Доказывать значимость Солнца для человека — это ломиться в открытую дверь. Разве не очевидно, что Солнце — источник всякой жизни на нашей планете? Погасни вдруг Солнце, и за какие-нибудь считанные сутки, а то и часы погибнет все живое, и мертвая Земля почти в полном мраке продолжит свое кружение вокруг невидимого Солнца.
И все-таки многие недооценивают роль Солнца в жизни земной биосферы. Отчасти это результат заблуждения — Солнце представляется нам почти бесконечно далеким от Земли. На самом же деле мы в буквальном смысле слова живем внутри Солнца. Усвоив эту истину, мы легче поймем ту роль великого дирижера для всего живого, которую повседневно выполняет Солнце.
Человек несравнимо меньше Солнца. Солнце несравненно проще человека. Мы с вами — самое сложное из всего, что пока доступно нашему познанию. Звезды, а значит, и Солнце, эта рядовая звезда, очень просты по своему устройству. Пожалуй, звезды — самые простые тела космоса. Убедимся в этом на примере Солнца.
Итак, попробуем представить себе исполинский, очень горячий газовый шар в миллион с третью раз превосходящий по объему Землю. Шар, из вещества которого удалось бы слепить 333 тысячи таких же массивных шаров, как земной. Впрочем, употребляя это последнее сравнение, мы имеем в виду лишь соотношение масс, а не химический состав.
С точки зрения химии, Солнце предельно просто. Два самых простых химических элемента составляют почти всю его массу: на 85 % Солнце состоит из водорода, на 13 % — из гелия.
В этом водородно-гелиевом шаре все остальные элементы участвуют лишь в качестве примесей, в общей сложности составляющих лишь 2 % солнечной массы.
Легко понять, что с углублением в солнечный шар давление непрерывно растет. Внешние слои давят на внутренние, и в центре Солнца давление достигает 10 миллиардов атмосфер! При этом, не теряя основных свойств обычного газа, вещество в центре Солнца тем не менее в десятки раз плотнее платины (его плотность близка к 100 г /см3).
Когда долго качаешь автомобильный насос, он заметно нагревается. Удивительно ли после этого, что температура в центре Солнца измеряется 15 миллионами градусов?
Заметим, что и эта величина может быть получена в результате несложных расчетов. Куда труднее разгадать, какие процессы совершаются в глубинах Солнца, в его центральных областях. Совсем не прост вопрос, почему светит Солнце.
Давно уже признано, что ни механическая энергия (сжатие Солнца), ни обычные химические реакции (скажем, горение) не могут обеспечить чрезвычайно длительной жизни Солнца (по меньшей мере миллиарды лет!).
Единственный возможный источник солнечной энергии — ядерные реакции. Скорее всего, в недрах Солнца осуществляется так называемый протон-протонный цикл, в итоге которого водород медленно «перегорает» в гелий. Протон-протонный цикл можно представить себе так:
Этап первый: два протона (обозначим их Я1 и Я1), взаимодействуя, превращаются в ядро дейтерия D2 — изотоп водорода. При этом образуется также позитрон («положительпый электрон») |3+ и знаменитое нейтрино v — частица неуловимо малой массы, лишенная электрического заряда.
Всю эту цепочку превращений можно записать так:
Н1 + Н1 — > D2 + β+ + ν.
Этап второй: дейтерий, реагируя, или, точнее, как бы «сливаясь», с новым протоном, образуют изотоп гелия Не3 и гамма-квант γ, то есть элементарно малую порцию электромагнитного излучения. Символически запишем:
D2 + Н1 — > Не3 + γ
И, наконец, этап третий, окончательный. Два ядра изотопа гелия 2Не3 превращаются в ядро обычного гелия Не4 и два новых протона 2Н1. Вот соответствующая запись:
2Не3 — > Не4 + 2Н1.
Кому показались сложными все эти рассуждения и формулы, пусть обратит внимание на главное, самое существенное. Исходным материалом в протон-протонном цикле служит водород или, точнее, протоны — ядра атомов водорода. Все начинается со «слияния» двух протонов — отсюда и название цикла. Конечный же новый продукт — ядра атомов гелия. Итак, в ходе непрерывно действующих ядерных реакций водород в недрах Солнца преобразуется в гелий.
Ядерные реакции в недрах Солнца.
Остается уточнить одну важную деталь. В недрах Солнца, в условиях почти непредставимых давлений и температур атомы водорода лишены электронных оболочек.
Электроны, покинувшие свои атомы, и ядра атомов водорода и гелия (то есть протоны и альфа-частицы) — все это сплошь перемешано и образует электрически нейтральную смесь— солнечную плазму. Толчея и неразбериха там полная. Но это только с первого взгляда. А если приглядеться (конечно, глазом теоретика), увидишь постоянно совершающийся, направленный в одну сторону процесс — превращение протонов в альфа-частицы, то есть ядра атомов гелия.
Вот теперь можно пояснить, почему светит Солнце.
Напомним азы ядерной физики.
Ядро атома гелия состоит из двух протонов и двух нейтронов. Такое ядро в недрах Солнца может возникнуть из четырех протонов, причем два из них превратятся в нейтроны.
Но вот что важно. Возникшее в этом процессе ядро гелия, или альфа-частица, несколько легче, чем взятые вместе четыре протона — те самые, которые ее породили. Куда же делась остальная масса вещества? Оказывается, она превратилась в свет, в излучение, то есть в иную форму материи. Именно так и создается электромагнитное излучение Солнца — источник жизни на нашей Земле.
«Дефект массы», то есть избыток массы вещества, превратившийся в излучение, для каждой возникшей альфа-частицы, конечно, ничтожно мал. Но, во-первых, таких частиц неимоверно много, и, во-вторых, превращение вещества в излучение подчиняется знаменитой формуле Эйнштейна
Е = mс2.
Здесь m означает массу вещества, переходящего в излучение, с — скорость света (300 000 км/сек), Е — энергия возникшего излучения. Пусть те, кто не боится расчетов, вычислят, сколько энергии в эргах выделится при превращении в излучение 1 г вещества. Очевидно,
Е = 1021 эрг.
Не правда ли, это выглядит солидно? А ведь Солнце ежесекундно превращает в излучение четыре миллиона тонн своего вещества. Такой «груз» удалось бы разместить лишь в четырех тысячах поездов, по пятьдесят вагонов в каждом. И так — ежесекундно! Значит, пока вы дочитаете эту страницу, Солнце «похудеет» на сотни миллионов тонн!
Не пугайтесь! Запасы вещества в Солнце очень велики — Солнце весит примерно 2 * 1027 г. Так что при всей своей расточительности жизнь Солнца как самосветящегося тела обеспечена еще на многие, многие миллиарды лет.
Не подумайте, что, появившись в недрах Солнца, квант, эта элементарно малая порция излучения, быстро доберется до солнечной поверхности и отправится затем в странствие по Вселенной. Судьба возникшего кванта гораздо причудливее. Он по извилистым путям пробивается сквозь ядерную толчею к поверхности Солнца. Продираясь сквозь густую толпу, человек постепенно теряет силы. Так и солнечный квант — возникший очень энергичным гамма-квантом, не воспринимаемым человеческим глазом, он, странствуя тысячи лет внутри Солнца, в конце концов добирается до его поверхности сильно «измотанным», расточившим былую энергию, квантом видимого света. Иначе говоря, если недра Солyца создают невидимые, очень энергичные лучи, то солнечная поверхность воспринимается нами как самое яркое, что есть на небе.
Вот, в сущности, главные секреты Солнца. Остальное — детали. Пусть очень сложные для нас, но не меняющие общего представления о Солнце как принципиально весьма простом тепловом механизме, за счет своей массы непрерывно вырабатывающем энергию в течение миллиардов лет.
Если Солнце — газовый шар, почему его края так четки? Почему даже в очень большие телескопы Солнце выглядит диском с резко очерченным краем? Казалось бы, газовый шар должен иметь иной облик — туманная масса с размытыми, постепенно сходящими на нет краями?
Причина этого парадокса (необычного на первый взгляд явления) в том, что в солнечной массе есть сравнительно тонкий непрозрачный слой, отделяющий недра Солнца от его обширной разреженной и вполне прозрачной атмосферы. Толщина этого слоя 100–300 км, и так как именно он, этот слой, излучает мощнейшие потоки света, его называют фотосферой (буквально — светящейся оболочкой).
Фотосфера — видимая, несколько условная поверхность Солнца. Яркость ее настолько велика, что при наблюдении фотосферы всегда приходится прибегать к темным фильтрам, умеряющим солнечный свет. Но когда этим способом или с помощью экрана получают доступное глазу изображение Солнца, сразу бросается в глаза характерная деталь: к краям фотосфера темнее, чем в середине солнечного диска. За счет этого эффекта Солнце воспринимается не плоским диском, а объемным сферическим телом.
На рисунке дано объяснение этому «потемнению к краю». Глаз способен «пробиться» на некоторую глубину внутрь фотосферы — ведь она все-таки не абсолютно непрозрачна. Но тогда в центре диска глаз видит более глубокие, а значит, более горячие и яркие слои Солнца, чем на его краях. Отсюда и непосредственное восприятие сферичности Солнца.
В те редкие дни, когда на Солнце вовсе нет пятен, его поверхность даже в небольшие телескопы видна неоднородной, как бы сплошь состоящей из множества мелких зерен — гранул. Особенно хорошо видны гранулы на снимках, сделанных с аэростатов или самолетов, когда помехи земной атмосферы сильно ослаблены.
Причина потемнения фотосферы к краю Солнца.
В среднем поперечник обычной солнечной гранулы близок к 700 км. Образования эти весьма непостоянны.
Пройдет 4–5 мин, и гранула изменится до неузнаваемости, а то и вовсе исчезнет, уступив место темному промежутку.
Бывает и наоборот — там, где только что был темный промежуток, неожиданно возникает светлая гранула.
Впечатление чего-то бурлящего, крайне непостоянного и изменчивого остается от наблюдения солнечных гранул.
Температура солнечной поверхности близка к 6000°.
В сущности, такова и температура гранул. Промежутки между ними на 350–400° холоднее. Разница в температуре и создает впечатление «ячеистости». А еще иногда сравнивают грануляцию фотосферы с густо насыпанными рисовыми зернами. Но это все — внешняя сторона дела. В чем же сущность явления?
Есть три типа передачи энергии — теплопроводность, конвекция и лучеиспускание. Вы кладете руку на теплый чайник, и ваша рука нагревается. Причина в том, что быстро колеблющиеся молекулы металла, из которого сделай чайник, передали часть своей энергии молекулам вашей руки, и они стали колебаться быстрее, чем раньше. А это и выражается в повышении температуры руки. Такова суть теплопроводности, характерной для твердых тел.
В газах энергия передается иначе. От включенной отопительной батареи тепло быстро распространяется по всей комнате. Получается так за счет перемешивания воздуха, при конвекции. Нагретый батареей воздух теряет прежний удельный вес и потому уходит вверх, уступая место более тяжелому холодному слою воздуха. Нагревшись, он также уходит вверх, и в конце концов, непрерывно перемешиваясь, воздух становится равномерно нагретым.
Теперь представьте себе жарко натопленную печь.
Чтобы подбросить новую порцию дров, вы открываете дверцу печки, и на вас сразу, как говорят, «пахнуло жаром».
Конвекция тут ни при чем — так быстро воздух не перемешивается. Нет тут и непосредственного соприкосновения твердых тел, а значит, и теплопроводности. Действует иная причина—лучеиспускание. Раскаленные дрова послали лучи света, и их энергия растормошила молекулы вашего лица — вот почему и «пахнуло жаром».
Земля получает от Солнца энергию лишь этим, третьим, способом. Оно и понятно — нас отделяет от Солнца почти пустое межпланетное пространство, в котором теплопроводность и конвекция невозможны.
А вот на Солнце, в его не слишком глубоких слоях, непрерывно происходит конвекция, перемешивание солнечного вещества. Горячие струи солнечного газа поднимаются вверх, и верхушки их мы называем гранулами. Рядом же охладившиеся газы опускаются вниз — это темные промежутки между гранулами. В целом все это сильно напоминает кипение жидкости в кастрюле — ведь там тоже совершается непрерывное перемешивание, то есть конвекция.
Конвективный слой на Солнце примерно в тысячу раз толще фотосферы. Он начинается с глубины около 100 тысяч километров, и за счет этого слоя совершается переход от сверхгорячих солнечных недр к его сравнительно умеренно нагретой поверхности.
На краях солнечного диска почти всегда видны светлые, неправильной формы пятнышки. Они напоминают яркие облачка, в которых различимы прожилки, яркие точки и какие-то узелки. Их называют факелами, и они равномерно усеивают фотосферу, хотя хорошо различимы лишь у краев Солнца. В отличие от гранул, факелы относительно устойчивы. Иногда, почти не меняясь, они существуют недели и даже месяцы.
Рисунок крупного солнечного пятна. Справа вверху показаны сравнительные размеры Земли
Факелы расположены несколько выше общего уровня фотосферы и горячее ее на 200–300°. Они образуются в тех местах фотосферы, где возникают слабые магнитные поля.
Солнечные газы ионизированы, иначе говоря, они обладают определенным электрическим зарядом. На такие газы магнитное поле действует как некая регулирующая сила. Она упорядочивает конвекцию, а это позволяет горячим газам подняться на большую высоту и перенести больший запас энергии. Так объясняется повышенная яркость факелов и их приподнятость над фотосферой.
Самая замечательная деталь фотосферы — солнечные пятна, кажущиеся с расстояния 150 миллионов километров очень маленькими. Солнечные пятна на самом деле колоссальны. В среднем рядовое солнечное пятно имеет в поперечнике 10–15 тысяч километров, что сравнимо с поперечником Земли. Однако нередко появляются гиганты, достигающие в диаметре 200 тысяч и более километров.
Пятно обычно возникает там, где до этого наблюдались факелы. Вначале солнечное пятно — это крошечная пора, маленькая черненькая точка, лишь чуть большая, чем темные промежутки между гранулами. Примерно через день пора увеличивается и превращается в резко очерченное пятно. Еще спустя день в средней части пятна возникает светлая перемычка, и пятно делится на два. Проходят еще один-два дня, и вокруг пятен образуется более светлая, с прожилками, кайма — так называемая полутень. Пятна медленно продолжают расти, а рядом с ними возникает множество мелких пятен, нередко связанных общей полутенью. Образуется группа солнечных пятен, по размерам в огромное число раз превосходящая диаметр земного шара.
Это — вершина развития, апофеоз. Далее все идет на убыль. Пятна уменьшаются, блекнут, и, хотя вся группа как бы чуть-чуть расползается по солнечной поверхности, в конце концов пятна исчезают, сменяясь обычными гранулами. Весь этот цикл развития занимает две-три недели, но некоторые особенно мощные группы солнечных пятен могут существовать многие месяцы.
Так совершаются события на Солнце. При наблюдениях с Земли картина несколько осложняется тем, что огромный солнечный шар медленно вращается вокруг собственной оси. Если бы Солнце было твердым телом, все бы его точки имели одинаковую угловую скорость, а значит, и одинаковый период вращения. На самом деле исполинский газовый шар вращается иначе, как бы по частям.
Экваториальные зоны Солнца завершают полный оборот за 25 суток, а околополярные области примерно за месяц.
В среднем полный оборот Солнце завершает за 27 земных суток — запомните эту величину, с ней в дальнейшем нам часто придется встречаться.
Когда солнечное пятно появляется на западном краю солнечного диска, оно вследствие перспективы кажется вытянутым, овальным. Кроме того, видна только часть полутени, так что невольно создается впечатление, что солнечное пятно — некое углубление в фотосфере, а полутень — края огромной воронки, центр которой и воспринимается как «тень», то есть самая темная часть солнечного пятна.
По-видимому, так оно и есть: каждое рядовое солнечное пятно — это воронкообразное образование глубиной около 1000–1500 км, причем радиальные волокна полутени при ширине около 30 км имеют длину в несколько тысяч километров.
Эффект Вильсона, показывающий, что пятна представляют собою углубления в фотосфере.
Когда-то думали, что солнечные пятна — это газовые вихри в солнечной фотосфере. Однако выяснилось, что движение газа в пятнах совсем не так просто. В верхних слоях пятна солнечные газы со всех сторон втекают внутрь, к его центру. В нижних слоях наблюдается противоположная картина — газы радиально вытекают из пятна. Есть и вихревое движение, но опять разнонаправленное на разных «этажах». Это движение очень медленное, вовсе не похожее на стремительные смерчи в земной атмосфере. Скорее наоборот, солнечные пятна — это «зоны затишья» среди постоянно «кипящей» фотосферы.
Температура газов внутри солнечною пятна примерно на 1500° ниже температуры фотосферы. По причине контраста пятна кажутся темными. Однако рядовое солнечное пятно, помещенное на ночное небо, сияло бы в сто раз ярче полной Луны.
Характерная деталь: каждое солнечное пятно похоже на исполинский электромагнит. Магнитные поля солнечных пятен очень мощны — их напряженность нередко достигает 3000 эрстед, что почти в 6000 раз больше напряженности земного магнитного поля. Сила электрического тока, необходимая для создания такого мощного магнитного поля, должна измеряться биллионами ампер!
Стоит заметить, что Солнце, как и Земля, обладает еще общим магнитным полем. Но оно очень слабое — его напряженность не превышает 1 эрстеда.
Когда большое солнечное пятно, достигнув максимальных размеров, начинает уменьшаться, а затем исчезает, магнитное поле, хотя и ослабленное, остается существовать вплоть до появления нового пятна в той же области.
И вообще «затухание» магнитных полей в фотосфере совершается очень медленно — теоретически можно доказать, что полное уничтожение магнитного поля в условиях Солнца возможно лишь за сотни лет.
Как это ни горько признать, но до сих пор нет теории, полностью объясняющей происхождение солнечных пятен.
Одно ясно — охлаждение солнечных газов внутри пятна вызвано действием местного магнитного поля. Оно тормозит движение газов поперек силовых линий, сдерживает конвекцию. Поэтому под пятном почти прекращается циркуляция газов, которая переносит из глубины Солнца наружу значительное количество энергии, газы охлаждаются, и пятно кажется черной оспиной на ослепительном лике Солнца.
Неискушенному в астрономии человеку может показаться, что Солнце «оканчивается» там, где видит глаз резко очерченный край солнечного диска. Но это не так. В те редкие моменты, когда Солнце покрывается черным диском Луны, вокруг затмившегося Солнца виден оранжево-красный ободок с небольшими выступами, напоминающими язычки пламени. Самое же примечательное в такие минуты — изумительно красивое жемчужно-серебристое сияние, со всех сторон окружающее Солнце.
Оранжевый ободок — солнечная хромосфера («цветная оболочка»). Пламенеобразные выступы — солнечные протуберанцы. Сияние вокруг затмившегося Солнца — солнечная корона. А все эти образования, вместе взятые, образуют весьма обширную солнечную атмосферу.
Строение Солнца: 1 — корона, 2 — хромосфера, 3 — фотосфера; 4 — протуберанец, 5 — пятно, 6 — хромосферная вспышка, 7 — уплотнение короны в области вспышки, 8—флоккул
Атмосфера Солнца гораздо разреженнее его фотосферы, не говоря уже о солнечных недрах. Ее свечение несравненно слабее ослепительного блеска фотосферы. В частности, корона Солнца на ночном небе сияла бы не ярче полной Луны. Поэтому астрономам приходится прибегать к различным техническим ухищрениям, чтобы всегда, в любой ясный день наблюдать солнечную атмосферу. Самый нижний ее слой, непосредственно прилегающий к фотосфере, имеет плотность в сотни раз меньше плотности комнатного воздуха (3·10-8 г/см3) В более высоких слоях солнечная атмосфера еще разреженнее. Здесь, как и повсюду на Солнце, преобладает водород и гелий с ничтожной примесью остальных элементов.
Кстати сказать, красно-оранжевая окраска хромосферы вызвана именно водородом, интенсивно излучающим красные лучи.
При наблюдениях в специальные телескопы хромосфера несколько напоминает горящую прерию. В ней заметны спикулы — продолговатые быстроменяющиеся выступы, гораздо меньшие по размерам, чем протуберанцы. Длина каждой спикулы составляет несколько тысяч километров, а толщина около 1000 км. Это как бы волокна в хромосфере, через которые совершается обмен веществом между хромосферой и короной.
В фотосфере пятна и факелы — активные образования.
Действительно, чем их больше, тем сильнее «взбудоражено» Солнце. Иначе говоря, количество пятен и факелов может служить мерой солнечной активности.
В атмосфере Солнца к активным образованиям в первую очередь относятся так называемые флоккулы и протуберанцы.
Посмотрите на вклейки. Перед вами фотоснимки Солнца, полученные с помощью спектрогелиографа. Этот сложный прибор обладает замечательным свойством — он позволяет рассматривать и изучать Солнце как бы «по частям».
В нем есть специальные фильтры, пропускающие, например, только те лучи, которые посылает водород. Тогда получают фотоснимок Солнца, как говорят, в лучах водорода. Можно сфотографировать Солнце в лучах гелия или, скажем, кальция. На таких снимках, именуемых спектро-гелиограммами, видны яркие, неправильной формы пятна, почти совпадающие по положению и очертаниям с фотосферными факелами. Это своеобразное продолжение факелов в солнечной атмосфере называют флоккулами.
Протуберанцы, пожалуй, самое величественное и грандиозное, что мы наблюдаем на Солнце. Особенно сильное впечатление остается после просмотра кинофильмов, где развитие протуберанцев показано в ускоренном темпе.
Вот висит над Солнцем колоссальное облако, внешне похожее на муравьеда. Это так называемый спокойный протуберанец, который в целом остается неподвижным. Но странная картина: из этого протуберанца к поверхности Солнца вытягиваются какие-то газовые «щупальца», и видно, как по этим искривленным путям под действием электромагнитных сил всасывается вещество протуберанца в фотосферу.
Взрывные, или эруптивные, протуберанцы ведут себя совсем иначе. Вот взлетает над Солнцем, непрерывно распухая, чудовищно огромное облако газа. Оно поднимается на высоту, почти равную диаметру Солнца (1 300 000 км), а затем рассеивается в окружающее пространство. Есть, конечно, среди взрывных протуберанцев и более спокойные, которые, взлетев по вертикали на не очень большую высоту, затем как бы всасываются обратно в недра Солнца.
Не все пока ясно в природе протуберанцев, их движении. Очевидно, однако, что только тяготением и давлением света эти явления объяснить невозможно. Здесь, несомненно, действуют очень мощные электрические и магнитные силы.
В хромосфере иногда возникают вспышки, называемые хромосферными или просто солнечными. Внешне они менее эффектны, чем протуберанцы. Заметить их можно лишь на спектрогелиограммах и, крайне редко, в «общем свете», глазом. Между тем это самое мощное и самое важное для человека проявление солнечной активности.
На спектрогелиограммах вспышка видна как внезапное (за несколько минут!) и резкое возрастание в яркости какого-нибудь флоккула. Чувствуется, что на Солнце произошел какой-то взрыв незообразимой мощности. И действительно, подсчеты показывают, что при рядовой солнечной вспышке выделяется столько же энергии, сколько при одновременном взрыве 30 тысяч водородных бомб.
Причины солнечных вспышек пока не вполне ясны.
Возможно, их энергия создается за счет энергии мощных и быстроменяющихся магнитных полей. Но для дальнейшего рассказа важно отметить, что каждая хромосферная вспышка непременно порождает три следствия.
Во-первых, резко увеличивается мощность рентгеновых лучей, излучаемых Солнцем.
Во-вторых, еще более заметно (иногда в миллионы раз!) растет поток радиоволн, посылаемых Солнцем в мировое пространство.
В-третьих, каждая солнечная вспышка как бы выстреливает в пространство скопище так называемых корпускул — в основном протонов, электронов и альфа-частиц с незначительной примесью ядер атомов других элементов.
Каждое такое скопище образует корпускулярный поток, улетающий от Солнца со скоростью около 7000 км/сек.
Такой поток, если не встретит препятствий, на вторые сутки долетит до Земли, а за большие сроки и до более далеких планет. Через корпускулярные потоки (но не только через них) мы связаны непосредственно с Солнцем и до нас доходит солнечное вещество.
Солнечная корона — самый верхний этаж солнечной атмосферы. Во время полных солнечных затмений каждый может убедиться, что отдельные лучи короны уходят от поверхности Солнца на высоту его диаметра, а то и дальше.
Как и все на Солнце, корона — образование непостоянное. В нижних слоях она частично состоит из тех же газов, что и хромосфера. В самых внешних частях к короне примешивается мелкая твердая космическая пыль, повсеместно наполняющая межпланетное пространство.
Основа короны — корпускулы, смешанные с большим количеством свободных электронов. Смесь ионов, атомов и электронов, в целом электрически нейтральную, физики называют плазмой. Солнечная корона представляет собой весьма разреженную и очень горячую плазму.
Уточним: средняя плотность вещества в короне в миллиарды раз меньше плотности комнатного воздуха, а температура короны близка к миллиону градусов — величине, не поддающейся наглядному представлению.
В отличие от земной атмосферы, солнечная корона образована стремительно улетающими от Солнца корпускулами и электронами. Солнечные лучи, рассеиваясь на этих электронах, и порождают ее жемчужно-серебристое сияние.
Можно думать, что лучи солнечной короны и ее «опахала» формируются корпускулярными потоками, к которым, конечно, примешано и большое количество свободных электронов.
Кроме корпускулярных потоков, Солнце непрерывно и равномерно со всей своей поверхности выбрасывает в пространство сравнительно медленные корпускулы. Их скорость близка к 300–500 км/сек, и они образуют то, что современные астрофизики называют солнечным ветром.
Странное это явление, напоминающее «дождь наизнанку».
Но факт остается фактом. Солнце непрерывно и равномерно испускает во все стороны корпускулы. Солнечные вспышки, по-видимому, — только частные и резкие усиления этого постоянного процесса.
Вот теперь и попытаемся ответить на вопрос: где кончается Солнце? Где граница его атмосферы?
Там, где глаз во время полного солнечного затмения видит границы короны, Солнце еще не кончается. Просто глаз наш недостаточно чувствителен. А вот на некоторых фотоснимках лучи короны прослеживаются до расстояния, равного 15 диаметрам Солнца. Но и это, оказывается, еще не граница солнечных владений.
Изучая плотность вещества в корональных лучах, можно подсчитать, как убывает эта плотность с удалением от Солнца. Нетрудно вычислить, какова могла бы быть плотность короны вблизи Земли, если бы соблюдался подмеченный закон убывания плотности и если бы солнечная корона простиралась до земной орбиты.
И вот удивительное совпадение: датчики космических аппаратов вблизи Земли обнаруживают в пространстве столько свободных электронов, сколько бы их было, если бы лучи короны доходили до нашей планеты! Что это, случайное совпадение? Нет, конечно. Много раз проведенные расчеты приводят к парадоксальному выводу: мы живем внутри Солнца! Солнечная корона, пусть в крайне разреженном состоянии, простирается до орбиты Земли и даже дальше. Выходит, что в некотором смысле мы не только жители Земли, но и обитатели Солнца. А это означает, что солнечные явления должны четко отражаться в различных земных процессах и в нас самих.
Солнечной ритмике подчинена вся наша жизнь.
Чередование дня и ночи, регулярная смена времен года — вот прежде всего те два солнечных ритма, отражение которых мы наблюдаем всегда и повсеместно. Правда, само Солнце тут, пожалуй, ни при чем. Меняются условия освещения Земли за счет ее двух главных движений — суточного и годового. Но все-таки чувствительность всего земного к солнечным лучам и здесь проявляется очень четко.
Мы — дети Солнца, порождение его живительной энергии. И если эта энергия как-то меняется, то заранее можно ожидать, что и человек, и все живое на Земле, и даже вся наша планета не остаются к этому безучастными.
К нашему счастью, Солнце — очень устойчивый энергетический механизм. В целом его излучение почти постоянно, и это великое благо для земной биосферы. Нетрудно подсчитать, что если бы Солнце ослабло в блеске всего на несколько процентов, это привело бы к самым катастрофическим последствиям для всего живого.
Астрономам известны тысячи переменных звезд, излучение которых меняется в значительных пределах (иногда в сотни раз). В одних случаях на эти изменения уходят годы, в других — только часы, а то и минуты. Если вокруг этих звезд есть населенные планеты, то их живые организмы должны очень чутко реагировать на изменение внешней обстановки, в первую очередь на колебания тепла и света. Во всяком случае, биосферы таких планет, вероятно, обладают ритмикой, отражающей колебания в излучении освещающих их звезд.
Солнце с полным основанием можно считать переменной звездой. Более того, солнечное излучение подвержено хотя и небольшим, но сложным периодическим колебаниям.
Кроме основного и уже знакомого нам колебания с периодом около 11 лет, есть и другие одновременно действующие солнечные ритмы.
Представьте себя в роли лунного наблюдателя. На черном, усеянном, немерцающими звездами небе видна медленно вращающаяся Земля. Вообразите далее, что из Москвы с помощью неподвижного мощного прожектора к вам посылают световой сигнал. Очевидно, вы его увидите только тогда, когда луч будет направлен точно на вас.
А это будет повторяться через каждые 24 часа — период вращения Земли вокруг оси.
Нечто подобное происходит и с Солнцем. Допустим, что на Солнце возник на многие месяцы, а то и годы мощный очаг активности. Таким очагом может быть крупная группа пятен или факелов или вообще какой-то взбудораженный район фотосферы, «выстреливающий» в сторону Земли потоки корпускул. Ясно, что воздействие этого очага активности на Землю не всегда одинаково. Но наиболее благоприятные для такого воздействия положения будут повторяться через каждые 27 дней — средний период оборота Солнца вокруг оси. Ведь солнечные пятна и другие очаги солнечной активности почти жестко скреплены с поверхностью Солнца — их собственные перемещения в фотосфере незначительны и имеют колебательный характер.
Изменение чисел Вольфа (W) с 1745 по 1965 год.
Итак, вот он, самый короткий, 27-дневный солнечный цикл. С его земными проявлениями мы еще не раз встретимся. А теперь кое-что уточним о главном 11-летнем цикле.
Прежде всего заметим, что в среднем этот цикл имеет период не 11 лет, а 11,1 года. Но отклонения от этой величины в отдельных случаях могут быть значительными — от 7 до 17 лет. Условились очередной цикл, начавшийся в 1755 году, считать первым. Нетрудно подсчитать, что в 1964 году закончился 19-й цикл, а сейчас идет 20-й.
Если представить себе в среднем, как изменяются числа Вольфа[4] от одного минимума до другого, получится кривая, изображенная на рисунке. Заметьте, кривая несимметрична. Нарастание солнечной активности идет несколько быстрее, чем ее спад. Но, повторяем, это характерно только в среднем. В каждом же отдельном случае могут наблюдаться заметные уклонения от этого общего правила.
Недавно руководитель Кисловодской обсерватории М. Н. Гневышев и его сотрудники обнаружили, что нередко вершина 11-летней кривой солнечной активности имеет два горба. Эта «двухвершинность» 11-летнего цикла должна отражаться в различных земных явлениях.
После каждого минимума солнечной активности, когда нередко на Солнце в течение многих дней не наблюдается ни одного пятна, начинается новое, очередное повышение активности. Сначала пятна нового цикла появляются сравнительно далеко по обе стороны от солнечного экватора.
Затем с каждым годом они спускаются всё ближе и ближе к экватору. И, наконец, окончание очередного цикла знаменуется появлением пятен лишь вблизи солнечного экватора.
Эта закономерность еще в прошлом веке была открыта немецким астрономом М. Шперером, и ее нетрудно проиллюстрировать графически. Отложим по вертикальной оси графика солнечные широты. Горизонтальная прямая, соответствующая нулевой широте, — солнечный экватор.
По горизонтальной оси графика нанесены годы. Если теперь ежегодно наносить на график точки, отмечающие районы появления солнечных пятен, получится картина, названная «диаграммой бабочек». Некоторое сходство с бабочками действительно есть, а то, что «бабочек» много и они похожи друг на друга, говорит еще об одном проявлении 11-летнего ритма солнечной активности.
Как уже говорилось, солнечные пятна возникают парами, а каждое пятно — это очень мощный магнит.
Диаграмма «бабочек».
Замечательно, что в каждой паре пятен оба пятна имеют разную полярность. Если, например, головное пятно, то есть то, что идет впереди при вращении Солнца, имеет северную магнитную полярность, то соседнее, парное с ним пятно обладает южной полярностью. И такое распределение полярностей сохраняется на протяжении всего цикла для всех пар пятен этого, скажем, северного полушария Солнца. В другом же, южном его полушарии наблюдается прямо противоположная картина — все головные пятна имеют южную полярность, а следующие за ними — северную.
Но вот кончился очередной 11-летний цикл, начинается новый. И, как по команде, меняется полярность пятен в обоих полушариях Солнца. Теперь головные пятна в южном полушарии имеют северную полярность, а в северном полушарии — южную. Через 11 лет произойдет новая смена полярностей, а значит, восстановится картина, которая наблюдалась за 22 года до этого. Вот почему можно говорить еще об одном, 22-летнем цикле солнечной активности.
В конце XIX века астрофизик А. П. Ганский открыл 80-летний или так называемый вековой солнечный цикл. Его можно проследить по древним хроникам, свидетельствующим о том, что примерно раз в 80–90 лет солнечная активность была особенно высокой. Реальность этого цикла подтверждается и другими данными.
Когда Солнце активно, оно выбрасывает в межпланетное пространство гораздо большее количество корпускул, чем в «спокойные» годы. Усиливается и электромагнитное излучение Солнца — от ультрафиолетовых лучей до радиоволн. Активное Солнце будоражит не только Землю, но и другие планеты. Оно заставляет ярче светиться кометы, эти многочисленные спутницы Солнца.
В каждой комете есть главная часть — ее ядро, состоящее из смеси мелких твердых частиц и замерзших газов.
С приближением к Солнцу газы возгоняются и образуют исполинские газовые «шлейфы» — головы и хвосты комет.
«Шлейфы» комет светятся тем ярче, чем более мощное излучение Солнца (корпускулярное и электромагнитное) через них проходит. Значит, чем активнее Солнце, тем в среднем ярче кометы и тем больше число комет, открываемых земными наблюдателями.
В 1949 году советский астроном Б. М. Рубашев исследовал каталог, в котором регистрировались открытия комет с I по XIX век н. э. Выявилась любопытная закономерность — примерно раз в 600 лет количество открываемых комет было особенно большим. Другой советский исследователь — И. В. Максимов открыл ту же 600-летнюю периодичность в толщине годичных слоев различных деревьев.
Напрашивается вывод, что прирост древесины особенно велик в годы активности Солнца. Это верно и для 11-летнего цикла и для цикла 600-летнего, реальность которого ныне бесспорна.
Есть ли еще более продолжительные циклы?
Окончательного ответа на этот вопрос пока нет. По некоторым данным, намечается цикл продолжительностью 1800 лет.
Кроме того, кое в чем проявляется 5—6-летний цикл, равный половине 11-летнего. Но эти солнечные ритмы, если и существуют, не отличаются такой четкостью и ясной выраженностью, как главные ритмы, — 27-дневный, 11-летний и вековой.
Не надо думать, что солнечные ритмы сказываются лишь в изменениях количества пятен на Солнце. В годы активности Солнца возрастает количество факелов и флоккул, чаще наблюдаются солнечные вспышки, увеличиваются число и размеры протуберанцев. Вообще все явления на Солнце чутко реагируют на солнечные ритмы. Особенно любопытны изменения формы солнечной короны.
В годы минимума корона вытянута и ее длинные лучи направлены вдоль солнечного экватора. Наоборот, в годы максимума солнечная корона во всех направлениях имеет почти одинаковую протяженность. В такие годы во время полных солнечных затмений она особенно напоминает красивое жемчужно-серебристое сияние.
К сожалению, до сих пор мы не знаем причин, порождающих солнечные ритмы. Гипотез предложено немало, но ведь их обилие всегда служит признаком недостатка точного знания.
Одно бесспорно: ни Земля, ни ее биосфера, ни человек не могут оставаться безразличными к солнечным ритмам.