Основы нашего понимания мира… В физике это — квантовая механика. Она — следующая ступень за механикой Ньютона. А есть ли еще более глубокий уровень — «заквантовая» теория? И почему квантовая механика такая трудная наука? Даже студентов-физиков в университете знакомят с ней только на третьем курсе, когда они освоят уже массу других предметов. Может, дело в том, что физики просто еще не проникли в суть ее законов? Знаете, как бывает с арифметической задачей: можно провозиться с ней целый вечер, а если ввести x и составить уравнение, решение находится за несколько минут. Может, «заквантовая» теория тоже все упростит?
Фундамент любой физической теории — пространство и время. Но что это такое? Обычно этот вопрос даже не возникает, так как ответ кажется очевидным: вот оно пространство вокруг нас и вот часы, показывающие время! Однако, если попытаться ответить точнее, сразу же возникают трудности. Получается так, что самые обыденные и привычные для нас свойства окружающей природы вместе с тем — самые загадочные и непонятные. Действительно, что самое главное в свойствах пространства и времени? Для времени это, по-видимому, его течение от прошлого к будущему. Пространство обычно представляют себе чем-то вроде пустой арены, на которой располагаются все физические тела и разыгрываются все процессы. Но всегда ли так? Нельзя ли каким-то образом изменить направление времени на обратное, как это делают авторы научно-фантастических романов? И можно ли пространство считать всегда лишь ареной? Мы знаем, что его кривизна проявляется как сила тяготения, может, и все другие силы природы тоже всего лишь проявления каких-то свойств пространства?
Итак, речь пойдет о «сумасшедших» идеях и теориях, выходящих далеко за рамки общепринятых научных взглядов. Скорее всего, большинство из них так и останутся «сумасшедшими», не подтвердившимися на опыте гипотезами. Но они помогают лучше понять окружающий мир и разведать пути дальнейшего развития физики. Без такой глубокой разведки наука развиваться не может.
Американский физик-теоретик Ричард Фейнман как-то заметил, что хотя квантовая механика существует уже более полувека, ее до сих пор не понимает ни один человек в мире. И тут же добавил, что он может утверждать это вполне смело. Заявление, прямо скажем, удивительное, особенно из уст одного из самых знаменитых физиков нашего времени.
Как же так? Ведь с помощью квантовых законов рассчитываются тончайшие явления микромира и выводы подтверждаются с огромной точностью, иногда до миллиардных долей процента. Более того, квантовая механика уже давно используется на практике — например, лазер был изобретен, рассчитан и создан на основе квантовых законов. Эти законы управляют работой электронных микроскопов, используются при проектировании новых электронных приборов, с их помощью рассчитывают свойства сверхпроводников, способных без потерь передавать электрический ток на огромные расстояния. Квантовая механика нашла применение в химии и даже биологии. Как же можно говорить, что никто ее не понимает?!
И тем не менее в утверждении Фейнмана есть большая доля истины. Все дело в том, что поведение микрочастиц настолько непохоже на движение окружающих нас тел, что кажется противоречащим здравому смыслу. Неискушенному человеку часто трудно поверить, что такое может быть в природе. В нашей повседневной жизни мы привыкли к тому, что все тела движутся по строго определенным путям-траекториям. Если известна начальная скорость тела и действующие на него силы, то с помощью законов Ньютона его траекторию можно точно вычислить. Подобную задачу, наверное, приходилось решать каждому школьнику. В любой момент времени мы можем точно установить, в каком месте находится тело и какова его скорость. Точность законов Ньютона очень высока, с их помощью можно, например, предсказать движение небесных тел на многие десятки и сотни лет вперед. Но вот если попытаться применить эти законы к движению микрочастиц, то придем к поразительному выводу: частицу можно обнаружить в любой точке любой траектории, соединяющей начало и конец ее пути! Получается так, как будто частица движется сразу по всем траекториям либо совершает что-то вроде «броуновского движения» («броуновской пляски») в абсолютно пустом пространстве, многократно, без всякой видимой причины, изменяя направление своего движения и мгновенно перемещаясь из одной пространственной точки в другую.
Как известно, в начале прошлого века, наблюдая под микроскопом взвесь мелких частичек в жидкости, английский ботаник Роберт Броун заметил, что все они «пляшут» — выписывают запутанные зигзагообразные траектории. Как теннисные мячики, по которым случайным образом бьют невидимые ракетки. Сегодня мы знаем, что роль таких ракеток играют молекулы жидкости, которые сталкиваются с частицами взвеси и передают им свое хаотическое тепловое движение. Но что может толкать частицу в абсолютно пустом пространстве? Ведь не может же она сама по себе, по собственной воле, метаться по пустому пространству!
Было выполнено огромное количество экспериментов, и все они привели к одному выводу: размазка движения микрочастицы возникает как бы сама по себе, из ничего!
Иногда говорят, что микрочастица движется по траектории, которая расплылась по всему пространству. Не знаю, поможет ли это более наглядно представить движение микрообъектов, но, как бы там ни было, с точки зрения законов Ньютона, да и просто с позиций здравого смысла, это движение совершенно не предсказуемо. Оно выглядит так, как будто в микропроцессах нарушена связь между причиной и следствием, и, исходя из одних и тех же начальных условий, можно прийти к совершенно различным результатам. А главное, неизвестно, к каким. Один раз получается одно, в другой раз при точно таких же условиях — совсем иное. Похоже на блуждание пьяницы по пустой площади — движется под влиянием ему одному известных причин! Лишь в случае очень массивных, тяжелых частиц с большой инерцией движение начинает постепенно «стягиваться» к ньютоновской траектории, и будущее снова становится однозначным следствием прошлого. Опять как в броуновском движении. Там тоже сильнее всего «пляшут» легкие частицы, тяжелые ведут себя более степенно. Однако «беспричинное блуждание» еще не самая главная трудность, с которой мы встречаемся в микромире. Ведь начальные условия никогда не известны нам абсолютно точно, все величины измеряются с какой-то маленькой погрешностью. В принципе можно было бы рассчитывать на какое-то сложное обобщение уравнений Ньютона, которое было бы очень чувствительно к начальным условиям и в каждом конкретном случае позволило бы шаг за шагом проследить витиевато запутанную траекторию частицы. Более удивителен и непонятен другой факт: оказывается, одна и та же частица может быть сразу в нескольких местах.
Представим себе, что электрон попадает на поглощающий экран с двумя отверстиями, за которыми расположена фотопластинка. Электрон пройдет через одно из отверстий и оставит точечный след на фотопластинке. Повторяя многократно этот опыт, мы должны получить на ней наложение двух картин: черное пятно от электронов, прошедших сквозь одно отверстие, и такое же пятно от электронов, воспользовавшихся вторым отверстием.
Казалось бы, это — единственно возможный результат, другого и быть не может. Так вот, ничего подобного! На фотопластинке получается в точности такая же картина, как при столкновении двух волн на воде, когда на водной поверхности образуется рябь горбиков и ложбин. На пластинке им соответствует рябь размытых пятен и просветов между ними. В физике это называется интерференцией.
Две волны сталкиваются, и там, где пик одной накладывается на пик другой, они усиливают друг друга, а там, где пик одной волны совпадает с направленным в обратную сторону пиком другой, образуется ложбина — здесь волны гасят друг друга. Отсюда и возникает рябь. Можно бросить два камня в воду и посмотреть, как происходит такая интерференция. Но откуда ей взяться, когда сквозь экран каждый раз проходит только один электрон? Столкнуться и интерферировать он может лишь… сам с собой. Другими словами, электрон каким-то образом ухитряется стать одним в двух лицах и пройти сразу сквозь два, далеко отстоящих друг от друга, отверстия. Это напоминает картинку из рубрики «Чудаки» на последней странице «Литературной газеты»: длинная ровная лыжня из двух параллельных следов, и вдруг невесть откуда взявшаяся елка между ними!
Может, электрон распадается на какие-то куски? Но нет, если бы это было так, то, закрыв одно из отверстий, мы могли бы «поймать» кусочек электрона, который прошел сквозь оставшееся открытым отверстие. Опыт показывает, что никаких кусков от электрона не откалывается, и сквозь отверстие каждый раз проходит вполне нормальный, совершенно целый электрон.
Поведение электрона выглядит просто невероятным, противоречащим самой элементарной логике, — все равно что войти в комнату с двумя дверями и столкнуться лбом с самим собой! И тем не менее никакого другого объяснения наблюдаемому ходу событий, с точки зрения ньютоновской механики, дать нельзя. Точно известно, что каждый электрон проходит через одно из двух отверстий, а фотопластинка убеждает нас в том, что он раздваивался. Вопиющее противоречие, как будто мы имеем дело с электроном и его двойником-призраком!
Когда такое необъяснимое, «противоестественное» поведение микрочастиц было обнаружено впервые на опыте, многие ученые восприняли его как конец физической науки, которая, казалось им, добралась, наконец, до исходного, «первозданного микрохаоса», прикоснулась к «праматерии», где уже нет никаких законов. Знаменитый голландский физик Г. Лоренц еще совсем недавно, в 1924 году, с горечью писал: «Где же истина, если о ней можно делать взаимно исключающие друг друга утверждения? Способны ли мы вообще узнать истину и имеет ли смысл вообще заниматься наукой? Я потерял уверенность, что моя научная работа вела к объективной истине, и я не знаю, зачем жил; жалею только,что не умер пять лет назад, когда мне все еще представлялось ясным… Взамен ясных и светлых образов возникает стремление к каким-то таинственным схемам, не подлежащим отчетливому представлению».
Положение казалось безнадежно запутанным: беспричинно мечущиеся в пространстве частицы, каждая из которых может столкнуться сама с собой. И в то же время состоящие из них тела с удивительной точностью подчиняются законам Ньютона. Было от чего прийти в отчаяние. Как шутили в то время физики, по четным дням недели им приходилось пользоваться механикой Ньютона, а по нечетным — доказывать, что она не верна! Казалось бы, мир и минуты не мог бы существовать, будь в нем такие ужасные противоречия, а он живет уже двадцать миллиардов лет! Физика зашла в тупик.
Теоретическая путаница у физиков возникала не только при попытках понять, как движется микрочастица, но и при объяснении природы света. Что это, частица или волна? Еще триста лет назад об этом ожесточенно спорили Ньютон и Гук. Первый разделял точку зрения, которой придерживались еще древнегреческие ученые: свет — это поток мельчайших, не различимых глазом частиц-корпускул. Это хорошо объясняло известные в то время оптические явления — поглощение света экранами, его отражение от зеркал, преломление в линзах и многое другое. Все это удавалось объяснить, используя законы механики для частиц-корпускул. Гук был убежден в том, что свет по своей природе похож на звук, — это тоже волны, испускаемые источником.
Фольклорное эхо донесло до наших дней немало пикантных подробностей этих словесных баталий, то и дело выходивших далеко за рамки научных дискуссий. Говорят, что после одного из споров, в котором темпераментный и не стеснявшийся в выборе выражений Роберт Гук превзошел самого себя в язвительной критике ньютоновской теории световых корпускул и ее автора, последний решил вообще не публиковать своих трудов по оптике, пока будет жив Гук.
Надо заметить, что Роберт Гук отличался удивительно неуживчивым, болезненно самолюбивым характером. Разносторонний, талантливый человек с живым, нестандартным мышлением, он в своих исследованиях часто далеко опережал коллег. Бывало, правда, переоткрывал открытое, с жаром доказывая свой приоритет. Ни одно его исследование, ни одно изобретение не было доведено до конца. Непрерывные недоразумения, ссоры, склоки, приоритетные споры заполняли жизнь этого исключительно одаренного, но крайне мелочного и вздорного человека. Почти всякий талантливый ученый вскоре становился его врагом. Ньютон в этом отношении не был исключением.
Но главной причиной решения Ньютона воздержаться от публикации своих трудов была, конечно, не полемичная страстность Гука и его необузданный характер, а сила приводимых им новых фактов. Корпускулярная гипотеза, развивавшаяся Ньютоном, не могла устоять против них. Только с помощью волновых представлений можно было объяснить, почему прибавление света к свету может не только увеличивать, но иногда и уменьшать освещенность, порождая сложные интерференционные картины, как у волн в жидкости, или почему, например, свет огибает мелкие препятствия и на краях тени всегда есть некоторая полутень. В случае потока частиц тень должна иметь резкие края — частица либо поглощается экраном, либо пролетает мимо, и направление ее движения нисколько не изменяется.
Явлений, в которых проявляется волновая природа света, становилось все больше, и в течение трех последующих веков ученые были твердо убеждены, что свет — это волновое движение некой сверхтонкой, заполняющей все пространство материи. Ее стали называть эфиром. Так древние греки в своих мифах называли особый «сверхтонкий» воздух, которым дышит Зевс и другие боги на вершине Олимпа. Для объяснения оптических свойств эфир впервые широко стал использовать голландец Христиан Гюйгенс.
Однако, как это часто бывает в физике, ее развитие неожиданно снова возродило старую идею. Несмотря на успехи волновой теории, с конца прошлого века стали быстро накапливаться факты, которые можно было объяснить, лишь допустив, как это делал когда-то Ньютон, что свет — это поток отдельных, не связанных между собою частиц. Их называют теперь фотонами. Идею о корпускулярном строении света в начале нашего века возродил Эйнштейн. Об этом уже рассказывалось в первой главе. Теория Эйнштейна объединила старую ньютоновскую гипотезу с выдвинутой незадолго до этого идеей немецкого теоретика Макса Планка о том, что при всех взаимодействиях энергия передается квантами — дискретными порциями, кратными некоторой минимальной величине, которая является такой же фундаментальной постоянной, как скорость света или заряд электрона. В честь открывшего ее ученого эту постоянную стали называть константой Планка.
Идея дискретного, квантованного света получила блестящее подтверждение в атомных процессах. Сталкиваясь с атомными электронами, световые частицы рассеиваются, подобно упругим горошинам. В тех случаях, когда их энергии недостаточно для полного отрыва электрона от атома, электрон поглощает фотон, увеличивает свою энергию, становясь менее скованным силой электрического притяжения, переходит на большую, более далекую от центра атома орбиту — атом возбуждается. В последующем электрон может вернуться на исходное место, ближе к ядру, а освободившаяся энергия излучится в виде фотона.
Атомы могут возбуждаться и при столкновениях друг с другом. Так происходит при нагревании. Слабо нагретое тело испускает лишь невидимые инфракрасные фотоны, при увеличении температуры, то есть скоростей хаотического движения составляющих тело атомов, испускается видимый свет — сначала «мягкие» красные фотоны, а затем «жесткие» синие. При высоких температурах рождаются очень жесткие фотоны ультрафиолетового света. Все особенности испускания и поглощения света прекрасно объясняются фотонной теорией.
Казалось бы, можно уверенно сказать, что корпускулярная теория света одержала победу. Но как быть с волновыми свойствами света? Они не перестали существовать. Как и во времена Ньютона, корпускулярная теория их не объясняет. Поэтому загадка света ничуть не прояснилась, наоборот, она стала еще непонятнее.
Вскоре был установлен еще один удивительный факт: во всех процессах энергия световой частицы каждый раз оказывается обратно пропорциональной длине световой волны, то есть определяется каким-то непонятным коллективным эффектом. Получается, что хотя фотон и не связан с другими своими братьями (все они совершенно независимые частицы), но он все же как-то чувствует их присутствие, и они все вместе составляют световой поток. Внешне это выглядит так, как будто частицу-фотон несет гребень какой-то таинственной нематериальной волны. И чем больше его энергия, тем короче, «жестче» эта волна.
В этом есть нечто общее с тем, как поток электронов проходит сквозь щели в экране. Каждый электрон тоже ведь пролетает сквозь какую-то одну щель, и при этом он тоже как будто знает о своих собратьях, которые взаимодействуют с экраном до и после него и располагаются на фотопластинке так, чтобы в целом получилась единая интерференционная, волновая картина. Более того, каждый следующий электрон может испускаться и проходить сквозь щели в экране уже после того, как предыдущий поглотился фотопластинкой. И все равно связывающий их коллективный эффект остается: на пластинке опять образуются отчетливые интерференционные просветы и пятна. Каждый из электронов каким-то образом ухитряется провзаимодействовать со своими уже умершими и с еще неродившимися собратьями.
Размышляя над странной аналогией в поведении электронов и частиц световой волны, французский физик Луи де Бройль пришел к мысли о том, что любой микрочастице, независимо от ее природы, сопутствует некая «волна материи». Подобно мифическому кентавру, полулошади-получеловеку, микрочастица, по мнению де Бройля, тоже объединяет в себе, казалось бы, несовместимое — является гибридом волны и корпускулы. Де Бройль предположил, что не только у фотона, но и во всех других случаях длина «волны материи» обратно пропорциональна энергии связанных с нею частиц. И хотя физическая природа этих волн (их стали называть дебройлевскими) оставалась загадочной, они хорошо описывали сложные интерференционные узоры в опытах с электронами, а позднее и с более тяжелыми частицами — протонами и даже молекулами. Перед физиками встала интригующая задача — понять и объяснить происхождение этих загадочных волн.
Интересно, что первым, задолго до де Бройля, еще в конце прошлого века, идею о волнах материи высказал русский ученый Б. Б. Голицын. И это была не просто гениальная догадка-озарение, свой вывод Голицын основывал на анализе экспериментального материала по выбиванию электронов светом из металлических пластин. В этих опытах впервые были получены указания на дискретные свойства световой волны. Три десятилетия спустя их использовал и Луи де Бройль. Однако русский ученый слишком опередил свое время. В конце XIX века была еще слишком велика вера во всемогущество классических законов Ньютона. Большинство ученых было уверено, что основные законы природы уже открыты и физика близка к своему завершению, остались лишь небольшие доделки. На этом фоне идея о волнах материи выглядела совершенно несерьезной и фантастической. Против нее резко выступил известный московский физик А. Г. Столетов, тот самый, кто выполнил опыты по выбиванию электронов светом, ставшие в дальнейшем одним из краеугольных камней квантовой теории. Это могло бы выглядеть историческим курьезом, но для Столетова все обернулось трагедией. Дело в том, что Б. Б. Голицын был не только талантливым физиком, но обладал еще и княжеским титулом, а это в дореволюционной России было очень важным обстоятельством. У Столетова стали возникать служебные неприятности, а он, будучи человеком принципиальным, не мог поступиться своими научными убеждениями. Все больше сил уходило на бесплодную борьбу. Закончилось это тяжелым сердечным приступом и последовавшей вскоре за этим смертью Столетова, а замечательная идея Голицына была похоронена заживо и не оказала никакого влияния на последующее развитие физики. Де Бройль ничего не знал об этой идее.
Александр Григорьевич Столетов родился во Владимире в старой купеческой семье, которая при Иване Грозном была выслана из Москвы за крамолу и вольнодумство. Во Владимире именем Столетова названа улица. Он внес большой вклад в развитие физической науки в России, некоторые из его студентов стали известными учеными. У Столетова учился физике основоположник отечественной авиации Н. Е. Жуковский. И вместе с тем он своим авторитетом «задавил» идею, которая, став широко известной физикам, значительно бы ускорила развитие науки. В жизни подчас бывают парадоксальные ситуации…
История «волн материи» говорит также о том, насколько осторожным следует быть с научными идеями. Не зря некоторые физики предлагают создать специальный журнал, который бы печатал «материал к размышлению» — не признанные, но и не опровергнутые идеи.
Успех дебройлевской идеи о волнах материи, позволившей объяснить многие противоречивые явления микромира, сразу поставил ее в центр внимания физиков. Ее обоснованием занялись экспериментаторы и теоретики. И вскоре выяснилось, что хотя эти волны и называли «волнами материи», материального в них мало. Они описывают распределение не материи, а вероятности — вероятности обнаружить частицу в той или иной точке пространства.
Будем бросать монету и считать, сколько раз выпадет «герб» или «решка». Отношение числа случаев с «гербом» к полному числу бросаний — вероятность выпадания «герба». Аналогично определяется вероятность выпадания «решки». Что выпадет в каждом конкретном случае, точно не известно. Это может быть «герб», а может быть «решка». Но при большом числе бросаний вероятности выпадания «герба» и «решки» одинаковы и равны 50%. (Иногда говорят: пятьдесят шансов из ста.)
Если монета погнута или испорчена каким-либо другим образом, вероятности выпадения «герба» и «решки» будут различными — например, 40% для «герба» и 60% для «решки». Зная эти числа, можно заранее оценить, в скольких случаях мы выиграем.
Теория вероятностей была создана в связи с азартными играми, но в дальнейшем оказалась чрезвычайно полезной во многих областях науки и техники. Артиллеристы стали использовать ее для оценки точности стрельбы, страховые компания с ее помощью стали оценивать степень риска. Она оказывается незаменимой во всех случаях, когда имеют дело со сложными явлениями, где действуют сразу очень много независимых факторов. Например, как описать движение миллиардов частиц газа? Даже если бы и удалось написать для них систему уравнений, она была бы такой громоздкой и сложной, что решить ее не смогла бы ни одна ЭВМ! Вот тут и нужна теория вероятности.
Так вот, выяснилось, что отдельно взятый электрон может находиться в любой точке пространства, у него нет определенной траектории. Но если опыт повторить много-много раз, то выявится статистическая, усредненная картина его движения. Оказывается, что в некоторых участках пространства он, в среднем, бывает чаще, чем в других. Интенсивность дебройлевской волны как раз и характеризует вероятность — относительную частоту пребывания электрона в различных точках. То же самое для фотонов. Эти частицы чаще появляются там, где больше интенсивность их дебройлевской волны. В этих местах наибольшая освещенность и наибольшая амплитуда световой волны. Движение отдельного фотона настолько сложное и прихотливое, что с определенной вероятностью его можно обнаружить в различных точках пространства. Строгие закономерности, так же как при бросании монеты, проявляются лишь при рассмотрении большого числа фотонов. И вот статистически в среднем световые частицы распределяются в пространстве таким образом, что их поведение выглядит как распространение световой волны. Получается так, что поодиночке каждый из фотонов — корпускула, а в совокупности они обнаруживают волновые свойства. Для того чтобы сделать картину нагляднее, иногда говорят, что микрочастицы двигаются по нечетко определенным, размазанным траекториям, а размазка имеет форму волны. Это очень упрощенное описание того, что происходит в природе, но некоторое представление о характере явления отсюда получить можно.
С точки зрения Ньютона, мир, образно говоря, похож на четко вычерченную сеть железных дорог, по которым строго, в соответствии с расписанием движутся поезда-частицы. В микромире эта картина размывается, становится нечеткой, расплывчатой, как будто мы разглядываем ее в плохо сфокусированный бинокль. О движении частиц там можно говорить лишь с определенной вероятностью.
Когда физики говорят, что электрон вращается вокруг атомного ядра по определенной орбите, это означает, что электрон чаще всего находится в ее точках, но с некоторой вероятностью его можно обнаружить и вдали от ядра. Представьте, что было бы, если бы так себя вели вращающиеся вокруг Солнца планеты! Аналогия между атомом и Солнечной системой на поверку оказывается весьма отдаленной.
Но что порождает такое различие? Ведь и планеты и электроны движутся в пустом пространстве. Почему же в одном случае движение происходит по точным траекториям, а в другом частицы, как пьяные, исполняют «броуновскую пляску» вокруг своих траекторий? Что является ее причиной?
Физики пока не могут однозначно сказать, отчего это происходит. Можно думать, что причина этому — взаимодействия микрочастицы с окружающим ее фоном. Ведь частица никогда не бывает полностью изолированной, она постоянно испытывает случайные возмущающие воздействия неисчислимого количества других микрообъектов. Прежде всего атомов и молекул, из которых состоят окружающие тела. Если частица медленная и легкая, то возмущающие толчки резко изменяют ее скорость и этим, хотя бы отчасти, можно объяснить, почему, казалось бы, одни и те же начальные условия — одинаковые экраны, щели, каналы и так далее — приводят к различным последствиям. Дополнительные возмущения вносят атомы, из которых состоят регистрирующие приборы. Все эти толчки и пинки на атомном уровне размазывают движение частицы, делают его неконтролируемым.
Но самое главное возмущение происходит от частиц и античастиц, во множестве рождающихся и быстро аннигилирующих в окружающем вакууме.
Идея абсолютной пустоты, вакуума, пришла к нам из далекого прошлого. Само представление о мире часто ассоциируется у нас с образом безграничного пустого пространства с отдельными зернами материальных вкраплений. Мы привыкли к мысли, что пустота — это исходное, самое простое, не требующее никаких объяснений состояние окружающей природы, синоним полного «ничто». Однако квантовая теория говорит о том, что вокруг каждой точки кажущегося нам абсолютно пустым пространства непрерывно происходят сложнейшие материальные процессы. Если бы существовал микроскоп с увеличением в миллиарды раз, можно было бы увидеть, что пространство густо пропитано курящимся «смогом» микрочастиц, где все вибрирует, обменивается импульсами, распадается и вновь объединяется в новых комбинациях. В отличие от воздуха, этот смог нельзя вычерпать из пространства. Микрочастицы появляются из ничего и мгновенно обращаются в ничто.
Если бы был жив Ньютон, то всплески вещества в вакууме ему, наверное, показались бы похожими на привидения, которые неожиданно возникают и, прежде чем мы успеваем определить, материальны они или же всего только мираж, так же внезапно исчезают. Однако опыт убеждает нас, что это — вполне реальные процессы, а заполненный ими вакуум ведет себя, как некая материальная среда, не имеющая осязаемой плотности и не мешающая движению физических тел. Ньютон назвал бы ее всепроникающим эфиром.
Подобно частичкам взвеси в жидкости, движущаяся в пустом пространстве микрочастица все время испытывает толчки частиц вакуумного смога, и это сказывается на ее траектории.
Итак, микрочастица погружена в невообразимо сложное переплетение связей, на ее движение влияет огромное количество различных факторов. Можно думать, что это как раз и делает его «размазанным», вероятностным. Так же как нельзя построить точной теории, описывающей поведение всех частиц газа, невозможно создать и точную, основанную на ньютоновских законах теорию движения микрочастицы в вакууме. Но это только одна сторона дела.
Хотя точной теории движения всех частиц в облаке газа создать нельзя, к ней, в принципе, можно приблизиться как угодно близко: сначала построить теорию для двух частиц, потом для трех и так далее. Трудности здесь только технические, и, если бы мы располагали сверхмощной ЭВМ, задача была бы решена. В микромире положение принципиально иное. Постепенно наращивая число учитываемых связей, можно надеяться объяснить «броуновскую пляску» микрочастицы, но факт прохождения ее сразу через две щели и интерференцию с уже исчезнувшими и еще неродившимися частицами объяснить не удастся, сколько бы связей мы ни учли. Для этого нужны какие-то совершенно новые законы, выходящие за рамки ньютоновской физики. В квантовой механике факт интерференции не объясняется, он просто берется из опыта и считается постулатом, таким же, например, как аксиомы геометрии. Только они кажутся нам совершенно очевидными, мы ежеминутно встречаем подтверждение им в повседневной жизни, а постулат квантовой теории нам совершенно непривычен, требуется детальное знакомство со свойствами микропроцессов, чтобы с ним согласиться.
Было предпринято много попыток построить «всем понятную» теорию микропроцессов, в которой вероятностные законы квантовой механики получались бы в результате постепенного усложнения «заквантовой» теории с точными траекториями частиц. Этой проблемой занимались многие выдающиеся ученые. В частности, Эйнштейн до конца своей жизни был убежден в том, что такая «заквантовая» теория обязательно должна существовать. В своих статьях он писал, что квантовая механика — это всего лишь временная постройка, некое приближенное, размытое изображение истинной, скрытой пока от нас картины явлений. И пока она не найдена, задача физики микромира, по мнению Эйнштейна, остается невыполненной. Но все попытки оказались безуспешными. Опыт показывает, что, чем глубже в недра микромира мы уходим, тем более важными становятся там вероятностные законы. Сегодня большинство физиков уверены в том, что любая «заквантовая» теория будет основана на законах вероятности. Так уж устроен мир. Но почему он так устроен? Ведь должно же быть какое-то объяснение этому…
С течением времени, по мере того как накапливаются знания, любой постулат переходит в разряд теорем и выводится из более глубоких принципов. Когда-нибудь так будет и с постулатами квантовой механики. У них тоже должна быть какая-то причина. Но сегодня, научившись хорошо пользоваться квантовой механикой, физики еще не могут объяснить происхождение ее удивительных законов. Энергию электронов в атоме квантовая механика рассчитывает с точностью до миллиардных долей процента, но вот что размазывает орбиты электронов в атоме, каков конкретный механизм этой размазки — на эти вопросы она ответить не может. В то же время опыт хорошо подтверждает все ее выводы. Несмотря на все старания физиков, никаких отклонений от ее вероятностных законов не обнаружено.
Тем не менее у неуязвимой квантовой механики все же есть ахиллесова пята, которая, возможно, послужит отправным пунктом для построения «заквантовой» теории. И вот тут мы подходим к самому трудному и «темному» месту теории, вокруг которого уже более полувека, с тех пор как была создана квантовая механика, не утихают споры физиков и философов.
Казалось бы, ответ очевиден — так же, как и в случае, когда ее наблюдают. Ведь частица существует сама по себе, независимо от того, смотрят на нее или нет. В физике, основанной на законах Ньютона, это действительно так, а вот в квантовой механике дело сложнее.
Чтобы подчеркнуть независимость от нашей личной точки зрения какого-нибудь утверждения, мы часто говорим, что это — экспериментальный факт, то есть непосредственный результат наблюдения, так сказать, «кусок» независящего от нас внешнего мира. Мы часто повторяем, что «факт есть факт», что «факты — это упрямая вещь». Однако в действительности совершенно «чистых», независящих от нас фактов не бывает. Наблюдая явления природы, наш мозг, наше сознание всякий раз имеет дело не с внешним миром самим по себе, а с его воздействием на наши органы чувств и их продолжения — физические приборы. Другими словами, мы всегда имеем дело как бы с отдельными «проекциями» внешнего мира. Слух дает нам его звуковую проекцию, зрение — его изображение в световых лучах. Физические приборы предоставляют нам еще более детальные и разносторонние срезы окружающей нас действительности. Однако, имея дело с проекциями, мы неизбежно искажаем и огрубляем наблюдаемое явление, чем-то пренебрегаем, что-то домысливаем. Каждый человек воспринимает мир по-своему. Бывает, что для одного происходящие явления — совершенно независимые между собой факты, а другой сразу усматривает их взаимозависимость.
Мир не существует точно в том виде, как он воспринимается нашими органами чувств. Картину мира мы воссоздаем с помощью мышления, и этот процесс всегда зависит от того, какими знаниями уже «заряжено» наше сознание. Если оно достаточно не подготовлено, мы можем вообще не заметить некоторых фактов, они для нас как бы не существуют. Например, если бы человек каменного века увидел надпись на скале, он едва ли придал бы ей какое-либо значение, для него это были бы всего только случайные подтеки и пятна, которые бы просто скользнули мимо его сознания.
Животные тоже слышат, видят и чувствуют внешний мир, зачастую значительно лучше нас, но воссозданная их мозгом картина окружающей обстановки ни в какое сравнение не идет с картиной мира в мозгу человека.
Хотя любое наше представление о мире является приближенным, по мере накопления и корректировки знаний оно постепенно уточняется и становится все менее зависящим от нашего мнения и наших личных точек зрения. Мы выделяем из воспринимаемых нами проекций, вылущиваем из них то, что не связано со способом наблюдений, и из этих очищенных элементов строим образ независящего от нас мира. Например, один прибор измеряет координату частицы, другой — ее скорость, а мы в уме или на бумаге строим единый график движения, с помощью которого в любой момент времени можем сразу узнать координату и скорость частицы. Физика Ньютона подтверждала возможность такого постепенного «испарения» личного, или, как говорят философы, субъективного, элемента из наших знаний о природе. Казалось очевидным, что, совершенствуя приборы, их возмущающее влияние можно сделать как угодно малым и изучать явления в чистом виде, без всякого влияния наблюдателя. Физики были твердо уверены, что трудности на этом пути чисто технические, а не принципиальные. Образно говоря, каждый прибор — это невод, с помощью которого мы выуживаем знания из многоводной реки по имени Природа. И чем он тоньше и деликатнее, тем богаче улов.
Но вот в квантовой механике все оказалось по-другому. Поскольку у микрочастицы нет определенной траектории и она как бы размазана по всему пространству, нельзя одновременно узнать ее координату и скорость. Если мы определим точку, в которой находится частица, то в следующий момент она может находиться в любой другой точке, и мы не сможем вычислить ее скорость. Наоборот, мы можем знать скорость частицы, но тогда неизвестно ее местоположение. Какими бы деликатными и тонкими ни были приборы, они все равно не смогут одновременно определить координату и скорость микрочастицы. Чем точнее измеряется одна из этих величин, тем сильнее «размазывается» вторая, и, как бы мы ни старались, измерить координату и скорость у одной и той же микрочастицы нам не удастся. В одних условиях проявляется координата частицы, в других — скорость. Одна из этих величин обязательно остается неопределенной. Какая — это зависит от того, как ставится эксперимент.
Каковы бы ни были причины вероятностной размазки микроявлений, все физики согласны в том, что квантовая механика описывает не отдельную частицу саму по себе, так, как она есть, а частицу на фоне окружающей ее обстановки. Подобно тому как о цвете хамелеона можно говорить лишь применительно к окружающему фону, так и свойства микрочастицы оказываются связанными с ее окружением. Микрочастица никогда не демонстрирует сразу всех своих свойств. Часть из них она «показывает» на одном фоне, другую часть — совсем на другом, и никогда все вместе. Спрашивать квантовую механику о том, каковы свойства микрочастицы самой по себе, безотносительно к окружающей ее обстановке, так же бессмысленно, как и задавать вопрос о скорости тела до выбора системы координат, — в каждой системе отсчета она своя.
В японском городе Киото есть знаменитый сад камней. Небольшая песчаная площадка в старинном парке, на которой выложены шестнадцать камней, но выложены так искусно, что как бы ни смотреть, всегда можно увидеть только пятнадцать из них. С каждой новой точки зрения — свой пейзаж. Воплощенная в камне идея о том, что все в мире имеет много сторон и аспектов; все они ограничены и в чем-то даже противоречат друг другу. Однако это не мешает составить точное представление о всей композиции в целом и увидеть ее мысленным взором. Может, так и с микрочастицей — в современной квантовой механике она всегда связана с окружающим фоном, но в будущей теории, объединяя различные «приборные проекции», возможно, удастся получить ее точную, ни от чего постороннего не зависящую картину? Ведь считал же Эйнштейн, что физика не выполнит задачу объяснения мира до тех пор, пока не научится описывать частицы и происходящие с ними явления в чистом виде, независимо от всех внешних обстоятельств! Если так, то квантовая механика — только переходный этап, временные строительные леса на пути к такой «очищенной» теории, и главная задача физиков — поскорее создать эту теорию.
До сих пор ученым всегда удавалось разделить мир на относительно независимые этажи-уровни. Уровень космических явлений, охватывающий галактики и звездные скопления, уровень макроскопических масштабов, к которому принадлежим мы сами, еще более глубокие этажи биологических и химических процессов — каждый из них управляется своими особыми законами и каждый можно с достаточной точностью рассматривать независимо от других. Перемешивание законов происходит в узких пограничных областях, где возникают такие гибридные науки, как биофизика, физическая химия и так далее. Однако природа может быть устроена таким образом, что простое деление на этажи в микромире становится уже невозможным, и, как бы глубоко в недра материи мы ни спускались, происходящие там явления всегда будут связаны с этажом макроскопических процессов. В этом случае любая теория «заквантовых явлений» будет похожа на современную квантовую механику.
Надо сказать, что большинство ученых, физиков и философов склоняются к мысли, что именно так и будет. Лишь небольшое число еретиков убеждены в том, что за кулисами квантовой механики скрыта чисто микроскопическая «заквантовая» теория, которую с высокой точностью можно рассматривать независимо от макроскопических тел и явлений. Объекты микромира, подчеркивают эти физики, настолько сложны и многогранны в своих свойствах, что привычных нам образов мира макроскопических вещей и процессов просто недостаточно для их описания. Это похоже на то, как если бы с помощью букв и нотных, знаков пытаться передать глухому человеку всю прелесть музыкального произведения или пытаться с помощью плоских чертежей рассказать о форме и строении многомерных фигур. С помощью ньютоновской физики можно передать лишь отдельные срезы того, что происходит в микромире. «Заквантовая» теория должна описывать субатомные явления с помощью каких-то сложных математических образов. Правда, как построить такую теорию, пока никто не знает.
Как известно, наряду со многими добродетелями благородный и доблестный герой романов Дюма о трех мушкетерах Портос обладал такой необычайной спесивостью, что не разрешал портным касаться своей особы, и, для того чтобы сшить костюм, им приходилось снимать мерки с его изображений в зеркалах. При изучении микромира физики встречаются с похожей задачей: наблюдая макроскопические отражения того, что происходит в микромире, они хотят создать точный образ микроявлений. У портных не было сомнений в том, что зеркала точно отражают фигуру благородного мушкетера, а вот можно ли для микромира сшить «костюм», не зависящий ни от каких зеркал, — этот вопрос остается пока открытым. Для ответа нужны дальнейшие исследования, и прежде всего новые эксперименты. Голосованием научные проблемы не решаются, и, кто знает, может, преобладающие сегодня в меньшинстве еретики как раз и окажутся правыми.
Мы преодолели трудный теоретический барьер и можем судить, какие сложные проблемы, на грани физики и философии, стоят перед квантовой механикой. И если здесь не все сразу понятно, не стоит огорчаться, ведь, как утверждает Фейнман, по-настоящему квантовую механику пока не понимает никто. Во всяком случае, до полной ясности здесь еще далеко!
Физика очень тесно связана с философией. И чем сложнее и абстрактнее физическая теория, тем более важной становится эта связь. В переводе с греческого «философия» означает «любомудрие». Впервые философом назвал себя Пифагор, тот, кто открыл знаменитую теорему о прямоугольном треугольнике. Когда его однажды спросили, кто же он такой, Пифагор гордо ответил: «Я философ!»
Есть ли предел делимости тел, что такое конец и начало мира, глубинный смысл пространства и времени, можно ли точно изучить мир с помощью приближенно работающих органов чувств и приборов — эти и многие другие обсуждавшиеся выше проблемы принадлежат одновременно и физике и философии. Слагаясь, они образуют то, что называется мировоззрением человека.
До конца главы мы совершим еще несколько дальних плаваний по океану неизвестного, и каждый раз физика будет соседствовать с философией.
Формулы теоретической физики подсказывают, что если бы удалось создать генератор лучей, обгоняющих свет, мы смогли бы высвечивать цепочки уже свершившихся событий в обратном направлении — от настоящего в прошлое. Что мешает создать такой «хроноскоп истории» — только лишь наше неуменье, недостаток знаний или же этому препятствуют какие-то фундаментальные физические законы? Физика XX века приучила нас к мысли о том, что многое из считавшегося ранее принципиально недопустимым все же может происходить в каких-то особых, специфических условиях, тем более что опыты на ускорителях частиц обнаружили явления, где противопоставление прошлого и будущего неоднозначно. Может, каким-то образом все же удастся создать машину времени хотя бы для микроявлений?
В старой ньютоновской физике показания часов не зависели ни от скорости их движения, ни от каких-либо других причин. Время там течет безучастное ко всему происходящему в мире. Для Ньютона было очевидным, что часы на башне собора и в движущемся дилижансе всегда показывают одно и то же время.
Иначе ведет себя время в современной физике быстро движущихся тел. Стрелки перемещающихся часов идут медленнее неподвижных, их отставание будет тем заметнее, чем больше скорость движения. Правда, даже для космических кораблей, пересекающих сегодня просторы космоса, отставание времени еще очень незначительно и станет ощутимым, когда их скорости возрастут, по крайней мере, в несколько сотен раз. Но вот в мире элементарных частиц эффект замедления времени весьма заметен. Например, время жизни неподвижного мю-мезона около миллионной доли секунды, ничтожный миг; далее мезон распадается на более легкие частицы. Однако быстрый мю-мезон, рожденный космической частицей в высотных слоях атмосферы, становится долгожителем. Он живет так долго, что успевает пройти сквозь всю толщу воздуха и распадается лишь глубоко под землей. Пользуясь эффектом замедления времени, физики транспортируют пучки ускоренных короткоживущих частиц на большие расстояния. Подобная аппаратура есть во многих физических лабораториях.
Если движется не только наблюдаемое тело, но и сам наблюдатель, то его скорость тоже влияет на длительность событий. Например, продолжительность происходящего с телом процесса будет различной в зависимости от того, наблюдают его с космодрома или из иллюминаторов стремительно летящей ракеты, — ведь относительная скорость тела и наблюдателя в этих случаях будет отличаться. Однако порядок происходящих событий, то есть какое из них совершается раньше, а какое позднее, во всех случаях остается неизменным. Выбором системы координат, движущейся или неподвижной, можно сократить или, наоборот, растянуть длительность события, но направление времени изменить нельзя. Оно так же неизменно, как в старой ньютоновской физике медленно движущихся тел.
Переходить от движущейся системы координат к другой, тоже движущейся или неподвижной, умел еще Галилей. Выведенные им для этого формулы так и называются — преобразования Галилея. Сегодня с ними знаком каждый старшеклассник. Но они применимы лишь для небольших скоростей, много меньших скорости света. Формулы преобразований для быстрых движений были выведены в начале нашего века швейцарцем Эйнштейном, французом Пуанкаре и голландцем Лоренцем. Вывод этих формул и правила обращения с ними составляют содержание специальной теории относительности. Само название этой теории говорит об относительности физических величин, об их зависимости от выбора системы координат, а эпитет «специальная» отмечает тот факт, что рассматривается частный случай движений в плоских, неискривленных пространстве и времени. Этим случаем мы и ограничимся.
Теория относительности прекрасного согласуется с экспериментом и является фундаментом современной физики. Самые тщательные опыты не обнаружили никаких отклонений от ее формул.
Для последующего нам очень важно иметь в виду, что хотя теория относительности создана на основе «досветовых явлений», протекающих со скоростями, меньшими или равными скорости света, в ее формулах нет никаких условий или ограничений, запрещающих их применение в «засветовой области» — при сверхсветовых скоростях. И вот тут обнаружилась замечательная особенность этих формул: они приводят к выводу, что в процессах с участием «сверхсветовых тел» от скорости зависит не только длительность, но и сам временной порядок событий. Совсем не так, как в досветовой области! Пилот одной ракеты скажет, что событие А произошло раньше события Б, а пилот второй ракеты, движущейся с иной скоростью, увидит их в обратном порядке. Время для этих наблюдателей будет идти в противоположных направлениях. То, что для одного — прошлое, для другого — будущее. Это похоже на то, как если бы в кино прокрутили пленку в обратном направлении. И нельзя указать, какое направление времени истинное, так же, как нельзя сказать, какая сторона является правой, а какая — левой. Для меня — это правая, а для стоящего лицом ко мне человека — левая. И мы оба правы — относительность!
Зависимость сверхсветовых явлений от времени разительно отличается от того, к чему мы привыкли в «досветовом мире». В процессах, протекающих быстрее света, подходящим выбором системы координат можно обратить время вспять. Получается, что сверхсветовые частицы — это объекты, свободно путешествующие во времени. Давняя мечта писателей-фантастов!
Но вот существуют ли в природе такие частицы? Как и где следует их искать? И вообще, не приводит ли предположение о сверхсветовых скоростях к противоречию с другими положениями современной физической теории, ведь не все же гипотезы физиков реализуются в природе… С другой стороны, если сверхсветовых скоростей в природе нет, то почему? Может, за этим прячется какой-то новый физический закон?
Недавно мне попал в руки научно-фантастический роман С. Снегова «Люди как боги». Там звездолеты летают с любыми скоростями — в пять, десять, сто раз быстрее света! Среди созвездий они ведут себя, как грузовик на узкой улице, — развернулся в созвездии Персея, задним ходом углубился в соседнее шаровое скопление, оттуда устремился в созвездие Плеяд… Феерическая картина! А собственно, почему это невозможно?
Правда, в любом учебнике физики можно найти утверждение о том, что в природе существует некоторая максимальная скорость. Это скорость света в вакууме. Считается, что ни одно тело не может двигаться быстрее. Однако это всего лишь — постулат, теоретическая гипотеза. То, что в экспериментах еще никогда не встречались сверхсветовые скорости, нельзя рассматривать, как их стопроцентный запрет, — не встречались при одних условиях, могут встретиться при других. Пока не найдены законы, которые это запрещают, вопрос остается открытым.
Большинство физиков склоняются сегодня к мнению, что сверхсветовых скоростей в природе нет, тем не менее вопрос продолжает их беспокоить. В научных журналах нет-нет да и снова вспыхивает дискуссия о сверхсветовых явлениях. Мой аспирант составил список статей по этой проблеме, их оказалось более полутора тысяч! И основная часть появилась в последние десять — пятнадцать лет.
Действительно, что ограничивает скорость движения? Ведь скорость света, мгновенная по сравнению со скоростями, с которыми нам приходится иметь дело в повседневной жизни, оказывается весьма скромной при переходе к космическим масштабам. Даже с аппаратами, исследующими ближайшие к нам планеты Солнечной системы, обмен сигналами происходит уже с весьма заметным запаздыванием. От Солнца к Земле свет бежит около восьми минут, а чтобы получить сигнал и отдать команду аппарату, исследующему окраинные планеты Нептун, Плутон и Уран, нужны десятки минут. Неужели нельзя передвигаться и передавать информацию быстрее?
Чтобы разобраться в этих сложных и во многом еще неясных вопросах, познакомимся сначала со свойствами, которыми должны обладать сверхсветовые частицы и состоящие из них тела. Это поможет выявить трудности, к которым приводит гипотеза сверхсветовых движений, и подскажет, где можно заметить такие движения.
Частицы, движущиеся со скоростями, большими скорости света, принято называть тахионами — от греческого слова «тахис», что означает «быстрый», «стремительный». Досконально изучить их свойства можно будет после того, как такие частицы откроют на опыте. Однако некоторые их особенности можно предсказать теоретически на основе уже известных физических законов. Один из них — взаимосвязь массы и скорости частицы.
При обычных условиях эта взаимосвязь чрезвычайно слабая, и мы ее просто не замечаем. Однако если скорость тела становится сравнимой по своей величине со скоростью света, масса тел начинает возрастать. Это явление было открыто в конце прошлого века в опытах с электронами. При увеличении скорости быстро движущееся тело становится все тяжелее, и дальнейшее увеличение скорости требует затрат все большей и большей энергии. Это явление называют световым барьером. Приближаться к нему так же трудно, как подниматься в крутую гору путнику, имеющему за плечами рюкзак, тяжелеющий с каждым метром подъема. Чтобы достичь скорости света, разгоняя какие-либо частицы, например, легкие электроны, пришлось бы затратить бесконечное количество энергии.
Казалось бы, это исключает всякие надежды на открытие сверхсветового вещества. Долгое время так и считали. Однако если посмотреть внимательнее, то можно заметить, что на самом деле отсюда вытекает лишь невозможность превращения обычных, досветовых частиц в тахионы путем непрерывного увеличения скорости. Подобно тому как нейтрино и фотоны уже при самом их рождении обладают световой скоростью, тахионы должны иметь сверхсветовую скорость с самого момента их появления в процессах взаимодействия. Это означает, что тахионы — частицы совершенно нового типа. Они никогда не переходят через сверхсветовой барьер на нашу досветовую сторону. Они рождаются, живут и исчезают в процессах распада и поглощения, всегда обладая скоростью, большей скорости света. Впервые на это обстоятельство лет двадцать назад обратил внимание советский физик Я. П. Терлецкий. Это поставило проблему тахионов на твердую почву. После этого, собственно, и начались серьезные исследования их свойств.
Заметьте, обычные частицы приближаются к световому барьеру, когда их скорость возрастает, а тахионы, наоборот, — при ее уменьшении. Если на классной доске провести мелом вертикальную линию и считать, что это — световой барьер, то слева будет область досветовых частиц, справа — область тахионов. На самом барьере масса и энергия бесконечно велики, при удалении от него вправо и влево они уменьшаются. Световой барьер напоминает энергетическую горку со спусками в сторону меньших и больших скоростей. Теряя энергию, обычная частица замедляется, тахион, напротив, ускоряется! Шарик из тахионного вещества, скатываясь с горки, не ускоряется, а тормозится. Падающее сверху тахионное облако тоже будет тормозиться — спускаться, как на парашюте. Тахионное яичко, упав с высокого стола, не разобьется, а плавно, как перышко, ляжет на пол. Зато сверхсветовая пуля под действием сопротивления воздуха должна, как это ни удивительно… разгоняться! И ружья не требуется, надо только тихонько толкнуть тахионный шарик в нужном направлении, а дальше он сам разгонится.
По сравнению с обычными, кинематические свойства сверхсветовых частиц оказываются буквально вывернутыми наизнанку!
Мир тахионов — своеобразный антимир скоростей, своего рода Зазеркалье. Зазеркалье скоростей.
Однако этим дело не кончается, у сверхсветовых частиц есть еще несколько удивительных особенностей.
Как известно, знаменитый враль барон Мюнхгаузен однажды сам себя вытащил из болота за волосы. Так сказать, приобрел скорость из ничего, без всякой внешней силы — с точки зрения физики, явление абсолютно невозможное. Но тахионы, по-видимому, умеют это делать. Они способны самоускоряться.
Дело в том, что свет движется быстрее всех тел только в вакууме. В веществе его скорость меньше, она равна скорости света в вакууме, поделенной на показатель преломления среды. Например, внутри обычного оконного стекла скорость света снижается в полтора раза, в воде — в 1,3 раза, а в жидком сероводороде — почти вдвое. В таких средах электрон и другие частицы могут обогнать свет. При этом в веществе возникает специфическое электромагнитное излучение, называемое во всем мире черенковским, по имени открывшего его советского физика П. И. Черенкова. Это похоже на то, как низко летящий реактивный самолет бесшумной тенью проскакивает за горизонт, и только потом на нас обрушивается грохот звуковой волны. Мы не будем сейчас выяснять, как и почему возникает черенковское излучение, для нас важно то, что оно существует. Тахионы должны вызывать такое излучение даже в вакууме, поскольку их скорость всегда больше скорости света. Это излучение уменьшает энергию тахиона, и, следовательно, увеличивает его скорость. Иначе говоря, тахион самоускоряется — сам по себе, без всякой внешней силы, разгоняется в пустом пространстве.
Ускоряется за счет потери энергии! Опять все не так, «как у людей»!
Правда, не все физики согласны с этим выводом. Некоторые приводят соображения в пользу того, что тахионы все же не должны излучать в вакууме. Пока не ясно, кто прав. Рассудить сможет, наверное, лишь опыт. Во всяком случае, предпринимавшиеся до сих пор поиски черенковского излучения тахионов не увенчались успехом. Никаких излучений в вакууме не обнаружено. Впрочем, не ясно, были ли вообще там тахионы. Опыт ставился так, что если бы удалось заметить излучение, тогда можно было бы с уверенностью говорить о сверхсветовых частицах, излучение служило бы сигналом их присутствия. Если же излучения нет, то вывод неоднозначен: либо тахионы не излучают, либо таких частиц вообще не было в данном опыте. Так что окончательный ответ еще впереди.
Как уже говорилось выше, время жизни нестабильной досветовой частицы возрастает при увеличении ее скорости. А вот пространственные размеры, ее длина в направлении движения при этом уменьшаются, частица сжимается, становится похожей на лепешку. Конечно, как и замедление времени, этот эффект становится заметным только при очень больших скоростях. Так, летящий скоростной самолет, по сравнению с его длиной на аэродроме, сжимается на величину, приблизительно в сотню тысяч раз меньшую толщины человеческого волоса. Ракета, выводящая на орбиту спутник, сокращается в своей длине приблизительно на один микрон. Другое дело, если бы она двигалась со скоростью, равной половине скорости света или чуть больше. Тогда изменение ее размеров составляло бы уже около десятка метров.
Нельзя не признать, что, с позиций обыденного опыта, увеличение времени жизни и сокращение длин движущихся предметов выглядят весьма непривычно. Но еще удивительнее ведут себя сверхсветовые тела. Формулы теории относительности предсказывают, что продольные размеры разгоняющегося тахиона растут, сверхсветовая частица как бы распухает вдоль оси своего движения, а течение времени для нее резко убыстряется. В пределе, при бесконечно большой скорости, тахион вытягивается по всей бесконечно длинной траектории! Его масса и энергия при этом становятся равными нулю — ведь для того, чтобы ускорять тахион, у него надо отбирать энергию. Опять все наоборот по сравнению с обычными частицами!
Отдав всю энергию, тахион становится безынерциальной струей материи, распределенной сразу вдоль всей своей траектории. Можно сказать и по-другому: тахион с бесконечной скоростью существует только в один-единственный момент, а в остальное время его нельзя обнаружить ни в одной точке пространства. И может случиться так, что находящийся в абсолютно пустом пространстве наблюдатель, начав двигаться, вдруг обнаружит, что пространство вокруг него заполнено тахионами. Число частиц оказывается зависящим от скорости наблюдателя. Изменяя скорость ракеты, космонавт каждый раз будет видеть вокруг себя различную плотность материи. Тахионы, как призраки в старом английском замке, то исчезают, то снова вдруг появляются как будто из ничего. Согласитесь, эффект более удивительный, чем простая зависимость длины предметов от скорости!
Самоускорение, распухание, размазывание по всей траектории — это действительно очень непривычные и странные свойства. Однако странно не значит нельзя. К необычным свойствам и явлениям можно привыкнуть. Важно, что сами по себе они не противоречат фундаментальным законам природы.
Значительно более серьезные трудности связаны с беспричинными явлениями. Оказывается, и такие возможны для тахионов!
Первоначально физикам казалось, что вопиющим противоречием является уже сам факт изменения временного порядка в процессах с тахионами. Ведь если, например, один наблюдатель зафиксировал, что тахион испущен атомом урана и поглощен атомом серы, то другой наблюдатель может увидеть, что атом серы поглощает тахион, который еще только будет испущен ураном. Явная бессмыслица!
Выход нашел работающий ныне в США пакистанский физик Сударшан. Он учел, что для любого процесса с элементарными частицами всегда можно найти обратный, в котором все частицы заменены на античастицы, а античастицы, в свою очередь, — на частицы. Другими словами, процесс испускания частицы всегда можно рассматривать, как поглощение античастицы, и наоборот. Такая симметрия хорошо проверена на опыте. Это означает, что, с формальной точки зрения, прямой и обратный процессы можно считать одной и той же реакцией, если античастицы рассматривать, как частицы, движущиеся обратно во времени. Например, если тело A испускает электрон или отрицательно заряженный тахион, который поглощается телом B, то ни в самой реакции, ни в ее окружении ничего не изменится, если считать, что на самом деле тело B испустило позитрон или положительный тахион, который затем поглотило тело A. А раз так, то, возвращаясь к опыту с атомами урана и серы, допустимо считать, что второй наблюдатель увидит процесс, в котором атом серы испускает антитахион, а атом урана его поглощает. И никакого противоречия нет, концы с концами сходятся.
С первого взгляда рассуждения Сударшана выглядят, может быть, не совсем понятными, но если изобразить их в виде простенькой схемы на бумаге, в них легко разобраться.
Тем не менее всех противоречий остроумное предложение Сударшана все же не устранило. Дело в том, что ни один сверхсветовой процесс нельзя изолировать от окружающей «досветовой» обстановки. Это можно сделать лишь в теории, а в реальном мире всякое явление бесконечным числом связей скреплено с окружающими телами. Полностью отгородиться от них невозможно. Таково одно из основных свойств нашего мира. Поэтому изменение направления времени в сверхсветовом процессе неизбежно приходит к противоречию с направлением течения времени в нашем мире, или, как говорят философы, со «стрелой времени», которая задается движением окружающих нас досветовых тел и временным порядком происходящих в них процессов. Если такие тела соседствуют с тахионами, возникают похожие на чудо ситуации, в которых нарушена причинная связь событий. Следствие может опередить вызывающую его причину.
Допустим, например, что охотник тахионной пулей поражает сидящую на столбе ворону. Космонавт же в иллюминатор пролетающей мимо ракеты увидит, что по какой-то непонятной причине из вороны вылетела тахионная пуля, которая была поймана ружьем охотника. А главное, тот каким-то образом заранее знал, в какую сторону и под каким углом ему следует направить ствол ружья, чтобы поймать шарик тахионного вещества! Космонавту все это покажется подлинным чудом. Подобных ситуаций можно придумать множество.
В мире со сверхсветовыми явлениями прошлое перепутано с будущим. Там ничего не стоит подсмотреть, что находится «по ту сторону завтра». Нужно только сесть в экипаж, движущийся с подходящей скоростью. В таком мире наказание предшествует суду, а преступление совершается в последнюю очередь. Там можно найти такую систему координат, где еще не родившийся внук может поговорить по сверхсветовому телефону со своей давно умершей бабушкой. Стоит только изменить скорость, и вы из будущего перенесете свой взор в далекое прошлое или наоборот. Там можно застрелить самого себя в прошлом. Куча нелепостей! Фантасты, которые в своих романах пишут о космических кораблях со сверхсветовыми скоростями, наверное, ничего не слышали об этих парадоксах.
Как избавиться от нарушений причинности в процессах с тахионами и можно ли это вообще сделать, остается не ясным. Недавно итальянским физикам удалось показать, что нарушение причинности всегда сопровождается нарушением законов сохранения энергии и импульса. Другими словами, если требовать точного выполнения этих законов, то нарушающие причинность взаимодействия просто не должны происходить, и физическое тело по отношению к тахионам будет вести себя, как абсолютно прозрачное. К сожалению, это тоже не устраняет всех противоречий. Оказывается, если невозможно взаимодействие тахиона с телом, как с целым, то может произойти взаимодействие с его частью или наоборот. Полностью запретить непричинные взаимодействия не удается.
Результат итальянских физиков можно считать теоретическим доказательством того, что в больших, макроскопических областях пространства и времени тахионов нет, так как иначе нарушалась бы не только причинность, но и законы сохранения энергии и импульса, можно было бы построить вечный двигатель, превратить холод в тепло и тому подобное. Поскольку ничего такого в природе не бывает, то тахионы, если они все же рождаются в нашем мире, не могут выходить за пределы ультрамалых пространственно-временных областей. Опыт подсказывает, что временной порядок там становится не таким строгим, как на больших расстояниях, и его зависимость от системы координат уже не будет нарушать причинность.
При этом, конечно, возникает вопрос: что же удерживает тахионы в ультрамалом, не дает им разлететься?
Как будет, если, например, тахионы — короткоживущие частицы, обладающие способностью самоускоряться? Время жизни таких частиц будет сокращаться при увеличении их скорости, и, самоускоряясь, они распадутся почти сразу же вблизи точки своего рождения. Могут быть и другие причины «пленения» сверхсветового вещества, природа неистощима на выдумки.
Как бы там ни было, пока нет никаких запретов существованию тахионов в очень малых областях пространства и в течение очень кратких моментов времени. Следовательно, и время там может идти вспять. А вот существуют ли на самом деле такие частицы и такие вывернутые во времени процессы — здесь слово за экспериментом.
Понятно, что обнаружить сверхсветовые частицы можно лишь по следам, которые они оставляют в окружающем веществе. Но могут ли вообще частицы со столь необычными свойствами взаимодействовать с обычным, досветовым веществом наших приборов? Некоторые ученые считают, что эти два типа вещества просто не чувствуют друг друга, проходят одно сквозь другое, как свет сквозь прозрачный материал. Если это так, то тахионы — ненаблюдаемые объекты, а световой и сверхсветовой миры оторваны один от другого — у них просто нет точек соприкосновения. Трудно, однако, думать, что в природе, где все взаимосвязано и взаимообусловлено, могут существовать материальные тела, которые ничем себя не проявляют и принципиально не наблюдаемы. Если же между тахионами и досветовым веществом есть взаимодействие, то тахионы должны рождаться при столкновениях досветовых частиц и можно попытаться зафиксировать их с помощью имеющихся в нашем распоряжении средств.
Таких опытов выполнено уже немало. В ряде случаев отмечались эффекты, которые, в принципе, можно было бы приписать сверхсветовым частицам. Однако всегда удавалось найти и более привычное объяснение. Например, английские физики изучали распространение ливней вторичных частиц, образуемых в земной атмосфере высокоэнергетическими частицами космического излучения. Во многих ливнях детекторы зафиксировали сигналы, значительно опережающие приход лавины частиц. Этот результат можно объяснить, допустив, что в ливне присутствуют частицы со скоростями, намного большими, чем у остальных. А поскольку скорость большинства частиц в ливне близка к скорости света, это, казалось бы, подтверждает присутствие тахионов. К сожалению, более детальный анализ показал, что, сделав некоторые дополнительные предположения, не выходящие за рамки известной досветовой физики, опережающие сигналы детектора можно объяснить причинами технического характера, как неточные, ложные выбросы.
Особенно часто сверхсветовые аномалии возникают в астрономических наблюдениях, где детали движения изучаемых объектов бывают плохо известны. Так, недавно в печати сообщалось о наблюдении американскими астрофизиками сверхсветовых выбросов вещества квазарами — излучающими огромную энергию космическими объектами на краю видимой нами части Вселенной. Из сравнения двух фотографий, сделанных с интервалом примерно в один год, получен вывод о том, что выбросы удаляются от квазаров со скоростью, в несколько раз превосходящей световую. Тем не менее последующий анализ обнаружил такие особенности процессов, которые устранили противоречия с «досветовой физикой». Тахионный эффект оказался всего лишь оптическим обманом.
Интересный опыт по поиску тахионов в микропроцессах выполнили другие американские физики. Они допустили, что тахионы взаимодействуют с веществом, как и досветовые частицы, но время их жизни чрезвычайно мало. Участвуя во взаимодействиях, они изменяют энергии и направления движения досветовых частиц. Эти изменения совсем не такие, какие вносили бы быстро распадающиеся частицы со скоростями, меньшими, чем у света. Вот по таким специфическим искажениям параметров участвующих в реакции частиц и можно установить, принимали в ней участие сверхсветовые тахионы или нет. При тщательной обработке экспериментального материала были обнаружены ожидаемые аномалии в скоростях и углах вылета. Они хорошо объяснялись, если допустить, что сталкивающиеся в реакции частицы обменивались (как бы играли в бадминтон) тахионами с массой, большей нуклонной, и временем жизни около 10-24 секунд.
Однако и здесь можно объяснить результаты опытов, если сделать дополнительные допущения. И хотя по мнению выполнявших эксперимент физиков такое объяснение более сложно, срабатывает знаменитая «бритва Оккама» — если явление можно объяснить на основе уже известных принципов, такому объяснению отдается предпочтение.
Ни один из выполненных экспериментов не дал убедительных доказательств существования сверхсветовых частиц. Но они не доказали и обратного, поскольку во всех опытах есть особенности, которыми можно, хотя бы отчасти, объяснить их неудачу.
Мы видим, что невозможность изменить направление времени уходит своими корнями в самые фундаментальные свойства материального мира — неисчерпаемость его внутренних взаимосвязей и их причинную обусловленность. В конечном счете именно эти свойства запрещают путешествия в машине времени. Изменить временной порядок событий, возможно, удастся лишь внутри субмикроскопических интервалов пространства и времени.
Со сверхсветовыми скоростями дело сложнее. Не исключено, что они могут встретиться нам и на больших расстояниях. Не следует забывать, что выводы об их тесной связи с обращением времени получены на основе формул теории относительности, которые могут оказаться неверными вблизи светового барьера, где концентрация энергии возрастает почти до бесконечности. Абсолютный нуль и бесконечность всегда были источниками новых открытий. В окрестностях светового барьера, возможно, потребуется какая-то новая теория, тогда условия причинности для сверхсветовых частиц могут стать совсем иными и не будут приводить к противоречиям. Хотя такая возможность сегодня кажется маловероятной, но все же… Устанавливая теоретические шлагбаумы на дорогах физики, следует быть осторожным.
Слово «вакуум» обычно понимается как абсолютное «ничто» — «чистое пространство», в котором нет ничего материального. Однако мы уже видели, что это не верно. Такого пространства в природе нет. Квантовая механика показала, что в любом малом объеме пространства на очень короткое время может произойти флюктуация, и из пустоты выплеснется и снова быстро погаснет электромагнитное или какое-либо другое поле, родятся и тут же исчезнут частицы. Вакуум так же материален, как и вещество. В различных мирах он разный. По существу, это — одно из состояний материи.
Ныне физики достаточно хорошо знают «крупнозернистые» свойства вакуума в пространственных кубиках с размерами вплоть до 10-15 — 10-16 сантиметров. О том, что творится в еще меньших объемах, можно строить лишь гипотезы. В частности, есть основания предполагать, что очень важную роль там играет гравитация. В обычных условиях она важна только для массивных, тяжелых тел; ее действие на элементарные частицы пренебрежимо слабое — слишком уж малы их массы. Однако на расстояниях порядка 10-32 — 10-33 сантиметров гравитация становится сильной и существенно влияет на свойства микромира. Там возможны всплески очень сильного гравитационного поля, которые приводят к тому, что пространство, причудливо изгибаясь и скручиваясь, образует замысловатые полости, почти самозамыкающиеся пузыри. Заполняющий мир вакуум становится похожим на пену, испещренную пятнышками ультрамикроскопических черных дыр — почти самозамкнувшихся объемов с исключительно сильным тяготением. Ультрамалые черные дырочки — весьма неустойчивые образования. Они сливаются, исчезают, появляются вновь.
Некоторые ученые придерживаются мнения, что вакуум — это такое состояние материи, из которого можно построить все остальные, все многообразие элементарных частиц и состоящих из них тел. Это может показаться невозможным — как это, весомая материя и вдруг… из пустоты? Однако для этого есть веские основания.
Создав свою общую теорию относительности, Эйнштейн впервые доказал, что законы физики можно свести к законам геометрии. В его теории силы тяготения имеют чисто геометрическое объяснение. Их можно рассматривать как проявление кривизны пространства и времени их действия на погруженные в вакуум физические тела. Кривизна старается направить их движение по оптимальному руслу — по своеобразным ложбинкам, что и воспринимается как некая сила. Но если удалось найти геометрическое объяснение для поля тяготения, то почему этого нельзя сделать для электромагнитного, внутриядерных и всех других полей, переносящих взаимодействие между частицами? Кроме того, следует иметь в виду, что все элементарные частицы обладают волновыми свойствами, поэтому их все можно считать квантами соответствующих волновых полей — нейтринного, электронного, кваркового и так далее. В физике есть специальный раздел «Квантовая теория поля», изучающий свойства таких полей. Для них тоже можно искать геометрическое истолкование.
Создается впечатление, что вообще всю материю — все частицы и все состоящие из них тела — можно рассматривать как проявление каких-то геометрических свойств пустого пространства: его кривизны, кручения, самозамыкания и так далее. Вдохновленный успехом своей теории, Эйнштейн писал, что теперь есть возможность считать пространство более первичным и фундаментальным, чем материя.
Иллюстрируя идею мира, построенного целиком из пустоты, известный американский теоретик Джон Уилер, профессор Института высших исследований в Принстоне, вблизи Нью-Йорка, проводит аналогию с наблюдателем, который с высокой башни изучает движение темных пятен на поверхности озера. Он изучил их движение настолько детально, что смог вывести для них уравнения и установить законы действующих между пятнами «эффективных» сил. Но вот однажды, вооружившись биноклем, он видит, что пятна — это не чужеродные объекты на поверхности жидкости, а всего лишь ее вихри. По мнению Уилера, элементарные частицы и все вещество нашего мира — такие же своеобразные «пятна» в пустом пространстве, особые возбуждения «вакуумной пены».
«Сумасшедшая» мысль о том, что в мире нет ничего, кроме пустого пространства в его различных формах, стала казаться особенно убедительной после того, как физики пришли к идее единого поля, объединяющего в себе все известные нам силы природы. Поскольку одно из его состояний, гравитация, имеет геометрическую природу, можно рассчитывать, что все остальные его состояния-братья имеют подобное же происхождение.
Вообще говоря, идея о чисто геометрической природе мира не является изобретением лишь нашего века. Ее высказывали и древнегреческие ученые. Пифагор был убежден в том, что в основе всех вещей и явлений лежит «гармония чисел». Он считал, что законы мира — это законы чисел, где все выражается через целые и их отношения. Другой древнегреческий мыслитель, Платон, доказывал, что самым первичным и исходным в природе являются законы геометрии. И всякий раз эти идеи наталкивались на непреодолимые трудности. Так, для Пифагора и его учеников выглядело необъяснимой загадкой, почему некоторые величины, например, отношение длины окружности к ее радиусу или отношение длины стороны квадрата к его диагонали, нельзя выразить ни целым, ни дробным числом. Они были настолько поражены своим открытием, что в течение многих лет скрывали его, как одну из самых ужасных, необъяснимых тайн бытия.
Сорок лет жизни безуспешно потратил Эйнштейн на создание полностью геометризованной картины мира. Не удалось ее построить и его последователям. Чтобы описать многообразие свойств мира, одного пространства недостаточно. Состояния единого поля действительно выражаются через величины, имеющие геометрический смысл, однако «чисто геометрическими» их можно назвать лишь формально. Таковыми они являются не в обычном окружающем нас пространстве, а в абстрактных математических пространствах, где по осям откладываются не длина, ширина и высота, а значения электрического заряда, странности цветного заряда и другие характеристики, не связанные с геометрией привычного нам трехмерного пространства и одномерного времени. Ведь с математической точки зрения, пространством можно назвать множество любых элементов, характеристики которых связаны такими же соотношениями, как координаты точек окружающего нас пространства. Математика позволяет единым образом описывать объекты самой различной физической природы, и геометрическими их можно назвать лишь потому, что связывающие их соотношения имеют сходную математическую структуру. То, что мы обычно называем пространством, — только одно из бесчисленного количества свойств природы. Мир нельзя построить из «чистой пустоты».
Это очень сложные вопросы, и не стоит унывать, если пока не все понятно. О пустоте-вакууме спорят с тех пор, как появилась наука, а сегодня эта проблема, пожалуй, центральная в теоретической физике. Длина, ширина и высота — только часть измерений пустого пространства. В микромире есть, по-видимому, еще шесть или семь дополнительных осей-измерений. И снова возникает вопрос: что же это такое — пространство? На этот вопрос не могут точно ответить пока ни философы, ни физики.
Пожалуй, на этом нам следует остановиться, иначе мы заблудимся в джунглях теоретических схем и гипотез. На переднем крае науки их много. Они во множестве рождаются на страницах физических журналов, борются и погибают, немного углубив и расширив наше знание, — ведь узнать, что неправильно или невозможно, тоже очень важно. Это расставляет вехи и ограничительные знаки на пути в Страну Неизвестного. Кроме того, бывают идеи, назначение которых в том, чтобы расшатать сложившиеся представления, так сказать, навести на размышления. Они как трамплин для бегуна.
Хотя физики-теоретики иногда с горечью говорят, что работают в основном на мусорную корзинку, их работа удивительно интересна. То, с чем рядовой читатель встречается в научно-фантастических повестях и романах, — лишь бледное отражение идей, с которыми в своей работе имеет дело теоретик. Трудно найти специальность, более интересную и увлекательную!
Впрочем, иногда можно услышать: а зачем все это нужно? Разве вокруг нас нет более земных и злободневных дел, которыми следует заняться прежде, чем тратить время, усилия и средства на изучение проблем, обещающих практическую отдачу лишь в далеком будущем? Оправдывает ли себя создание дорогостоящих ускорителей частиц и огромных радиотелескопов? Может быть, прав тот ученый, который на вопрос: «Что такое «чистая наука»?» — ответил с юмором, что это — удовлетворение собственного любопытства за государственный счет.
Эти вопросы мы и рассмотрим в следующей главе книги.