Человеческий фактор



Как вы думаете, какая система в самолете наименее надежна? Экипаж... К такому выводу пришли эксперты на основании анализа причин многочисленных аварий и катастроф: подавляющее большинство их произошло только потому, что летчики ошиблись в выполнении тех или иных действий.

В то же время автоматика исправно работает только в случаях, предусмотренных программой. Чуть что не так — и вся надежда только на пилота. Лишь человек, используя свой опыт, способен принять верное решение на основе недостаточной или даже недостоверной информации. А стало быть, экипаж одновременно и повышает надежность всех самолетных систем. Вряд ли кто из пассажиров отважится полететь в самолете, где нет летчика.

Вот он какой противоречивый — человеческий фактор. В чем же он заключается? Что делают конструкторы для того, чтобы человек в небе чувствовал себя как можно более комфортно?.. Как можно спастись, когда летательный аппарат терпит аварию?

Об этом мы и поговорим в данной главе.

Как найти дорогу в небе?

Подними голову, читатель. Видишь?.. Высоко над землей в черном вечернем небе пролетел самолет, мигая разноцветными огнями.

Куда он летит? Над какими лесами, морями, городами и селами лежит его путь? Как не собьются в кромешной тьме с курса его пилоты? Ответить на все эти вопросы способен только штурман самолета.

Интересно, а он откуда все знает? Ведь сверху, да еще ночью, в облаках не так уж много можно увидеть на земле.

Давай-ка попробуем на время стать авиационными штурманами. И тоже попробуем водить самолеты по курсу. Так нам легче будет понять штурманскую работу.

Из Москвы в Тулу

Для начала полетим мы не так уж далеко. Например, из московского аэропорта Домодедово в Тулу. И самолет попросим пока небольшой. Скажем, в самый раз нам «аннушка», Ан-2, подойдет.



Самолет Ан-2

Только бы не заблудиться нам... В воздухе ведь рельсы не проложены, асфальтированное шоссе с указателями тоже не провели, а о том, чтобы остановиться на минуту, спросить дорогу у случайного прохожего, и мечтать не приходится.

Лучше всего, конечно, ориентироваться по карте. Посмотришь на нее, и сразу ясно: вот Москва, а вот тут — пониже ее — Тула. Теперь понятно, двигаться нам надо прямо вниз.

Низ карты — это юг. Стало быть, надо узнать, в какой стороне юг, туда и лететь.

Определить стороны света, как известно, можно по солнцу, по мху на коре деревьев, по расположению муравейников в лесу, в ночное время — по звездам... Но точнее и проще всего — .по компасу.

Так и поступим. Возьмем компас, посмотрим, в какую сторону указывает красный конец его стрелки, поднимемся в самолет и полетим.

Внизу поля, перелески, поселки мелькают. Наконец, вдали показался большой город.



Флюгер-конус «Колдун»

Аэродром. Посадка. Все, прилетели. Выходим из кабины.

— Здравствуйте, туляки!

— Здравствуйте, — отвечают нам. — Только мы не туляки, а рязанцы...

Вот те раз! Собирались в Тулу, прилетели в Рязань. А мы ведь все время на юг летели. Уж лучше бы мы железной дороги придерживались, надписи на станциях читали. Что смеешься? В начале нашего века, когда авиация только зарождалась, летчики так и делали.

Но шутки в сторону. Почему мы все-таки сбились? Компас неисправный? Нет, он правильно показывает. Так в чем же дело?

Ага, ты тоже догадался? Правильно, мы забыли о силе ветра. Пока продолжался полет, он дул самолету в правый борт и сносил его влево. В итоге, хотя мы все время держали курс прямо на юг, самолет на самом деле летел на юго-восток. Прямехонько в Рязань.

Сразу чувствуется, что мы — неопытные штурманы. Любой настоящий специалист непременно бы выяснил, в какую сторону и с какой силой дует ветер.

Не случайно еще лет 20—25 назад над каждым аэродромом на высоком шесте висел полотняный конус, показывая направление ветра, а каждый штурман до сих пор имеет в своем распоряжении специальный прибор — ветрочет. Куда дул ветер, туда и поворачивал свой полосатый хвост «колдун» (так зовут на летном жаргоне флюгер-конус); куда бы ни летел штурман, он обязательно определит по ветрочету величину сноса и исправит курс. «Юго-запад!» — скомандовал бы он, и самолет — можно не сомневаться — прилетел бы именно в Тулу.

Радио — маяк

А почему, интересно, никто из нас не вспомнил, что в самолете есть радио? Вспомни мы об этом вовремя, наверняка бы не сбились и без компаса.

...Многие сотни лет верой и правдой служат морякам световые маяки. Во всех океанах и морях Земли указывают они вспышками прожектора и сиреной безопасные пути плавания.

Имея такой пример перед глазами, авиаторы тоже стали задумываться: «А нельзя ли подобные маяки устроить и для самолетов?» Потому что ни один самый хороший штурман не в состоянии вычислить, куда ветер может снести самолет на пути, скажем, из Санкт-Петербурга во Владивосток. Страна наша огромная, даже сверхзвуковому Ту-144 нужно около четырех часов, чтобы пересечь ее с запада на восток. Ветры на ее территории дуют самые разнообразные как по силе, так и по направлению, да и меняются они то и дело. Где уж тут вычислить снос!

Магнитный компас, кстати, тоже частенько врет. Им невозможно пользоваться за Полярным кругом и в тех местах, где в земле скрыты большие запасы железной руды.

Потому что стрелка компаса — это магнит. А магнит всегда чувствует железо. Вот компас, вместо того чтобы указывать на север, показывает, где железо. Благодаря такой особенности, кстати, в свое время были обнаружены богатейшие запасы железной руды неподалеку от Курска, но для самолетовождения такие способности стрелки вовсе ни к чему.

А стоит забраться Земле на макушку, в район Северного полюса (самолеты порой залетают и туда), то в какую сторону ни посмотри — всюду юг. Как тут быть бедной магнитной стрелке?..

Кроме того, в Заполярье часто бывают магнитные бури, во время которых стрелка компаса начинает себя вести, словно щенок: она прыгает во все стороны, и как ни старайся, все равно не поймешь, где — север, а где — юг.

Вот потому, когда на самолетах появились первые радиостанции, авиаторы сразу стали приспосабливать их для облегчения ориентировки.

Делается это так. Штурман надевает наушники и ловит в эфире позывные нужной ему радиостанции. Скажем, мурманской.

Радиоволны в пространстве, как известно, распространяются практически прямолинейно. Антенна же приемника устроена таким образом, что точно может показать, откуда они приходят. Значит, все остальное уже несложно. Штурман выясняет, в какой стороне радиостанция, направляет самолет туда и приводит его прямо в Мурманск.

Такой способ ориентировки называется в авиации полетом по радиомаякам.



Впрочем, слышать «землю», наземные радиостанции, конечно, неплохо. Но еще лучше видеть ее. Ведь привести самолет в пункт назначения только полдела. Нужно найти аэродром и приземлиться. Вот в чем основная сложность.

Хорошо, если облака стоят высоко в небе, а наземный оператор услышит гул самолета над собой. Тогда он скомандует в микрофон:

— Спускайтесь, аэродром под вами...

Летчики снизят самолет, «пробьют» облачность, увидят аэродром и спокойно произведут посадку.

Чтобы самолеты могли взлетать и садиться ночью, посадочная полоса четко обозначена огнями.

Но как быть, если туман стелется почти по самой земле? Можно отправить самолет на запасной аэродром. Это выход, если воздушный корабль еще имеет в своих баках достаточно горючего, чтобы долететь до него. Но выход, прямо сказать, не очень удобный. Кому из пассажиров приятно, направляясь в Москву, оказаться вдруг, скажем, в Воронеже? Это ничуть не лучше того, как мы летели в Тулу, а сели в Рязани.

Со всеми трудностями разом покончило изобретение радиолокатора.

В начале нашего века А.С. Попов — всем известный изобретатель радио — заметил одну интересную особенность радиоволн. Оказалось, они имеют способность отражаться от различных предметов. Таких, как дома, горы, металлические корпуса самолетов и плотные грозовые тучи. Отражаясь, волны бегут назад. Если их примет на свою антенну прибор, во многом похожий на обыкновенный телевизор, то они покажут на его экране все, что видели на своем пути.



Схема радиолокации

На 300—500 км и более «смотрят» современные радиолокаторы. Сквозь дождь и туман, снегопад и ночную мглу видят они все вокруг.

Сегодня каждый большой самолет, такой, например, как Ил-62, Ту-154, оборудован локатором. Поэтому авиалайнеры могут летать практически в любую погоду, и даже в самой кромешной тьме их штурманы уверенно находят дорогу к аэродрому, а летчики спокойно ведут самолеты на посадку.

Радиолокаторы, или радары, поставили и во всех крупных аэропортах. Наземному оператору тоже необходимо видеть самолеты. Ведь в пространстве над аэродромом может оказаться сразу несколько воздушных лайнеров, и важно каждому определить очередь на посадку, не создавая бестолковой толчеи в воздухе.

Инженеры не успокоились и на этом. Они решили — и совершенно справедливо, — что очень неплохо создать целую сеть радиолокационных станций по всей стране. Во-первых, тогда в наше небо не сможет пробраться: ни один самолет-шпион; во-вторых, каждый свой | самолет мы всегда будем иметь под наблюдением.

Такая сеть уже создана. Стоит теперь чуть зазеваться штурману, как с земли сразу же летит предупреждение:

— Алло, штурман, не зевать! Держите курс правильно.

Вот, оказывается, какую ошибку мы еще совершили. Нам надо было предупредить наземных операторов о маршруте нашего полета, они не дали бы нам сбиться.

Многие специалисты на земле помогают авиаторам водить лайнеры по воздушным трассам, от их внимательного взора не ускользнет ни один самолет в нашем небе.

Много помощников у штурмана. Несколько компасов, карты, всевозможные справочники, ветрочет, радиолокатор, наземные операторы, но работы у него по-прежнему не убавляется.

Не будешь же все время слушать сигналы с земли, то и дело командуя пилоту повороты то вправо, то влево. Этак весь маршрут самолета может состоять из одних зигзагов. Какому пилоту захочется терять время и понапрасну жечь горючее, слушая команды нерадивого помощника?

Поэтому каждый уважающий себя штурман старается проложить курс по кратчайшей прямой — ортодромии — и строго выдерживать его во время полета. А это не так-то просто. То на пути грозовой фронт встретится, то тучи вдруг таким холодом окатят, что самолет ледяной коркой покрываться начнет, то прямо по курсу высоченная гора покажется...



Все эти опасности штурману обязательно надо обойти. Не потому, что он — несмелый человек и боится грозы. Нет, все авиаторы — очень мужественные люди. Просто штурман, как и весь экипаж, отвечает за безопасность пассажиров. Именно поэтому он уводит самолет в сторону. И поступает правильно! Никто не имеет права рисковать чужой жизнью.

Причем обойти опасность штурман должен очень расчетливо. Так, чтобы не угодить в беду и в то же время не делать большой крюк. Только тогда самолету хватит горючего до аэродрома назначения, только тогда он не опоздает и прилетит точно по расписанию.

Вот сколько забот еще остается на долю штурмана! Потому-то люди стали задумываться: нельзя ли освободить его хотя бы от части работы, переложив ее на плечи машин? Придумали же для облегчения труда летчиков автопилот — прибор, который сам, без вмешательства человека может вести самолет по заданному маршруту? Почему бы не заставить машину прокладывать курс, принимать радиосигналы с земли, следить за сводками погоды, вычислять курсовые поправки?.. А человек контролировал бы ее труд.

Ученые вместе с конструкторами долго думали над созданием такой машины и сравнительно недавно нашли выход из положения. Обязанности штурмана они возложили на ЭВМ — электронно-вычислительную машину, компьютер. И оказалось, что ЭВМ совсем неплохо справляется с такими обязанностями. Так что, отправляясь в очередное воздушное путешествие, знайте — авиалайнер ведет наряду с людьми и электронный штурман.

У природы нет плохой погоды?

Что такое летная погода?

В начале века пилоты старались приехать на аэродром ни свет ни заря. И поднимались в воздух одновременно с солнцем. Опыт подсказывал им, что в это время суток атмосфера наиболее спокойна, в ней нет ветров и струйных течений.



А вот планеристы больше любят, когда на небе образуются кучевые облака. Они знают, что под ними образуются мощные восходящие течения теплого воздуха, которые способны поднять их безмоторный летательный аппарат высоко-высоко в небо. Опытный дельтапланерист, используя такие восходящие потоки, способен парить в небе чуть ли не сутками.

Современным авиалайнерам, казалось бы, такие тонкости ни к чему. Они летают днем и ночью, летом и зимою, в ясную погоду и когда небеса сплошь затянуты тучами...

И тем не менее нельзя сказать, что нынешняя авиация стала всепогодной. Как-то мне довелось несколько суток просидеть в аэропорту Елизово, что обслуживает Петропавловск-Камчатский, в ожидании рейса на Москву. От нечего делать я купил в местном киоске книжку, которая так и называлась— «Летчику о метеорологии». Из нее я узнал, что к опасным для авиации явлениям природы в районе аэродрома относятся: грозы, смерчи, шквалы, град, ледяной дождь и гололед. Не любят летчики также туманов, пыльных бурь, дымов различного происхождения, мешающих им видеть взлетно-посадочную полосу, а также вулканических извержений.

Улететь нам мешал как раз туман, плотным одеялом окутавший взлетную полосу. «Неужто нельзя ничего сделать?» — волновались пассажиры. «Будет вам погода, — пообещал дежурный по аэропорту. — Слышите, разведчик полетел?»

Действительно, из тумана послышался рев разогреваемых моторов, потом самолет пробежал по полосе и взлетел.

То ли летчики уже знали от метеорологов, что туман вскоре рассеется, то ли разведчик сам погоду сделал, но, когда самолет сел, в небе стало проглядывать солнце. Объявили посадку на наш рейс, и пассажиры поспешили к авиалайнеру, рассуждая на ходу, что вот, дескать, ныне кудесники умеют и облака с туманами разгонять.

В Москве я узнал, что действительно такая возможность существует. Если засевать облака йодистым серебром и некоторыми другими реагентами, то можно заставить их вылить дождевую воду и рассеяться. В столице таким образом уж лет пятнадцать обеспечивают хорошую погоду по большим праздникам.

Не очень теперь беспокоит летчиков и возможность обледенения летательного аппарата. Как только вследствие сильного переохлаждения окружающего воздуха на крыльях и фюзеляже самолета начинает образовываться ледяная корка, экипаж тут же принимает надлежащие меры. В зависимости от типа самолета методы борьбы могут быть разными. На некоторых летательных аппаратах обшивку попросту нагревают, подавая под нее теплые потоки воздуха от работающих двигателей. В других случаях нагрев производится за счет электричества. И наконец, существуют и химические методы борьбы с обледенением, когда плоскости омываются мельчайшими капельками антиобледенительной жидкости, например спирта. А в некоторых случаях изобретатели даже предлагают бороться с обледенением механическим способом. Под обшивку накачивается воздух, она как бы вздувается, и ледяная корка тут же лопается.



Размещение противообледенительных систем на самолете: 1 — обогрев лобовых стекол; 2 — обогрев приемника воздушного давления; 3, 4 — обогрев носка крыла; 5 — обогрев воздухозаборника двигателя; 6 — обогрев хвостового оперения

Вот только с ветром люди бороться пока не научились. Сильный боковой ветер может снести самолет с полосы. Но еще хуже — болтанка в воздухе, когда летательный аппарат швыряет из стороны в сторону, а еще хуже — вверх-вниз. Этак и грохнуться на нашу твердую планету недолго. И потому метеорологи обязательно предупреждают авиаторов о районах, где такая болтанка наиболее вероятна — над гористой местностью, на границе циклона и антициклона и т.д.

Иду на грозу

Люди старшего поколения наверняка помнят роман Д. Гранина, а потом и фильм с таким названием. В нем рассказывалось об отважных людях, которые специально летали на самолете в грозовую погоду, чтобы получше разобраться в природе этого грозного явления природы.

Ну а чем, собственно, опасна для самолета гроза и вообще атмосферное электричество?



Разрез грозового облака

Оказывается, для молний самолет представляет собой идеальную мишень. Как известно, их огненные стрелы попадают прежде всего в возвышенные точки земной поверхности — горные пики, верхушки небоскребов и телевышек, высокие деревья... А тут выше горных круч пролетает металлическая птица. Весьма соблазнительно Перуну или Зевсу-громовержцу садануть по ней пучком огненных стрел...

Ну а если серьезно, то последствия от разряда атмосферного электричества могут быть самыми сокрушительными. Известны случаи, когда после попадания молний в топливный бак тот взрывался и от крыла или иной части самолета отваливались солидные куски...

Известно, например, что в странах Европы каждый самолет в той или иной степени повреждается молнией в среднем через каждые ±500 часов налета. Отечественная статистика, впрочем, фиксирует меньшие показатели: 8—10 случаев поражения гражданских самолетов в год. Но тут следует учесть тот факт, что у нас регистрируют лишь те случаи, когда летательный аппарат пришлось ставить на ремонт. Иной раз, впрочем, дело и до ремонта не доходит: в среднем раз в пятилетку один самолет сбивается молнией вместе со всеми, кто находится на борту.

Чем больше самолет, тем больше и вероятность его поражения. Впрочем, многое также зависит не от размеров авиалайнера, а от расположения двигателей на нем. Воздушные корабли с моторами в хвостовой части, такие, скажем, как Ту-134, поражаются молнией чаще, чем, например, Ту-104, двигатели которых располагались на крыльях. Дело в том, что ионы, вылетающие с выхлопными газами в хвостовой части самолета, по-видимому, увеличивают зону захвата молнии.

На поверхности земли с поражением зданий молниями борются с помощью громоотводов. Используют такие и на самолетах. Впрочем, разрядники статического электричества при ударах молний зачастую сами выходят из строя. Зато они безотказно помогают в другой ситуации. Мало ведь кто задумывался над тем, что во время полета из-за трения о воздух обшивка авиалайнера весьма сильно электролизуется, накапливая иной раз потенциал в тысячи вольт. И не будь этих разрядников, выходящих из самолета пассажиров могло бы весьма сильно шибануть током.

Еще более опасны, чем обычные, шаровые молнии. Эти огненные шары диаметром 10—20 см и большой разрушительной силы ведут себя порой настолько странно, что наука долгое время даже отказывала им в их существовании. Однако со временем накопившиеся факты свидетельствуют: шаровые молнии определенно существуют, могут поражать и летательные аппараты. Однако, на наше с вами счастье, встречаются огненные шары довольно редко и шанс встретиться с ними воочию невелик.

Теперь вы понимаете, почему летчики так не любят грозу. Но, пожалуй, еще больше они не жалуют атмосферные фронты. Этот военный термин перекочевал в метеорологию не случайно. В обоих случаях им именуют ту сравнительно узкую полосу, где опасность наиболее высока.

Однако если на земле воюют друг с другом люди — белые с красными, русские с немцами, американцы с вьетнамцами и т.д., то на небе атакуют друг друга воздушные массы, имеющие разные физические характеристики. Так, например, при наступлении теплого фронта приходит соответственно потепление; при перемещении масс холодного воздуха, естественно, похолодание.



Схема теплого атмосферного фронта в вертикальном разрезе

Кроме того, фронты по географическому положению могут быть арктическими, тропическими, умеренных широт и т.д. Хуже всего, если авиаторам приходится иметь дело с так называемым фронтом окклюзии. Потому что 13 данном случае активное перемещение предпринимают как минимум три воздушные массы: две холодные и одна теплая.



Схема холодного атмосферного фронта

Превосходство сил приводит к тому, что теплый воздух, как правило, вытесняется наверх, в итоге погода резко меняется. Да и вообще полет во фронтовой зоне сулит мало что хорошего: тут и болтанка может быть сильная, И кучевые облака, и дожди, иногда переходящие в ливни...

В общем, не случайно штурманы по возможности стараются обойти атмосферные фронты стороной.

Знание метеообстановки, умелое ее использование приносит не только спокойствие экипажу и пассажирам, но и немалые экономические выгоды. Скажем, известно, что в верхних слоях атмосферы практически постоянно имеются струйные течения — довольно сильные ветра, постоянно дующие в одну и ту же сторону. Умелое использование попутных ветров дает возможность увеличить скорость и сэкономить немалое количество горючего.

В полет, не отрываясь от земли

Как-то мне самому довелось сесть за штурвал и в течение часа совершить немало подвигов: я благополучно ускользнул от воздушных пиратов, хотевших меня сбить, обошел грозу и благополучно долетел до Парижа. Обогнул Эйфелеву башню, зашел на посадку, и вот тут промашка вышла. Я не рассчитал, и самолет мой врезался в землю...



Вид авиационного тренажера: 1 — кабина экипажа; 2 — экраны системы обзора; 3 — имитатор шумов; 4 — гидросистема; 5 — кабели; 6 — пульт инструктора; 7 — система контроля; 8 — ЭВМ; 9,11 — гидроцилиндры; 10 — агрегаты системы управления; 12 — место командира корабля; 13 — приборная доска

— Ничего, — спокойно сказал инструктор. — На первых порах такое со всяким может случиться. В следующий раз слетаешь лучше...

Следующего раза, как вы понимаете, могло бы и не быть, если бы летал я на настоящем самолете, а не на тренажере. Но тренажерные установки для того и существуют, чтобы пилоты на них вырабатывали пилотажные навыки, доводили их до автоматизма, учитывали опыт допущенных ошибок.

Поначалу появившиеся в 1927 году тренажеры были весьма простыми, но постепенно их усовершенствовали настолько, что иллюзия полета почти полная. Садишься за штурвал, и перед тобой настоящая приборная доска, например, Ту-154 с движущимися стрелками и мерцающими телеэкранами. За окнами кабины видна та же панорама, что и в настоящем полете. С набором высоты меняется угол зрения, исчезают мелкие детали. А при заходе на посадку, напротив, все мелкие детали постепенно укрупняются...

В общем, на каждой тренировке экипажу показывают своеобразный мультик про полет. Причем в отличие от настоящих полетов, которые, как правило, проходят гладко, тут всякий раз приключений бывает достаточно. То двигатель загорится, то молния в крыло ударит, то террористы на борту объявятся... И всякий раз экипаж должен реагировать соответствующим образом. Справился с заданием — получил пятерку. А заработал «неуд» — ничего не попишешь, придется пересдавать зачет — двоечникам в небе делать нечего, их к настоящему полету попросту не допустят.

Системы жизнеобеспечения

Чтобы кровь не закипела

Первые летчики отправлялись в полет в самых обычных костюмах. Впрочем, тут же выяснилось, что по крайней мере без очков-консервов, защищавших глаза от пыли и гари, не обойтись.

Когда самолеты стали подниматься повыше, пилоты стали одеваться потеплее: на высоте в несколько километров даже летом царит мороз.

Еще одна напасть: с подъемом вверх падает атмосферное давление, становится труднее дышать. На высоте 6—7 км пилот рискует вскоре потерять сознание от кислородного голодания. Пришлось конструировать специальные дыхательные приборы и маски, способные обеспечить летчикам более-менее сносные условия для жизни и работы.

Однако вскоре и этого оказалось недостаточно. При подъеме выше 15 км пилотам пришлось поменять обычные комбинезоны на высотные компенсирующие костюмы.

Помните чеховский рассказ о человеке в футляре? Вот примерно так же приходится упаковывать себя и летчику. Только тут уж его заставляет так поступать не прихоть характера, а практическая необходимость. С дальнейшим падением атмосферного давления человека начинает раздувать, словно футбольный мяч: ведь воздух в его легкие поступает при нормальном давлении. Кроме того, происходит смещение органов брюшной полости и застаивание крови в конечностях.

Чтобы избежать этих и многих других неприятностей, перед полетом летчика «упаковывают» в высотный компенсирующий костюм, он представляет собой специальный комбинезон со шнуровкой, благодаря которой создается такое же давление на тело, какое в обычных условиях обеспечивает нам атмосфера.



Кислородная маска: 1 — дыхательная полость; 2 — клапан выдоха; 3 — дыхательный мешок; 4 — шланг подачи кислорода; 5 — клапан вдоха; 6 — компенсирующий клапан выдоха; 7 — компенсатор натяга

В таком костюме можно подниматься на высоту порядка 30 км. Если же пилот собирается подняться еще выше, то ему приходится надевать уже скафандр — герметичную одежду, внутри которой обеспечивается нормальное атмосферное давление по всему объему. Единственный недостаток скафандра — он весьма громоздкий; в нем трудно бывает разместиться в довольно-таки тесной кабине перехватчика.



Высотный компенсирующий костюм: 1 — шнуровка; 2 — кольца; 3 — оболочка; 4 — застежка; 5 — шланг натяжного устройства; 6 — шланг противоперегрузочного устройства; 7 — соединительная трубка натяжного устройства; 8 — тесьма; 9 — крепление гермошлема

Кондиционирование — это комфорт

Представьте себе картину: всех пассажиров перед посадкой в самолет заставляют надеть высотно-компенсирующие костюмы, а то и скафандры. Много нашлось бы охотников летать в таких условиях?..

Поэтому конструкторы авиалайнеров пошли по другому пути. Они делают в самолете один общий скафандр для всех — герметическую кабину. В ней с помощью систем кондиционирования устанавливаются привычные для нас давление и состав воздуха, его температура и влажность. Словом, делается все для того, чтобы человек не ощущал влияния высоты.

Первые такие системы появились на летательных аппаратах примерно полвека назад, и все эти годы они непрерывно совершенствуются. Как оказалось, создать комфортные условия полета для десятков, а потом и сотен пассажиров — не такая уж простая задача. Вот конструкторы и стараются усовершенствовать компрессоры, кондиционеры, системы вентиляции и т.д. таким образом, чтобы в полете нам было не жарко и не холодно, чтобы никто не задыхался и не жаловался на излишнюю влажность.

Ну а кислородные маски остались на всякий пожарный случай. Вдруг произойдет по каким-либо причинам разгерметизация салона?..

Шум против шума

Помните, как старику Хоттабычу в самолете надоел шум двигателей и он попросту выключил их? Ничего хорошего из этого не вышло. Хорошо, что Волька уговорил мага сделать все, как было, до того, как самолет упал на землю...

Ну а если серьезно, как укротить шум? Первое, что делают конструкторы, — это ставят на пути его распространения всевозможные заслонки-глушители. С такими глушителями вы, например, можете познакомиться, рассмотрев хорошенько автомобильный или мотоциклетный мотор.

Кроме того, стенки кабины обязательно делают многослойными. С одной стороны, такая конструкция обеспечивает хорошую герметичность, термоизоляцию, с другой — через такие стенки и шум проникает значительно ослабевшим.

И все-таки полной тишины такими пассивными мерами шумоглушения добиться не удается. Поэтому в настоящее время конструкторы подумывают о переходе от защиты К нападению на шум. Его будут подавлять специальными активными фильтрами. Суть этой системы заключается в следующем. Из школьного курса физики известно, что шум представляет собой сложный набор акустических колебаний. Если разложить его на спектр, то можно выделить множество синусоидальных кривых разной амплитуды и частоты. И если наложить на каждую еще одну кривую, но в противофазе, должно произойти маленькое чудо — две кривые превратятся в одну прямую.



Шумопоглотителъ сотовой конструкции: 1 — перфорированный лист; 2 — сотовый наполнитель; 3 — основание

В данном конкретном случае это будет означать, что шум может погасить шум. Так говорит теория. А что на практике? На практике же инженеры наткнулись на одну сложность. Активные системы шумоглушения будут работать лишь в том случае, если производимый авиадвигателями шум будет точно и очень быстро анализироваться. Тогда специальные генераторы смогут парировать данные акустические колебания противофазными. Но если анализ вдруг окажется неточен, то вместо тишины мы получим лишь удвоенный рев.



Противошумные устройства

Тем не менее первые успехи на этом пути уже есть. Пилоты ФРГ и США в настоящее время испытывают новые наушники с активным подавлением шума.

Последний шанс — выстрелить собой

Факт из истории: летчик-испытатель Г. Бахчиванджи разбился во время испытаний первого нашего самолета-ракеты БИ-1 27 марта 1943 года. Куда менее известно другое: летчик предвидел свою гибель, о чем прямо и сказал после одного из полетов. Причем никакой мистикой тут не пахло: будучи грамотным специалистом, Бахчиванджи отлично понимал, что его ждет, если техника вдруг закапризничает... Правда, у него, как водится, имелся парашют, но шансы выбраться из мчащейся со скоростью порядка 800 км/ч машины практически равнялись нулю.

Ведь еще в 1937 году летчик-испытатель М.М. Громов, попытавшийся покинуть самолет, попавший в штопор, смог сделать это только потому, что был рекордсменом ВВС по поднятию тяжестей. «Меня так прижало к сиденью, что казалось, на мне сидит человек», — вспоминал Громов. А скорость его самолета не превышала и 500 км/ч...



Схема катапультирования: 1 — сброс фонаря; 2 — выход кресла из кабины; 3 — включение ракетного двигателя; 4 — раскрытие тормозного парашюта; 5 — раскрытие основного парашюта и отделение кресла; 6 — выпуск аварийного носимого запаса; 7 — приземление

Между тем в январе того же 1943 года, когда проводились испытания БИ-1, летчик германских люфтваффе впервые покинул гибнущий самолет с помощью катапульты. Спасшее его устройство, наряду с прочими военными трофеями, попало в руки нашим специалистам и было подвергнуто самому тщательному изучению.

Однако по мнению главного конструктора фирмы «Заря» Г.И. Северина, занимающейся в нашей стране проблемами катапультирования, после того как на самолетах появились «стреляющие кресла», могущие с помощью порохового заряда выбросить из кабины пилота вместе с его креслом и парашютом, далеко не все проблемы летчиков были решены. Катапультирование шло с переменным успехом.

Летчик Г. Мосолов при катапультировании из опытного самолета Е-8 в сентябре 1962 года поломал обе ноги и получил другие повреждения, помешавшие ему в дальнейшем заниматься летно-испытательской работой.

Анализ показал: отчасти это произошло из-за того, что летчику пришлось катапультироваться при скорости более 1 тыс. км/ч, в то время как инструкции предписывали снизить скорость хотя бы до 800 км/ч. Но поскольку во главу угла ставится все же спасение человеческой жизни, а не выполнение инструкций, то их пришлось пересматривать одновременно с усовершенствованием самого катапультируемого кресла.

Модернизация пошла на пользу, и когда в 1982 году летчику-испытателю Горьковского авиазавода А. Коновалову пришлось катапультироваться из МиГ-25, мчавшегося на высоте около 20 км со скоростью выше 3 тыс. км/ч, все обошлось более-менее благополучно.

«Удар ощутил приличный и снизу, и спереди, и сзади, но вытерпел, — вспоминал потом сам Коновалов. — Помню, как отлетел фонарь, как окатило скоростным напором... Спускался долго, начал мерзнуть и волноваться — отойдет ли кресло, откроется ли парашют. На высоте 3 тыс. м сработала автоматика, еще раз тряхнуло — наполнился парашют. Я открыл щиток гермошлема и жадно глотнул чистый воздух...»

Что же касается самолета, то он взорвался через 3—4 секунды, после того как пилот оставил его с помощью катапультного кресла КМ-1.

Человек или автомат?

Как по-вашему, кто должен принимать решение о катапультировании? «Конечно, сам пилот»,— скажете вы. И... ошибетесь. Как показала практика, к сожалению, летчики далеко не всегда правильно оценивают обстоятельства, не спешат покинуть гибнущую машину, все стараются «вытянуть» ее... Анализ же летных происшествий как в нашей стране, так и за рубежом свидетельствует, что чаще всего пилоты гибнут именно из-за таких задержек. И тогда конструкторы «Звезды» осуществили революционный шаг — поставили на свое кресло устройство, срабатывающее автоматически, независимо от пилота, как только параметры полета превышают некоторые критические величины.

Поначалу такое решение вызвало бурю протестов у авиаторов: «Как это безмозглый автомат будет принимать решение вместо умудренного опытом пилота?!» Однако практика показала, что правы все-таки конструкторы: в стрессовых ситуациях время для пилотов словно бы растягивается, а сами события словно бы замедляются. По мнению американских специалистов, именно такая «дисторсия времени» и приводит в 20% случаев к гибели пилотов при катапультировании. Введение автомата, в особенности на самолетах с вертикальным взлетом и посадкой, позволило снизить цифры потерь практически до нуля.

Максимум своих возможностей катапультная система К-36 продемонстрировала в июне 1989 года, когда во время демонстрационного полета в Лe Бурже, под Парижем, при выходе из пике на минимальной высоте в двигатель самолета, который пилотировал А. Квочур, попала птица. До земли оставалось менее 100 метров; тем не менее катапульта сработала.

На экране видеомонитора, при замедленной съемке, отчетливо видно, как с истребителя, падающего почти вверх «животом», срывается фонарь кабины и тотчас выстреливается кресло с пилотом. По касательной оно устремляется к земле. Через мгновение возникает бесформенный купол парашюта, и тут же МиГ-29 тыкается острым носом в траву и взрывается.

«Помню, что отчетливо увидел, как почему-то медленно стала сминаться, пошла гофром носовая часть фюзеляжа, как ударил огонь, но взрыва не слышал, — вспоминал сам пилот. — Наверное, потому, что в этот миг старался сгруппироваться, чтобы как-то смягчить неизбежный удар о землю. Успел понять: высоты не хватит, чтобы наполнился купол парашюта, а скорость падения слишком велика...»

И тут Квочуру здорово повезло: взрывная волна расправила купол парашюта, он притормозил падение. И хотя летчик здорово приложился спиной о нашу твердую планету, потерял на какое-то время сознание, он остался не только жив, но и, отделавшись лишь легкой царапиной, через два дня снова поднял самолет в воздух.

К слову, на сегодняшний день известны случаи катапультирования и вообще с нулевой высоты, чуть не из-под воды, когда самолет свалился с полетной палубы в воду, поскольку не сработал аэрофинишер и не затормозил вовремя его пробег. И все же оба члена экипажа аварийного самолета остались живы — их спасла катапультная система, разработанная на «Звезде».



Схема дельтаплана: 1 — крыло; 2 — центральный узел; 3 — верхние растяжки; 4 — мачта; 5 — килевая балка; 6 — носовой узел; 7 — боковая труба; 8 — поперечная балка; 9 — нижние растяжки; 10 — рулевая трапеция; 11 — подвесная система; 12 — латы

«Разведчик не дотянул до катамарана каких-нибудь 500 метров. Еще мгновение назад он летел, ковыляя на небольшой высоте, оставляя за собой неровную дымную полосу, затем блеснула — как померещилась! — синяя на синем вспышка, брызнули, закувыркались черные обломки, и невидимая сила медленно разорвала ракетоплан надвое.

Взорвался спиртобак — больше там взрываться было нечему.

Раз, и... Запоздалый звук тупо толкнул в перепонки, что-то прошелестело над головами, с легким треском ударило в корму; Сехеи не выдержал и отвернулся. «Все, Хромой», — бессильно подумал он. И в этот момент темные татуированные лица воинов исказились злобной радостью. Яростный вопль в сорок глоток!

Оказывается, не все еще было кончено. Из разваливающейся машины выпала черная человеческая фигурка. Летит, сгруппировавшись, — значит, жив. А впрочем... Жив! Фигурка, раскинула руки, и над ней с неслышным отсюда хлопком раскрылось треугольное крыло...»

Так описывается в фантастической повести Любови и Евгения Лукиных «Миссионеры» действие еще одной системы, предотвращающей падение, — крыла Рогалло, или, как его называют гораздо чаще, дельтаплана.

В повести многое перевернуто, поставлено как бы с ног на голову. В итоге по ходу сюжета, например, оказывается, что не белые колонизаторы попадают первыми на Американский материк, а, наоборот, темные татуированные с ног до головы воины приходят по следам каравелл в страну бледнолицых.

Это, конечно, право авторов (да еще фантастов) представлять мир, в котором живут их герои, по-своему. Но вот что касается технических подробностей, надо отдать им должное: Лукины постарались быть достоверными — мягкое треугольное крыло, на которое в 1951 году получил патент американец итальянского происхождения Френсис Рогалло, действительно можно использовать вместо парашюта. Такие попытки, в частности, предпринимались при создании космических систем США «Меркурий» и «Джеме-ни». В качестве альтернативного варианта для мягкого приводнения конструкторы предлагали использовать именно крыло Рогалло. Правда, тогда парашют победил — он оказался надежнее и компактнее.

Однако и дельтаплан не сдан окончательно в архив. В марте этого года состоялись первые испытания экспериментального космического аппарата Х-33, предназначенного для аварийного спасения экипажа космической станции. Так вот на заключительном этапе спуска этого аппарата он будет использовать надувное крыло Рогалло.

Спасение — в ракете

Для тех же космических или сверхзвуковых полетов конструкторы предлагают системы аварийного спасения, которые выбрасывают пилота из кабины уже не силой порохового заряда, как при катапультировании, а с помощью мини-ракет. Например, в конце 60-х годов в США была предложена капсула-кабина, предназначенная для спасения экипажа из двух человек сверхзвукового истребителя-перехватчика. Такая установка, понятно, является более надежным средством, чем катапультное сиденье открытого типа, и позволяет покидать гибнущую машину на скоростях в 2—3 тыс. км/ч и на высотах, начиная с нуля (то есть когда самолет еще находится на взлетной полосе) и кончая «потомком» в несколько десятков километров.

Капсула снабжается небольшим стабилизирующим парашютом и аэродинамической плоскостью-тримером, которые замедляют и выравнивают ее падение. В капсуле некоторое время сохраняется нормальная температура и давление, что обеспечивает безопасным спуск даже с больших высот. А когда скорость падения снижается до 300 км/ч за счет торможения в плотных слоях атмосферы, срабатывает основной парашют, и пилот благополучно опускается на землю.

Очень скоро, говорят конструкторы, таким же образом можно будет опускать кабины и больших пассажирских самолетов. Купола из титановой пряжи для них уже разрабатываются.



Спуск отделяемой кабины на парашюте

Причем перед самой землей, чтобы уменьшить сотрясение при соприкосновении с нашей довольно твердой планетой, инженеры предлагают включать ракетные двигатели мягкой посадки. Они работают всего несколько секунд, но этого оказывается вполне достаточно, чтобы смягчить удар.

А в некоторых случаях подобные ракеты, помещенные в ранец за спиной пилота, позволят и вообще обойтись без парашюта. Запаса топлива в таком ранце хватает на несколько десятков секунд. Этого вполне достаточно, чтобы снизиться и выбрать наиболее подходящую точку для приземления.

Вас поддержит ротор

Еще одна возможность затормозить падение в воздухе — использовать свободно вращающийся ротор.

Помните «носик» клена? Его лопасти-вертушки и натолкнули конструкторов на эту идею.

Американские инженеры попытались воплотить ее в конструкции оригинального спасательного средства — кресла-вертолета. В случае аварии пилот катапультируется вместе со своим креслом. Через некоторое время над ним раскрывается ротор. Он начинает крутиться в потоке воздуха, замедляя тем самым падение кресла. А если запустить еще небольшой реактивный двигатель, то падение вообще прекратится, превратится в полет.



Таким образом пилот может улететь от места аварии километров на 80, развивая в случае необходимости скорость до 200 км/ч. Если же топливо кончится раньше, чем пилот найдет подходящую площадку для приземления, ничего страшного: ротор, вращаясь в режиме авторотации, все равно плавно опустит его на землю.

Вариант этой идеи — кресло-самолет, способный планировать и с выключенным двигателем. Опять-таки после катапультирования вместе с креслом пилот нажимает рычаг, и из спинки вытягивается телескопическая балка, на которой разворачиваются киль и стабилизатор, затем раскрываются и надувные плоскости крыла. Переднюю его кромку образуют алюминиевые лонжероны (балки, идущие вдоль крыла и в настоящем самолете), заднюю—туго натянутые тросы. Реактивный двигатель расположен под сиденьем. Аппарат даже снабжен посадочным шасси.

Зацепившись за «облако»

Ныне конструкторы парашютных систем рассматривают и еще один патент природы. Паучок-серебрянка, который живет не только на суше, но и в воде, частенько пользуется помощью воздушного шара, такой же шар, наполненный легким газом, может быть использован и вместо традиционного парашюта.

Еще одна «паучья» идея, над которой размышляют конструкторы, заключается в следующем. Вспомните, как совершают свои путешествия по осени маленькие паучки. Влезают куда-нибудь повыше и начинают выпускать из своих желез тягучую жидкость.

На воздухе она застывает, превращаясь в тонкую, но прочную и легкую нить. Ветер подхватывает ее, а вместе с нею и паучка...

Нечто подобное специалисты хотят использовать и в технике. Вместо парашютной сумки летчик будет получать небольшой аэрозольный баллончик. В нужный момент пилот нажмет кнопку, и в воздухе появится и тотчас начнет застывать некое паутинное облако. Размеры его вполне достаточны, чтобы оказать парашютирующее воздействие. Остановка лишь за подходящим составом жидкости, которая должна быстро полимеризоваться в воздухе, образуя нечто достаточно пушистое и в то же время прочное.

О чем рассказал «черный ящик»?

Если самолет все-таки терпит катастрофу, то прежде всего на месте его падения спасатели и эксперты стараются отыскать «черный ящик». Что это такое?

Как выглядит «доносчик»

Вообще-то он вовсе не черный, а оранжевый. И не ящик, а металлический контейнер с толстыми стенками; некоторые из «ящиков» вообще представляют собой идеально круглую сферу. Название же, скорее всего, позаимствовано из кибернетики, где таким понятием обозначают объект, подавая на который электрические сигналы и анализируя, что получается на выходе, эксперты пытаются понять, что у него внутри.



Так выглядит «черный ящик

Во всяком случае, сами специалисты в отличие от журналистов редко употребляют такое название, предпочитая обозначения «шар», «горшок» или просто «самописец». Последнее, кстати, практически совпадает с официальным названием данного предмета как на русском — аварийный самописец, так и на английском языке — flight recorder.

По сути дела, в контейнере расположен специальный магнитофон, который и записывает сигналы, поступающие к нему по проводам от всех жизненно важных агрегатов самолета, причем обычно в самолете таких самописцев 2 или даже 3. Один или два стоят поблизости от кабины пилотов, и записи на них периодически анализируются после полета, который закончился вполне благополучной посадкой, и служат для оценки правильности действий экипажа, выявления возможных ошибок. За что пилоты иногда в сердцах зовут это устройство еще и «доносчиком». Кстати сказать, СССР, а потом Россия, пожалуй, единственная в мире страна, где записи на самописцах используются для профилактики безопасности полетов. Ведь анализ позволяет узнать о всех сбоях как в работе техники, так и действиях экипажа — от выпуска шасси на повышенной скорости до перегрева лопаток двигателя, внешне совершенно неприметного, — все фиксируется на ленте, вот почему если за рубежом после окончания полета шеф-пилот имеет право стереть записи самолично, у нас же — «и тронуть его не моги». Правда, пилоты все же приспособились и затыкают отверстия микрофонов того самописца, который регистрирует переговоры экипажа, пробками от шампанского.

Но, конечно, никому и в голову не приходит до поры до времени трогать аварийный самописец, располагающийся в наименее уязвимом месте самолетного фюзеляжа — в районе хвоста. Его-то и ищут в первую очередь при катастрофе.

Кстати сказать, именно для этого — для объективного анализа случившегося в воздухе — и стали ставить на самолетах первые бортовые самописцы вскоре после второй мировой войны, когда во многих странах быстрыми темпами стала развиваться пассажирская авиация.

Представьте себе ситуацию: прибыв в аэропорт назначения, некая дама или джентльмен вдруг начинали жаловаться, что пилоты везли их, словно мешки с картошкой. Во время полета самолет немилосердно встряхивало, а приземлился он так, что из пассажиров едва дух не вышибло... Действительно ли жалоба обоснованна, или экипаж, напротив, действовал исключительно грамотно и самоотверженно в сложных метеорологических условиях? Чтобы понять это, на борт стали устанавливать самописцы, регистрирующие наиболее важные параметры полета.

А когда контроля одного параметра оказалось недостаточно, на самолетах появились многоканальные самописцы, регистрирующие, скажем, не только высоту, но и скорость полета, вертикальные перегрузки... И записывать информацию стали уже не обыкновенными чернилами на бумажной ленте, а на магнитофонную пленку.

Однако и бумага, и лавсан, на основе которого делают обычную магнитную ленту, боятся высоких температур; даже если не сгорают, то обугливаются (бумага) или оплавляются (лавсан). Чтобы как-то уберечь информацию, приобретающую первостепенное значение при авариях, которые в авиации очень часто кончаются пожарами, самописцы придумали прятать в бронестаканы — специальные защитные кожухи, рассчитанные на противодействие не только высоким температурам, но и сотрясениям, ударам.

Один из таких бронестаканов представляет собой сферу диаметром около полуметра, составленную из двух половин, выполненных из прочнейшего сплава. (Возможно, именно потому и предприятие, занятое конструированием и производством таких самописцев, называется НПО «Сфера».) Полусферы соединены с помощью простейших, но достаточно надежных замков, так что при ударе они вряд ли раскроются самопроизвольно, снаружи сфера окрашена в ярко-оранжевый цвет — ее издалека видно среди обломков катастрофы, а изнутри проложена толстым, в два пальца, слоем термоизоляции.

Впрочем, хотя шары еще летают на самолетах разных типов, они вовсе не являются последним словом в данной области техники. Один из новых видов самописцев по внешнему виду представляет собой плоский цилиндр, опять-таки выполненный из сплава с термоизоляцией. Внутри упрятана аппаратура, регистрирующая уже не 3, как бывало, и даже не 12, а 64 параметра; причем в случае необходимости несколько таких ящиков могут быть объединены в комплекс, который может одновременно фиксировать до 256 параметров.

Фиксируются данные не на лавсановой, а на металлической ленте, которая может выдержать нагрев до 150 °С. А если учесть еще, что сам регистратор рассчитан на пребывание в очаге огня с температурой 1000 °С в течение 15 минут, сохраняет герметичность в морской воде не менее 56 часов, может выдержать кратковременные перегрузки (т. е. удары) с тысячекратной перегрузкой и статические — более 2 тыс. кг, то становится понятно, почему в большинстве случаев записи все-таки удается расшифровать, несмотря на всевозможные передряги, вполне возможные при катастрофе.

И опять без компьютера не обойтись

Но вот «ящик» так или иначе найден, что следует за этим? Комиссия, в состав которой входят эксперты по разным видам оборудования, расшифровке записей регистратора, а также представитель завода, который выпустил или ремонтировал данный самолет, двигателисты, опытные пилоты и т.д., вскрывает контейнер и расшифровывает записи с помощью компьютера.

Полученная информация отображается в виде графиков. К ним добавляются расшифровки звуковиков — службы, которая занимается прослушиванием и записью всех переговоров экипажей, особенно в последние 30 минут, а также анализом шумов, наложившихся на ту же пленку: изменением в гуле двигателей, тревожных сигналов, которые подают многие устройства на аварийных режимах... (Именно звуковики, например, установили, что перед самой катастрофой аэробуса А-310 под Междуреченском в кабине пилота были дети.) Если всего этого недостаточно, к расследованию подключаются аналитики; на основании предоставленной информации по формулам аэродинамики они вычисляют недостающие данные, строят, если надо, математические модели поведения летательного аппарата в воздухе на последнем участке траектории. (На экране дисплея такая информация видна в качестве своеобразного мультика — наглядно показано, какие эволюции совершает летательный аппарат перед тем, как врезаться в нашу твердую планету.)



Вся эта информация плюс сведения от двигателистов, самолетчиков, пилотов-экспертов сводится в единый отчет и служит затем основанием для квалифицированного резюме: причиной аварии послужил отказ такого-то агрегата. Или: есть основания полагать, что корень летного происшествия кроется в неграмотных действиях экипажа.

И пусть сделанного уже не исправить. Найденные ошибки должны послужить уроком для других. Ведь это только дураки (простите за грубость) учатся лишь на собственных ошибках. Умные люди просто обязаны сделать выводы из промахов других. И сделать так, чтобы каждый полет в идеале начинался удачным стартом и заканчивался благополучной посадкой.

«Черный ящик» учат новому

И последние сообщения на эту тему, пришедшие уже в тот момент, когда книга готовилась к печати.

Специалистами НИИ космического приборостроения под руководством профессора И. Арбиндера разработан новый проект спутниковой системы точного определения мест авиационных катастроф ТАМАК. Теперь уже в случае ЧП не придется разыскивать место аварийной посадки или падения самолета неделями, в случае аварии система сама, в считанные секунды, пока самолет находится еще в воздухе, успевает передать в центры управления воздушным движением не только сигнал SOS, но и точные координаты места происшествия.

Изменяются и сами «черные ящики». Американские конструкторы предлагают оснащать их еще и видеокамерами, чтобы эксперты могли затем не только услышать, что произошло, но и увидеть, как это было.

Загрузка...