В одном из научно-исследовательских институтов Академии наук СССР спроектировали сложную высоковольтную электрическую установку. Подобного рода установок еще нигде и никогда не было. Не только в Советском Союзе, но и за границей с нетерпением ожидали окончания изготовления установки и ее пуска.
Наконец работы подошли к концу. Для приемки установки была создана специальная комиссия из виднейших ученых страны. И вдруг случилось несчастье. Тяжелый медный электрод упал на сложный фигурный фарфоровый изолятор, служивший основанием важнейшего узла установки;, и разбил его вдребезги.
Работники института были в отчаянии. Приходилось откладывать приемку и пуск установки дней на сорок, а то и больше. Изготовление, сушка и обжиг изолятора требовали много времени. Одна только сушка занимала двадцать пять дней.
Что делать? Пришлось разбирать установку, собранную с таким трудом. Один из инженеров, участвовавших в монтаже, куда-то исчез, и товарищи по работе решили, что он, по всей вероятности, заболел. Но с квартиры инженера сообщили, что он так занят, что в течение нескольких дней не будет ночевать дома. На следующий день инженера на работе не было, не пришел он и на третий день. Все волновались. Только главный инженер института был спокоен, таинственно отмалчивался или шутил: «Что ж мудреного? Разбили изолятор, вот человек и запил с горя».
Прошло три дня. К зданию института подкатил грузовик. B кузове его стояли два ящика. Из кабинки выскочил пропадавший инженер. Его измученное, небритое лицо было озарено сияющей улыбкой. Прыгая через три ступеньки, он мигом поднялся в лабораторию и еще с порога закричал:
— Изоляторы привез! Помогите их выгрузить — и за работу.
Пораженные сотрудники раскрыли рты. Таких изоляторов никто, нигде и никогда не изготовлял, достать их готовыми было совершенно невозможно. Еще менее возможно было изготовить их в течение трех дней.
— Что вы на меня уставились, словно я с Луны свалился? — спросил инженер, нарушая наступившую тишину. — Говорят вам — привез изоляторы.
— Если бы с Луны свалился, это было бы менее удивительно, — пробормотал один из сотрудников. — Где ты их умудрился достать?
— Не достать, а сделать, — отвечал приехавший.
— Сделать? — хором воскликнули все присутствовавшие. — Так ты, что же, сырыми их привез, что ли!?
— Да нет же. Все в порядке. Сделали, высушили, обожгли. Пойдемте разгрузим, потом все расскажу.
Когда изоляторы доставили в лабораторию, виновник этого события приступил к рассказу о своих похождениях:
— Сделать изоляторы в такие сроки помогла мне, — кто бы вы думали? — электронная лампа. Изоляторы сушились по новому способу, в поле высокой частоты, которое получалось в конденсаторе лампового генератора. Об этом способе сушки я вспомнил, когда разбился изолятор. Но никаких подробностей не знал. Пришлось заняться поисками и переговорами. На это я убил больше всего времени — двадцать шесть часов. Затем четыре часа ушли на подготовку и два часа с минутами на изготовление изоляторов. На всякий случай сделали парочку. А потом началось самое страшное — сушка. Раньше-то мы сушили их в тепловых сушилках двадцать пять дней, и то из пяти штук получили один изолятор, а четыре пришлось забраковать. Мне же пообещали высушить мои изоляторы за шесть часов. Шесть часов я трясся, как в лихорадке. Когда стали вынимать изоляторы из конденсатора, меня уже не держали ноги. Но все окончилось замечательно. Оба изолятора были отличного качества, без единой морщинки или трещинки. Обжиг, охлаждение, упаковка и доставка заняли тридцать с лишним часов. И вот не прошло и трех суток…
Установка была запущена точно в назначенный срок.
За последние годы электронная лампа проникла в самые различные области народного хозяйства.
Вот сейчас мы встретились с ней при сушке керамических изделий. А ведь таким же способом можно сушить сырую древесину, чай, табак. В чем тут дело?
Мы уже знаем, что с помощью электронной лампы в контуре, состоящем из катушки и конденсатора, можно получить колебания электрической энергии.
Схема колебательного контура.
Как маятник часов отклоняется то вправо, то влево, так электрическая энергия, находящаяся в контуре, перебегает то в катушку и собирается там в виде магнитного поля, то в конденсатор и скапливается в нем в виде электрического поля. Если бы в часах не было пружины или гири, то маятник покачался бы и остановился. Точно так же, если бы не было лампы, то электрические колебания быстро затухли бы. Пружина в часах и лампа в электрическом контуре не позволяют колебаниям прекратиться. Частота колебаний зависит от величины катушки и конденсатора и бывает от нескольких десятков в секунду до многих миллионов.
Таким образом, внутри катушки образуется переменное магнитное поле, а между пластинами конденсатора — переменное электрическое поле.
Если в эти поля поместить какой-нибудь металлический предмет, то в электрическом поле с ним никаких изменений не произойдет, а в магнитном поле он будет сильно нагреваться, причем интересно, что тепло будет выделяться только на его поверхности, середина же его может остаться совсем холодной. Глубина прогрева будет тем меньше, чем выше частота.
Совершенно по-иному будет вести себя предмет, сделанный из какого-нибудь непроводящего материала — диэлектрика. Он нагреется в электрическом поле конденсатора и останется холодным в магнитном поле катушки, и в отличие от металлического предмета тепло будет выделяться в нем равномерно по всему объему. Такой равномерный нагрев во всей толще материала можно получить только при помощи электрического поля. При всех других способах нагрева раньше будет нагреваться поверхность предмета, а потом уже тепло распространится в глубину.
Большинство важных и интересных применений электронной лампы в промышленности основано именно на этих особенностях поведения материалов в переменных электрическом и магнитном полях.
До последнего времени сушка производилась теплым воздухом. Обтекая материал, подлежащий сушке, воздух нагревал его, в результате чего влага с поверхности материала испарялась, а находящаяся в глубине поступала к наружным слоям. Если скорость продвижения влаги из внутренних слоев соответствовала скорости испарения ее с поверхности, то материал высыхал равномерно по всей толщине и не повреждался. Если же такого соответствия не было, то различные слои материала усыхали неравномерно, он начинал растрескиваться подобно тому, как трескается чайный стакан при вливании в него кипятка.
В переменном электрическом поле высокой частоты высушиваемый материал нагревается сразу по всей своей толще, но благодаря испарению влаги с поверхности верхние слои несколько охлаждаются. Более высокая температура глубинных слоев значительно усиливает выход влаги из толщи материала и во много раз сокращает время его сушки.
Переменное электрическое поле высокой частоты применяется не только для сушки керамических изделий, но и для многих других материалов.
Отлично сушится древесина. Чтобы высушить теплым воздухом дубовый квадратный брус со стороной в 10 сантиметров, надо затратить дней сто. Без большого брака дело не обходится. Если же скорость сушки увеличить вдвое, то почти все бруски будут с трещинами. Эти же дубовые бруски, помещенные в электрическое поле мощного генератора, высушиваются за несколько часов и почти совершенно без брака.
Сушка в электрическом поле высокой частоты чая, табака и некоторых других ароматических продуктов не только ускоряет их высушивание, но и в значительной степени повышает их качество.
Продукты питания при консервировании нагревают в паровых ваннах до определенной температуры. Часть продукта, находящегося у стенок банки, разваривается, теряет питательность и вкусовые качества, в то время как внутренние могут не успеть прогреться. При консервировании же продуктов в электрическом поле высокой частоты продукты прогреваются равномерно по всей массе, не развариваются и полностью сохраняют питательность, аромат, натуральный цвет и вкус.
С помощью ламповых высокочастотных установок можно вытапливать жир из отходов на бойнях. Жиры не пригорают и получаются лучшего качества.
Широко используется в промышленности свойство металлов нагреваться в переменном магнитном поле высокой частоты. Металлурги построили специальные, так называемые индукционные печи, в которых производят плавку высококачественных металлов и руд. В этих печах металл, подлежащий плавке, помещается в магнитное поле катушки. Частота контура берется относительно низкой, чтобы металл прогревался сразу на большую глубину. Индукционные печи обеспечивают абсолютную частоту плавки и исключают возможность случайного попадания вредных примесей, газов и т. п.
Удивительное свойство переменного магнитного поля высокой частоты нагревать только поверхностный слой металла дает возможность производить закалку только одной поверхности стальных изделий и инструментов. Выбирая соответствующую частоту генератора, можно закалить металл на необходимую глубину, оставляя середину металла в незакаленном состоянии. Такая закалка дает поверхности закаливаемых деталей инструментов необходимую твердости, уменьшает их износ и в то же время не ослабляет их общей прочности.
Невозможно переоценить значение, которое играет в нашей жизни металл. От огромных броненосцев до золотых зубов и от электрического кабеля до чайной ложки — все это металл. Жизнь современного общества совершенно немыслима без металла. Да и не только современного. В зависимости от того, какой металл был наиболее ходовым в определенное время, целые эпохи в развитии человеческого общества стали называть его именем. Так был бронзовый век, железный век…
Самым расточительным истребителем всевозможных металлов является война. Танки, пушки, снаряды, самолеты, бомбы, пули — все это металл. И все это непрерывно расходуется в процессе боев и требует все новых и новых пополнений.
Откуда же берутся металлы?
Как известно, основная их масса добывается из земли. Иногда рудные залежи находятся прямо на поверхности земли. Но это случается редко. А чаще всего залежи руд находятся глубоко под землей, и, чтобы их обнаружить, надо вести самые тщательные поиски.
В не очень отдаленные времена разведка велась так: первым делом производилось геологическое изучение местности. Если у геологов появлялись подозрения, что в данном месте могут находиться залежи руды, разведчики приступали к рытью колодцев и канав. В тех случаях, когда руда залегала неглубоко, ее удавалось обнаружить. Если же она находилась глубже вырытых колодцев, то разведка не давала результатов, и лишь в некоторых случаях, по косвенным указаниям, устанавливали, что руда лежит на большой глубине. Для глубокой разведки приходилось рыть особые колодцы — шурфы. Их глубина достигала многих десятков метров. Этот способ разведки очень медленный и очень дорогой.
Есть более дешевый способ разведки — бурение, когда в земле сверлят дыру, глубина которой доходит иногда до тысячи метров. Бывали случаи, когда скважина проходила рядом с рудой, но не задевала ее, и разведка давала отрицательные результаты.
Но вот на помощь разведчикам пришло электричество!. Оказалось, что для разведки залежей руды можно с успехом использовать множество самых различных электрических методов. В результате выросла даже новая отрасль науки — электроразведка.
Последним достижением этой науки является разведка с помощью электромагнитных волн, а эти волны, как известно, создаются и принимаются электронными лампами. Исследуя пути распространения этих волн в толщах земли, можно глубоко зондировать почву и определять нарушения ее однородности, то есть присутствие воды или рудных залежей.
Новые методы разведки с электронными лампами дали колоссальное ускорение и удешевление разведывательных работ. И сегодня электронная лампа стала участницей большинства разведывательных экспедиций.
Известная пословица говорит: «На вкус, на цвет товарищей нет». Разные бывают вкусы. Одному все достижения электронной техники, разнообразнейшие применения электронной лампы покажутся невероятными, поразительными, чудесными, а другой скажет: «Ну чего же здесь особенного, что по радио передаются концерты, или фотографии, или даже движущиеся изображения или что Кренкель, находясь на Земле Франца-Иосифа, чуть ли не у Северного полюса, разговаривал с экспедицией адмирала Берда, находившейся вблизи Южного полюса? Это, конечно, здорово, но что ж тут чудесного? Радиопередача — и все. Вот волшебная лампа Аладдина! действительно могла творить чудеса. Попробуйте-ка со своей электронной лампой добыть золото или какие-нибудь драгоценности, как это сделал Аладдин для подарка султану».
Но и тут электронная лампа сумела показать свои волшебные свойства.
Ученые-физики за последние два-три десятилетия овладели многими тайнами атомного мира. Они не только изучили важнейшие свойства атомного ядра, но и научились эти ядра расщеплять и перестраивать, то есть превращать одни вещества в другие. Сбылась наконец мечта алхимиков, искавших «философский камень», с помощью которого они хотели превращать свинец и другие металлы в золото.
Расщепляя атомные ядра, ученым удавалось получать не только золото, но и в тысячи раз более дорогие радиоактивные вещества.
Больше того, ученым удалось получить не только существующие на земном шаре элементы, но и создать новые, обладающие большим атомным весом, чем самый тяжелый из земных элементов — уран.
Проникая в тайны атома, ученые пришли к заключению, что материя и энергия представляют нечто единое, что может переходить друг в друга подобно тому, как один вид энергии может переходить в другой; например, электрическая энергия в механическую или в тепловую.
Удалось установить и эквивалент[4] перехода материи в энергию, который оказался невероятно большим. При превращении в энергию 1 грамма вещества мы получили бы 25 миллионов киловатт-часов. Это почти двухсуточная производительность Днепровской электростанции.
В будущем, когда ученые детально изучат атомное ядро и овладеют внутриатомными процессами, перед человечеством откроются такие возможности, которые мы сейчас не в состоянии себе даже пред ставить.
Ну, а при чем же здесь электронная лампа!?
Лампа при том, что преобладающее большинство проблем в области изучения атома и его внутреннего строения удалось разрешить при помощи остроумного прибора — циклотрона, важнейшей частью которого является электронная лампа. Основные успехи, достигнутые в деле превращения одних веществ в другие, в том числе и превращение ртути в золото, получены посредством циклотрона.
Таким образом, и это чудо — получение золота и драгоценностей — может сотворить электронная лампа.
Один известный астроном, который провел половину своей жизни у телескопа, наблюдая и изучая звезды, кометы и планеты, пришел однажды к странному заключению, что глаза являются совершенно непригодным средством для наблюдения за небом.
— Глаз капризен, — заявил он, — неточен, делает огромные ошибки. Недаром говорят об определениях «на-глазок». И, наконец, глаз очень легко утомляется.
— Что ж, вы нюхать или на вкус собираетесь пробовать свои звезды в телескопе? — сострил один из собеседников.
— Нюхать не нюхать, но для астрономических исследований надо зрение заменить каким-нибудь более совершенным средством наблюдения.
И действительно, вскоре на смену глазу пришла фотопластинка. Она дала возможность запечатлеть слабые и удаленные на огромные расстояния звезды, заняться их изучением в спокойной, удобной, дневной обстановке. Наблюдения перестали быть субъективными, зависящими от характера наблюдателя. Фотоснимки стали являться неопровержимыми документами.
Но и фотопластинка не дает возможности точно определить яркость звезд. А множество проблем, интересующих астрономов, может быть решено только точнейшими измерениями яркости. И тут также пришел на помощь исключительно точный электронный прибор — фотоэлемент. Фотоэлемент с усилителем на электронных лампах позволил производить разнообразные световые измерения с вполне удовлетворяющей астрономов точностью. Она значительно превышает точность фотопластинки.
Фотопластинка, накапливающая во время продолжительной экспозиции свет отдаленнейших звезд, пока еще держит первенство по проникновению в глубины вселенной. Но астрономам этого уже мало. Однако увеличить чувствительность пластинки пока не удается. Увеличение же мощности телескопов встречает огромные конструктивные трудности. Самый большой телескоп имеет диаметр зеркала 5 метров, а астрономы хотят проникнуть в такие глубины звездных пространств, которые требуют телескопов с зеркалами в несколько сот метров.
Положение казалось безвыходным, но выручили опять-таки электронные приборы. Французский астроном Лаллеман своеобразной комбинацией фотоэлемента и фотоаппарата получил возможность фотографировать звезды, в сто раз более слабые, чем при обычном фотографировании на той же пластинке и с тем же телескопом. Правда, этот способ фотоэлектронной съемки еще встречает значительные трудности, но есть надежда, что трудности эти временные и будут преодолены в самом ближайшем будущем.
Есть еще, кроме радио, одна отрасль техники, где проявление электронных приборов произвело настоящий переворот, — это измерительная техника.
Изобретение измерительных электронных приборов и в связи с этим разработка новых методов измерений обогатили человеческие знания и содействовали быстрому развитию многих наук.
Усилители с электронными лампами значительно улучшили различные электрические измерительные приборы, сделали их более точными, более чувствительными: они позволили измерять такие малые величины, о которых раньше и мечтать не приходилось. Стало, например, возможным измерять такие малые напряжения, как напряжение, получаемое от реакции нервов; такие малые токи, когда по цепи проходят всего лишь несколько электронов в секунду; такие малые расстояния, как расстояния между атомами в молекуле; такие краткие периоды времени, как время, необходимое для проскакивания искры в разряднике; такие малые силы света, как излучение далеких звезд.
Фотоэлементы позволили с недостижимой ранее точностью производить самые, разнообразные световые измерения.
Но не только для светотехнических измерений и измерений малых величин нашли применение измерительные приборы с электронными лампами и фотоэлементами.
Имеется большое количество хитроумных и оригинальных измерительных приборов для производства самых разнообразных измерений — электрических, акустических, физических.
Очень часто электронные измерительные приборы объединяются с устройствами для разного рода автоматических регулировок. Имеются, например, установки, которые одновременно с измерением производят и автоматическую регулировку влажности, температуры, электрического напряжения.
Электронная аппаратура, вошедшая в промышленность, облегчает и ускоряет производственные операции. В качестве интересного примера такого необычайного ускорения производства можно привести оригинальную установку по регулировке часов. Обычно на часовых заводах регулировка хода часов требует больших затрат времени. Чтобы установить, спешат часы или отстают, им необходимо дать довольно долго походить. Посредством же специального устройства можно в течение нескольких секунд установить, уходят часы вперед или назад. На полную регулировку с точностью до 10–15 секунд в сутки затрачивается всего лишь около 5 минут.
За последние годы в ряде стран, в особенности в США, на промышленных предприятиях, на транспорте и даже в быту стала находить широкое распространение так называемая электронная автоматика. Это такие механизмы и устройства, вся работа которых с помощью различных электронных приборов производится автоматически, без участия рабочего.
Электронная автоматика значительно ускорила и удешевила производственные процессы, обеспечила безопасность работы на опасных участках, осуществила быстрый, точный и непрерывный контроль выпускаемой продукции и улучшила ее качество.
Важнейшей и почти непременной частью таких автоматических установок являются фотоэлементы. После звукового кино и телевидения автоматика является главнейшей областью применения фотоэлемента.
Автоматическое управление с помощью фотоэлементов непосвященному кажется каким-то изумительным фокусом. Ведь прямо невероятно, что луч света, часто даже невидимый глазом, может пустить в ход или остановить громадную печатную машину, выбрасывающую 100 газет в секунду, или сортировать без участия человеческого глаза различные изделия по их цвету, форме, размерам, прозрачности или другим признакам.
Фотоэлементы применяются в сотнях автоматических устройств: тут и открывающиеся двери гаража, когда на них падает свет фар подъезжающего автомобиля, и питьевой фонтанчик, начинающий действовать, когда над ним наклоняется человек, и включение освещения с наступлением темноты, взрывание мин при попытках ее обезвредить и множество других.