Вода и жизнь

Жизнь — биологическая форма движения материи. Жизненному процессу в отличие от неживой природы присущ обмен веществ, в основе которого лежат биохимические процессы. Изучение живых организмов, в том числе человеческого тела, показывает, что в их составе не обнаружено каких-либо химических элементов, не свойственных окружающему миру. Связь организма с внешней природой осуществляется через химические вещества, которые постоянно поступают в организм и являются составными элементами живой ткани.

Многие вещества проникают в организм через пищу, обязательной составной частью которой является вода. В организме человека обнаружено около 40 элементов периодической системы Менделеева, и в первую очередь кислород, углерод, водород и азот, содержание которых наиболее значительно. До 80 % минеральных солей (кальций, магний, натрий, калий, фосфор и др.), входящих в состав всех клеток и тканей человеческого тела, поступают в организм с водой. В составе живой ткани эти элементы чаще находятся не в свободной форме, а в виде химических соединений.

Необычайно важную роль в живом организме играет вода, это простое химическое соединение водорода и кислорода. В сложном процессе обмена веществ она занимает центральное место. При обязательном участии воды протекают физические и химические реакции. Являясь хорошим растворителем, она выполняет функции «перевозчика» солей и т. п.

Мы привыкли к воде, как привыкают к самым обычным явлениям — ведь она всегда с нами: в быту, на работе, в природе. Широкая распространенность воды породила представление о ней как о весьма простом теле. В течение многих веков ее принимали за элемент. Сейчас уже никто этого не скажет.

Вода — совершенно необыкновенный минерал. Прежде всего потому, что это самое известное и вместе с тем самое загадочное вещество. О воде, знакомой человеку с колыбели, написаны бесчисленные монографии, ученые продолжают изучать ее свойства. И тем не менее трудно найти другое вещество, в котором было бы спрятано столько труднообъяснимых качеств.

Необыкновенность физико-химических свойств молекул воды основана на способности их изменять структуру водородных связей. Эти связи легче разрушаются и быстро восстанавливаются. Между молекулами воды идет интенсивное взаимодействие, в результате происходит быстрое изменение их структурной решетки. Этим отличается структура молекул воды от других веществ, например твердых кристаллических тел, у которых существует устойчивая структурная решетка. Необыкновенность свойств молекул воды — одна из важнейших основ сложных биохимических реакций, присущих процессам жизни на нашей планете. Чтобы лучше понять роль воды в жизненных процессах, познакомимся со строением и свойствами ее молекул.

Физика и химия воды

Вода состоит из двух атомов водорода и одного — кислорода. Все, казалось бы, просто. Но на самом деле есть 42 сочетания этих атомов в молекуле воды, и 9 из них — устойчивы. Значит, наша обычная Н2O состоит из смеси девяти видов воды, имеющих весьма различные химические свойства.

Эта бесцветная и безвкусная жидкость обладает совершенно уникальной способностью образовывать необыкновенно прочную поверхностную пленку. На ней может лежать стальная игла, если, конечно, ее осторожно опустить. Более того, установлено, что чем чище вода, тем сильнее растет ее поверхностное натяжение, и если бы удалось получить когда-нибудь абсолютно чистую, без всяких примесей воду, то, как полагают ученые, по озеру такой воды можно было бы не только ходить, но и кататься на коньках.

Давно известна людям сила воды. Когда мифический Геракл приступал к свершению своего седьмого по счету подвига, он призвал на помощь силы природы. Чтобы расчистить конюшню царя Авгия, он запрудил реку, и взволновавшийся поток сделал то, что было не по плечу ни одному из эллинов.

Вода заставляет жернова мельниц молоть зерно, крутит колеса пароходов, вращает роторы гидротурбин, побуждая бежать по проводам электричество. Казалось бы, исчерпаны разнообразные возможности этого «исторического» вида энергии, узнаны все его способности. И в то же время нет, не все!

Водная струя диаметром 3–4 мм, подаваемая под давлением от 300 до 500 атм, режет «черный камень» — уголь. При давлении, в 5 раз большем, — мрамор, гранит, песчаник. Срезы аккуратные, гладкие — как ножом (цифра для сравнения: в водопроводном кране вода течет под давлением в 0,5 атм).

В нашей стране созданы основы гидроэкструзии — перспективного метода обработки материалов жидкостью высокого давления.

Метод гидропрессования, у истоков которого стоял выдающийся советский физик академик Л. Верещагин, обеспечивает ювелирную точность изделий при больших скоростях технологического процесса.

Гидромеханический способ добычи угля — один из прогрессивных. В Кузбассе и Донбассе, например, действуют целые шахты гидродобычи, где операции по выемке и погрузке угля выполняет вода. Производительность таких шахт очень высока. К обычным угольным комбайнам разработаны гидронасадки — дополнение для более эффективной и облегченной добычи угля. Работают они в комплексе с основными узлами машины — резцом, выгребающим устройством, конвейером. Но главное преимущество, которое дает приспособление, — это снижение запыленности воздуха в забое.

Образование воды из соединений водорода и кислорода при возникновении электрической искры впервые было отмечено в 1783 г. английским физиком Г. Кавендишом. В последующем известны много исследований по уточнению химического состава и физических свойств воды. То, что вода состоит из водорода и кислорода, показали в 1785 г. французский физик А. Лавуазье, а в 1805 г. — немецкий естествоиспытатель А. Гумбольдт и французский исследователь Гей-Люссак. Они определили состав воды: два объема водорода и один — кислорода молекулярный вес 18.

К настоящему времени установлено существование воды с молекулярным весом 19, 20, 21, 22. Такие молекулы воды состоят из более тяжелых атомов водорода и кислорода, т. е. водорода, имеющего атомный вес более 1, и кислорода — более 16. Оказалось, что в природе встречается тяжелый изотоп водорода с массой 2, который назван дейтерием (D) и еще более тяжелый изотоп, с массой 3, получивший название тритий (Т). У кислорода выявлены три изотопа с атомным весом 16, 17 и 18.

Соединение из двух атомов дейтерия и одного кислорода назвали тяжелой водой (D2O), а соединение двух атомов трития с одним атомом кислорода — сверхтяжелой водой (Т2O). В природных условиях 99,73 % составляет обычная вода с молекулярным составом Н21O16, 0,04 % — тяжелокислородная вода с составом Н21O17 и 0,02 % — H21O18. Доля тяжелой воды (D2O) и сверхтяжелой воды (Т2O) в природных водах чрезвычайно мала.

Тяжелая вода отличается от обычной как по физическим свойствам, так и по физиологическим воздействиям на организм. Испаряется она медленнее, чем обычная вода. Возможно, это является причиной большего содержания тяжелой воды во внутренних замкнутых водоемах южных широт.

Атмосферная вода в процессе круговорота обогащается дейтерием благодаря диссипации протонов в космическом пространстве. Именно благодаря этому дождевая вода более богата тяжелым водородом. Тритий может поступать в атмосферу в результате космических процессов, а также обогащать земную воду, правда, в очень небольших количествах, сверхтяжелой водой.

Любопытна структура внутреннего строения молекулы воды. В центре молекулы обычной воды располагается атом кислорода, а на некотором расстоянии — два атома водорода. Атомы водорода по отношению к атому кислорода находятся не по прямой линии, проведенной через центр атома кислорода, а под углом, равным 105°. Связь между атомами водорода и кислорода в молекуле воды осуществляется электронами.

Поскольку ядра атомов водорода и кислорода расположены несимметрично, молекулы воды имеют форму тетраэдра, в вершинах которого имеются четыре полюса зарядов.

Каждая молекула воды способна соединиться с четырьмя ближайшими к ней молекулами. При этом положительно заряженный полюс одной молекулы притягивает отрицательно заряженный полюс другой. Таким образом могут образоваться группировки молекул, состоящих из двух, трех и более молекул. В зависимости от температуры и давления среды, в которой находится вода, расстояния между молекулами могут увеличиваться или сокращаться. Это делает структуру воды исключительно изменчивой. Повышение температуры вызывает увеличение скорости молекул и расстояния между ними. Максимальная плотность воды достигается при температуре плюс 4 °C.

Вода, как все вещества в природе, при охлаждении от плюс 100° до плюс 4° уменьшается в объеме. При дальнейшем охлаждении воды до 0° ее объем увеличивается. Такое свойство типично только для воды. Ученые объясняют это тем, что при понижении температуры от 4° до 0° происходит перестройка ее внутренней структуры, жидкость превращается в лед, т. е. в кристалл, где молекулы образуют своеобразную решетку.

При замерзании объем воды возрастает примерно на 11 %. В связи с этим замерзание ее в замкнутом пространстве приводит к возникновению избыточного давления, достигающего, как показывают наблюдения, 2,5 тыс. кгс/см2. Этим объясняют разрушительную силу замерзающей воды в замкнутых пустотах, трещинах горных пород, откалывающую подчас многотонные глыбы и дробящую их в дальнейшем на мелкие осколки. С увеличением давления температура замерзания воды уменьшается. Эта зависимость для воды аномальна: у других веществ, наоборот, с ростом давления температура замерзания повышается. Подобная аномалия воды очень важна. Даже без учета растворенных в ней солей вода на больших глубинах в океане не замерзает, причем при температуре минус 3 °C этого не случается даже на глубине около 4 тыс. м.

Так как максимальная плотность воды наблюдается при 4 °C, то лед оказывается легче жидкой воды и поэтому плавает на ее поверхности. Если бы этого не происходило, то водоемы и водотоки промерзали бы зимой до самого дна, что было бы настоящей катастрофой для всего живого в них. Впрочем, эта особенность воды при некоторых условиях имеет исключения. Речь идет о возможности образования донного или внутриводного льда.

Теплоемкость воды в 3,3 тыс. раз выше теплоемкости воздуха. Иными словами, нагревая 1 л воды и 1 л воздуха на 1 °C, мы в первом случае затратим в 3,3 тыс. раз больше энергии, чем во втором. Климатическое значение этой аномалии трудно переоценить. Высокая теплоемкость делает воду главным аккумулятором солнечной энергии и распределителем ее на планете. Морские течения переносят тепло, накопленное летом в морях и океанах, из южных в северные районы земного шара, прогревая на пути воздух и воду, смягчая и выравнивая климат в этих шпротах.

О существовании течений в океанах знали давно: древние греки называли океан рекой и считали, что он течет подобно реке: они могли наблюдать сильные приливы и отливы лишь за пределами своих внутренних морей. Течения переносят громадные массы воды, перераспределяя накопленное Мировым океаном солнечное тепло. Один лишь Гольфстрим по своей мощности превосходит все реки планеты, вместе взятые. Благодаря этому течению каждый квадратный сантиметр европейского побережья получает в год 4 млрд. ккал — столько тепла выделяется при сжигании 0,5 млн. т угля.

В различных районах земного шара известны и другие поверхностные течения — теплые или холодные. Их издавна хорошо изучили мореходы и рыбаки; ученые основывали на данных об их мощности и направлениях свои заключения о циркуляции воды в верхних слоях океана. Например, Гольфстрим уже многие столетия является для мореходов своеобразной рекой в океане. Хорошо зная его режим и направление, опытный кормчий ведет корабль в струе Гольфстрима, сокращая время пути к берегам Европы, и, наоборот, двигаясь в обратном направлении, предпочитает держаться в стороне.

Из физических свойств воды можно обратить внимание на следующее. Толочь воду — не такое уж бесперспективное занятие, как выяснили эстонские ученые. Правда, вместо допотопной ступы они использовали дезинтегратор — своеобразную мельницу со стремительно вращающимися роторами.

Оказалось, что в активированной таким образом воде форель, например, растет в 1,5 раза быстрее. Из 100 икринок форели обычно появляются лишь 50 мальков, а в активированной воде — 90. Повышает она и урожаи различных культур.

Однако пока нет научного объяснения этого явления. Предполагают, что молекулы воды объединяются в некие цепочки, которые с течением тысячелетий удлиняются. Вода, как бы стареет, медленнее проникает в ткани растений и животных. А вот сотни миллионов лет назад, когда на Земле бушевали смерчи и ураганы, вода была богаче энергией, моложе. Рыбы в ней лучше развивались, потому и достигали огромных размеров. Дезинтегратор, по-видимому, проделывает ту же работу — разрушает цепочки молекул.

Являясь хорошим растворителем, вода сохраняет свою инертность. Благодаря этому свойству, живые организмы получают важнейшие питательные вещества в растворах, в малоизмененном виде.

В воде могут растворяться твердые, жидкие и газообразные вещества. Абсолютно нерастворимых в воде веществ в природе нет: в ничтожных количествах этому процессу подвержены даже такие элементы, как серебро, золото, гранит, базальт и др. В естественных условиях практически невозможно представить чистую воду. Она всюду обогащена примесями различных веществ. Дождевая вода имеет примеси веществ, находящихся в атмосфере. В воздухе над морями и океанами содержатся соли, характерные для морской и океанической воды. Вода рек и озер обогащена частицами поверхностной почвы и горных пород.

По содержанию ионов природные воды делятся на пресные, минерализация которых не превышает 1 г/л; минерализованные, содержащие от 1 до 50 г/л минеральных веществ, и рассолы, в которых содержится свыше 50 г/л минералов.

Наиболее распространенные группы минерализации образуются при растворении хлоридов, сульфатов и гид рокарбонатов, находящихся в недрах Земли. По этим признакам проводится классификация вод. Наиболее чаще встречаются воды: гидрокарбонатные, сульфатные и хлоридные.

В природных водах практически всегда присутствуют и микроэлементы. К ним относятся бор, бром, фтор, йод, медь, мышьяк, никель, кобальт, цинк и др. Вместе с водой микроэлементы поступают в организм человека, животных и растений. Хотя концентрации этих веществ находятся в сравнительно малых количествах, но они совершенно незаменимы. Они оказывают влияние на ход и направленность обменных процессов организма. В частности, они способны стимулировать или угнетать ферментные процессы, принимают непосредственное участие в процессах эритропоэза и гемоглобинообразования. Отмечено положительное влияние микроэлементов на рост, размножение и продолжительность жизни животных и растений.

Вода в живом организме

На долю воды приходится основная часть массы любого живого существа на Земле. У взрослого человека вода составляет больше половины массы тела. Именно у взрослого человека, потому что в разные периоды жизни содержание воды в организме изменяется. У эмбриона оно достигает 97 %; сразу после рождения общее количество воды в организме быстро уменьшается — у новорожденного ее уже только 77 %. Дальше содержание воды продолжает постепенно снижаться, пока не станет в зрелом возрасте относительно постоянным. В среднем содержание воды в организме мужчин от 18 до 50 лет составляет 61 %, женщин — 54 % от массы тела. Разница эта связана с тем, что организм взрослых женщин содержит больше жира; при отложении жира вес тела увеличивается и доля воды в нем снижается (у людей, страдающих ожирением, содержание воды может уменьшиться до 40 % от массы тела). После 50 лет организм человека начинает «усыхать»: воды в нем становится меньше.

Больше всего воды — 70 % всей воды организма — находится внутри клеток, в составе клеточной протоплазмы. Остальное — это внеклеточная вода: часть ее (около 7 %) находится внутри кровеносных сосудов и образует плазму крови, а часть (около 23 %) омывает клетки — это так называемая межтканевая жидкость.

Еще в 1858 г. знаменитый французский физиолог Клод Бернар сформулировал принцип постоянства внутренней среды организма — нечто вроде закона сохранения массы — энергии для живых существ. Этот принцип гласит: поступление в организм различных веществ должно быть равно их выделению. Ясно, что и потребление воды должно быть равным расходу. Как же человек расходует воду?

Водные потери организма учесть довольно трудно, потому что немалая часть их приходится на долю так называемых неощутимых потерь. Например, вода в виде паров содержится во выдыхаемом воздухе — это примерно 400 мл/сут. Около 600 мл/сут ее испаряется с поверхности кожи. Немного воды выделяют слезные железы (и не только тогда, когда мы плачем: выделяемая ими жидкость постоянно омывает глазное яблоко); вода теряется также с капельками слюны при разговоре, кашле и т. д. Остальные пути выделения воды легче поддаются учету: это 800—1300 мл в сутки, выделяемые с мочой, и около 200 мл — с испражнениями. Если суммировать все вышеуказанные цифры, то получается около 2–2,5 л; эта цифра, средняя, потому что расход воды может сильно колебаться в зависимости от внешних условий, индивидуальных особенностей обмена или в результате его нарушений.

В соответствии с этим и суточная потребность организма взрослого человека в воде составляет в среднем около 2,5 л. Это, впрочем, вовсе не означает, что человек должен каждый день выпивать не меньше 10 стаканов воды: основная часть потребляемой нами воды содержится в пище. Часть воды образуется также непосредственно в организме в процессе жизнедеятельности — при распаде белков, жиров и углеводов (эндогенная вода). Например, при окислении 100 г жиров возникает 107 мл воды, 100 г углеводов — 55 мл. Следовательно, наиболее выгоден (в смысле получения эндогенной воды) жир. И не случайно значительные жировые отложения наблюдаются как раз У тех животных, которые приспособились длительное время обходиться без воды извне, вырабатывая ее в своем организме. В их числе крупное животное пустыни — верблюд. Резерв жира в его горбе при полном окислении позволяет получить около 40 л эндогенной воды, что составляет суточную потребность в ней животного. Разумеется, солидный запас жира не заменяет полностью верблюду питьевой воды. Жировыми отложениями — источником эндогенной воды, кроме верблюда, обладают в пустыне курдючные породы овец. Жир накапливается в хвостах некоторых тушканчиков, под кожей желтого и малого суслика, ежей и т. д. Исключительно эндогенной водой утоляют жажду австралийские мыши.

Ни один жизненный процесс в организме человека или животного не может совершаться без воды и ни одна клетка не в состоянии обойтись без водной среды. С участием воды протекают практически все функции организма. Так, испаряясь с поверхности кожи и дыхательных органов, вода принимает участие в процессах терморегуляции.

Процесс пищеварения — важнейшая функция организма. Процесс пищеварения в желудочно-кишечном тракте протекает только в водной среде. В этом процессе вода играет роль хорошего растворителя почти всех пищевых продуктов.

Выпитая вода прежде всего всасывается сквозь стенки желудка и кишечника в кровь и с ней равномерно распределяется по всему организму, переходя из крови в межтканевую жидкость, а затем и в клетки. Такой обмен воды происходит довольно интенсивно. Находясь в состоянии соединения с водой, пищевые продукты (белки, углеводы, жиры, минеральные соли) также легко всасываются в кровь и поступают во все органы и затем ткани организма.

Переход воды из крови в межтканевую жидкость целиком подчинен физическим законам. Работа сердца создает внутри сосудов гидростатическое давление, стремящееся вытолкнуть жидкость сквозь стенку сосуда. Этому противодействует осмотическое давление, которое создают растворенные в крови вещества. Точнее говоря, главную роль здесь играет не осмотическое давление, а только та малая его часть (примерно 1/220), которую образуют белки плазмы крови — это так называемое онкотическое давление. Дело в том, что и воду, и низкомолекулярные растворенные вещества, создающие основную часть осмотического давления, стенки капилляров пропускают свободно, но для белков они практически непроницаемы. И именно онкотическое давление, создаваемое белками, удерживает воду внутри капилляра.

В начальной, артериальной части капилляра гидростатическое давление велико — оно гораздо больше онкотического. Поэтому вода вместе с растворенными в ней низкомолекулярными веществами выжимается сквозь стенки капилляра в межклеточное пространство. В конечной, венозной части капилляра гидростатическое давление значительно меньше, потому что здесь капилляр расширяется. Онкотическое же давление, образованное белками, здесь, наоборот, повышается, поскольку часть воды уже покинула капилляр и объем плазмы уменьшился, а концентрация белков в ней возросла. Теперь онкотическое давление становится больше гидростатического, и здесь вода, несущая с собой продукты жизнедеятельности клеток, поступает из межклеточного пространства обратно в сосудистое русло.

Такова общая картина обмена воды между кровью и тканями. Правда, этот механизм применим не во всех случаях; с его помощью, например, нельзя объяснить обмен жидкости в печени. Гидростатическое давление в печеночных капиллярах недостаточно для того, чтобы вызвать переход жидкости из них в межтканевое пространство. Здесь играют роль уже не столько физические законы, сколько ферментативные процессы.

Из межтканевой жидкости вода попадает в клетки. Этот процесс также определяется не только законами осмоса, но и свойствами клеточной мембраны. Такая мембрана, кроме пассивной проницаемости, зависящей от концентрации того или иного вещества по разные ее стороны, обладает еще и свойством активно переносить определенные вещества даже против градиента концентрации, т. е. из более разбавленного раствора в менее разбавленный. Другими словами, мембрана действует как «биологический насос». Регулируя таким путем осмотическое давление, клеточная мембрана управляет и процессами перехода сквозь нее воды из межклеточного пространства внутрь клетки и обратно.

Главный путь выведения воды из организма — почки; через них проходит около половины воды, покидающей тело. Почки — один из наиболее энергично работающих органов, потребление энергии на единицу веса здесь больше, чем в любом другом. Из всего поглощаемого человеком кислорода не менее 8—10 % используется именно в почках, хотя их вес составляет всего 1/200 часть веса тела. Все это свидетельствует о важности тех процессов, которые в них происходят.

В сутки через почки проходит более 1000 л крови — это значит, что каждая капля крови за сутки побывает здесь не меньше двухсот раз. Здесь кровь очищается от ненужных продуктов обмена веществ, которые она приносит из всех органов и тканей растворенными в плазме, т. е. в конечном счете опять-таки в воде.

Когда кровь проходит через начальную, артериальную часть почечного капилляра, около 20 % ее благодаря высокому гидростатическому давлению (в почечных капиллярах оно вдвое выше, чем в обычных) выходит сквозь стенку капилляра в полость почечного клубочка — это так называемая первичная моча. При этом, как и во всех остальных капилярах организма, сквозь стенку почечного капилляра проходят все растворенные в плазме вещества, кроме белков. Среди них помимо отбросов, которые необходимо удалить из организма, есть и нужные вещества, выделение которых было бы бессмысленным расточительством. Этого организм позволить себе не может, и поэтому в почечном канальце, куда первичная моча попадает из почечного клубочка, производится тщательная сортировка. Питательные вещества, различные соли, другие соединения постоянно реабсорбируются — переходят сквозь стенки канальца обратно в кровь, в примыкающий к канальцу капилляр. Ведущую роль в этом процессе реабсорбции играют сложные ферментативные реакции.

Вместе с полезными веществами покидает первичную мочу и вода. В начальном отделе почечного канальца вода реабсорбируется пассивно: она переходит в кровь вслед за активно реабсорбируемым натрием, глюкозой и другими веществами, выравнивая возникающую разницу в осмотическом давлении.

В конечном же отделе почечного канальца, когда реабсорбция полезных веществ уже в основном закончена, возвращение воды в кровь регулируется иным механизмом и зависит только от того, насколько нужна организму сама эта вода. В стенках кровеносных сосудов разбросаны нервные рецепторы, которые очень тонко реагируют на изменение содержания воды в крови. Как только воды становится меньше, чем нужно, нервные импульсы от этих рецепторов поступают в гипофиз, где начинает выделяться гормон вазопрессин. Под влиянием его вырабатывается фермент гиалуронидаза. Фермент делает проницаемым для воды стенки почечных канальцев, разрушая водонепроницаемые полимерные комплексы, входящие в их состав, — как будто открывает кран для выхода воды сквозь стенку канальца. В результате вода, теперь уже следуя законам осмоса, переходит в кровь. Чем меньше воды в организме, тем больше выделяется вазопрессина, тем больше вырабатывается гиалуронидазы, тем больше воды всосется обратно в кровь.

В конечном счете из всей первичной мочи лишь меньше 1 % выделяется почками в виде «настоящей» мочи, которая теперь уже содержит только отработанные продукты жизнедеятельности и только ненужную организму воду.

Экспериментально установлено, что для удаления отходов жизнедеятельности человеческого организма требуется ежедневно не менее 500 мл мочи. Если человек пьет много воды, она разбавляет мочу, удельный вес которой понижается. При недостаточном поступлении воды в организм, когда после восполнения потерь ее через кожу и легкие на долю почек остается меньше 500 мл, часть отработанных продуктов жизнедеятельности остается в организме и может вызвать его отравление. Именно этим опасно водное голодание.

Особенно тяжело человек переносит обезвоживание. Если потери воды не восполняются, то в результате нарушений физиологических процессов ухудшается самочувствие, падает работоспособность, а при высокой температуре воздуха нарушается терморегуляция и может наступить перегрев организма. При потере влаги, составляющей 6–8 % от веса тела, у человека повышается температура тела, краснеет кожа, ускоряется сердцебиение, учащается дыхание, переходящее в одышку, появляется мышечная слабость, головокружение, головные боли и наступает полуобморочное состояние. При потере 10 % воды могут происходить необратимые изменения в организме. Потеря воды в количестве 15–20 % при температуре воздуха выше 30° является уже смертельной, а потеря 25 % воды смертельна и при более низких температурах.

Отходы жизнедеятельности человека выделяются также с потом. В среднем поверхность человеческого тела занимает 1,5 м2.

Человек в сильную жару очень потеет. За сутки он буквально «выдает» ведро пота: был бы сух воздух.

Главная составная часть жидкости в таком ведре — обычная, ничем не примечательная вода. В ней растворены нелетучие и летучие компоненты. С нелетучими ознакомиться просто — пот соленый: около 1 % NaCl, да еще фосфаты и сульфаты. Много в поте и креатинина. А вот с летучими компонентами плохо знакомы даже специалисты, но кое-что все же известно: космобиологи пришли к выводу, что даже мало потеющий человек через кожу выделяет столько веществ, что трехкубовая замкнутая атмосфера за сутки насытится вредоносными соединениями выше предельно допустимых норм. На Земле это не беда, но в космосе форточку не откроешь.

Чтобы космонавтов не задушил собственный пот, необходимы специальные поглотители, причем разные — с потного лица или влажной ладони испаряются такие малоприятные вещества, как метанол, ацетальдегид, этанол, ацетон, изопропанол, уксусная кислота. В этой смеси преобладает уксусная кислота.

Велика роль воды в живом организме. Вода является и средой и непосредственным участником физиологических и биохимических реакций. С водой из организма выделяются различные вещества, образовавшиеся в результате обмена веществ.

Биологическое значение талой и льдоподобной воды

Ни одно вещество на Земле, кроме воды, не может находиться сразу в трех состояниях — жидком, твердом и газообразном. Впрочем, и здесь еще много загадок. При нагревании лед начинает таять: движение молекул под влиянием температуры усиливается, кристаллическая решетка слабеет, связи между молекулами разрушаются, лед превращается в воду. Но оказалось, что талая вода еще долго сохраняет остатки кристаллической структуры, и скрытые от глаз микроскопические льдинки исчезают только при температуре плюс 4 °C и выше.

При нагревании талой воды от 0° до 4 °C ее объем уменьшается. С помощью инфракрасной спектроскопии удалось рассмотреть структуру талой воды: она напоминает ледяной замок с пустыми залами. При нагревании льда стены замка разрушаются — объем уменьшается.

Физики и биологи, медики и ветеринары, земледельцы и животноводы все с большим вниманием изучают свойства талой воды, во многом еще загадочные.

Ранней весной воробьи с наслаждением барахтаются в свежих лужицах. Истощенные, потерявшие было надежду ка приход весны, они очертя голову бросаются в первые лужи и расплескивают вокруг себя искрящиеся фонтаны брызг.

Жителям Севера знакома такая картина: огромные стада оленей отогнаны в места скопления талой воды. Благородные животные блаженно пасутся «по колено» в ледяной воде.

Агрономы провели интересные опыты. Засеяли два равноценных участка: один низкосортными семенами пшеницы, другой — точно такими же, но принявшими в день посева полуторачасовую «снеговую ванну». Опытные растения значительно превзошли контрольные по высоте и толщине стебля, величине колоса. С каждого гектара опытного участка сняли по 18,3 ц пшеницы, с контрольного — только 11 ц.

В последнее время установлено, что вода, связанная с клеточной протоплазмой, и вода, входящая в состав межклеточной жидкости и других образований организма, принимает структуру, напоминающую лед. Такую воду принято называть структурированной. Она замерзает при температуре минус 20 °C (в тканях живого организма существует и свободная вода, которая замерзает при 0°). Структурированная вода более важна для сохранения функции и жизнеспособности тканей человека и растений, чем свободная.

При 36 °C «пустые залы ледяных дворцов структурированной воды заполняются живыми биомолекулами — белками, нуклеиновыми кислотами. Благодаря такой плотной упаковке белок не деформируется и не погибает, вода с упорядоченной структурой участвует в синтезе живого вещества — в биоэнергетических процессах клетки».

И если такая гипотеза справедлива, то талая вода может не только повышать физические ресурсы живого организма, но и препятствовать синерезису — уменьшению содержания воды в клетках в старческом возрасте.

Не в этом ли секрет долгожительства в горных районах, где люди постоянно пьют воду, стекающую с тающих ледников и горных снегов?

Теоретическая разгадка тайны талой воды еще впереди.

Издавна в народе было подмечено, что вода после таяния льда некоторое время отличается от обычной. Ученые установили, что ее можно считать своеобразным биологическим стимулятором. В ней, как уже отмечалось, лучше и быстрее прорастают семена, а ростки становятся мощнее. Даже цыплята, если пьют талую воду, обгоняют в росте своих сверстников. Исследуя физико-химические свойства этой воды, специалисты обнаружили отклонения в ней как по вязкости, так и по диэлектрической проницаемости. Только через несколько суток вода «приходит в норму». Причина этого явления пока не открыта. Но название этому уже дано — «структурная память воды». По выдвинутой гипотезе загадка талой воды таится в тонких изменениях структуры ее молекул.

О важной биологической роли свежеталой воды свидетельствуют наблюдения и специальные исследования, проведенные учеными еще в 60-е годы. Так, в работах И. Г. Лобиной (1965) было отмечено увеличение плодовитости мышей, пьющих талую воду. Б. Родимов сообщает (1965), что, по наблюдениям томских ученых, свинья, которую поили талой водой, родила 10 поросят весом по 1,5 кг, тогда как вес поросят, родившихся от свиньи, получавшей обычную воду, составлял 1,0–1,1 кг. Поросята, которым давали талую воду, в месячном возрасте весили почти в два раза больше своих собратьев, получавших воду обычную. В другом эксперименте две группы кур одного веса содержались в одинаковых условиях за исключением того, что одну из них поили только снеговой водой. В результате куры этой группы снесли яиц в 2 раза больше.

В Томском ботаническом саду огурцы, политые талой водой, давали урожай в два раза больше, чем политые водой обычной. В Томском медицинском институте 25 больных, среди которых были люди различного возраста, страдающие сердечно-сосудистой патологией и нарушением обмена веществ, в течение трех месяцев пили только талую воду. В результате у них было зарегистрировано снижение количества холестерина в крови и отмечено улучшение процесса обмена веществ.

В экспериментальных исследованиях, проведенных О. А. Ластковым (1977), группе крыс и мышей вводили под кожу физиологический раствор, приготовленный на свежеталой дистиллированной воде или давали свежеталую воду для питья. К концу эксперимента эти животные оказались намного жизнеспособнее тех, которым или вводили физиологический раствор на обычной дистиллированной воде или поили ею. По другим наблюдениям экспериментатора, у рабочих «горячего» производства, употребляющих для питья свежеталую воду, снижалась температура кожи и тела, в то время как у рабочих, пользующихся обычной водой, этого не происходило. Группе рабочих-горняков систематически ингалировали свежеталой водой слизистые оболочки носоглотки. В результате они стали намного реже болеть катарами верхних дыхательных путей, ангинами и бронхитами: талая вода способствовала нормализации основных функций слизистой оболочки.

Вода и растения

Вода находится в вечном круговороте. Растения — самые активные участники этого великого природного процесса, благодаря которому ежегодно в движение приводится более 475 млрд. т воды.

Как известно, сухое созревшее семя при правильном хранении может годами не проявлять признаков жизни. Однако, попав во влажную среду, семя начинает набухать и выделять корешок. Этот процесс — прорастание семени — происходит в результате насыщения водой клеток зародыша. В этих условиях и при соответствующей температуре воздуха клетки зародыша начинают размножаться путем деления.

Для того чтобы хорошо представить себе значение воды для растений, важно понять, из чего состоит их тело. Установлено, что главными элементами состава растений являются углерод (45 %), водород (6,5 %), кислород (42 %), азот (1,5 %); зола, включающая различные минералы (5 %). Кислород и водород играют важную роль в формировании белков, жиров и углеводов растений. Источником кислорода и водорода для растений является вода. Углекислый газ проникает через многочисленные микроскопические отверстия (устьичные отверстия) на кожице листьев растений и попадает в межклетки. В процессе; дальнейшего усвоения углекислого газа непосредственное участие принимает также вода. Образующийся при этом кислород выделяется в окружающую атмосферу.

Для превращения углекислого газа и воды в сахар, крахмал и другие органические вещества необходима солнечная энергия. Этот процесс называется фотосинтезом (образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности растений). В результате фотосинтеза растительность земного шара ежегодно образует более 100 млрд. т органических веществ.

Высокая эффективность фотосинтеза высших зеленых растений обеспечивается совершенным синтетическим аппаратом, основа которого внутриклеточные органеллы — хлоропласты.

Оптимальная интенсивность фотосинтеза растений наблюдается при небольшом дефиците воды в листьях. Уменьшение или увеличение воды вызывает уменьшение интенсивности этого процесса. Понижение интенсивности фотосинтеза по мере увеличения количества воды в листьях объясняется затруднением доступа углекислого газа вследствие насыщенности межклеточных пространств водными парами и уменьшением проницаемости мембран протоплазмы, хлоропластов для этого газа. Падение интенсивности фотосинтеза при значительном водном дефиците связано с увеличением вязкости протоплазмы, изменением структуры хлоропластов, что затрудняет доступ (и транспорт) углекислого газа в хлоропласты. Вместе с тем этому может содействовать замедление скорости движения протоплазмы и ее структурных образований при значительном водном дефиците. Важно также учитывать, что вода оказывает непосредственное действие на процесс фотосинтеза: атомы водорода и кислорода молекулы воды служат «строительным материалом» в процессе синтеза органических соединений.

В настоящее время фотосинтез считают окислительно-восстановительным процессом, при котором углекислота восстанавливается за счет водорода воды и других субстратов. Было доказано, что уравнение 6CO2+2H2O →свет→ C6H12O6 + 6O2 отражает лишь частный случай фотосинтеза. В более общем виде (применительно к фототрофным растениям и бактериям, фиксирующим углекислоту) итог процесса может быть выражен следующим образом: CO2 + 2H2A →свет→ (CH2O) + H2O + 2A, где H2A — донор водорода (электрона), а CH2O — символ образуемых органических веществ.

Согласно гипотезе В. М. Кутюрина, механизм окисления воды при фотосинтезе сопряжен с фотоокислением хлорофиллов. Окисленная форма хлорофилла окисляет кислород воды, причем вся последовательность реакций от первичного окисления до выделения кислорода в свободном виде осуществляется путем передачи промежуточных продуктов по ламеллярной структуре хлоропластов.

Физиологические процессы растений могут протекать нормально при условии достаточного насыщения его клеток водой. Основным органом, обеспечивающим водой растения, служит корневая система. Это множество тонких нитей, пронизывающих почву во все направления в виде корешков. Корневая система состоит из трех зон: растущей, всасывающей и проводящей. Зоны эти представляют собой различные возрастные состояния. По мере удлинения корня более взрослая часть заканчивает рост в длину, внутри нее проходят сосуды, проводящие воду. На поверхности взрослого корня появляются корневые волоски, выполняющие роль всасывающего аппарата. Верхушки корневых волосков являются зоной роста. По мере роста корневые волоски превращаются в проводящую зону. Так происходит непрерывное перемещение корней в почве. Всасывающий аппарат — корневые мочки всасывают воду из почвы и направляют ее в проводящие сосуды в восходящем направлении к листьям растений. Корень снабжает растение не только водой, но и элементами минеральных солей (азота, фосфора, калия, кальция, магния, железа, серы и т. д.).

Вода строго регулируется внутри организма растений. Как правило, больше всего водой обеспечиваются те части растений, которые наиболее важны на данном этапе роста и развития. В период роста важнейшими являются листья, в период цветения — органы формирования семени.

Постоянное перемещение воды внутри растений и выделение ее в окружающую среду происходит благодаря активным механизмам — осмотического давления клеток и процесса испарения воды листьев растений. Важнейшую роль в проявлении осмоса играют внешние слои протоплазмы клеток растений. Испарение, воды с поверхности листьев происходит одновременно с проникновением углекислого газа воздуха в клетки растений. Для того чтобы углекислый газ мог проникнуть в клетки растений, необходимо периодически открывать устьичные отверстия на поверхности листьев. В это же время происходит и процесс испарения воды, находящийся в межклетниках растений. Установлено, что за период от сева до уборки одно растение кукурузы испаряет до 200 л воды. Расход влаги с 1 га кукурузного поля составит около 6 тыс. т, 1 га яровой пшеницы — 3,42 тыс, т, ячменя — 4,59 тыс. т, овса — 5,625 тыс. т, клевера — до 7430 т, капусты до 6000 т. Еще больше воды испаряют деревья: взрослая береза — около 70 л в день, липа — 38 л в день. Для создания 1 кг зерна пшеницы нужно от 0,75 до 1,2 тыс. кг воды, соответственно для овса — 1,260 тыс. кг.

С помощью осмотических понятий удалось объяснить поступление воды и растворенных веществ в растительные клетки, так называемый пассивный транспорт. Д. А. Сабинин предположил, что помимо осмотического, т. е. физического механизма, должно существовать и активное поглощение воды клетками, связанное с обменом веществ.

А. М. Алексеев установил: протоплазма, богатая высокополимерными соединениями, оказалась способной к набуханию и отбуханию, что играет положительную роль во внутриклеточном обмене. Он показал, что активная подача воды корнем намного уступает пассивному ее передвижению.

Чем меньше газов в воде, тем она лучше для растений. Вода, лишенная газов, удивительно меняет свою биологическую активность. Так, если воду подогреть до 70°, 90° или до 100 °C, герметично закрыть и охладить до 20 °C и в этой дегазированной воде замочить 1 кг семян сахарной свеклы, то это позволит получить прибавку к урожаю 42–48 %. Два стакана такой воды на килограмм зерна, — и колосья пшеницы дышат интенсивнее. Разумеется, и урожай выше.

Это явление можно объяснить следующим образом. Для роста и развития растений большое значение имеют микроэлементы — мельчайшие дозы меди, железа, марганца, цинка, молибдена, никеля и других металлов, растворенных в воде. Кислород, содержащийся в пузырьках газа, окисляет микроэлементы — и растения их почти не усваивают.

В водном режиме растений важную роль играет влажность почвы. Различные почвы удерживают разное количество воды. Наиболее влагоемки глинистые почвы, наименее — песчаные. Вода в почве находится в состоянии доступном и недоступном для растений. Наиболее доступна для корней растений вода, заполняющая промежутки между комочками почвы. Однако существует вода, входящая в состав почвенной структуры. Такая вода удерживается частицами почвы с большой силой и поэтому становится недоступной для растений. Когда почва увлажнена неравномерно, тогда корень растений старательно обходит сухие участки, предпочитая им более влажные. Если в дневное время в сухую и жаркую погоду растения теряют влаги больше, чем получают ее корневой системой, то ночью, когда процесс испарения снижается, и благодаря нагнетающей работе корней водный дефицит может выравниваться. Если приход воды систематически не покрывает ее расход, растение может засохнуть.

Первое проявление дефицита воды — появление вялости и поникание листьев и стеблей. Установлено, что дефицит воды выше 20 % ведет к снижению интенсивности фотосинтеза — основного процесса образования органических веществ. Если дефицит воды достигнет 50 %, прекращается процесс фотосинтеза. Как показывают исследования физиологов разных стран, водный дефицит является причиной нарушения всех биохимических и физиологических процессов у растений. Происходит снижение интенсивности клеточного деления и роста клеток. Резкий водный дефицит может вызвать прекращение внутриклеточных обменных процессов вплоть до разрушения белков и углеводов.

Вот как реагируют растения на резкий недостаток воды: автоматически закрываются устьичные отверстия, вместе с этим прекращается поступление углекислого газа воздуха и испарение воды из межклетников, приостанавливается процесс фотосинтеза, отсюда как последствие — уменьшается рост надземной части растений. Внутри растения происходит перемещение влаги, более молодые листья оттягивают воду от более старых. В результате недостатка влаги старые листья завядают и затем отмирают. Дальнейший дефицит влаги и повышение температуры может привести к засыханию и молодых листьев. В последнюю очередь реагируют цветочные органы. Когда степень обезвоживания достигает предела, происходит гибель всех клеток и тканей.

В тех случаях, когда вода вновь поступит в растение раньше, чем оно погибнет, то полного восстановления его тканей может не произойти. Такие растения становятся низкорослыми и дают низкий урожай.

У большинства растений существует чувствительный период к недостатку влаги, так называемый критический период, Для зерновых злаков наибольшая чувствительность к недостатку влаги наступает в период трубкования — колошения. Дефицит воды в критический период очень опасен, так как это может привести к снижению урожайности зерновых и других культурных растений.

Установить природу засухоустойчивости во многом помогли работы К. А. Тимирязева, который изложил новую для того времени точку зрения на испарение воды листьями. Он показал, что этот процесс неизбежен. Растения должны периодически открывать микроскопические отверстия в листьях, чтобы давать возможность углекислому газу проникать в клетки, а чтобы водный баланс сильно не нарушался, у растений имеются специальные приспособления для защиты от чрезмерного испарения и перегрева. Растения, обладающие высокой степенью засухоустойчивости, могут переносить значительный дефицит воды. Клетки таких растении не теряют способность проявлять многие важные жизненные процессы, в том числе и образование органических веществ.

Вода может быть поглощена растением в виде пара из атмосферного воздуха. Однако этот путь не имеет существенного значения в обеспечении растений водой, так как это не может спасти их от гибели в условиях почвенной засухи.

Растениям доступна гравитационная и капиллярная вода, и недоступна пленочная (гидроскопическая). Последняя, связанная с коллоидами почвы, может быть использована корнем лишь во время почвенной засухи, в том случае, если корневой волосок приходит с ней в непосредственный контакт. Гравитационная вода заполняет широкие промежутки между частицами почвы и под влиянием силы тяжести постепенно перемещается в ее нижние горизонты нисходящим током. Корни растений легко поглощают ее, пока она находится в зоне их распространения. Капиллярная вода заполняет тончайшие капилляры между частицами почвы, она не перемещается в нижние слои почвы под действием силы тяжести, являясь основным источником воды для растений. Источники воды в почве — атмосферные осадки, грунтовая вода, поливная вода.

Растения усваивают влагу из росы, которая впитывается через устьицы листьев внутрь растений. Таким способом растения дополняют недостаток воды, возникший в течение дня засушливого периода года. Образование росы в целом же оценивается как положительное явление в жизни растений — роса увлажняет не только растительный покров, но и почву. Часть влаги, образовавшейся от росы, всасывается и корнями растений. Случается, что роса служит единственным источником влаги. В некоторых районах земного шара, в частности в прибрежных пустынях Перу и Западной Африки, растения существуют за счет влаги туманов. Растительность в этих районах встречается в горах на высоте образования туманов (около 400 м). Следует отметить, что влага росы и туманов имеет большее значение для дикой растительности, чем для культурных растений.

В засушливых районах земного шара, особенно в пустынях, растения приспособлены к недостатку влаги. Испытывая дефицит влаги в верхних слоях, в погоню за ней устремляются и корни. Наибольшее распространение в пустыне имеют верблюжья колючка, саксаул и некоторые другие растения, у которых надземная часть во много раз меньше подземной. За счет незначительного роста надземной части растения меньше теряют воды на испарение, Корневая же система, чтобы достичь грунтовых вод, проникает на достаточно большие глубины. Длина корней верблюжьей колючки достигает 10–20 и более метров глубины. Саксаул развивает корневую систему до 20–30 м глубины, тогда как обычная высота растения составляет 2–2,5 м. На уровне водоносных слоев почвы корневая система ветвится густой сетью корешков.

Существуют еще индивидуальные особенности, благодаря которым растения по-разному реагируют на засуху. При одних и тех же условиях влажности почвы одни растения могут погибнуть, а другие спокойно существовать. Зависит это от развития корневой системы и сосущей силы клеток корня. Как правило, сосущая сила корней усиливается в сухую погоду и снижается при влажной. Растения, у которых корни имеют большую разветвленность, обладают хорошей сосущей силой. У многих дикорастущих растений корневые системы развиты значительно сильнее, чем у культурных.

Менее других подвержены засухе растения, корни которых идут в глубину по направлению водоносного слоя. Такими являются пустынные растения. Корневая система у таких растений разветвляется как в глубине — до нескольких метров, так и у поверхности — до 1 м. Поверхностная система корней поглощает влагу весной, когда почва достаточно увлажнена водой после дождей и растаявшего снега.

За счет слабого развития листьев растения в пустыне мало теряют воду путем испарения. Листья, превратившиеся в колючки есть у большинства кактусов и верблюжьей колючки, в виде шиловидных выростов они сохранились у некоторых опунций и белого саксаула и т. д. Для того чтобы меньше испарялась вода на поверхности листьев у медвежьего ушка развито густое мохнатое покрытие, а у других — камелии, фикуса, иглицы — имеется глянцевая поверхность стеблей и листьев, отражающая солнечные лучи и предохраняющая от перегрева. Для этих же целей у серебристого лоха развиты чешуйки. В пустыне некоторые растения, чтобы предохраниться от перегрева и сократить испарение воды, выделяют эфирные масла или кристаллы минеральных солей, способных преломлять солнечные лучи, покрывают поверхность листьев восковым налетом и смолистыми веществами.

Большую защитную роль играет расположение листьев. Чтобы сохранить влагу почвы, листья растений в дневное время располагаются параллельно почве, тогда как ночью поворачиваются к ней ребром. Алоэ, кактусы и многие другие растения накапливают влагу в стеблях, листьях и корнях.

Растения отдают воду во внешнюю среду через устьичный аппарат листьев. Вместе с тем многие растения в сухое время года, чтобы сохранить потери влаги, приспособились сбрасывать листья и даже целые побеги. К ним относятся саксаул, джузчун и др. Такие растения приспособлены жить в местах сухого климата. Они отличаются и по внешнему виду от тех растений, которые требуют для жизни достаточной влаги.

В целом же растения в процессе эволюционного развития приспособились к различным условиям водообеспечения. Вода для одних растений является не только необходимым продуктом, но и средой обитания. Растения влаголюбивые — гидрофиты (от греч. «гидро» — вода и «фитон» — растения) — растут полностью или частично погруженными в воду. Это водоросли и цветковые водные растения. К растениям, местом обитания которых являются умеренно увлажненные почвы, относятся большая группа мезофитов (от греч. «мезос» — средний): луговые травы типа клевера, злаки, большинство лесных трав, почти все лиственные деревья, многие полевые культуры (овес, рожь, картофель), овощные (капуста, укроп, салат), плодово-ягодные (яблоня, смородина и др.). При достаточной влаге почвы они приносят большой урожай зеленой массы и плодов. Эти растения плохо переносят как засуху, так и чрезмерное увеличение влаги.

Наиболее устойчивы к засухе растения ксерофиты (от греч. «ксерос» — сухое, приспособленные жить в местах сухого климата — степях, полупустынях и пустынях). Ксерофиты, в свою очередь, делятся на две группы. Среди них — большая группа суккуленты (в переводе с лат. — «сочный», «жирный», «толстый»). В стеблях и листьях суккулентов запасается вода. Этому способствует особое строение их клеток и тканей. Вода расходуется очень экономно. Устьиц на поверхности листьев мало и расположены они в ямках — бороздах, которые большей частью времени закрыты. Вследствие этого испарение воды происходит ограничено. Корни у суккулентов располагаются на поверхности почвы, поэтому пополнение воды идет после дождей. В тканях кактусов содержится до 95 % воды. Кактусы в Южной Америке высотой до 20 м способны накапливать до 1000 кг воды. Много кактусов в жарких сухих районах Мексики, Южной Африки и в Австралии, где периодически идут ливневые дожди.

Другая группа ксерофитов называется склерофитами (от греч. «склерос» — твердый, жесткий). Эта саксаул, верблюжья колючка, полыни и др. Содержание воды в тканях этих растений очень мало, они могут выдерживать потери воды до 25 % и более. Корневая система развита хорошо и достигает до водоносного слоя почвы. Надземная часть меньше, чем корневая система.

Растения оказывают большое влияние на поддержание влаги в почве и в воздухе. Особенно это проявляется в лесу и близрасположенной к нему территории. Во время дождя большое количествое воды тратится на смачивание кроны деревьев, много воды в виде капелек удерживается па листьях. Наибольшее количество дождевой воды и снега удерживают еловые деревья, слабее — лиственные. Деревья создают такие условия, которые способствуют уменьшению испарения воды из почвы. Кроме того, сами деревья выделяют большое количество воды в воздух.

Подсчитано, что в течение вегетационного периода лес испаряет в воздух такое количество влаги, которое почти равно годовой сумме выпадающих осадков. Все это является важным фактором сохранения и регулирования водных ресурсов и создания благоприятного климата в лесу и близлежащих территориях. Поэтому в настоящее время придается большое значение лесонасаждению, которое широко проводится в нашей стране для снегозадержания, уменьшения вредного влияния на сельскохозяйственные поля ветров и т. д.

Таким образом, вода — необходимое условие для жизни растений. При участии воды совершаются практически все физиологические процессы. Образуя внутреннюю среду, вода оказывает активное влияние на протекание жизненных процессов. Кроме того, вода создает условия единства и взаимосвязи почвы, растений и атмосферы.

Загрузка...