3. Устойчивость горения взрывчатых веществ

Мы видели, что основным отличием трех классов взрывчатых веществ друг от друга, отличием, на котором основано их техническое использование, является различная степень устойчивости их горения: наименьшая у инициирующих взрывчатых веществ, наибольшая у порохов; вторичные взрывчатые вещества занимают в этом отношении промежуточное положение.

Что же определяет устойчивость горения взрывчатых веществ и почему различаются в этом отношении взрывчатые вещества разных классов?

Вернемся к заряду из тротила и представим себе, что мы зажгли его с поверхности. При горении образуются газы; давление у горящей поверхности от этого возрастает подобно тому, как повышается давление в чайнике, когда в нем кипит вода и образуется пар, подбрасывающий крышку. За счет повышения давления над горящим взрывчатым веществом газы и расширяются, оттекают от поверхности тротила. Давление у поверхности, складывающееся из атмосферного давления и повышения давления за счет образования газов, определяет и скорость оттока образующихся газов, и скорость горения, то есть, иначе говоря, скорость образования газов.

Скорость оттока газов практически не зависит от того, какое взрывчатое вещество горит. Скорость же горения различных взрывчатых веществ, напротив, по-разному зависит от давления: у одних она нарастает сильнее, у других слабее.

Если скорость горения растет с давлением сильнее, чем скорость оттока газов, то давление будет возрастать и горение, ускоряясь, перейдет во взрыв.

Если, наоборот, скорость горения увеличивается при повышении давления медленнее, чем скорость оттока газов, то образующиеся газы будут успевать расширяться, давление перестанет повышаться, и горение пойдет устойчиво при постоянном давлении, лишь немного превышающем атмосферное.

Именно так это и происходит при горении тротила, а также всех других вторичных взрывчатых веществ. Скорость их горения мала и слабо зависит от давления; поэтому горение их является устойчивым.

Инициирующие же взрывчатые вещества имеют большую скорость горения, и она так быстро растет с давлением, что горение ускоряется и переходит во взрыв.

Однако и горение вторичных взрывчатых веществ, как мы видели на примере пироксилина и нитроглицерина, может переходить во взрыв. Это возможно в тех случаях, если взрывчатое вещество рыхлое, пористое или жидкое. При горении пористого взрывчатого вещества нагрев его от слоя к слою может происходить не только медленным путем теплопроводности, но и иначе: под влиянием некоторого повышения давления, возникающего у горящей поверхности, газы горения проникают по порам вглубь взрывчатого вещества и поджигают его там (рис. 12). В результате этого скорость горения возрастает и может стать такой большой, что образующиеся при горении газы не будут успевать оттекать; давление будет расти, и горение перейдет во взрыв. Сходным, но более сложным путем происходит ускорение горения и переход во взрыв и жидких взрывчатых веществ.



Рис. 12. Горение сплошного и пористого взрывчатого вещества.


Вот почему, когда надо получить большую устойчивость горения, необходимую при применении взрывчатого вещества для метательных целей, то у твердого взрывчатого вещества устраняют его пористость. В этом и заключается сущность процесса изготовления пироксилинового пороха из пироксилина.

Если же взрывчатое вещество жидкое, как, например, нитроглицерин, то его надо лишить подвижности, текучести, свойственной жидкости. Этого достигают, растворяя в нитроглицерине нитроклетчатку. Такой раствор при правильно выбранном составе имеет рогообразную структуру. В нем отсутствуют и поры, имеющиеся в нитроклетчатке, и текучесть, характерная для жидкости; его горение не переходит поэтому во взрыв.

Таким образом, отличие порохов от вторичных взрывчатых веществ состоит в том, что в порохах отсутствуют поры и они не являются жидкими; это обеспечивает максимальную устойчивость их горения.

Напротив, если нужно облегчить, ускорить переход горения во взрыв, то взрывчатому веществу придают пористое строение. Так, если гремучую ртуть спрессовать до полного отсутствия пор, то она не дает перехода горения во взрыв даже при больших трехграммовых зарядах. Если же гремучую ртуть спрессовать слабо, как это и делается при производстве капсюлей-детонаторов, то она дает взрыв легко — уже при горении небольшого, полуграммового заряда.

Загрузка...