маховичными или гидрогазовыми накопителями, но и эта «гибридизация» в чем-то полезна.
Электромобиль с супермаховиком: 1 - тяговый двигатель; 2 - супермаховик; 3 - батарея аккумуляторов.
Очень широко распространены «гибриды» статических и динамических накопителей одного и того же вида энергии. Всем известный маятник, в том числе и балансир с пружинкой в наручных часах, – «гибрид» статического аккумулятора механической энергии в виде поднятого груза или скрученной пружины и динамического аккумулятора той же энергии – маховика. «Перетекание» энергии из статического аккумулятора в динамический и обратно носит колебательный характер. Эти колебания необычайно точны по частоте, что и обусловило их применение в самых разнообразных часах.
Совершенно такой же эффект получаем, объединив статический и динамический электрические аккумуляторы – конденсатор и катушку индуктивности. Вместе они образуют так называемый колебательный контур. Электрический колебательный контур – аналог механического маятника, законы колебаний и того и другого одинаковы. Потери энергии в обоих случаях приводят к одному и тому же – колебания затухают, накопленная энергия переходит при этом в тепло.
И все-таки электрический и механический «маятники», несмотря на общность законов их колебаний, не могут заменить друг друга в технике. Представьте себе, что было бы, если бы в подвеске автомобиля вместо рессор ставили конденсаторы, в телевизоре вместо конденсаторов – рессоры, а катушки заменили маховиками!
Успешно сотрудничают не только накопители разных типов. «Союз» с накопителями очень полезен и для тепловых двигателей. Любой двигатель хорошо работает на какой-то одной скорости, в каком-то одном режиме. Тогда у него и расход горючего наименьший и выхлоп менее вредный. Изменение режима всегда ухудшает работу двигателя.
К сожалению, постоянные скорость и мощность двигателя чаще всего не нужны машине, на которой он установлен. Автомобилю, например, для разгона и подъема в гору требуется наибольшая мощность, при движении по ровной дороге без уклона на невысокой скорости – совсем небольшая, а на спусках и при торможении мощность им не только не потребляется, но даже выделяется. Сейчас эта мощность безвозвратно теряется, впустую нагревая тормоза и изнашивая их, хотя накопители энергии, в первую очередь маховичные и гидрогазовые, отлично могли бы сохранять ее и отдавать при разгонах машины.
Поэтому специалисты если и видят будущее тепловых двигателей на автомобилях, то непременно в союзе с накопителями. Двигателю предоставят возможность работать в наилучшем для него режиме, выдавать среднюю мощность, «подпитывая» накопитель. А остальное – дело накопителя. Он будет или расходовать энергию на разгонах, подъемах, обгонах, или накапливать ее при торможениях и на спусках. Такой режим работы позволит чуть ли не вдвое снизить расход горючего, во много раз уменьшить вредность выхлопа, получить немало всяких других преимуществ.
Предвижу твой вопрос, читатель: «Почему же сегодня, несмотря на очевидные выгоды, причем выгоды огромные, мы еще не встречаем «энергетические капсулы» повсюду?»
Прежде всего потому, что супермаховик – изобретение молодое: ему нет и 20 лет. А первые серьезные опыты, показавшие преимущества супермаховиков над другими накопителями, проведены только несколько лет назад. К слову сказать, преимущества дизеля над бензиновым двигателем или щелочного аккумулятора над кислотным доказаны уже около 100 лет назад, но до сих пор ни те ни другие не вытеснили своих менее перспективных собратьев.
Кроме того, супермаховичная «энергетическая капсула» – устройство весьма непростое. Для изготовления полномасштабного супермаховика для реально работающей машины необходимо сложное и дорогое оборудование. Пока это могут позволить себе лишь крупные авиационные и аэрокосмические предприятия. Но постепенно такие устройства, как говорится, «спускаются на землю» и начинают служить, может быть, на менее экзотичных, но гораздо более распространенных машинах. Над созданием супермаховиков сейчас усиленно работают научные и инженерные коллективы многих высокоразвитых государств мира, включая нашу страну.
Уже получены успешно работающие опытные образцы автомобилей, электромобилей, метропоездов, солнечных и ветровых электростанций, различных приборов и многих других устройств, использующих супермаховики. Но и при разработке этих опытных образцов встречается много трудностей, порой непредвиденных.
Мне с товарищами по работе довелось строить и испытывать автобусы как с гидрогазовыми, так и с маховичными накопителями в соединении с тепловым двигателем. Поскольку накопители здесь могли сохранять, или, иначе говоря, рекуперировать, кинетическую энергию машины, мы их называли просто рекуператорами.
Признаться, строя свой, первый у нас в стране маховичный рекуператор, мы изрядно намучились. Виноваты были где-то и мы сами, где-то производственники, сказывалось и полное отсутствие опыта в этом новом деле. Все перипетии нашей работы я описал в шуточном рассказе, опубликованном лет десять назад в одном популярном журнале. Вот этот рассказ.
На стадии проектирования почти каждую ночь меня озаряли новые идеи, а утром конструктор с ужасом узнавал, что чертежи опять надо переделывать. Наконец документация была готова, ее размножили и отдали на завод, директор которого после долгих уговоров согласился изготовить «этакую маленькую модельку». Начальник производства, увидев чертежи, наотрез отказался от работы, заявив, что это не «моделька», а адская машина и что она «не пойдет», то есть не будет работать. С полчаса мы препирались, пока я не спросил, а почему, собственно, «не пойдет»?
– Был у нас тут один доцент, – ответил начальник производства, – мы ему сделали тоже инерционный, но не рекуператор, а грохот. Грохот не работал. Стало быть, и ваш не будет.
Я столь же убедительно возразил, что то был доцент, а я профессор и наша конструкция будет работать.
Короче говоря, машину все таки запустили в производство. И тут началось...
Прежде всего корпус, в котором должен был вращаться маховик, изготовили меньшего диаметра, чем сам маховик. Пробовали затолкнуть его туда прессом, но я категорически запротестовал. Тогда решили расточить корпус и обточить маховик. Обрабатывая корпус, начисто срезали ему один бок, а взявшись за маховик, сбили ему центровку – появилась статическая неуравновешенность. На корпус наварили длинную латку, после чего его ужасно искривило, и подшипники не полезли в гнезда. Маховик переточили и к статической добавили динамическую неуравновешенность. Я было совершенно потерял голову, но заводчане, воспользовавшись моей вынужденной командировкой, затолкнули все таки маховик в корпус на стотонном прессе и, выкрасив агрегат в голубой цвет, торжественно передали нам. Пришлось принять, хотя я и заметил им, что можно было не трудиться и не красить, во всяком случае, поверхности трения. Но радушные заводчане ответили, что для хороших людей им ничего не жалко, и отгрузили рекуператор.
Для стендовых испытаний рекуператора институт выделил нам подвал в только что выстроенном здании. Стояла холодная зима, а в подвале было тепло, и это нас радовало. Мы целыми днями разбирали рекуператор на детальки и исправляли заводские дефекты. Убедились, что стотонный пресс на заводе работает хорошо: маховик выпрессовать мы так и не смогли. Пришлось заливать в корпус азотную кислоту и таким неслыханным способом выпрессовывать, а заодно и балансировать маховик. Помогали нам энтузиазм и сноровка, мешали пары азотной кислоты и темнота в наглухо закупоренном подвале.
Основные дефекты мы ликвидировали, оставалось только собрать рекуператор. Детальки были аккуратно разложены на полу, завернуты в бумажки и пронумерованы, на потолке горела недавно установленная лампочка, а в просверленную в потолке щелку проникало дыхание наступающей весны. Я спокойно уехал в командировку отчитываться о проделанной работе, поручив лаборанту сборку рекуператора, которую нужно было провести не торопясь, тщательно, а самое главное, соблюдая чистоту деталей и смазки.
Ох уж эта весна! Какую злую шутку сыграла она с нами! Вернувшись из командировки в радужном настроении, я заглянул в наш подвал и... обомлел. При тусклом свете лампы невозмутимый лаборант с сигаретой в зубах стоял в болотных сапогах чуть не по пояс в грязной воде. В руках он держал шланг, по которому мощная помпа гнала глинистый раствор наружу, через спасительную щелку в потолке. Подвал не был гидроизолирован, и в него прорвались талые воды. Две недели откапывали мы ржавые детали, узлы и, отчаявшись очистить их от грязи и ржавчины, собирали рекуператор как попало.
Настало время посылать агрегат на завод для установки его на автобусе. Наученный горьким опытом, я тщательно гидроизолировал ящик для рекуператора и только после этого отправил на товарную станцию. Но и этой предосторожности оказалось недостаточно. По дороге крышку ящика повредили, и на завод он пришел полный воды. Рекуператор плавал в ней, как огурец в рассоле.
Установив наш агрегат на автобусе и убедившись, что он не работает, завод возвратил его нам обратно вместе с автобусом. Опять грязегидравлические испытания, теперь по ноябрьским дорогам. Пробуем пустить машину сами – передача летит в куски. В чем дело? Ого! Приваривая ушко для крепления, заводской сварщик прожег корпус и накрепко приварил к нему маховик.
Наконец выкатили автобус во двор. Машиной управлял лаборант, а рекуператором с заднего сиденья – я. Договорились сигнализировать друг другу свистками: один долгий – тормоза отпустить, два коротких – нажать. Предстартовая нервозность сыграла свою роль, и я, запуская рекуператор, вместо одного длинного свистка дал два коротких. От обломков передачи пришлось спасаться бегством.
Я заметил, что каждый новый ремонт рекуператора занимал у нас все меньше времени. Мы привыкли к постоянному ремонту и не вылезали из-под автобуса. Нас даже прозвали «Карлсонами, которые живут под автобусом». Оттуда я консультировал студентов, там же выслушивал институтские новости и подписывал бумаги. Зимой мы примерзали спиной к асфальту. Нас вытаскивали из-под автобуса заботливые студенты.
Опять наступила весна. Мы вывели автобус бережно, как норовистого коня. Выбрали тихую улочку, разогнались, и я уверенно включил рекуператор. Но это я лишь решил, что включил его. На самом деле я перепутал тумблеры, которые были заменены только накануне, и вместо «пуска» включил «аварийную остановку». Полетела прочнейшая стальная лента, связывающая маховик с колесами машины. Тут же склеили ее клеем №88. Попробовали катить автобус – катится. Остановили – что-то с глухим стуком упало на асфальт. Глянули под автобус – батюшки, кардан! Поставили кардан, поехали. Снова включили рекуператор – не работает. Остановились, выбежали, осмотрели – ничего непонятно. Я в сердцах стукнул по нему кулаком, и автобус пошел – сам! – плавно набирая скорость. Едва догнали его. Теперь работает, и еще как!