Из каких кирпичиков «построен» организм?

Самый большой зоопарк

В конце XVII века английский естествоиспытатель Роберт Гук рассматривал с помощью своего весьма несовершенного микроскопа кусочек обычной бутылочной пробки и увидел, что ее поверхность имеет ячеистое строение. То, что он увидел и зарисовал, больше всего напоминало пчелиные соты. Гук назвал крохотные ячейки пробки клетками.


Кстати, знаете ли вы, что такое пробка, из чего она сделана? Натуральную пробку получают из коры растущих на юге Европы пробковых дубов.


Обычно говорят, что Гук открыл клетки растений. Однако точнее было бы сказать, он увидел всего лишь мертвые стенки клеток. Как мы сегодня знаем, клеточные стенки у растений состоят из толстого слоя целлюлозы и других веществ, и очень прочные. Живые растительные клетки, как и клетки животных, удалось увидеть лишь 100 лет спустя.


Пробковый дуб

Каждая клетка является обособленной самостоятельной единицей. Это значит, что клетки заботятся о себе сами, самостоятельно извлекает из крови кислород, воду, питательные и неорганические вещества, витамины, сами производят «ремонтные и строительные» работы, запасают впрок необходимые им вещества и сами извлекают из них энергию. Большинство клеток всё это делает самостоятельно, иногда использует соседей — помощников, но эти помощники опять же являются не чем иным, как клетками.


Именно в этом выражается самостоятельность и обособленность клеток. Но в то же время каждая клетка выполняет определенную, необходимую организму работу. В этом случае она подчиняется правилам, принятым в организме, и адресуемым ей командам нервной системы и гормонов. Все процессы, протекающие в организме, осуществляются в результате совместной деятельности его клеток.


Клетки очень разнообразны. В человеческом организме встречается примерно 200 видов клеток. Они имеют разные размеры, разную форму и им присущи разные функции, то есть каждый тип клеток выполняет в организме определенную работу. Клетки желёз вырабатывают разные жидкости: пищеварительные соки, пот, кожное сало, слюну, слезы.


Эпителиальные клетки человека под микроскопом на срезе

Мышечные клетки, обладающие способностью менять свою длину, обеспечивают движения. Нервные клетки передают в мозг информацию о том, что происходит в организме и в окружающей его среде, а нервные клетки головного мозга обрабатывают (обдумывают) эту информацию, формируют команды для органов и клеток организма и пересылают их по назначению опять же через нервные клетки.

Клетка анфас и в профиль

Несмотря на значительные различия в размере, форме и функции, все клетки растений и животных построены по единому плану. Каждая из них имеет оболочку, или мембрану, являющуюся границей клеточного государства. Внутри мембраны находится прозрачная вязкая жидкость, имеющая у некоторых клеток желто — зеленый или красноватый цвет. Эта жидкость называется цитоплазмой («цитос» по — гречески сосуд, но в биологии это слово используется в значении «клетка»).


Третьим обязательным компонентом клетки является наследственная информация — описание строения всех белковых молекул организма. Фактически она является полным описанием устройства всего организма и особенностей протекания всех предусмотренных в нем процессов. В клетках тела человека, животных, растений и грибов наследственная информация хранится в клеточном ядре, шаровидном или овальном теле, чаще всего находящемся в ее центре. Только у бактерий оформленного ядра нет, но наследственной информацией обладают и их клетки.


Строение клетки растения: 1 — ядро; 2 — цитоплазма; 3 — вакуоль; 4 — клеточная мембрана; 5 — целлюлозная клеточная стенка; 6 — хлоропласты; 7 — митохондрии; 8 — аппарат Гольджи; 9 — рибосомы

Из этой триады важнейших клеточных органов только цитоплазма является абсолютно обязательным элементом клетки. В отношении двух других ее компонентов допускаются исключения. Так, клетки слизевиков не имеют мембраны, но ничего, не растекаются, видимо, за счет того, что их густая цитоплазма не растворяется в воде. Эритроциты у человека в процессе созревания теряют ядра, а значит, и наследственную информацию. Зато в клетках поперечнополосатых мшшц человека и животных, в клетках некоторых грибов, водорослей и некоторых культурных растений находится по нескольку ядер. Это значит, что наследственная информация в таких клетках хранится в виде множества копий.


Если рассматривать клетку в световой микроскоп, то в ее цитоплазме можно увидеть и другие компоненты: крохотные зернышки и волоконца, образованные из более плотного материала, а также пузырьки какой — то жидкости и капельки жира. Более мрщный электронный микроскоп позволяет увидеть: митохондрии, лизосомы, центриоли и другие клеточные органеллы — «органы» клетки.

Заводоуправление

Ядро — одна из самых крупных органелл клетки, отделенная от цитоплазмы двойной оболочкой. В этой оболочке существуют поры, через которые в ядро или из ядра проходят достаточно крупные молекулы разных веществ. В одних клетках ядро всегда занимает строго определенное место, как, например, у человека голова. В других клетках ядро способно перемещаться и может оказаться в любом месте.


Ядро — важнейшая органелла клетки, ее командный пункт. Оно запускает, регулирует и прекращает все протекающие в клетке процессы. Но этим роль ядра не исчерпывается. В полужидком веществе ядра находятся хромосомы — очень важные элементы клетки, состоящие из ДНК — дезоксирибонуклеиновой кислоты, — и белков. Фрагменты этих длинных молекул являются генами, носителями наследственных признаков организма. Подробнее о ДНК вы можете прочитать в главе «Наследники и наследственность» (см. с. 213).


У большинства клеток ядро содержит удвоенный набор хромосом, то есть по два экземпляра каждой хромосомы. По длине, толщине и другим особенностям строения хромосомы каждой пары отличаются от хромосом других пар. Различия легко заметить даже в обычный световой микроскоп.


Когда клетка делится надвое, хромосомы каждой пары расходятся по разным дочерним клеткам. Таким образом, они строго поровну распределяются во вновь образующихся клетках.


Для каждого организма характерно определенное число хромосом. У паразитического круглого червя аскариды их 2, у комара — 6, у комнатной мухи — 12, у крота — 34, у человека — 46, у воробья — 76, у карпа — 104, у невской миноги — 174.


Клетка с видимыми хромосомами в начале деления

Насколько важно ядро для клетки, видно из следующего опыта. Если у одноклеточной амебы удалить ядро, она немножко поболеет, а потом будет вести себя нормально, ползать, охотиться и переваривать съеденную добычу, но через несколько дней погибнет. Если же вынутое из амебы ядро тут же вернуть обратно, то это одноклеточное существо, поболев, вернется к нормальной жизни и будет расти и размножаться.

Кухня

Электронный микроскоп выявил в клетках животных множество разных органелл. Как вы понимаете, увидеть их было трудно, но понять, зачем они, какую функцию выполняют, оказалось еще труднее.


Если клетку рассматривать как некий «завод», разделенный на множество цехов, то совершенно ясно, что «рабочих» этих цехов нужно где — то и чем — то кормить. Значит, в клетке должна быть «столовая». И такая «столовая» нашлась, да не одна, а множество. Их назвали лизосомами, что в переводе означает «растворяющие тельца». Ими снабжены клетки животных и грибов.


Лизосомы — это мембранные мешочки разной формы, в которых хранится раствор пищеварительных ферментов — своего рода клеточный пищеварительный сок. В лизосомах перевариваются пищевые частицы, превращаясь в те вещества, которые клетка может использовать для построения новых органелл или для получения энергии.


Лизосомы надежно изолированы от цитоплазмы плазматической мембраной, ведь иначе ферменты, заключенные в них, просто — напросто переварили бы саму клетку.


Но как же доставлять ферменты в лизосомы? Ведь синтезируются они не в них, а в специальной органелле, называемой аппаратом Гольджи. (Подробнее о его строении и работе см. на с. 67.)


В клетке вырабатываются ферменты для переваривания разных веществ, в том числе белков. Для активирования этих ферментов в лизосомах поддерживается кислая среда. А ферменты, которые вырабатываются и хранятся в аппарату Гольджи и в эндоплазматической сети (ЭПС), находятся в нейтральной среде. В ней они не активированы, а потому не представляют опасности для клеточных структур и не в состоянии затеять процесс самопереваривания.


Итак, пищеварительные ферменты в самих лизосомах не вырабатываются; как и многие другие необходимые клетке вещества, они синтезируются и накапливаются в аппарате Гольджи. Когда ферментов накопится много, от аппарата отделяется мембранный пузырек, наполненный ими, — вот и готова лизосома. Клетки животных содержат десятки лизосом, некоторые из них находятся в неактивном состоянии, являясь клеточным резервом.


Клетки животных могут захватывать пищевые частицы с помощью мембраны и «проглатывать» их, окружая комочек пищи выростами мембраны. (Вы, может быть, уже знаете, что так питаются одноклеточные амёбы, но клетки многоклеточных организмов тоже способны к «заглатыванию» пищи — этот процесс ученые называют фагоцитозом).


Схема фагоцитоза амёбы: 1 — клетка амёбы; 2 — клетка водоросли; 3 — пищеварительная вакуоль; А — Г — последовательность событий

Пузырек с проглоченной частицей Нищи становится пищеварительной вакуолью. С ней сливаются несколько лизосом, в результате чего в мешочке оказываются и питательные вещества, и активированные пищеварительные ферменты, начинается переваривание. По мере переваривания питательные вещества через мембрану лизосомы переходят в цитоплазму клетки и по ней транспортируются ко всем другим органе л лам.


Когда поступление пищевых веществ сокращается и клетка начинает голодать, лизосомы переваривают некоторые органеллы, не убивая всю клетку, но позволяя ей продержаться до восстановления нормального снабжения.


Схема работы лизосомы: А — Г — последовательность событий; 1 — частица пищи; 2 — лизосома; 3 — пищеварительная вакуоль; 4 — выбрасывание непереваренных остатков; 5 — аппарат Гольджи; 6 — ЭПС

Если продолжить сравнение лизосомы с кухней, то придется признать, что находящиеся там «плиты» более универсальны, чем газовые и электрические плиты, используемые в быту, и позволяют не только готовить «обед», но и сжигать всякий хлам, ненужные или даже вредные клетке вещества. Эта функция лизосом важна при ремонтных работах в данной клетке или в самом организме.


Если у нервной клетки по какой — либо причине окажется оторван один или несколько отростков, клетка не погибнет, а оторванный отросток переварят лизосомы. Но если клетка больна или серьезно повреждена, она может быть переварена собственными лизосомами.


А знаете ли вы, куда девается хвост головастика, когда он превращается в лягушонка? Клетки хвоста постепенно уничтожаются собственными лизосомами! Вот какие важные функции выполняют эти клеточные органы.


Далеко не всё, что попадает в клетку, может быть в ней переварено. Непереваренные вещества накапливаются в лизосомах, а потом выбрасываются из клетки. Нередко от непереваренных веществ клетка перестает освобождаться, и они в ней накапливаются и хранятся. Это свидетельствует о старении клетки.

Фермерское хозяйство

Откуда клетки черпают пищевые вещества, строительные материалы и энергоносители? Клетки человека и животных извлекают их из крови, ведь в их организме есть пищеварительные органы, в которых переваривается пища и готовятся нужные клеткам питательные вещества.


В этой книге мы в основном рассказываем о биологических процессах, протекающих в организме животных и человека. Давайте заглянем и в растительную клетку. Вы, наверное, уже знаете, что эти клетки необходимые им питательные материалы умеют синтезировать самостоятельно.


Чтобы клетка могла расти и делиться, выполнять специальные функции и даже просто поддерживать свое существование, она должна всё время расходовать энергию. Для растительных клеток первоисточником этой энергии служит солнечный свет. В клетках зеленых растений осуществляется фотосинтез, то есть процесс поглощения световой энергии и превращения ее в химическую энергию, то есть в энергию химических связей молекул синтезируемых углеводов. В качестве такого вещества синтезируется простейший сахар — глюкоза.


Мы постоянно сталкиваемся с химической энергией. Вы, конечно, знаете, каким жаром пышет от костра. Этот жар — результат высвобождения химической энергии при разрушении молекул веществ, из которых состоит древесина, и окисления атомов углерода, входящих в ее состав. Высвобождаясь, химическая энергия превращается в тепловую и рассеивается в окружающем пространстве.


Синтез глюкозы и других углеводов (глюкоза, как и все сахара, относится к углеводам), от которого зависит вся жизнь на нашей планете, осуществляется в органеллах растительных клеток, содержащих пигмент хлорофилл и называемых хлоропластами, В клетках животных таких органелл не бывает.


Строение хлоропластов: А — перерисовка электронной микрофотографии; Б — реконструированная схема 1 — мембранные мешочки (тилакоиды); 2 — граны тилакоидов; 3 — молекула ДНК; 4 — рибосомы; 5 — наружная мембрана; 6 — внутренняя мембрана

Рабочими элементами хлоропластов являются стопки плоских мешочков, в которых сосредоточен хлорофилл. Мешочки хлорофилла, уложенные стопками, похожими на столбики монет, и как — то соединенные между собой, называют гранами. Они предназначены для улавливания энергии световых лучей.


Очень важную роль в этом процессе играют оболочки гран. Хлорофилл, взятый в чистом виде, не поглощает солнечный свет. Вернее, он его поглощает, но тотчас излучает обратно. При этом поглощенная им световая энергия рассеивается в окружающем про странстве. В гранах молекулы хлорофилла способны под действием света перейти в воз бужденное состояние и продержаться в таком состоянии некоторое время. Это время исчисляется долями секунды, но и его достаточно, чтобы перевести «пойманную» энергию в такую форму, в какой она уже не потеряется. Так молекулы хлорофилла запасают энергию, которая затем используется для синтеза глюкозы.


При этом хлорофилл разлагает воду на кислород и водород. Кислород выделяется в атмосферу, а атомы водорода включаются в состав органических веществ.


Схема фотосинтеза

Первая фаза фотосинтеза — улавливание энергии света и разложение воды — называется световой фазой фотосинтеза. Ее скорость зависит от интенсивности света. У растений, попавших в тень, эта фаза протекает вяло, и поэтому они медленно накапливают питательные вещества и плохо растут.


На втором этапе фотосинтеза происходит образование молекул глюкозы с использованием энергии, накопленной во время световой фазы. Для этого процесса свет уже не нужен, поэтому она называется темновой фазой фотосинтеза. (Только не подумайте, что она осуществляется ночью!) Темновая фаза фотосинтеза, как правило, не может идти при значительном понижении температуры. Вот почему растения высокогорий, несмотря на интенсивное освещение, растут очень медленно.

Фотосинтез в цифрах

Ежегодно в результате фотосинтеза на Земле создается 150 миллиардов тонн органического вещества и в атмосферу поступает около 200 миллиардов тонн кислорода. При этом усваивается более 260 миллиардов тонн углекислого газа.


Интенсивность фотосинтеза древесных растений в 5–8 раз ниже, чем травы открытых лугов. Однако за счет многоярусной организации древесно — кустарникового полога и большей площади листьев деревьев и кустарников продуктивность лесных сообществ гораздо выше травянистых.


На широте Москвы деревья лиственных пород заняты фотосинтезом примерно 130 дней в году, а хвойные осуществляют фотосинтез в течение 160–170 дней.

Химические заводы внутриклеточной сети

Жизнь любой клетки зависит от наличия различных веществ. Они непрерывно создаются из продуктов переваривания пищи, подготовленных лизосомами. Не только у молодого растущего организма, но и у взрослых существ некоторые клетки тела продолжают размножаться, то есть делиться и расти, увеличиваясь в размерах и увеличивая до необходимого уровня число разных органелл. Такие клетки должны энергично синтезировать строительные материалы. Обычно в качестве примера приводят кроветворные клетки красного костного мозга. Процессы, связанные с их размножением и ростом, изучены особенно хорошо. Но и клетки, прекратившие размножаться, продолжают интенсивно создавать одни вещества и разрушать другие. Часто именно в этом и состоит их функций — например, клетки желёз в огромных количествах производят гормоны, ферменты, молоко и т. д.


Осуществление синтеза большинства необходимых клетке веществ, происходит во внутриклеточной эндоплазматической сети (ЭПС). В клетках разного типа и у разных животных эта сеть выглядит по — своему. Вероятно, она образуется из впячиваний клеточной мембраны, которые ветвятся и в виде микроскопических трубочек пронизывают в разных направлениях всю цитоплазму. Они отходят от поверхности клеточного ядра и направляются в различные участки клетки.


В этих канальцах, надежно изолированных от цитоплазмы, происходит синтез необходимых для клетки молекул, и по ним же готовый продукт транспортируется к месту назначения или за пределы клетки.


В большинстве клеток встречаются два вида трубочек: гладкие и шероховатые. Жировые вещества (липиды), углеводы и гормоны синтезируются на внутренней стороне мембраны гладких трубочек.


Шероховатые трубочки выглядят так из — за рибосом, прикрепившихся к их наружным стенкам. В них синтезируются молекулы белков. После завершения их синтеза они проходят сквозь мембрану внутрь трубочек и транспортируются к месту назначения.

Эндоплазматическая сеть (ЭПС):А — перерисовка электронной микрофотографии; Б — реконструированная схема; 1 — мембрана; 2 — трубочки; 3 — рибосомы; 4 — гладкая ЭПС; 5 — шероховатая ЭПС; 6 — цитоплазма

Ученые предполагают, что те белки, которые предназначены для использования внутри клетки, синтезируются на свободных рибосомах, а т; е, которые должны быть выведены из клетки или вмонтированы в ее оболочку, — на рибосомах, прикрепленных к шероховатым трубочкам внутриклеточной сети.


Эндоплазматическая сеть — мощное транспортное предприятие клетки, но, видимо, для доставки мелких «грузов» она не годится. Во всяком случае, от некоторых трубочек отделяются мелкие пузырьки и самостоятельно странствуют в цитоплазме, доставляя нужные вещества к органеллам.

Отдел контроля и упаковки

Эту органеллу открыл итальянский ученый Камилло Гольджи, в честь него она и получила свое название. Аппарат Гольджи состоит из стопок плоских, изолированных друг от друга мешочков и участвует в транспорте молекул внутри клетки и за ее пределами. Частично это происходит с помощыр транспортных пузырьков. Они отделяются от эндоплазматической сети и вливаются в мешочек, находящийся у основания стопки. Здесь вещества сортируются, и формируется определенный, нужный на данный момент, состав веществ внутри мешочка.


Позже эти молекулы перемещаются во второй, третий и так далее мешочки стопки. При этом они достраиваются и дорабатываются, сортируются и «упаковываются» в новые пузырькй. В конце концов от aппарата Гольджи отделяются лизосомы или другие мембранные пузырьки — содержимое их может быть различным. Вещества, предназначенные для использования вне клетки, транспортируются в этом пузырьке к клеточной мембране и выбрасываются из клетки. Происходит это очень просто — пузырек сливается с мембраной, его мембрана становится частью мембраны клетки, а содержимое остается «за бортом».


Аппарат Гольджи: А — перерисовка электронной микрофотографии; Б — реконструированная схема 1 — мембранные мешочки; 2 — мембранные трубочки, связанные с ЭПС; 3 — отделяющиеся пузырьки; 4 — ядро

Так из клетки выводятся образованные ею молекулы гормонов, капельки молока, слизи, межклеточное вещество кости, хряща и зубная эмаль, вырабатываемые клетками соответствующих тканей.


Схема выброса веществ из клетки

Нефтеперегонные предприятия

Все живые клетки (кроме бактерий) содержат очень важные органеллы — митохондрии, которые можно образно назвать «энергетическими станциями» клетки. Их может быть совсем немного, всего несколько штук, но существуют клетки, которые содержат свыше 1000 митохондрий. Эти миниатюрные тельца имеют различную форму — от щариков до нитей и палочек. Как и хлоропласты, митохондрии покрыты двойной мембраной. Наружная мембрана митохондрий гладкая, а внутренняя имеет множество складок, разделяющих полость митохондрий неполными перегородками. Эти складки во много раз увеличивают поверхность мембраны, ведь именно на ней «сидят» ферменты, осуществляющие важнейшие химические реакции. Помните, в хлоропластах ферменты также располагались на внутренней мембране, упакованной для увеличения поверхности в стопки мешочков — граны?


А вот функция митохондрий, по строению похожих на хлоропласты, прямо противоположная. Если хлоропласты синтезируют органические вещества из углекислого газа и воды, затрачивая энергию (света) и выделяя кислород, то митохондрии, наоборот, «сжигают» органические вещества, то есть фактически осуществляют обратную реакцию: тратят кислород, выделяют углекислый газ и воду и — самое главное — получают энергию.


Митохондрия: А — перерисовка электронной микрофотографии; Б — реконструированная схема 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — полость митохондрии; 4 — складки внутренней мембраны

Полученная в результате окисления энергия запасается в молекулах особого вещества, которое сокращенно называется АТФ (аденозинтрифосфорная кислота). Это вещество можно назвать стандартной «батарейкой», от которой могут работать все «приборы», все органеллы клетки.


Молекулы АТФ выходят из митохондрий и переносятся ко всем органе л лам клетки, работа которых связана с затратой энергии. Митохондрии каким — то образом передвигаются в цитоплазме и обычно сосредотачиваются в той части клетки, где в этот момент идет особенно интенсивная работа. Естественно, число митохондрий в клетке также прямо пропор* ционально интенсивности выполняемой ею работы. Особенно много митохондрий в клетках мышц.

Маленькие химеры

Химерой древние греки называли мифическое чудовище с головой и шеей льва, туловищем козы и хвостом дракона. Биологи называют химерами любые организмы или клетки, составленные из частей разных организмов. Обычно химерные организмы получают в лаборатории для различных генетических экспериментов, но оказалось, что химерами являются клетки абсолютно всех ядерных организмов — растений, животных и грибов!


Началось это удивительнейшее открытие XX века с обнаружения в митохондриях и хлоропластах, очень похожих друг на друга органеллах, кольцевой ДНК. Кроме того, митохондрии и хлоропласты, как выяснилось, размножаются делением и при этом их ДНК, как и положено при делении, удваивается. Это было и само по себе удивительно — зачем отдельным органеллам своя генетическая информация? Но еще удивительнее было то, что кольцевая ДНК свойственна безъядерным клеткам бактерий, а у ядерных организмов ДНК всегда линейная. Мало того, белки, поддерживающие структуру ДНК, в митохондриях и хлоропластах оказались аналогичные именно бактериальным, а не животным или растительным белкам. У ученых не осталось сомнений — в органеллах клеток ядерных организмов содержится бактериальная ДНК! Как она туда попала?


На этом чудеса не, закончились. Ученым уже было известно, что не только ДНК, но и рибосомы бактерий и ядерных организмов отличаются друг от друга по своему строению. Так вот, в митохондриях и хлоропластах тоже обнаружили их собственные рибосомы. Вы, наверное, уже догадываетесь, какого типа были эти рибосомы? Конечно, бактериального!


Анализ белков внутренней и внешней мембран этих загадочных органелл показал, что наружная мембрана их является, в сущности, продолжением мембраны ЭПС, а вот внутренняя — не что иное, как наружная (и единственная, у бактерий нет внутренних мембран) мембрана клетки бактерии.


Разгадка может показаться нам, живущим в XXI веке, простой, но она была настолько невероятной, что ученые долго не могли поверить собственным гипотезам. Да, в состав клеток ядерных организмов входят клетки бактерий!


Видимо, когда — то давным — давно первые ядерныё организмы питались подобно современным амебам — захватывая ложноножками бактерий и переваривая их внутри клеток. И вот однажды случилось так, что клетка поглотила бактерию, но переварить ее не смогла или не «захотела», а поставила себе на службу. По — видимому, первые ядерные организмы еще не умели полностью окислять сахара до углекислого газа и воды (подробнее о способах биологического окисления вы можете прочитать на с. 370), пользуясь только брожением, а какие — то бактерии уже «изобрели» такой способ получения энергии. Ничего удивительного в этом нет — бактерии, отставая от животных и растений в области построения многоклеточных организмов, намного опережают их в биохимической изобретательности. Какие только химические реакции не умеют осуществлять бактерии!


Образование ядерной клетки в результате симбиоза древнего ядерного организма с бактериями: А — стадия свободноживущих бактерий и ядерных организмов; Б — поглощение ядерной клеткой бактерий; В — симбиотическая клетка, объединяющая несколько клеток 1 — ядерная клетка; 2 — бактерии разных типов; 3 — ядро; 4 — рибосомы; 5 — митохондрия; 6 — хлоропласт; 7 — центриоль

Бактерии, умеющие окислять сахара до конца, извлекая из них максимум энергии, оказались очень полезными для клеток ядерных организмов, а те в обмен на эту услугу предоставили им «и стол и кров». Получился симбиоз — взаимовыгодное сожительство различных организмов. За миллионы лет, прошедшие с момента заключения этого союза, бактерии, ставшие теперь митохондриями, постепенно утеряли часть своей самостоятельности: теперь только около 30 % нужных им белков они синтезируют сами, а остальное — получают от клетки — хозяина.


Хлоропласты, видимо, образовались из тех бактерий, которым удалось «изобрести» фотосинтез. Судя по всему, это были цианобактерии, или синезелёные водоросли, и до сих пор живущие в «диком» состоянии.


Если всё это так, то перед медиками встает очень важный вопрос. Сейчас созданы антибиотики против очень большого числа бактерий, не могут ли некоторые из них оказывать отрицательное влияние на бывших бактерий, ставших теперь митохондриями клеток человеческого тела? А если могут, то стоит ли пользоваться этими антибиотиками?

Загрузка...