Часть четвертая ОТРИЦАНИЕ ОТРИЦАНИЯ

Глава первая, в которой Крукс и Томсон обнаруживают частицы, более мелкие, чем атомы



ПОРЦИЯ ЭЛЕКТРИЧЕСТВА

Алхимики "читали, что подобное соединяется с подобным. И если сера соединяется с ртутью, то потому, что между ними есть какое-то сродство. Однако Роберт Бойль в своем "Химике-скептике" утверждал обратное — лучше всего соединяются как раз противоположные по своим свойствам вещества. Ведь всем известно, как жадно соединяются кислоты со щелочами!

Эта идея Бойля получила подтверждение в XVIII веке, когда Гальвани и Вольта научились делать батареи. Если в банку с раствором поваренной соли опускали два угольных стержня и подключали их к полюсам гальванического элемента, то на стержне, который был подключен к отрицательному полюсу, всегда выделялся натрий, а на стержне, подключенном к положительному, всегда выделялся хлор.

Когда научились разлагать электрическим током воду, получилась такая же картина: на отрицательном электроде непременно был водород, а на положительном — кислород.

Химики пытались понять, отчего одни элементы выделяются только на отрицательном электроде, а другие на положительном. Уже давно было известно, что одноименно заряженные тела отталкиваются, а тела, имеющие разноименные заряды, притягиваются. Поэтому Берцелиус в начале XIX века объяснил поведение элементов при электролизе так… Раз водород притягивается к катоду — отрицательно заряженному электроду, — значит, сам водород заряжен положительно. А кислород, который притягивается к положительно заряженному аноду, заряжен отрицательно.

Все элементы он разделил на электроположительные и электроотрицательные. Положительные — те, что выделяются на отрицательном электроде. Отрицательные — те, что выделяются на положительном.

А соединение одних элементов с другими Берцелиус объяснял следующим образом. Положительный водород притягивается к отрицательному кислороду, и получается вода. Положительный натрий притягивается к отрицательному хлору, и получается поваренная соль.

Это объяснение представлялось вполне логичным. Но вот однажды знаменитый в те времена французский химик Жан Батист Андре Дюма был приглашен на королевский бал.

Химик Дюма был к тому же сенатором и президентом Парижского муниципалитета, поэтому в королевском дворце ему приходилось бывать не так уж редко. Но на этот раз, едва успев войти и скинуть на руки лакею пальто, Дюма почувствовал в воздухе королевского дворца что-то необычное. Чем-то он напоминал воздух его собственной лаборатории.

Машинально взглянув в огромное зеркало и одернув полы парадного мундира, Дюма потянул носом и удивленно покачал головой: откуда это во дворце короля взялась соляная кислота?

Он поспешил наверх, в зал. Запах кислоты чувствовался там: еще сильнее. Многие дамы принимали к глазам тончайшие платочки.

Дюма с подозрением оглядывался вокруг и наконец догадался: свечи! Ослепительно белые восковые свечи издавали удушливый запах.

Всю следующую неделю Дюма вместе со своими ассистентами корпел в лаборатории, пытаясь установить, что произошло со свечами.

И установил: многие атомы водорода в молекуле воска заменились атомами хлора, которым отбеливали воск. Когда свечи горели, хлор выделялся, тут же соединялся с атомами водорода — во влажном воздухе они есть всегда — и получался хлористый водород, который растворялся во влаге воздуха и превращался в едкую соляную кислоту.

Эта история имела последствия не только для фабриканта, поставлявшего во дворец свечи — ему было отказано от двора, но и для теории Берцелиуса, согласно которой электроположительный водород никоим образом не мог быть замещен в воске электроотрицательным хлором.

Деление элементов на положительные и отрицательные оказалось ошибочным. Со временем установили, что сам по себе любой атом электрически нейтрален и лишь в растворе или под влиянием других внешних воздействий может превращаться в электрически заряженный ион, на который и воздействует электрический ток. (Ион в переводе с греческого означает идущее, движущееся, это причастие настоящего времени от глагола эйми — идти.) Но связь между атомами и электричеством, между соединением и разложением разных веществ и притяжением и отталкиванием электрических зарядов была нащупана Берцелиусом правильно.

В тридцатых годах XIX века великий английский физик и химик Майкл Фарадей сумел измерить самую маленькую порцию электричества, необходимую для переноса иона натрия к катоду. Она оказалась в пятьсот миллиардов раз меньше одного кулона. А ведь и сам кулон тоже не очень велик — это количество электричества, способное выделить из раствора азотнокислого серебра 0,001118 грамма драгоценного металла.

Самое занятное заключалось в том, что одинаковая порция электричества была связана и с одним ионом водорода, и с одним ионом натрия, и вообще — с одним ионом любого одновалентного элемента. Но почему это так, поняли позже.


ЛУЧИ В ТРУБКЕ

Майкл Фарадей, первым обнаруживший наименьшую порцию электричества, первым обнаружил и свойство газов пропускать электрический ток.

А его современник немецкий математик и физик Юлиус Плюккер изобрел газосветную трубку.

Он брал обыкновенную стеклянную трубку, наполнял ее каким-нибудь газом, потом часть газа откачивал, а оба конца заваривал вместе с платиновыми проволочками. Теперь стоило подвести к этим проволочкам, кончики которых торчали снаружи, электрический ток — и вся трубка начинала светиться!

После смерти Плюккера опытами с газосветными трубками увлекся английский ученый Уильям Крукс. Между прочим, ото он открыл с помощью спектроскопа элемент таллий с ярко-зеленой полоской в спектре.

Первое, что сделал Крукс — это попытался создать в трубке еще большее разрежение. И ему сразу же повезло: он увидел, как вблизи катода появилось темное пространство, которое постепенно заполнило всю трубку. И когда оно достигло противоположного конца, анод вдруг засветился зеленоватым светом.

Стоит отметить этот 1878 год — год рождения электроннолучевой трубки, самой главной части наших телевизоров.

Однако до телевизоров было еще далеко… А пока что Крукс поместил трубку между полюсами магнита. И тогда анод перестал светиться, и светящееся пятнышко перескочило на стекло, отклонившись по направлению к положительному полюсу магнита.

Это могло значить только одно: от катода несутся по трубке невидимые лучи, представляющие собою отрицательное электричество!

Крукс продолжал опыты и через некоторое время узнал о катодных лучах уже немало. Они распространялись прямолинейно, как солнечный свет. Они не только заставляли многие тела светиться, но некоторые могли даже расплавить. Они способны были проникать сквозь непрозрачные твердые тела. В воздухе они проходили путь в семь сантиметров.

Так не вели себя никакие известные виды лучей или вещества. И Крукс понял, что обнаружил новый вид материи.

Почему появляется темное пространства, когда газ в трубке становится более разреженным?

Да потому, что теперь частицам лучистой материи приходится пролетать некоторое расстояние, прежде чем они столкнутся с каким-нибудь атомом газа и заставят его светиться. Чем больше разрежение, тем дольше полет частиц до встречи с атомами.

Что это за частицы?

Во всяком случае, не атомы, а что-то гораздо более мелкое…


В ТЫСЯЧУ РАЗ ЛЕГЧЕ АТОМА

Скоро студентов будут привозить к нам в детских колясках!" — сказал президент Манчестерского Оуэнс-колледжа, узнав о приеме в университет четырнадцатилетнего Джозефа Джона Томсона. И тут же распорядился не принимать таких малолетних в университетские колледжи.

Однако Томсон с первого же курса стал забирать все стипендии, присуждаемые за лучшие успехи в науках.

Когда ему было 19 лет, его первую работу опубликовали в "Трудах Королевского общества". Когда ему было 24 года, он, блестяще выдержав экзамены на бакалавра, появился в Кавендишской лаборатории. Когда ому было 28 лет, один кембриджский старожил заметил:

— Критические времена наступают в университете, если мальчики делаются профессорами!

Двадцативосьмилетный Томсон был назначен преемником лорда Релея и возглавил Кавендншскую лабораторию — крупнейший в миро центр физической науки.

Томсон много занимался электрическим током. У него не было сомнений в том, что в газах, как и в жидкостях, заряды переносятся ионами. Но откуда они берутся в газах? Что превращает в ионы обычные нейтральные атомы азота пли кислорода? Очевидно, напряжение, подведенное к платиновым проволочкам — электродам трубки…

Отклоняя полет ионов в трубке магнитом, Томсон заметил, что чем больше заряд иона и чем меньше ого масса, тем сильнее отклоняется он от прямолинейного направления полета.

Сильней всего отклонялся магнитом ион водорода. Естественно — ведь его атомный вес в четыре раза меньше, чем у ближайшего к нему элемента — гелия, и в двести сорок раз меньше, чем у самого далекого — урана.

Томсон решил измерить массу частицы лучистой материи Крукса. Но для этого следовало определить величину заряда такой частицы.

Наименьшая величина заряда иона в жидкости была известна — ее определил еще Фарадей: одна пятисотмиллиардная часть кулона. Но никто не знал, какой будет величина заряда у ионов в газах. А без этого Томсон не мог работать дальше.

Выручил его физик Чарлз Таунсенд.

Он вспомнил давно известный факт: когда при разложении раствора поваренной соли выделяется хлор, то некоторые его частицы остаются заряженными и вокруг них образуется туман. Такой же туман сгущается и вокруг выделяющихся частиц водорода и кислорода при разложении током воды. Ионы притягивают к себе из воздуха мельчайшие капли воды.

Таунсенд измерил вес одного кубического сантиметра такого тумана, и полный его заряд, и вес одной капельки. И поделил вес всего кубического сантиметра на вес одной капельки, узнав таким образом число капель в кубическом сантиметре. А затем, поделив общий заряд кубического сантиметра на это число, он получил величину одного наименьшего заряда иона в газе. И оказалось, что и в газах наименьший заряд электричества тоже равен одной пятисотмиллиардной части кулона.

Фарадей мерил в жидкости. Таунсенд — в газе. Фарадей считал атомы натрия. Таунсенд — капельки тумана. А получилось одно и то же число! Значит, и там и тут действовала одна и та же порция электрического заряда, самый маленький, можно сказать — элементарный, электрический заряд.

Еще в 1894 году, за три года до работы Таунсенда, английский физик Джонстон Стони дал элементарному заряду имя — электрон. Он руководствовался идеей об атомарной природе электричества, выдвинутой еще в 1881 году немецким естествоиспытателем Германом Гельмгольцем.

Тогда никто не мог доказать, что электрон — частица. Теперь у Томсона были для этого необходимые данные.

Тем же магнитом, которым он отклонял ионы газов, он стал отклонять катодные лучи. И они отклонялись в тысячу раз сильней, чем ион водорода! Значит, их масса была по крайней мере в тысячу раз меньше массы самого маленького атома. Воистину тонкая материя!

Правильно считал Крукс: частицы лучистой материи, электроны, были совершенно иным видом вещества, чем атомы. Но откуда эти электроны брались?

Очевидно, из атомов, причем атомов любого сорта — ибо катодные лучи возникали в любом газе, лишь бы он был достаточно разрежен.

Получалось, что атом вовсе не прост, что он состоит из электронов и еще из чего-то. И это "что-то" должно было нести положительный заряд — ведь целый атом оставался электрически нейтральным.

Как же мог быть устроен этот сложный атом?

Было предложено два варианта. Первый предложил сам Томсон. В круглом, положительно заряженном атоме сидят, как изюминки в кексе, отрицательные электроны.

Второй вариант предложили сразу несколько ученых. Положительное "что-то" находится внутри, а снаружи, вокруг него, как планеты вокруг солнца, кружатся электроны.

Доказать, кто врав, а кто ошибся, удалось только через несколько лет.

Но сначала расскажем еще об одном свидетельстве того, что атом сложен.

Глава вторая, в которой атомы пытаются говорить с людьми языком радуги, но люди их не понимают

ФРАУНГОФЕРОВЫ ЛИНИИ

В рассказе о французском химике Лекок де Буабодране и об открытии галлия уже шла речь о спектральном анализе. Этот замечательный способ исследования не только привел к открытию нескольких прежде не известных элементов. Спектроскоп оказался инструментом, проникшим в глубь атома. Уже по одному этому со спектральным анализом надо знакомиться подробнее. И начать это знакомство лучше с фраунгоферовых линий.

Собственно говоря, фраунгоферовы линии первым обнаружил вовсе не Иозеф Фраунгофер, живший в последней трети XVIII и в первой трети XIX века, а его современник Уильям Волластон. Но, в отличие от Фраунгофера, который всю свою жизнь занимался оптикой, Волластон интересовался всем на свете, а более всего химией, в которой он отличился открытием двух родственных платине химических элементов — родия и палладия, а также физикой, ботаникой, медициной, минералогией и другими науками.

Изучая спектр солнечного света, то есть разложенный призмой на семь цветов солнечный луч, Волластон заметил, что на спектре есть несколько резких темных линий.

Это его очень удивило, однако, он не счел нужным далее заниматься этим предметом. И наверное, справедливо, что черные полоски на солнечном спектре не носят имени Уильяма Волластона.

Тот, чьим именем они были названы, родился в 1787 году в семье стекольщика и до 14 лет не знал грамоты. Родители его умерли рано, и еще ребенком он пошел в подмастерья к шлифовщику стекол.

Так бы в безвестности и прошла его жизнь, если бы не обвалился дом хозяина. В тот момент, когда почти бездыханного Йозефа вытаскивали из-под развалин, проезжал мимо со своей свитой баварский принц.

Наследник престола изволил принять участие в судьбе мальчика и пожаловал ему довольно много денег.

Иозеф неплохо распорядился ими, начал учиться, поступил в известную оптическую мастерскую в баварском городке Бенедиктбейерне, а затем стал ее владельцем. Его оптические приборы славились во всем мире.

Но истинную славу ему принесли наблюдения за открытыми Волластоном темными линиями в солнечном спектре.



Линий этих Фраунгофер нашел и зарисовал великое множество — более пяти сотен. Располагались они без какого-либо порядка, пересекая радужную полоску спектра во всех его частях — и в желтой, и в оранжевой, и в голубой, и в синей, и в зеленой, и в красной, и в фиолетовой. Но каждая темная линия, сколько бы раз и когда бы ни смотрел на нее Фраунгофер — в любой час дня и в любой месяц года — неизменно оказывалась на одном и том же месте.

Фраунгоферовы линии поражали воображение. Физики, химики, астрономы не знали, что и думать. Откуда на ослепительном солнце могут браться какие-то черные линии? Если бы они двигались, если бы появлялись и исчезали, то это еще куда ни шло — бывают же на солнце пятна. Но фраунгоферовы линии торчали в солнечном спектре на одних и тех же местах.

Куда менее заметным для современников Йозефа Фраунгофера было другое его открытие — на этот раз не в лучах солнца, а всего лишь в тусклом язычке пламени обыкновенной спиртовки. В спектре этого пламени Фраунгофер обнаружил ярко-желтую двойную линию — в том месте, где в спектре Солнца он всегда видел такую же двойную, но только черную полоску. В 1814 году Фраунгофер опубликовал свое наблюдение, предоставляя коллегам возможность поломать голову над этим необъ-яснимым совпадением. Сорок три года на это явление никто не обращал внимания. В 1858 году английский физик Уильям Сван обнаружил, что двойная желтая линия в пламени спиртовки появляется только тогда, когда в спирте или и фитиле присутствует элемент натрий. Сван рассказал о своих опытах другим физикам, написал статью — и на этом счел инцидент исчерпанным. Он не догадался, что совершил чрезвычайно важное открытие.

Впрочем, увидеть что-либо новое или необычайное — еще не значит открыть.

Есть люди, которые смотрят на вещи и события, но… не видят их. Таких, к сожалению, больше всего.

Другие многое видят, но не всегда понимают увиденное. Это ужо нужные науке люди.

Но больше других пауке нужны те, кто не только видит явления, но и начинает задавать нм вопросы и заставляет их отвечать себе.

Волластон, Фраунгофер, Сван сумели увидеть загадочные явления. Но заставили их рассказать о себе другие естествоиспытатели.


ЗАДАЧА С НАТРИЕМ И СОЛНЦЕМ

В начале пятидесятых годов прошлого века в маленьком немецком городке Гейдельберге, знаменитом своим университетом, физик Густав Роберт Кирхгоф и химик Роберт Вильгельм Бунзен получили ответ на некоторые исключительно важные вопросы, касающиеся фраунгоферовых линий.

Повторим вкратце условие задачи — то, что им было "дано".

В спектре пламени спиртовки иногда появляется двойная желтая линия.

Она возникает только в присутствии натрия.

В спектре Солнца есть точно такая же двойная, но темная линия.

Рассуждение Кирхгофа и Бунзена сводилось к следующему" Они предположили, что желтая двойная линия в пламени спиртовки, появляющаяся только в присутствии натрия, принадлежит не спирту, а натрию…

Кирхгоф, и Бунзен взяли кристаллик поваренной соли, раскалили его, и свет раскаленных паров направили на призму спектроскопа. И получили первый ясный ответ: на шкале спектроскопа появился сплошной, без каких-либо темных полосок, спектр раскаленного вещества, и на нем виднелась та самая ярко-желтая линия.

Предположение подтвердилось — это была линия натрия.

Дальше Кирхгоф и Бунзен рассуждали так. Если двойная желтая линия принадлежит натрию, то и находящаяся в спектре Солнца на том же месте двойная черная линия могла бы тоже принадлежать ему. Что если при прохождении света от раскаленного натрия через более холодные пары того же натрия ярко-желтая линия поглощается и в спектре остается как бы ее тень?..

Исследователи опять раскалили кристаллик поваренной соли, но преградили путь его лучам к призме бледным язычком пламени спиртовки. И натрий ответил: да, это так! Пары натрия в пламени спиртовки поглотили двойную желтую линию, посланную парами натрия из кристаллика поваренной соли, и на спектре возникла двойная черная линия.

Но если в спектре Солнца есть та же двойная черная линия, то не означает ли это, что на Солнце происходит то же самое?

И они направили на призму спектроскопа одновременно два луча — луч Солнца и луч от пламени спиртовки. На шкале спектроскопа появилась все та же двойная черная линия. Тогда Кирхгоф и Бунзен поставили на пути солнечного луча непрозрачный экран — и на шкале, на месте двойной темной линии, засветилась ярко-желтая…

Итак, ответы, полученные от природы, были такими:

двойная линия принадлежит натрию;

на Солнце есть натрий;

фраунгоферовы линии образуются раскаленными парами элементов, находящихся на Солнце.

Но на основании этих трех ответов Кирхгоф и Бунзен сумели найти еще и четвертый, самый важный: у каждого элемента есть в спектре свой, индивидуальный набор линий.


ИЕРОГЛИФЫ ПОЛОС

Эта работа — в виде коротенькой заметки, всего две страницы — была обнародована в 1859 году.

А уже через год начались триумфальные открытия новых элементов с помощью спектроскопа.

Спектральный анализ оказался замечательным методом исследований мира веществ, он вел от одного открытия к другому.

Но почему?

Не потому ли, что, не ведая того, люди проникли в заповедные глубины вещества?

И еще вопрос: если спектры могут служить визитными карточками элементов, атомов одного и того же сорта, то откуда их сложность, откуда эти многочисленные полосы?

Сложные спектры намекали на то, что атомы устроены далеко не просто; даже у самого легкого атома — водорода — в спектре оказались четыре темные полоски.

Но расшифровывать иероглифы спектральных линий еще никто не умел.


В 1885 году швейцарский учитель Йогам Бальмер заметил, что четыре линии водородного спектра расположены не как попало, а в определенной математической последовательности. И предсказал, что должны быть еще и другие линии, и вычислил, где именно — в видимой и в невидимом части спектра.

Эти дополнительные линии действительно нашлись.

В строгом порядке линий, свойственных спектрам элементов, угадывался смысл. И хотя никому не удавалось перевести его на человеческий язык, стало ясно, что атом не сплошной однородный шарик, каким он представлялся со времен Демокрита.

Электрон свидетельствовал о том же самом.

Есть ли связь между темными полосками спектров и электронами атомов? И если есть, то какая?

Знания, накопленные к 1896 году учеными, но позволяли получить ответ на вопрос о строении атома. Но они свидетельствовали о том, что какое-то строение у атома есть.

Надо было искать новые факты. И никто, конечно, не предполагал, что до их открытия оставались считанные дни.

Глава третья, в которой элементы начинают превращаться друг в друга

ПЕРВЫЙ КАМЕНЬ

В конце 1895 года пятидесятилетний профессор Вюрцбургского университета Вильгельм Конрад Рентген, занявшись катодными лучами, с которыми уже лет двадцать работали десятки исследователей, обнаружил еще одни невидимые лучи. Они появлялись в круксовой трубке — в том месте, куда ударялись катодные лучи, представлявшие собой, как объяснил Томсон, поток электронов.

Если поток электронов врезался в анод, то новые невидимые лучи расходились от светящегося анода. Если поток электронов отклоняли магнитом и он врезался в стекло трубки, то новые невидимые лучи расходились на светящегося пятна на стекле.



Сперва Рентген думал, что это те же катодные лучи, только изменившие свое направление. Но ничего подобного: они совершенно не отклонялись магнитом! И к тому же проходили через непрозрачные предметы. И к тому же, оставаясь невидимыми, засвечивали фотографические пластинки. Рентген сфотографировал руки своей жены и гирьки, помещенные в закрытую деревянную коробку. Эти фотографии — первые в мире рентгеновские снимки — вместе с отпечатанной десятистраничной брошюрой "О новом роде лучей" он послал наиболее авторитетным физикам.

Один из конвертов прибыл в Париж, и его содержимое было оглашено на первом же заседании Французской академии наук в январе 1896 года.

На этом заседании среди других французских ученых присутствовал профессор Антуан Анри Беккерель — сын профессора Эдмона Беккереля и внук профессора Антуана Сезара Беккереля, занимавшихся всю жизнь изучением фосфоресценции — свечения разных веществ. Эти исследования продолжал и Анри Беккерель — быть может, единственный случай, когда три поколения в семье изучали одно и то же явление природы.

Беккереля, конечно, заинтересовала связь рентгеновых лучей с фосфоресценцией. Если они появляются в фосфоресцирующем пятне, то не может ли давать такие же лучи и какое-нибудь самосветящееся вещество? Такой вопрос возник совершенно естественно, и Анри Беккерель взялся за опыты, которые должны были на него ответить.

Опыты были очень простыми. Он брал способное к фосфоресценции вещество, освещал его солнечными лучами, а потом клал на фотографическую пластинку, завернутую в черную бумагу. Для рентгеновых лучей черная бумага не была преградой, и если бы они возникли, пластинка непременно оказалась бы засвеченной.

Одно за другим ложились на черную бумагу разные вещества, а пластинки ничего не регистрировали. Наверное, другой исследователь уже не раз бы махнул рукой на это дело. А Беккерель продолжал опыт. И в одни прекрасный день, зафиксировав очередную неудачу, он достал очередное вещество — двойную сернокислую соль калия и урана, — положил его на завернутую в черную бумагу фотопластинку, открыл окно, чтобы ультрафиолетовые лучи попали на препарат, а потом закрыл окно и пошел в фотолабораторию проявить пластинку…

На заседании академии наук Беккерель объявил:

"Если взять фотографическую пластинку, обернуть ее двумя листками очень плотной черной бумаги, а сверху положить какое-нибудь фосфоресцирующее вещество (бисульфат урана и калия), выставить все это на несколько часов на солнце, а затем пластинку проявить, то на ней появится силуэт фосфоресцирующего вещества".

Это был не такой уж частый случай двойной ошибки. Ошибочная гипотеза была подтверждена ошибочным фактом. Фосфоресценция не имела к происшедшему ровно никакого отношения, как не имели к нему отношения и рентгеновы лучи.

В этом сам Беккерель убедился уже на следующей неделе. Было пасмурно, солнце почти не появлялось, и препарат урановой соли облучению не подвергался. Но фотопластинка продолжала исправно засвечиваться.

Другие вещества так себя не вели. И Беккерель уже на следующем заседании академии смог доложить о своей ошибке и о пойманном виновнике — уране, последнем элементе таблицы Менделеева. Это свое поразительное свойство уран скрывал почти восемьдесят лет.

Разумеется, крайне интересно было бы выяснить, не испускают ли лучи и другие элементы?

Беккерель, работавший в музее естественной истории, проверял подряд все минералы. И вскоре убедился: некоторые из них засвечивают пластинку гораздо сильнее, чем та первая урановая соль. Правда, и эти минералы тоже были урановыми — например, урановая смолка из Иоахимсталя в Чехии. Но ведь урана в ней было куда меньше, чем в соли?

В чем же дело?

Беккерель обратился за помощью к своему другу физику Пьеру Кюри и его жене химику Марии Склодовской.


АТОМНАЯ ИЛИ КОСМИЧЕСКАЯ?

Мария Склодовская родилась в семье учителя физики в Варшаве. Окончив с золотой медалью гимназию, она уехала из Варшавы в глушь, работала гувернанткой в помещичьих семьях, а заработанные деньги отсылала старшей сестре, чтобы та могла подучить высшее образование.

В двадцать четыре года — Томсон в этом возрасте был уже бакалавром — Мария Склодовская впервые переступила порог университета. Она жила в ледяной комнате, питалась хлебом и водой — ни на что другое не было денег. И училась, училась, училась. Через четыре года она была уже вполне сложившимся исследователем…

Итак, Беккерель уперся в загадку: урановая смолка излучала сильней, чем двойной сульфат урана и калия, хотя в соли было больше урана, чем в минерале.

Узнав об этом, Мария Кюри высказала предположение: уран в минерале излучает сильней, чем уран в соли, по той же самой причине, по какой азот из атмосферы казался тяжелей азота из аммиака или селитры. И там и тут эффект вызван примесью. В случае с азотом этой примесью оказался, как известно, более тяжелый газ аргон. В случае с ураном надо искать другой сильно излучающий элемент.

Два года в дощатом сарае с бетонным полом и стеклянной крышей кипели в огромных железных баках кислоты и щелочи, выпаривались и фильтровались растворы. Тысячи килограммов пустых пород из Иоахимсталя — отходов тамошнего уранового производства — превращались в граммы, а затем и в миллиграммы солей. Всю эту работу — работу целой фабрики — делали два человека: Мария и Пьер Кюри.

Два года трудов. Несколько десятых долей грамма добычи. Но какой! Не один, а два новых элемента нашли супруги Кюри в урановых отходах. И оба новых вещества оказались активней урана. Первый, обнаруженный летом 1898 года, они назвали но-лонием, в честь Польши, родины Марии. Второй — радием, от слова "радиус" — "луч".

Особенно великолепен был радий, оказавшийся в миллион раз активнее урана. У него удалось зарегистрировать лучи трех видов. Магнит действовал на них по-разному. Одни лучи отклонял еле-еле, и притом к отрицательному полюсу. Очевидно, это были какие-то довольно тяжелые положительно заряженные частицы. Другие лучи отклонялись посильней, примерно так, как катодные, и к положительному полюсу. По всей вероятности, это были электроны. Третьи лучи, пожалуй, напоминали рентгеновы — на магнит они не реагировали вовсе.

Три излучения названы были тремя первыми буквами греческого алфавита. Положительные — альфа-лучами, отрицательные — бета-лучами, нейтральные — гамма-лучами.

Если бета- и гамма-лучи были похожи на уже известные излучения, то с лучами, подобными альфа-лучам, люди прежде не встречались.

Когда Мария Кюри измерила их скорость, весь ученый мир пришел в изумление: невиданные лучи неслись со скоростью 25 000 километров в секунду.

Не мудрено, что соли радия непрерывно выделяли громадное количество теплоты — в четверть миллиона раз больше, чем при сгорании угля. В теплоту переходила чудовищная энергия альфа-лучей. Откуда бралась энергия?

Этот вопрос вызывал еще большие споры, чем природа альфа-частиц.

Мария Кюри считала, что источник этой энергии находится внутри атома. Откуда же еще могли выстреливаться такие сверхскоростные снаряды?

Но это было лишь предположение, его следовало доказать.

А пока даже у Пьера Кюри было свое особое мнение: атомы урана, полония, радия — это как бы шлюзы, через которые в наш мир хлещет поток космической энергии. Уран — шлюз поменьше, радий — самый большой шлюз.

Правда, что такое эта "космическая энергия", Пьер Кюри толком объяснить не мог. Но объяснить, что такое "внутриатомная энергия", в то время тоже никто бы не взялся!

Было ясно одно: наука впервые столкнулась с новым видом энергии, с новым свойством некоторых атомов — непрерывно излучать энергию. Свойство это, на которое случайно наткнулся Беккерель, Мария Кюри назвала радиоактивностью.


НОВАЯ АЛХИМИЯ

Цивилизация и ее драгоценнейшее достояние — наука — создавалась силами всего человечества. На страницах этой книжки уже появлялись индийцы и китайцы, египтяне и греки, римляне и арабы, русские и немцы, французы, англичане, поляки…

Теперь настало время для новозеландца Эрнста Резерфорда — уроженца острова, находящегося на глобусе как раз на противоположной Англии стороне. Он родился в маленькой деревушке Спринг Гроув, отец его был колесным мастером.

Эрнст Резерфорд окончил Новозеландский университет и в 4895 году приехал в Англию, поступил работать в Кавендишскую лабораторию. Когда Томсон открывал электрон, его ближайшим помощником в этом исследовании был Эрнст Резерфорд.

Как только первые вести об открытии Беккереля пересекли Ла-Манш, Резерфорд занялся ураном и с тех пор всю жизнь работал с излучающими элементами.

Через некоторое время ему пришлось покинуть Кембридж и отправиться в Канаду, затем он вернулся и получил лабораторию в Манчестере, затем стал преемником Томсона в Кавендишской лаборатории.

В 1899 году Эрнст Резерфорд сделал первое большое открытие.

Он работал тогда с торием, у которого Мария Кюри тоже обнаружила способность излучать. Вскоре Резерфорд установил, что торий ведет себя странно: излучает то сильней, то слабей. Как только в лаборатории одновременно открывали окна и двери, радиация ослабевала. Как только закрывали, радиация усиливалась.

Резерфорд быстро сообразил, что сквозняк что-то из лаборатории выдувает.

И действительно — сквозняк выдувал газ, который выделялся из торцевой соли. А газ этот был тоже радиоактивным. Больше газа — больше поток излучений. Меньше газа — меньше радиация.

Почти в то же время друг и помощник Марии и Пьера Кюри француз Анри Дебьерн и немец Эрнст Дорн обнаружили, что такой же газ выделяется из радия.

Резерфорд собрал этот газ и исследовал его по всем правилам химической науки. Радиоактивный газ по своим химическим свойствам как две капли воды походил на инертные газы — гелий, аргон, неон, криптон и ксенон. Он был тяжелее самого тяжелого из них — должен был занять последнее место в нулевой группе естественной системы элементов. И по своим химическим свойствам ему было тут самое место, и по атомному весу, и по новому свойству излучать, которое в большей или меньшей мере проявлялось у всех атомов тяжелее свинца.

Пока Резерфорд занимался открытым им элементом — впоследствии он был окрещен радоном, — Уильям Крукс натолкнулся на другое замечательное явление.

Крукс предпочитал сам проверять открытия. Он купил окиси урана и подверг ее тщательной химической очистке, чтобы быть совершенно уверенным в чистоте препарата. Очистив окись урана, Крукс положил ее на фотопластинку. И пластинка осталась незасвеченной! Выходило, что Беккерель ошибся, Чистый уран не излучал.

Зато примесь, которую Крукс отделил от урана, — вот она излучала! Крукс назвал ее ураном-икс, и принялся изучать ее химическую природу.

Как только об атом узнал Беккерель, он немедленно стал проверять Крукса. И выяснил, что Крукс прав.

Беккерель был способен на удивительные догадки, Через несколько дней после этого опыта ему пришла такая мысль: что если очищенный уран лишь на время потерял свою активность, а теперь она снова появилась?

Беккерель положил ранее очищенный препарат урановой соли на пластинку и пошел в фотолабораторию. Пластинка оказалась сильно засвеченной!

Беккерель проделал то же самое с примесью. Странно, но теперь примесь перестала засвечивать пластинку.

Они поменялись местами, как в бальном танце.

Об этом непонятном явлении Беккерель немедленно известил коллег-физиков. Резерфорд, разумеется, повторил опыты Крукса — Беккереля с торием, и у него получился торий-икс. По химическим свойствам он ничем не отличался от… радия. И Резерфорд тоже наблюдал странный танец с переменой мест.

Не означало ли все это, что в тории, от которого отделили торий-икс, этот "икс" появляется почему-то снова?

Тончайшие химические манипуляции — и вот в одном сосуде торий, совсем переставший засвечивать пластинку, а в другом сосуде возродившийся торий-икс, радий.

Но что значит — возродившийся? "Из ничего даже волей богов ничего не творится", не возродившийся — а родившийся!

Атомы одного элемента превратились в атомы другого элемента!

С этого момента началась эпоха "новой алхимии", нового утверждения идеи о возможности превращения элементов.

Но мысль человеческая не шла по кругу, новое утверждение не означало возврата к фантастическим представлениям искателей философского камня, Мысль шла по восходящей спирали. Новые "алхимики" знали, из каких элементов состоят сложные вещества, и понимали, что ни растворение, ни расплавление, ни возгонка, ни соединение с другими элементами не могут заставить атом одного сорта стать атомом другого сорта. Но теперь им был известен совершенно новый способ взаимодействия вещества, при котором чудо превращения элементов происходило.

Новая эпоха только еще начиналась. Первые парадоксальные факты еще не расшатали все огромное здание привычных представлений.

И потому, например, Беккерель, узнав о превращении тория, не спешил согласиться с Резерфордом. Почему непременно превращение атомов? Может быть, превращение молекул? Может быть, действовали обычные химические силы?

Тогда Резерфорд поручил своему помощнику Фредерику Содди попытаться повлиять на ход этих превращений. Ведь на химические превращения, когда атомы соединяются друг с другом или, напротив, разъединяются, можно влиять. И Содди заставил торий пройти сквозь огонь, воду и медные трубы всевозможных реакций. Но торий, продолжая излучать, с завидным постоянством превращался в радий.

Впрочем, Резерфорд уже подозревал, что превращение и излучение есть, вероятнее всего, один и тот же, единый, процесс. И появление альфа-частицы свидетельствовало о превращении атома тория в атом радия.

Но предположение — это еще не доказательство.

Чтобы найти доказательства, надо было установить природу альфа-лучей.


ГЕЛИЙ ИЗ ТОРИЯ?

Что же такое альфа-лучи?

Мария Кюри выяснила, что это несущийся с неимоверной скоростью ноток положительно заряженных частиц.

Но что это за частицы? На что они похожи? На электрон? Или на что-то иное?

Когда превращение более тяжелого тория в торий-икс, обладавший всеми химическими свойствами более легкого радия, стало свершившимся фактом, Резерфорд задался вопросом: а что, если альфа-частицы — это какие-то очень легкие атомы? Он вспомнил и о том, что знали все химики, — в урановых минералах всегда есть гелий. Помните, как Гиллебранд принял его за азот, а Рамзай исправил ошибку в выделил из редкого минерала клевеита солнечный газ?

Газ этот оказался чрезвычайно легким, всего в четыре раза тяжелей водорода. И был вполне подходящим кандидатом на занятие должности альфа-частицы.

Теперь следовало определить массу альфа-частицы и сравнить ее с массой атома гелия. Задача была похожа на ту, что Резерфорд помогал решить своему учителю Томсону — определение массы электрона. Нужно было отклонить поток альфа-частиц в магнитном поле. Величина отклонения будет зависеть от заряда и массы частицы. Чем меньше заряд и чем больше масса, тем трудней частицу отклонить: ведь заряд это как бы локомотив, а масса — весь остальной поезд.

Но как у состава не может быть меньше одного локомотива, так и у заряженной частицы не может быть меньше одного заряда.

А больше — может. Когда надо преодолевать сильный подъем, прицепляют в голову состава не один, а два локомотива. Два заряда имеют, например, ионы магния.

Никто не мог сказать заранее, сколько зарядов у альфа-частицы. Резерфорд предположил, что один заряд, как у электрона, как у иона водорода.

Когда поток альфа-лучей пересек магнитное ноле, они почти не отклонились. И только в поле очень сильного электромагнита отклонение стало довольно заметным, но все же в два миллиона раз меньшим, чем отклонение катодных лучей — электронов, и вдвое меньшим, чем отклонение ионов водорода.

То есть альфа-частицы отклонялись так, будто они были вдвое тяжелей атомов водорода, и это было очень плохо… Плохо потому, что атомы гелия в четыре раза тяжелей атомов водорода. В четыре, а не в два.

Но что если не состав вдвое легче, а локомотив вдвое сильней? Ведь два заряда будут тянуть атом учетверенной массы именно так, как один заряд — атом удвоенной массы…

Резерфорд засел за расчеты. Ему нужно было вычислить полный электрический заряд альфа-частиц, выстреленных граммом урана за секунду, и число атомов гелия в этом объеме. И потом поделить полный электрический заряд на число атомов.

И у него получилось — на каждый атом приходится ровно два заряда.

Но расчет расчетом. А вот сосчитать бы, сколько на самом деле выстреливается альфа-частиц!


О ПОЛЬЗЕ ИГРУШЕК

Сэр Уильям Крукс, о котором читателю уже кое-что известно, вскоре после открытия радия изобрел замечательный прибор. Поначалу он казался игрушкой. Это не должно удивлять: ракеты, например, тоже долго служили в основном для игры — праздничных фейерверков.

Придуманная Круксом игрушка была похожа на окуляр от бинокля. Небольшая трубочка, сверху прикрытая лупой. А снизу — стеклянный экран, покрытый сернистым цинком — веществом, которое начинает светиться, как только на него попадет излучение. В середине трубочки, между экраном и увеличительным стеклом, торчала иголка, а на острие ее — невидимые атомы радия. Взялись они вот откуда: Крукс дотронулся копчиком иглы до внутренней стенки ампулы, в которой раньше лежал кристаллик бромистого радия. Этого оказалось достаточно, чтобы сколько-то миллионов атомов радия перебралось на иглу.

Приложив глаз к лупе спинтарископа — так называл Крукс свою игрушку (от греческих слов спинтар — "искра" и скопейн — "наблюдать"), — можно было увидеть экран, на котором, как рой падающих звезд на ночном небе, вспыхивали и гасли голубые искры. Каждая искра означала встречу альфа-частицы, вылетающей из радия, с молекулой сернистого цинка.

Предназначалась игрушка для демонстрации необычайных свойств нового элемента, открытого Марией и Пьером Кюри.

Разумеется, Резерфорд, как и все, кому удавалось заглянуть в спинтарископ, был заворожен звездным дождем альфа-частиц. Но еще большее впечатление произвела на него простота прибора, в котором было видно действие одной-единственной альфа-частицы. Ибо это значило, что частицы можно считать.

И Резерфорд вместе со своим помощником Гансом Гейгером принялся считать альфа-частицы.

Это была изнурительная работа — без конца глядеть в окуляр, не проморгать ни единой вспышки на экране. (Не проморгать в самом прямом смысле этих слов: не моргнуть.)

Они считали, считали, считали не сотни, не тысячи, не десятки и даже не сотни тысяч альфа-частиц. Миллионы!

Но зато, когда счет был закончен, и было подсчитано число атомов гелия, выделившегося из радиоактивного препарата, и оба этих числа совпали, вот тогда Резерфорд мог наконец со спокойной душой объявить: инкогнито альфа-частиц раскрыто! Каждая альфа-частица — это атом гелия — вернее, его ядро.

Так игрушка Крукса оказалась первым в истории окошком, заглянув в которое, человек мог воочию убедиться в существовании атомов.

С этого времени перестала существовать атомная гипотеза — атомное строение вещества стало очевидным фактом.

…Итак, альфа-частица окапалась атомом гелия.

А бета-частица оказалась, как и предполагали, электроном.

Какие-то неведомые силы выбрасывали их из атомов всех тяжелых элементов, стоящих в таблице Менделеева после свинца.

И когда какая-нибудь из этих частиц покидала атом, он сразу же становился атомом другого элемента. Потеряв альфа частицу, торий становился радием, радий становился радоном, радон — полонием, полоний — свинцом. Потеряв бета-частицу, актиний становился торием.

Как говорится, ясно и понятно.

Но недаром существует поговорка: "Нос вылезет — хвост увязнет".

Радий получался из урана, и из тория, и из актиния. И из каждого радия получался свой радон. Из каждого радона свой полоний. Из каждого полония свои свинец… Вместо одного радия получалось множество радиев, вместо одного радона — множество радонов, вместо одною свинца — множество свинцов. И все они, кроме свинца, норовили превратиться друг в друга, И хоть химические свойства у всех радонов или всех радиев были одинаковыми, атомный вес у них был разным. И эта страшная путаница фактов грозила обрушить закон Менделеева, потому что непонятно было, куда теперь ставить в таблицу эти одинаковые элементы с разным атомным весом.

Глава четвертая, в которой Резерфорд находит атомное ядро, а Бор — электронную оболочку

Первый залп

Прибор, в котором Эрнст Резерфорд стал обстреливать атомами гелия (альфа-частицами) атомы других веществ, был похож на Круксов спинтарископ, только побольше. В одном конце многометровой стеклянной трубы вместо иглы находилась ампула с радиевой солью, а другой конец упирался в экран из сернистого цинка.

По трубе, как по пушечному стволу, несся в сторону цели пучок альфа-частиц. А целью была тонкая металлическая пластинка — фольга, поставленная перед экраном.

Листочек фольги, конечно, не в состоянии был задержать стремительные снаряды альфа-частиц, и позади него на экране вспыхивали, как и в Круксовом спинтарископе, искры.

Уже во время первых опытов Резерфорд заметил, что вспышки несколько смещаются от направления полета частиц. Отчего? Что могло заставить их отклоняться от первоначального пути?

Конечно, только атомы металла, из которых состояла фольга!

Вот и было бы интересно посмотреть, как это зависит от атомного веса металлов. Не совпадут ли величины отклонения с изменениями атомного веса?

В 1909 году Резерфорд поручил одному из своих лаборантов — Эрнсту Марсдену — проверить это на листках разных металлов.

Марсден начал с золотой фольги. Он поместил золотую мишень перед экраном и скоро увидел, что выполнить задание Резерфорда будет не так-то просто. Вспышки от вылетающих из круглого стеклянного дула альфа-частиц не образовывали на экране четкого круга. Некоторые искорки вспыхивали далеко в стороне.

Марсден не раз налаживал и настраивал свой прибор, но вспышки никак не желали оставаться в очерченном трубой кругу.

Он доложил о странном поведении альфа-частиц Резерфорду. Тот пришел, понаблюдал за вспышками и дал Марсдену не менее странное указание.

— Посмотрите-ка, не отражаются ли альфы-частицы от фольги.

И ушел.

Эрнст Марсден был всего-навсего двадцатилетним лаборантом. Но он понял: если хоть одна альфа-частица отразится от фольги, то тем самым выявится нечто совершенно невероятное. Потому что как это может тонюсенькая фольга отбросить снаряды, летящие со скоростью двадцать пять тысяч километров в секунду?

Прошло несколько дней.

Марсден переделал прибор, установил дополнительные экраны и стал терпеливо ждать.

И вот первая вспышка — не за фольгой, а перед фольгой!.

Вот еще одна. И еще.

И снова пауза. И снова вспышка.

Марсден считал весь вечер и всю ночь.

На каждые восемь тысяч вспышек за мишенью появлялась одна вспышка перед ней. Один из восьми тысяч снарядов фольга отказывалась пропускать и отправляла обратно.

На следующий день Марсден заменил золотой листок медным, потом медный — алюминиевым.

Он хотел выяснять, уменьшается ли число отраженных снарядов, если мишень — из более легких атомов.

И выяснил — да, уменьшается, и довольно сильно.

Через несколько дней он сказал Резерфорду:

— Вы были правы, профессор…

Событие произошло, его надо было объяснить.

Когда рикошетирует снаряд? В двух случаях. Либо — когда отскакивает от чего-то более прочного и массивного, чем он сам. Либо — когда встречается с мишенью под очень большим углом, тут он может отскочить от чего угодно.

Но здесь не было снаряда, была альфа-частица. И летела она перпендикулярно мишени. И не было брони, а была тоненькая фольга. И не было в этой фольге ничего, кроме атомов.

Какими же они были, эти атомы, если семь тысяч девятьсот девяносто девять снарядов пронзали их насквозь, а восьмитысячный отскакивал обратно?

К тому времени существовали две модели атома. Модель Томсона — кекс с изюмом, положительно заряженный шар, внутри которого находятся отрицательно заряженные электроны. И планетарная модель — отрицательные электроны-планеты вращаются вокруг положительного Солнца.

Томсоновский атом не выдержал первого же залпа и рассыпался навсегда. В нем не было ничего, что могло бы заставить снаряд отлететь обратно. Плавающие внутри шара электроны? С таким же успехом горошина могла бы отбить пушечное ядро: альфа-частица в восемь тысяч раз тяжелей электрона, и к тому же несется с сумасшедшей скоростью.

Оставался лишь один возможный вариант строения атома. Резерфорд пришея к нему после почти двухлетних размышлений. Положительно заряженное тяжелое ядро. И на огромных расстояниях от него, подобно планетам вокруг Солнца, — электроны. Почти пустой атом. Потому что ядро, в котором сосредоточена масса атома, занимает ничтожное место — только так можно объяснить тот факт, что семь тысяч девятьсот девяносто девять альфа-частиц проскакивали мимо. Такой была единственно возможная модель, только такой атом мог вести себя под обстрелом так, как вели себя атомы фольги в опытах Резерфорда и Марсдена.

И Резерфорд был убежден, что атом устроен именно так. Но убедить в этом других он не мог. И вот почему.

Еще в 70-х годах XIX века английский физик Джемс Максвелл доказал, что любое заряженное тело, двигающееся в электрическом поле, при изменении скорости или направления теряет энергию, излучая ее в пространство. Электроны же, вращающиеся вокруг ядра, были бы именно такими телами. И они должны были непрерывно излучать энергию. И весь запас их энергии постепенно бы иссяк. И они обязательно упали бы на ядро. Так же обязательно, как обязательно падает в конце концов на землю выпущенная из ружья пуля.

Электрон упал бы на ядро, и атом перестал бы существовать.

Но известным в то время законам природы планетарный атом Резерфорда не имел права на существование. И в то же время опыт свидетельствовал непреложно: атом ведет себя так, как будто он и есть такой несуществующий атом.

Получалось одно из двух: либо природа играла не по правилам, либо правила были не по природе.


ТРЕТЬЯ ВОЗМОЖНОСТЬ

Она почти всегда существует — еще не известная, третья возможность: в запасе у Природы есть кое-какие правила, которым и подчиняется вновь обнаруженная игра. В случае с атомом это означало, что законы для макромира — для тел величиной с атом и больших, чем атом, недействительны для микромира — для тел меньшей величины.


…Закон для тел меньше атома был обнаружен берлинским физиком Максом Планком в 1900 году, еще до того, как заговорили об атомном ядре. И тогда никто не понимал, что с этим законом делать, к чему его приложить?

Макс Планк изучал спектры нагретых веществ. Давно было известно, что цвет нагреваемого тела меняется: сперва он красный, потом желтеет, голубеет… В зависимости от того, сколько энергии получало нагреваемое тело, менялось и его излучение.

Планк старался понять, как же именно распределяется энергия по разным излучениям. И когда он собрал множество фактов, связанных с этим процессом, то оказалось, что многим бесспорным данным невозможно найти объяснения, оставаясь на позициях, типичных для макромира.

Превращения в мире веществ нельзя было понять, пока не установили главное: вещества состоят из минимальных порций — атомов. Превращения в мире излучений тоже невозможно было понять, пока Планк не пришел к гениальной мысли: надо отказаться от представления, будто энергия течет сплошным потоком, а представить себе, что энергия, как и вещество, делится на порции, и что излучение состоит из минимальных порций — Макс Планк назвал их квантами.

Почему теплота, свет, рентгеновы лучи должны обладать зернистым, как говорили в старину — корпускулярным, строением, никто не понимал. Кому и зачем могли понадобиться эти минимальные порции энергии, было неизвестно. Известно было одно: профессор Планк, изучая спектры, не смог свести концы с концами, пока не предположил, что есть такая штука — наименьшая порция излучения — квант.

Альберт Эйнштейн первый объяснил с помощью кванта одно из ранее непонятных явлений. В то время, когда Планк ломал голову над спектрами, Эйнштейн еще учился в институте. А потом стал преподавателем. В школе Эйнштейн проработал всего два года: у него было множество собственных мыслей о природе вещей, и ему хотелось найти такую работу, чтоб голова оставалась более или менее свободной для размышлении. А кому не известно, каково приходится учителям…

В 1902 году скромному двадцатитрехлетнему учителю Эйнштейну из маленького городка Шафгаузен повезло: он получил место в столице Швейцария Берне, в патентном бюро. Там, отработав положенные часы, можно было спокойно раздумывать над устройством мира.

…Когда Альберт Эйнштейн прочел статью Макса Планка о квантах, то, поразмыслив, он нашел этим квантам дело.

Давно было известно, что, облучив металлическую пластинку ультрафиолетовыми лучами, можно возбудить в ней электрический ток. И что лучи меньшей энергии, скажем, фиолетовые, сделать этого не могут. Это был твердо установленный, но совершенно непонятный факт! Казалось бы, не все ли равно — пять минут облучать ультрафиолетовыми лучами или пять часов фиолетовыми? Ведь можем же мы испарить ведро воды и на спиртовке, и на керосинке, и на газовой плите — вся разница только во времени. Но то, что получалось с испарением молекул воды, никак не получалось с электронами. Что-то мешало!

Эйнштейн понял что: кванты. Один электрон выбивается из металла одним квантом… Ультрафиолетовый квант энергичней, чем фиолетовый, вот он и выбивает электрон. А у фиолетового кванта энергии для этого не хватает.

Так в 1905 году появилась физическая теория, объясняющая, что обыкновенный свет состоит из квантов — порций энергии разной величины. Величина энергии зависит от длины волны. Чем короче волна, тем энергичней квант.

Теперь хорошо было бы узнать, откуда эти кванты берутся.


БИЛЬЯРД БОРА

Нильс Бор родился в Копенгагене, в семье профессора филологии, и учился физике. Когда он узнал об атомном ядре, открытом Резерфордом, ему было 26 лет. Он приехал в Англию и вскоре поступил стажером в лабораторию Резерфорда, Этому молодому датскому физику предстояло спасти планетарный атом Резерфорда.



Рассуждение Нильса Бора сводилось, в общем, к отказу считать всеобъемлющим правило Максвелла, отрицающее существование атома с ядром, поскольку опыт свидетельствовал, что такой атом есть. И поскольку, кроме всем известного и понятного правила Максвелла, насчет излучений, уже существовало малоизвестное и не очень понятное правило Планка о квантах. И это непонятное правило неплохо подходило к непонятному атому с ядром…

Если бы электрон непрерывно излучал, он упал бы на ядро. Но он не падает, значит, он не излучает непрерывно. Уже потому не излучает непрерывно, что непрерывное излучение невозможно — оно делится на порции, кванты.

Но каким образом эти кванты излучаются электроном?


Основные, первоначальные, принципы теории строения простейшего атома водорода Бор изложил в статье, опубликованной в 1913 году.

Чтобы более или менее наглядно представить себе обоснованное в этой статье поведение электрона, вращающегося вокруг атомного ядра, попробуем обратиться к аналогии.

Разумеется, нельзя забывать, что наглядное представление о процессах внутри атома вообще не может не быть грубо упрощенным. Аналогия же никогда не соответствует истинной картине — в лучшем случае, она лишь помогает понять ее…

Есть такая игра — один из видов бильярда: наклонная доска с круглыми гнездами, по которой катятся металлические шарики. Чем ниже скатывается шарик, тем трудней ему застрять в каком-нибудь гнезде. Ведь, снижаясь, он катится все быстрей, потому что все большая часть потенциальной энергии превращается в кинетическую, в энергию движения.

Так вот. В определенном смысле атомное ядро ведет себя, как наклонная доска, электроны — как шарики, а гнезда играют роль таких уровней, на которых электрону "разрешено" находиться, не излучая. Попав в гнездо, шарик уже не расходует на движение потенциальную энергию, а лежит себе и лежит. Попав на один из разрешенных уровней, электрон уже не расходует на излучение запасенную на прежнем уровне энергию, а спокойно движется вокруг ядра.

А излучает электрон только при перескоке с одного разрешенного уровня на другой, более близкий к ядру. При этом излучается ровно квант энергии. Электрон не может излучить, скажем, полкванта — ведь он не может прекратить свое "падение" к ядру на полдороге, до следующего разрешенного уровня.

Если же нагревать атом или облучать его, то есть подавать в него энергию извне, то электроны, поглотив эту энергию, перескочат с более близких к ядру уровней на более далекие. Потом такой атом сможет отдавать энергию обратно: электроны соскакивают пониже, и кванты излучаются в пространство. Если это кванты видимого света, вещество начинает фосфоресцировать, светиться.

Как, например, устроен атом водорода? У него есть ядро, несущее один положительный электрический заряд. А вокруг него, как Луна, вращается электрон. Но, в отличие от Луны, он может находиться не на одной-единственной орбите, а на любой из нескольких разрешенных для него орбит. И перескакивая со ступеньки на ступеньку, сверху вниз, с одной разрешенной орбиты на другую, он должен при этом отдавать разные порции энергии, разные кванты.

Вот откуда серия полосок в спектре водорода, обнаруженная некогда Бальмером. У разных порций — разная энергия, значит, это разные фотоны — кванты света: один, например, желтый, другой красный, третий фиолетовый, а четвертый еще энергичней — он попадает в спектре в зону ультрафиолета.

…Люди обычно предпочитают, чтобы непонятные вещи объясняли им с помощью понятных. Поэтому способ, которым никому не ведомый молодой датчанин решил спасти непонятную конструкцию атома Резерфорда, не сразу пришелся по душе даже физикам. Лорду Релею, например.

Но все же не один Резерфорд оценил гениальную идею Бора…

Глава пятая, в которой Мозли не только спасает естественную систему элементов, но и объясняет ее

ВСЁ СТАНОВИТСЯ НА СВОИ МЕСТА

Когда лавины новых поразительных открытий проносятся в мире науки, то сперва кажется, что ничто не осталось на месте, все рухнуло. Но вот оседает пыль: и разрушенными оказываются только предрассудки и заблуждения, а очищенный от них мир истин становится еще более незыблемым.

Так получилось и на этот раз.

Раньше других этот новый прекрасный мир увидел сверстник Бора и ученик Резерфорда Генри Гвин Мозли.

О нем не очень много известно. Вероятно, потому, что на занятия наукой судьба отпустила ему считанные годы. Летом 1910 года он окончил Оксфордский университет и явился к Резерфорду. А летом 1915 года погиб от пули на войне — в окопе, на берегу Дарданелл.

Ньютон прожил 85 лет, Бойль — 64, Ломоносов — 54. Лавуазье — 51 год, а Мозли погиб примерно в том же возрасте, что и Лермонтов…

Подобно Беккерелю, Мозли был сыном профессора и внуком профессора. Подобно Кавендишу, он был фанатически предан науке. Его друзья рассказывали: у Мозли было два рабочих правила. Первое — если начал налаживать прибор для опыта, то нельзя останавливаться, пока он не будет налажен; второе — когда прибор налажен, нельзя останавливаться, пока опыт не будет окончен. Мозли предпочитал работать в полном уединении. Известна такая история. Резерфорд курил трубку, и Мозли курил трубку. Трубка то и дело гаснет, и курильщики тратят уйму спичек. У Мозли спички были всегда, и Резерфорд нередко заходил к нему, чтобы зажечь свою потухшую трубку. Но так продолжалось недолго. Однажды, зайдя в лабораторию, где трудился его молодой сотрудник" профессор увидел гору спичечных коробков и надпись: "Пожалуйста, возьмите одну из этих коробок и оставьте в покое мои спички!"

Итак, судьба отпустила Генри Гвину Мозли совсем немного времени. Как же он распорядился им?

Первый год изучал бега-лучи и гамма-лучи. Второй год — лучи Рентгена. По-видимому, он выбирал, какой вид излучений может дать больше информации об устройство атома. Замок шкатулки не открыть ключом от городских ворот…

Самые длинные электромагнитные волны — их длина от сантиметров до километров — работают в радиоприемниках. Волны покороче — длиной в миллиметр или в его десятые доли — воспринимаются как тепло. Волны в тысячные доли миллиметра можно увидеть — это свет. Еще короче невидимые ультрафиолетовые волны, от которых темнеет наша кожа. Но самые короткие волны у рентгеновых лучей — они и сотни миллионов и миллиарды раз меньше сантиметра.

Когда Мозли определил длину волны у лучей Рентгена, он понял, что получил наконец ключ к атому. Ведь у атомов именно такие размеры — в миллиарды раз меньше сантиметра.

На третий год своей работы у Резерфорда Мозли занялся изучением рентгеновского излучения разных металлов. Ото явленно было обнаружено несколькими годами ранее: если подводить к рентгеновской трубке все более высокое напряжение, то длина волны рентгеновых лучей будет постепенно уменьшаться. Но только до тех пор, пока не вспыхнет более интенсивное излучение, уже неизменное по длине волны. И эта волна уже не зависит от напряжения, она зависит от материала, из которого сделан анод.

Рентгеновское излучение металла можно было, подобно свету, разложить и получить рентгеновский спектр металла.

Уже первые рентгеновские спектры, полученные Мозли, поразили ученого своей простотой. Если на оптических спектрах даже самых легких металлов были сотни полосок, то на каждом рентгеновском спектре была только одна серия из нескольких линий. А начиная с калия, появлялась еще одна серия линий; начиная с рубидия — третья…

Такая простота сулила бесценные возможности для исследователя: одно дело сравнивать между собой сложнейшие многолинейные оптические спектры, другое — односложные рентгеновские.

Надо было поскорей набирать факты. Напылять на анод разные металлы, получать их рентгеновские излучения, фотографировать спектры.

Мозли почти не спал и почты не ел, не выходил из лаборатории по несколько суток.

Через три месяца у него набралась обширная коллекция рентгеновских спектров. И в один прекрасный день или, что при характере Мозли еще вероятнее, в одну прекрасную ночь, он разложил на столе эти фотографии.

Он разложил их в той последовательности, в какой металлы шли в периодической таблице: под спектром титана располагался спектр ванадия, еще ниже лежал спектр хрома, далее — марганца, железа, кобальта, никеля, меди, цинка…

И Мозли увидел замечательную картину: на каждой следующей фотографии серии линий смещались влево примерно на одинаковое расстояние. То есть у каждого следующего элемента собственное рентгеновское излучение состояло из лучей с меньшей длиной волны, или, что то же самое, с большей частотой и, следовательно, с большей энергией квантов.

Мозли стал подсчитывать, как возрастает эта частота, и получил удивительный результат — частота излучения возрастала почти в точности пропорционально… порядковому номеру элемента в таблице Менделеева.

Почему?

Чтобы вонять это, надо было сначала найти ответы на некоторые другие вопросы.

Прежде всего Мозли установил, чем отличается свечение поверхности анода в рентгеновской трубке от свечения атомов в спектроскопе.

Катодный луч рентгеновской трубки — это поток электронов, несущихся со скоростью десятков тысяч километров в секунду. Его энергия несравнима с энергией горелки, на которой раскаляют вещества в обычном спектроскопе. Сильнейший удар катодных лучей способен вырывать из атома металла не только наружные электроны, но и тот электрон, который находится ближе всего к атомному ядру, а значит, притягивается к нему с наибольшей силой.

И на место, освобожденное этим электроном, падает электрон, который находится на более далеком от ядра уровне. Во время такого перескока выделяется порция энергии, которая и дает на рентгеновском спектре характерную линию.

Почему же эта линия у каждого элемента своя? Потому что соответствующие порции излучаемой энергии разные. А почему порции разные? Потому что не одинакова сила, с которой атомное ядро притягивает ближайший к нему электрон. Она тем больше, чем больше положительных зарядов в ядре.

Именно положительный заряд ядра и определяет место того или иного элемента в периодической таблице, его порядковый номер в естественной системе элементов.

А раз так, то возрастание частоты линий рентгеновских спектров, которое вызывается увеличением заряда ядра, должно быть пропорционально порядковому номеру элемента.

Итак, атомный вес был заменен другим признаком — зарядом ядра. И сразу же стало ясно, что Менделеев расположил элементы в своей таблице правильно даже в тех случаях, когда последовательность атомных весов нарушалась.

Спектры свидетельствовали: у кобальта 27 положительных зарядов, а у никеля — 28. Объяснились и два других мнимых нарушения закона — теллуром и аргоном. У обоих оказалось в ядре на один положительный заряд меньше, чем у следующих за ними в таблице йода и калия.

Теперь можно было разобраться и в путанице с несколькими свинцами, радиями, радонами и прочими элементами, получавшимися при радиоактивных превращениях. Атомы разной массы, но с одинаковым зарядом ядра, надлежало относить к одному и тому же элементу и помещать в одну и ту же клетку периодической таблицы.

Стал понятен и главный закон новой алхимии, названный законом сдвига: если при распаде атома из его ядра вылетает альфа-частица, то заряд ядра уменьшается на две единицы и, значит, номер элемента также уменьшается на две единицы, то есть атом сдвигается в таблице элементов на две клетки влево; а если из ядра атома вылетает бета-частица, электрон, то заряд ядра увеличивается на единицу, порядковый номер — тоже, и элемент сдвигается на одну клетку вправо.

Фредерик Содди и Казимир Фаянс, сотрудники Резерфорда, открывшие закон сдвига, дали атомам с одинаковым зарядом и разной массой название "изотопы" — "занимающие одно и то же место" ("топос" по-гречески —" "место"; отсюда "топография" — "описание местности").

Лавина прошла, унеся с собой непонятные исключения из периодического закона. Теперь он звучал так: химические свойства элементов находятся в периодической зависимости от зарядов их ядер. Вопрос о том, почему естественная система элементов начинается с водорода, решился сам собой — заряд ядра атома водорода + 1.

И вопрос о числе электронов в каждом атоме был теперь ясен: раз атом нейтрален, то есть его положительные заряды полностью уравновешиваются его отрицательными зарядами, значит, число электронов в нем равно числу положительных зарядов. То есть у водорода должен быть один электрон, у гелия — два, у лития — три и так далее.

Решился вопрос и о числе элементов от водорода до урана (ведь каждый новый заряд ядра давал новый элемент), и о пропущенных, еще не открытых элементах — теперь они были очевидными разрывами в непрерывной очереди зарядов, непрерывной очереди порядковых номеров.

Правда, оставалось неизвестным, почему система элементов заканчивалась ураном, и заканчивалась ли она им на самом деле, или могли быть и другие — еще не открытые элементы.

Кроме того, за полвека, прошедшие с момента открытия периодического закона, появились новые вопросы, и самый волнующий из них был о том, что же такое атомное ядро?

И не только потому, что неделимое оказалось делимым, а вечное — не вечным. Куда важней было то, что в ядре атома таились какие-то огромные силы — те самые, что разгоняли ядра гелия до скорости 25 000 километров в секунду.

Может быть, для человечества было бы лучше не задумываться над этим, не искать у природы ответа. Но стремление человека к разгадыванию тайн природы неодолимо. И сколько бы раз ни обжигались люди, они вновь и вновь летят на свет истины.

И они заглянули в ядро и увидели, что там есть.

Глава шестая, в которой появляются протон и нейтрон

ВОДОРОДНЫЕ ЛУЧИ

Для того, чтобы узнать, что находится в орехе, нужно разбить орех. Для того, чтобы узнать, что находится в ядре, нужно разбить ядро. Или, обстреливая альфа-частицами какие-либо атомы, посмотреть, что происходит не со снарядами, а с мишенью.

Если обстрелять, например, атомы водорода, вчетверо более легкие, чем сами альфа-частицы, то при столкновении альфа-частица должна была бы так толкнуть водородный атом, что он должен был пролететь вчетверо дальше, чем она сама.

Резерфорд предложил Марсдену провести такой эксперимент.

И действительно, альфа-частицы отшвыривали водородные атомы, как бита отшвыривает городок.

Но этим опытом Марсден не ограничился. Ему захотелось посмотреть, как будут вести себя другие атомы, тоже легкие, но тяжелей водорода.

Проще всего было обстрелять альфа-частицами просто воздух, состоящий из атомов азота и кислорода. Они примерно в полтора десятка раз тяжелей атомов водорода, значит, и отлетать от удара альфа-частиц должны были не очень далеко.

Марсден был прекрасным экспериментатором. Но тут произошла осечка. Как ни очищал он воздух в приборе от водяных паров, все равно обнаруживались ядра, летящие вчетверо дальше, чем альфа-частицы.

И Марсден выдвинул смелое предположение — эти водородные ядра несутся оттуда же, откуда несутся альфа-лучи — из ядер радия.

Продолжению опытов с "водородными лучами" помешала первая мировая война. Почти всех сотрудников Резерфорда — в том числе и Марсдена — забрали в армию. Но когда война стала подходить к концу, Резерфорд начал планомерную охоту за таинственным водородом. И в одном из опытов заменил воздух чистым азотом. Теперь в приборе было ровно на четверть больше атомов азота, чем в воздухе.

Резерфорд принялся считать вспышки на экране. И когда истекло положенное время, оказалось, что и вспышек стало больше ровно на четверть — двадцать пять лишних на каждую сотню.

Это значило, что водород вылетал из азота!

Это значило, что ядра атомов водорода входят в состав ядер атомов других элементов.

И еще: не значило ли это, что Уильям Праут 100 лет назад верно угадал, из чего состоят атомы?

Но за эти 100 лет люди узнали о природе вещей больше, чем за два тысячелетия, прошедшие со времен Демокрита и Аристотеля. И потому Эрнст Резерфорд, раздумывая о том, что он увидел, в конце концов пришел к выводам, которые Прауту показались бы абсурдом. Касались они устройства атомного ядра.

…Как же устроено атомное ядро, если из него могут вылетать ядра водорода? Ну, хотя бы самое простое после водородного — ядро гелия?

Оно в четыре раза тяжелей — следовательно, в нем четыре водородных ядра. Но зарядов у него не четыре, а всего два. Не значит ли это, что четыре водородных ядра удерживаются вместе двумя электронами, находящимися внутри ядра гелия? В таком случае на два водородных ядра приходился бы один электрон. Но если электрон может удерживать в одном ядре два водородных ядра, то тем легче ему удерживать в ядре одно водородное ядро… И тогда получится удивительное ядро, состоящее из ядра водорода и электрона — ядро, не имеющее заряда. Получится как бы нулевой атом — атом с пулевым зарядом ядра и, следовательно, без электронной оболочки. Он не сможет химически взаимодействовать с другими атомами. Но зато ни одно ядро не оттолкнет его. Идеальный снаряд для обстрела ядер!

Так Резерфорд предсказал нейтрон — правда, еще не названный этим словом.

А самому водородному ядру, составной части всех прочих атомных ядер, Эрнст Резерфорд и английский физик Оливер Лодж дали имя "протон", от греческого "протеос" — "первичный, первоначальный".


БЕРИЛЛИЕВЫЕ ЛУЧИ

Бериллий, тот самый элемент, что поначалу причинил столько беспокойств Менделееву, в дальнейшем ничем особенно не выделялся. При добавлении его к меди получали твердый упругий сплав — бериллиевую бронзу; вот, пожалуй, и все.

И вдруг немецкие физики Вальтер Воте и Ганс Беккер обнаружили бериллиевые лучи? Они обстреливали листок бериллия альфа-частицами, и на экране никаких вспышек не появилось, но золотые листочке электроскопа, стоявшего за экраном, опали. Значит, что-то спокойно проходило через экран. Боте и Беккер попробовали отклонить это "что-то" магнитом. Не вышло.

Бериллиевыми лучами заинтересовались французские физики Фредерик Жолио и его жена Ирен Кюри, дочь Марии и Пьера Кюри. Они проверили сообщение немцев и убедились — так оно и есть: под ударами альфа-частиц бериллий дает мощное излучение без признаков электрического заряда. Они решили подставить под бериллиевые лучи водородную мишень. И сразу же обнаружили за ней поток ядер водорода.

Ирен Кюри и Фредерик Жолио не читали журнала, в котором было напечатано предсказание Резерфорда. И сами не догадались, в чем тут дело.

Но Джеймс Чедвик, который помогал Резерфорду расщеплять ядра азота и не раз обсуждал с ним возможные последствия их алхимического эксперимента, понял, что Боте и Беккер наткнулись на нейтрон. А 27 февраля 1932 года он подтвердил это опытом.

В этот день стала известна вторая составная часть атомного ядра. Протон и нейтрон — вот блоки, из которых природа соорудила атомные ядра; электрон в этом случае был не нужен.

Ядро водорода? Один протон: масса 1, заряд 1.

Ядро гелия? Два протона плюс два нейтрона: масса 4, заряд 2.

Ядро урана? Девяносто два протона плюс сто сорок шесть нейтронов: масса 238, заряд 92.

Теперь, правда, затуманивалось дело с бета-лучами. Как могут вылетать из ядер электроны, если их там нет, а есть лишь протоны и нейтроны?

Впрочем, появление бета-лучей можно было объяснить, предположив, что сами по себе нейтроны способны в определенных условиях превращаться в протон, остающийся в ядре, и электрон, покидающий ядро.

А вот как объяснить, что за сила удерживает в ядре положительно заряженные протоны? Пока считалось, что в ядре находятся протоны и электроны, можно было думать, что отрицательные электроны склеивают положительные протоны электрическими силами. Но если электронного клея в ядрах не существует, то что же тогда противодействует отталкиванию одинаково заряженных протонов, что превращает их в монолит чудовищной прочности?


Это очень трудный вопрос, но мы забрались уже туда, где простых ответов не знает никто.

В самом деле, что происходит, когда притягиваются два разноименных заряда? Что их тянет друг к другу? Или — когда одноименные отталкиваются. Что их оттаскивает?

В учебниках пишут, что притягивание и отталкивание — суть действия электромагнитного поля. Но что такое это поле? Не последний ли потомок последней тонкой материи — эфира?

…Когда в 1923 году шведский король вручал Нобелевскую премию физику Роберту Милликену за многочисленные успехи в изучении природы электричества, Милликен сказал: "Я прошу вас выслушать ответ экспериментатора на основной и часто предлагаемый вопрос: что такое электричество? Ответ этот наивен, но вместе с тем прост и определенен. Экспериментатор констатирует прежде всего, что о последней сущности электричества он не знает ничего".

А другой известный ученый Герман Вейль утверждал, что "…различие между обоими видами электричества (положительным и отрицательным) представляет собой еще более глубокую загадку природы, нежели различие между прошлым и будущим…"

Глава седьмая, в которой Севре делает первый искусственный элемент, Ферми разбивает ядро урана пополам, а Петржак и Флеров доходят до границы Менделеевской системы

ЗАПРЕЩЕННЫЕ ЭЛЕМЕНТЫ

Последним из предсказанных Менделеевым элементов, который удалось открыть обычным химическим путем, был элемент номер 75, или, по терминологии Менделеева, двимарганец.

Открыть его было чрезвычайно трудно.

Во-первых, выше двимарганца стоял в таблице еще один неоткрытый элемент — номер 43, И потому о свойствах двимарганца нельзя было судить так, как о свойствах экасилиция (германия) но свойствам кремния и олова или о свойствах экаалюминия (галлия) по свойствам алюминия и индия.

Во-вторых, находясь в восьмой группе элементов и считаясь аналогом марганца, двимарганец на самом деле, как потом обнаружилось, походил на него мало. И потому, сколько ни искали его в марганцевых минералах, так и не нашли.

Эту особенность элемента номер 75 удалось разгадать немецким химикам — супругам Иде и Вальтеру Поддан.

Но, пожалуй, слово "разгадать" неверно. Ида Ноддак рассказывала, что они с мужем целый год по десять — двенадцать часов в день читали отчеты о всех исследованиях всех соединений тяжелых элементов пятой, шестой, седьмой и восьмой групп таблицы Менделеева.

Они выяснили, как изменяются их свойства сверху вниз и слева направо. И поняли, что двимарганец должен во многом походить на осмий, рутений, молибден и другие тяжелые металлы. И что надо искать его не в марганцевых минералах, а в платиновых или в ниобиевом минерале колумбите.

Предположение подтвердилось. В 1922 году они обнаружили в русской платиновой руде новый окисел, а в 1926 году выделили из норвежского колумбита первые миллиграммы нового металла — рения.

Между прочим, деньги на эти исследования Ноддакам дали владельцы электроламповых заводов, которые надеялись, что металл, расположенный между вольфрамом и осмием, сможет заменить вольфрам в лампочках и будет служить дольше. К двадцатым годам XX века менделеевскую таблицу знали уже все.

После того как клетка номер 75 была заполнена, внутри таблицы остались только четыре пустые клетки.

Клетка номер 43 — над рением. Там было место предсказанного еще Менделеевым экамарганца.

Клетка номер 85 — под йодом. Ее должен был занимать предсказанный Менделеевым экайод, самый тяжелый галоген.

Клетка номер 87 — под цезием. Менделеев называл этот элемент экацезием. Это должен был быть самый тяжелый щелочной металл.

Наконец, клетка номер 61 принадлежала еще не открытому родственнику редкого элемента лантана.

У всех этих, не обнаруженных пока еще, элементов была одна общая особенность — та же, что у открытых последними европия 83), актиния (№ 89), протактивия (№ 91) и рения (№ 75), — элементы с нечетным номером, то есть с нечетным числом протонов в ядре, дольше скрывались от исследователей. Почему именно — никто не знал (это и сейчас еще не известно). Но так или иначе, а то, что все неоткрытые элементы были нечетными, легкого успеха охотникам за элементами не предвещало.

Возможные трудности усугубила еще одна непонятная закономерность, впервые замеченная еще в 1923 году русским химиком С. А. Щукаревым и окончательно сформулированная в 1934 году немецким физиком Маттаухом.

Они изучали атомы с одинаковой массой, но принадлежащие разным элементам. После Мозли, объяснившего, что дело не в атомном весе, а в заряде ядра, такие атомы никого не удивляли. Что из того, что у атомов ниобия, циркония и молибдена может быть одинаковый атомный вес — скажем, 93? Ведь заряд у них разный, значит, и число электронов разное — у ниобия 41, у циркония 40, у молибдена 42. И ведут себя эти атомы одного веса совсем по-разному.

Но вот что обнаружили Щукарев и Маттаух. Среди таких одинаковых по атомной массе атомов разных элементов не может быть двух стабильных, нераспадающихся соседей. Например, если цирконий-93 стабилен, то ниобий-93 радиоактивен. А вот "следующий за ниобием молибден-93 опять может быть стабильным.

И когда приложили это правило к недостающим элементам № 43 и № 61, то выяснили досадную вещь: у обоих были стабильные соседи такого же атомного веса, как они. Значит, нераспадающихся атомов этих неоткрытых элементов существовать не могло. Атомы двух других искомых элементов — № 85 и № 87 — не могли не распадаться потому, что все элементы тяжелее 82-го распадались. Так что всех четырех неоткрытых элементов могло просто не остаться на свете!

Труднее всего было поверить, что не удастся обнаружить легкий элемент под № 43. Но что поделаешь! В таблице Менделеева он находился между молибденом (атомный вес 96) и рутением (атомный вес 101). Значит, атомный вес неоткрытого экамарганца мог быть только 97. 98, 99 или 100. Но у молибдена были найдены стабильные изотопы с атомным весом 96. 97. 98 и 100. А у рутения — 99, 101 и 102. Поэтому места для нераспадающегося экамарганца просто не оставалось. Странно, но факт!

Тем не менее молодой итальянец Эмилио Сегре, знавший все это, начал в 1936 году охоту именно за экамарганцем.


ИСКУССТВЕННЫЙ ЭЛЕМЕНТ

Сегре прекрасно понимал, что на природные минералы ему рассчитывать нечего. Раз до сих пор экамарганец никому не попался, раз все сообщения об открытии новых элементов в марганцевых минералах неизменно оказывались ошибочными, значит, если он когда-нибудь там и был, то весь уже распался.

Точно так же нечего было рассчитывать, что экамарганец мог образоваться при естественном распаде урана, тория, актиния и других радиоактивных элементов. Там дело всегда кончалось свинцом — элементом № 82. А среди промежуточных неустойчивых ядер — таллием, элементом № 81. От номера 81 до номера 43 было слишком далеко.

Нет, на природу Сегре не рассчитывал. Он рассчитывал на циклотрон.

…Во времена, которые уже в эпоху Демокрита и Аристотеля, вероятно, считались древними, существовало такое оружие — праща. Веревку складывали вдвое, в петлю закладывали камень, раскручивали веревку с камнем и, раскрутив, отпускали один конец — камень с силой летел вперед…

Американский физик Эрнест Лоуренс придумал, как закрутить заряженную частицу магнитами, чтоб она, летя по кругу, набирала скорость. И как потом бросить ее в мишень. Там, где ускоренные в циклотроне частицы вылетали по касательной наружу, Лоуренс поставил на их пути массивную металлическую пластину — зуб. Большинство частиц, ударяясь о скошенную грань зуба, отражалось в нужную сторону. Но некоторые частицы проникали внутрь зуба и, конечно, разогревали его. Поэтому зуб приходилось делать из очень тугоплавкого металла. Лоуренс выбрал молибден.

И вот что сообразил Эмилио Сегре: на циклотроне ускоряли ядра дейтериа — тяжелого изотопа водорода; ядра водорода, которые натыкались на зуб и застревали в нем, могли сталкиваться с ядрами молибдена; но если к ядру атома молибдена, элемента № 42, прибавить еще один положительный заряд, то получится ядро элемента № 43.

Молибденовый зуб циклотрона — вот где могло быть единственное на Земле прибежище для экамарганца! Сегре отправился в Америку и получил там кусок облученного на циклотроне молибдена.

30 января 1937 года работа в его лаборатории закипела.

Сперва надо было посмотреть — излучает ли облученный молибден. Оказалось, излучает. Значит, какая-то радиоактивная примесь в нем была.

Но какая именно? Вопрос этот был вовсе не прост, потому что источником излучения мог быть не только таинственный элемент № 43.



В 1934 году Ирен и Фредерик Жолио-Кюри открыли новое явление — искусственную радиоактивность. Обстреливая альфа-частицами алюминий, они обнаружили, что часть его превратилась в неустойчивый, радиоактивный изотоп фосфора. Затем удалось получить искусственные радиоактивные изотопы многих других химических элементов. Какой-нибудь радиоактивный изотоп известного элемента вполне мог оказаться и в облученном молибденовом зубе.

Чтобы обнаружить экамарганец, Эмилио Сегре и его помощник Казимир Перье растворили излучающий молибден в царской водке и химическим путем стали удалять из раствора все атомы с зарядом ядра, отличным от 43. Сначала из раствора вывели ниобий. Но излучение осталось. Потом цирконий. Излучение осталось. Потом молибден. Результат тот же. Потом рутений. То же самое. Особенно трудно было с рением. Но и это труднейшее разделение осталось позади, и рений ушел из раствора. А радио-активность осталась!

И только тогда Сегре и Перье объявили: открыт новый радиоактивный элемент, образовавшийся из молибдена в циклотроне.

Этот искусственный элемент назвали технецием — от греческого слова "технитос" — "искусственный".

Позже тем же способом были изготовлены элемент № 85, названный астатом, и элемент № 61, который назвали прометием. А элемент № 87 — франций, удалось найти среди остатков распада актиния.

Обстрел атомных ядер ядрами водорода и альфа-частицами привел к созданию первых искусственных элементов. Но к еще более поразительным результатам привели опыты, в которых ядра стали обстреливать нейтронами.


ОБСТРЕЛ НЕЙТРОНАМИ

О поразительных свойствах нейтрона Эрнст Резерфорд предупреждал еще тогда, когда у него только-только мелькнула мысль о том, что нулевой атом может существовать. В июне 1920 года Резерфорд говорил: "Такой атом должен обладать небывалыми свойствами. Он должен отличаться способностью свободно двигаться через вещество. Он должен с легкостью проникать в глубины атомов и там может либо соединяться с атомными ядрами, либо подвергаться распаду".

Но к каким событиям могли привести эти небывалые свойства нейтрона — об этом даже Резерфорд догадаться не мог.

Довольно долго не мог догадаться об этом и тот, кто первым вызвал эти события, — итальянец Энрико Ферми, один из самых замечательных физиков XX века.

Энрико Ферми учился в Пизанском университете, а потом — в университетах Германии и Голландии, как раз в те годы, когда наука вступала в эпоху новой алхимии и перед молодыми исследователями открывались неслыханные возможности.

Именно тогда, в начале двадцатых годов, из стен университетов вышли многие прославленные физики и химики мира. Людям старших поколений не так-то легко было воспринять "алхимические" веяния нового времени, и молодежь быстро завоевывала себе место под солнцем. Прошли те времена, когда Томсон смог потрясти всю ученую Англию, став профессором в двадцать восемь лет. Энрико Ферми не было и двадцати пяти, когда он оказался профессором Римского университета.

Ферми принялся обстреливать нейтронами мишени из самых разных элементов, и у него получались самые разные радиоактивные изотопы.

Пока Ферми занимался сравнительно легкими элементами, все было более или менее понятно. Но когда он стал обстреливать уран, появилось множество радиоактивных ядер с неожиданными свойствами — не похожими ни на уран, ни на торий, ни на радий, радон, полоний, ни на прочно радиоактивные элементы, расположенные неподалеку.

И точно такие же непонятные вещи стали получаться у немцев Отто Гана и Фридриха Штрассмана, которые тоже занялись нейтронным обстрелом урана.

Сперва Ферми, а за ним и немецкие исследователи решили, что у них получились атомы новых элементов, которые должны идти в таблице Менделеева после урана, — экарения, экаосмия, экаиридия, экаплатины. Но выделить их химическими способами никак не удавалось. И вдруг — это было уже в 1930 году, на шестой год после начала нейтронного обстрела урана — Ган и Штрассман поняли, в чем дело. И Ферми, и они искали атомные ядра тяжелее урана. А надо было искать легкие, И не чуть-чуть легче, а приблизительно в два раза!

Из урана, элемента № 92, получался не радий — элемент № 88, не свинец — элемент Да 82, а например, бром — элемент № 35, рубидий — элемент № 37, стронций — элемент № 38, молибден — элемент № 42, наш новый знакомый — технеций, элемент № 43.

Нейтрон отбивал от уранового ядра не какую-то малую часть вроде альфа-частицы, а буквально разваливал ядра пополам. И каждый разделившийся надвое атом урана излучал энергии раз в сто больше, чем при альфа-распаде. Со времен Беккереля не обнаруживали атомы таких небывалых свойств!

И еще одна особенность была у нового вида ядерных превращений. Чем тяжелее атом, тем больше нейтронов приходится в его ядре на один протон. Поэтому при распаде ядра урана на два ядра средней массы неминуемо должны были высвободиться "лишние" нейтроны. Подсчеты показали: каждый атом урана, поглотив один нейтрон и развалившись, высвобождает два новых нейтрона.

Тогда не так уж много людей понимало, что означает это роковое число: два. Между тем вот как должны были вести себя эти два нейтрона в достаточно большой массе урана: каждый нейтрон, разрушая новое ядро, освобождал бы два новых нейтрона, каждый из новых двух — еще два, и цепная реакция должна была мгновенно охватить весь уран, освобождая из него чудовищное количество ядерной энергии.

Это поняли Эйнштейн и Ферми, бежавшие от фашистов в Америку, Жолио-Кюри во Франции, Ган и Штрассман в Германии, это поняли и советские физики.

Дальнейшее известно, но ядерное оружие — не тема этой книги…


ПОСЛЕДНИЙ В ТАБЛИЦЕ

Почти одновременно с Энрико Ферми нейтронной бомбардировкой атомных ядер начал заниматься в Ленинграде молодой физик — на год моложе Ферми — Игорь Васильевич Курчатов.

И как только стало известно, что при нейтронном облучении атомы урана делятся и что при этом освобождается гораздо больше энергии, чем при обычном распаде, Курчатов занялся ураном. Двум своим помощникам, Константину Петржаку и Георгию Флерову, он поручил проверить, как зависит деление урана от энергии нейтронов — то есть, попросту говоря, от скорости нейтронных снарядов.

Петржак и Флеров взяли ампулку с радоном — источником альфа-лучей. Взяли бериллий — из которого альфа-лучи могли бы выбить нейтронные снаряды. Взяли урановую смолку. Смонтировали такой счетчик, чтобы от альфа-частиц он не щелкал, а щелкал от импульса в сто раз большего. И приступили к опытам.

Но прежде чем начать нейтронный обстрел урана бериллиевыми лучами, они решили удостовериться, что у них не будет никаких помех. Смонтировав свой прибор, убрали ампулку с радоном, убрали бериллий и включили счетчик. И тут же раздался щелчок.

Они немного подождали. Новый щелчок!

Не в порядке счетчик?

Петржак проверил все лампы, все конденсаторы, все сопротивления, неисправностей не было.

Значит, помехи не внутри прибора, а вне его. Может быть, виноваты космические лучи? А может, еще проще — по соседней улице прошел трамвай, дуга заискрила? Но существовала еще одна возможность, и молодым экспериментаторам она была, конечно, стократ милей: ну, а если это — свидетельство самопроизвольного деления отдельных урановых ядер? Еще Нильс Бор на основе теоретических расчетов, сделанных вскоре после открытия Гана и Штрассмана, предупреждал, что в принципе урановые ядра могли бы распадаться пополам и самопроизвольно. Надо было продолжить эксперимент. И попытаться проверить это. То есть доказать, что виновник щелчка — именно уран. Но следовало избавиться от всевозможных посторонних помех.

Сперва решили уйти под воду, благо море рядом, Стали уже договариваться с подводниками, но потом от этой затеи отказались: Балтийское море мелкое" а космические лучи проходят через десятки метров воды.

Тогда придумали другой выход: московское метро.

И вот Петржак с Флеровым перевезли свое нехитрое оборудование из Ленинграда в Москву и обосновались на станции "Динамо". Шестидесятиметровый слой земли я бетона надежно изолировал прибор от посторонних зарядов.

Вставлен в счетчик тонкий диск с намазанной на него окисью урана, никаких других источников излучения нет поблизости и в помине.

Томительно потянулись минуты, часы. И вдруг — щелчок. И следом — другой.

В прибор вложили еще один диск с ураном, и щелчков стало вдвое больше. Еще один диск — еще больше щелчков. На сколько больше дисков, на столько больше щелчков!

Так произошло открытие самопроизвольного или, по-научному, спонтанного деления.

Ядро атома урана оказалось таким громоздким сооружением, что уже не могло выдерживать собственной массы. Если у висмута, так сказать, чуть-чуть осыпалась штукатурка, если у полония, астата, радона, радия, тория вываливались из стен отдельные кирпичи, то уран разваливался весь.

После открытия самопроизвольного деления урана можно было уже понять, почему таблица Менделеева кончалась на атом элементе: все ядра, начиная с уранового, неизбежно разваливались…

Глава восьмая, в которой даются современные рецепты изготовления золота

ПЕРВЫЕ НАРУШИТЕЛИ

Впервые граница естественной системы элементов была нарушена в конце 1940 года.

Работавшие на циклотроне Лоуренса американцы Мак-Миллан, Эйбольсон, Сиборг, Вейл и Кеннеди, обстреляв ядрами тяжелого водорода урановую мишень, обнаружили новые ядра, у которых был заряд на один и на два больше, чем у урана.

Элемент № 93 был назван нептунием, а № 94 — плутонием — в честь планет, находящихся в нашей Солнечной системе дальше планеты Уран. У нептуния и плутония оказалось много изотопов, как у всех тяжелых элементов. Все изотопы были сильно радиоактивными.

Единичные сверхтяжелые ядра, полученные в циклотроне, по могли, конечно, иметь практического значения. Но очень скоро появился другой их источник — несравненно более мощный.

При облучении урана нейтронами происходят разные процессы — потому разные, что обычный уран, содержащийся в природных минералах, это, собственно говоря, не один уран, а три разных урана, три изотопа. Одного изотопа, с атомным весом 234, так мало, что его можно вообще не принимать в расчет. Другого, с атомным весом 235, гораздо больше. Именно его атомы, поймав нейтрон, тут же делились пополам, выбрасывая два новых нейтрона. Но урана-235 в общей массе природного урана все же менее одной сотой части. А почти все остальное приходится на третий изотоп, с атомным весом 238. Когда нейтроны из урана-235 попадают в ядра урана-238, его ядро, увеличившись на один нейтрон, тут же выбрасывает электрон. Тем самым оно увеличивает на единицу и свою массу, и свой заряд, и вместо элемента № 92 с массой 238 получается элемент № 93 с массой 239 — изотоп нептуния.

Но поскольку природа предпочитает четные числа, такое ядро особенно живучим быть не может. И действительно, уже через полчаса каждое второе ядро нептуния-239 исторгает электрон и таким образом увеличивает свой заряд еще на единицу и становится изотопом элемента № 94, плутония. Хотя массовое число у такого ядра продолжает оставаться нечетным — 239! — все же 94 протона придают ему большую надежность, и такие ядра живут более двух суток. А по истечении этого срока каждое второе ядро плутония-239 самопроизвольно разрывается на две части, подобно ядру урана-235, но при этом может высвободить уже не два новых нейтрона, а три!

Если загрузить в ядерный реактор природный уран, обогащенный ураном-235, то в реакторе начнет довольно быстро накапливаться плутоний.

Этот плутоний и служит основным ядерным горючим для атомных электростанций. По некоторым подсчетам, к двухтысячному году плутоний будет давать половину всего электричества на Земле. Существует даже предположение, что следующий за нашим железным веком исторический период получит название плутониевого века. Вполне возможно.

Однако и само по себе сотворение плутония уже означает великую практическую победу новой алхимии. По сравнению с ней "Дело Солнца" показалось бы, вероятно, даже Роджеру Бэкону и Джеймсу Прайсу процедурой, не достойной серьезного внимания.

И все же интересно, как выглядит это "Дело" сегодня, когда наука ушла от эпохи философского камни на целый виток спирали? Существуют ли современные реценты изготовления золота, отстоящие столь же далеко от прописей доктора Айриша или Иоанна Исаака Голланда?


Современные рецепты
Из ртути и серы

Начнем с рецепта, который в качестве исходных использует материалы, применявшиеся алхимиками.

"В менделеевской таблице ртуть идет сразу за полотом порядковый номер полота 79, а ртути 80. Массовое число единственного стабильного изотопа колота равно 107, а природная ртуть состоит из семи изотопов с массовыми числами 196, 198–202 и 204.

Допустим, "матерью" будет второй по распространенности изотоп ртути Нg-200. Нужно как-то уменьшить заряд ядра ртути на единицу, а массовое число на три, тогда и получится золото.

Обстреляем ртуть ускоренными ядрами "отца" — серы. Возможно, что какие-то из ядер серы отнимут протон и два нейтрона из ядра ртути и тем самым решат поставленную задачу. Вероятность такого взаимодействия очень мала и, кроме того, ядра серы и ртути смогут соприкоснуться только в том случае, если ядра-снаряды будут разогнаны до 30 000 км/сек. Если скорость их будет меньше, то электростатические силы отталкивания не позволят одноименно заряженным ядрам сблизиться настолько, чтобы мог произойти подхват нуклонов из ядра ртути.

Такие быстрые ядра можно получать на современных ускорителях тяжелых ионов, но, конечно, в ограниченных масштабах: тысячетонный циклотрон, построенный по последнему слову техники, за год работы ускорил бы всего около 10 миллиграммов попов серы…

В ядерных реакциях ртуть + сора только один ион-снаряд из миллиардов превращает ядро ртути в ядро атома золота. Все остальные ядра серы будут потрачены на побочные реакции. В итоге, для того чтобы получить этим способом один грамм золота, нужно ускорить тысячу тони серы… Энергия тысячи тонн вещества, ускоренного до 30 000 км/сек, составит примерно 1014 квт. ч. Эта величина — одного порядка с энергией, необходимой человечеству на ближайшие десять лет, и, чтобы расплатиться за нее, не хватит всего золота мира!

Золотой запас всего мира — 50 000 тонн. Если брать за киловатт-час по копейке (по расценкам Мосэнерго 1 квт. ч стоит 4 копейки), то 1014 квт. ч будут стоить 1012 рублей, то есть примерно миллион тонн золота".

Этот и следующие рецепты взяты у Владислава Ивановича Кузнецова, участника работ по синтезу элемента № 104 — курчатовия.


Из ртути и водорода

Здесь уже явное отклонение от классических теорий алхимиков — нет сульфура. Впрочем, и "Се рецепт" Голланда грешил тем же недостатком. Итак…

"Обстреляем ртуть ядрами водорода — протонами. Протон, если его энергия достаточно высока, может выбить несколько протонов и нейтронов из ядра ртути. Существует такое значение энергии протона, когда преимущественно идет реакция с вылетом двух нейтронов и двух протонов и ртуть-200 превращается в золото. Однако и в этом случае затраты энергии будут немногим меньше, чем в реакции сера + ртуть".

Опять плохо…


Из ртутя и нейтронов

О такой возможности алхимики, естественно, подозревать не могли.

"…Поместим в активную зону реактора специальный контейнер со смесью природных изотопов ртути… Начинаем облучать ртуть нейтронами. Примерно через месяц все ядра изотопа Нg-196 захватят по одному нейтрону и превратятся в ядра золота. Конечно, захваченный ртутью-196 нейтрон не меняет заряда ядра, вначале получается лишь новый изотоп ртути Нg-197. Но этот изотоп неустойчив; ядро захватывает орбитальный электрон, один из протонов при этом превращается в нейтрон, и таким образом ртуть, атом за атомом, превращается в золото. Этим способом в 77 литрах природной ртути за месяц можно накопить около полутора килограммов золота.

Почему так мало? Потому что в естественной смеси ртути на долю изотопа ртути-196 приходится всего 0.14 %. (А из остальных ее изотопов получить золото в нейтронных потоках нельзя: массовые числа этих изотопов больше, чем у стабильного изотопа золота.)

Может быть, выгоднее разделять изотопы ртути и облучать только ртуть-196? Примем условно, что стоимость ядра ртути и ядра урана одинаковы (на самом деле чистая ртуть-196 значительно дороже урана-238). В этом случае затраты на синтез одного ядра золота будут такими же, как и на синтез ядра плутония, получающегося при захвате ураном-238 нейтрона. Но ведь плутоний в десятки раз дороже золота, добытого обычными методами. Значит, искусственное золото, полученное самым дешевым способом, окажется во много раз дороже добытого из россыпей…

Такое положение в недалеком будущем вряд ли изменится. Если же "стоимость нейтрона" со временем упадет, то и тогда будет целесообразнее расходовать нейтроны на синтез расщепляющихся материалов, а не золота. Они — нужнее".


Но что нужнее — это, правда, уже другой вопрос. И каким будет ответ на него, когда спираль сделает новый виток, сегодня сказать нельзя.

Еще не создано периодической таблицы для электрона, протона, нейтрона и других элементарных частиц. И сколько их еще предстоит открыть, никому не известно.

Еще не создано периодической таблицы для гравитационного, электромагнитного, ядерного и других полей. И сколько их еще предстоит открыть, не известно тоже.

Скорее всего, в распоряжении наших потомков окажутся такие могущественные силы природы, что сам этот вопрос — на что целесообразней расходовать нейтроны — потеряет для них всякий смысл. И плутонию — как, впрочем, и золоту — они предпочтут нечто такое, о чем мы сегодня можем судить не больше, чем средневековый алхимик — об атомном ядре.



Загрузка...