В этой главе мы рассмотрим несколько несложных схем аналоговых частотомеров, которые позволяют произвести отсчет значения частоты поступающего переменного напряжения непосредственно по шкале обычного стрелочного прибора — микроамперметра.
Неделькин В. [24]
В электронных частотомерах конденсаторного типа исследуемый сигнал обычно преобразуется в импульсы, нормированные по длительности и амплитуде, которыми заряжается конденсатор. В течение пауз постоянная составляющая разрядного тока оказывается пропорциональна частоте и измеряется стрелочным прибором. В предлагаемой схеме формирователь импульсов и нормирующий каскад объединены благодаря свойствам тиристора: он практически мгновенно отпирается, напряжение на открытом тиристоре близко к нулю и запирается он при уменьшении тока ниже порога удержания, независимо от тока управления. Принципиальная схема частотомера приведена на рис. 30.
Рис. 30. Принципиальная схема тиристорного частотомера
При отсутствии входного сигнала тиристор Д1 заперт, а конденсатор С1 заряжается от источника питания стабилизированным напряжением. Ток заряда протекает через диод Д3, минуя стрелочный прибор ИП1. Приходящий входной сигнал ограничивается стабилитроном Д2 и отпирает тиристор. При этом конденсатор разряжается через тиристор и стрелочный прибор. Независимо от параметров входного сигнала за каждый его период конденсатор отдает стрелочному прибору один и тот же заряд, равный произведению емкости на напряжение заряженного конденсатора. За единицу времени (секунду) через прибор пройдет столько зарядов, сколько периодов сигнала содержится в одной секунде, а это число равно частоте сигнала.
В схеме используется микроамперметр М261 с током полного отклонения 50 мкА. При линейной шкале полное отклонение стрелки соответствует частоте 100 Гц.
Этот частотомер для получения нормированной импульсной последовательности с частотой повторения, равной частоте исследуемого сигнала, использует интегральный одновибратор (ждущий мультивибратор), который в иностранной литературе часто называется кипп-реле. После нормирования остается лишь измерить постоянную составляющую этих импульсов.
Принципиальная схема частотомера представлена на рис. 31.
Рис. 31. Принципиальная схема частотомера с одновибратором
Напряжение измеряемого сигнала подается на вход одновибратора (вывод 5), который защищен от перегрузки диодами V1-V4. Переключателем S1 устанавливается необходимый диапазон измерений: 10-100 Гц, 100-1000 Гц, 1-10 кГц, 10-100 кГц. При этом к выводам 9-11 микросхемы подключается соответствующая RC-цепь, определяющая длительность выходных импульсов одновибратора. Нормированные по длительности и амплитуде импульсы с выхода одновибратора (вывод 6) заряжают конденсатор С5, напряжение на котором измеряется вольтметром, которым служит микроамперметр Р1 с добавочным резистором R6.
При использовании в схеме микроамперметра с током полного отклонения 100 мкА, емкость конденсатора С5 должна быть равна 2 мкФ, а резистор R6 иметь сопротивление 39 кОм. Подбирать точные значения сопротивлений резисторов R1-R4 и емкостей конденсаторов С1-С4 нет необходимости. Отклонения компенсируются при калибровке прибора. Для этого на вход поочередно подаются от генератора сигналы частотой 100, 1000 Гц, 10 и 100 кГц, а переменными резисторами R2-R5 стрелка прибора на каждом диапазоне устанавливается на крайнее деление шкалы.
В схеме можно применить микросхему К155АГ1 и диоды КД503А.
Этот частотомер рассчитан на измерение частоты в четырех диапазонах: 0—100 Гц, 0–1 кГц, 0-10 кГц, 0-100 кГц по одной равномерной шкале. Минимальный уровень входного сигнала, при котором сохраняется работоспособность прибора, составляет 400 мВ. Принципиальная схема частотомера приведена на рис. 32.
Рис. 32. Принципиальная схема частотомера с линейной шкалой
Частотомер снабжен двумя входными клеммами: «Вход 1» предназначен для сигнала низкого уровня, а «Вход 2» — для сигнала высокого уровня. Входной сигнал поступает на вход двухкаскадного усилителя, собранного на транзисторах Т1 и Т2, включенных по схеме с общим эмиттером. Благодаря достаточно большому усилению сигнала в первом каскаде, второй каскад работает в ключевом режиме. Когда он заперт, происходит заряд одного из конденсаторов С6-С9 в зависимости от включенного переключателем В1 диапазона. Ток заряда протекает через микроамперметр, резистор R12, диод Д2, включенный конденсатор и резистор R8. Когда транзистор Т2 отпирается, происходит разряд заряженного конденсатора через диод Д1 и открытый транзистор. Далее цикл повторяется. Как видно, ток заряда в каждом цикле благодаря ключевому режиму транзистора Т2 не зависит от параметров входного сигнала, а определяется лишь емкостью включенного конденсатора и резисторами цепи заряда, сопротивления которых фиксированы и неизменны. Поэтому суммарный ток микроамперметра определяется произведением тока заряда одного цикла на число циклов в секунду (частоту). Таким образом, отклонение стрелки прямо пропорционально частоте сигнала.
Для калибровки шкалы переключателем В1 устанавливают предел измерения 100 Гц, а на вход подается сигнал частотой 50 Гц (от сети). Стрелку прибора устанавливают на деление «50» с помощью переменного резистора R13, Теперь, если В1 установить в положение «Контроль» и переменным резистором Rl 1 вновь установить стрелку на деление «50», в дальнейшем для калибровки не потребуется подача на вход устройства напряжения частотой 50 Гц.
В схеме можно применить транзисторы ГТ108Б и диоды Д9Б. Микроамперметр с током полного отклонения 100 мкА.
Борисов В., Партин А. [27]
Этот частотомер собран всего на одной микросхеме и имеет три диапазона измерений: от 20 до 200 Гц, от 200 до 2000 Гц и от 2 до 20 кГц. Принципиальная схема частотомера приведена на рис. 33.
Рис. 33. Принципиальная схема частотомера на микросхеме
На входе устройства включен комбинированный ограничитель сигнала: конденсатор С1 препятствует прохождению постоянной составляющей входного напряжения, а резистор R1 с диодами VD1, VD2 вырезает сигнал между уровнями 0 и +5 В. Сигнал такой формы подается на триггер Шмитта, образованный элементами микросхемы DD1.1 и DD1.2 с резистором R3. С выхода триггера (вывод 6) положительные импульсы подаются на буферный инвертор DD1.3, после которого включен формирователь нормированных импульсов.
Пока на входах DD1.3 длится уровень логического нуля, на его выходе уровень единицы и через резистор R4 заряжается один из конденсаторов С2-С4. Через некоторое время он зарядится до уровня логической единицы и такой же уровень окажется на выводе 13 DD1.4. Однако на выводе 12, который соединен с входами DD1.3, еще сохраняется уровень логического нуля. Поэтому на выводе 11 продолжает оставаться уровень логической единицы, и через прибор РА1 ток не течет. Далее на входах DD1.3 появляется уровень логической единицы, а на его выходе — уровень логического нуля. Теперь на обоих входах DD1.4 оказывается уровень логической единицы, на выходе уровень логического нуля и появляется ток микроамперметра. Одновременно заряженный конденсатор начинает разряжаться через резистор R4 на выходное сопротивление элемента DD1.3. Когда его потенциал окажется ниже порога, который соответствует уровню логической единицы, элемент DD1.4 вновь опрокинется, на его выходе вновь установится уровень логической единицы и ток через микроамперметр прекратится. Таким образом, амплитуда импульсов тока через микроамперметр равна разнице между логическими уровнями, а их длительность — временем разряда конденсатора от уровня логической единицы до порогового. Значит, эти импульсы нормированы и их параметры, кроме частоты, не зависят от исследуемого сигнала. Тогда ток через стрелочный прибор будет пропорционален частоте входного сигнала.