Человек живет в радиоактивном мире и потому, хочет ли он этого или нет, независимо от рода его занятий, подвергается непрерывному действию ядерных излучений, исходящих от окружающей его природы. Эта доза облучения, получаемая человеком от природных источников, носит название природного, или естественного, фона облучения.
Природный фон облучения невелик, и повышенный интерес ученых к нему возник сравнительно недавно - в основном после того, как человек научился управлять энергией атома. И возник он не случайно. По мере дальнейшего расширения областей применения атомной энергии, радиоактивных изотопов и источников излучений все более стал расширяться круг лиц, подвергающихся действию этих излучений. Сразу же возник вопрос: какие дозы облучения безопасны для человека и какие представляют опасность? Вопрос этот оказался, однако, далеко не простым.
Коварная особенность рентгеновских лучей и ядерных излучений в том, что они не вызывают непосредственных болевых ощущений и между облучением и проявлением физиологических изменений в облученном организме может пройти значительный срок, измеряемый в ряде случаев многими годами. Вот тут-то и оказывается полезным знание природного фона облучения человека.
Дело в том, что радиоактивные элементы на Земле возникли задолго до появления на ней живых существ и, следовательно, с самого зарождения жизни организмы всех живых существ, в том числе и человека, непрерывно подвергались действию природного фона облучения. Имеющиеся в науке данные позволяют утверждать, что интенсивность природного фона облучения существенно не изменилась, во всяком случае за несколько последних десятков тысяч лет. Естественно допустить, что доза, которой человек облучается в течение многих тысячелетий, безопасна, поскольку за такой длительный срок организм человека должен был приспособиться к природному фону облучения.
Природный фон обусловлен источниками излучения, находящимися как вне, так и внутри человека. И внешнее, и внутреннее облучения имеют свои характерные особенности, поэтому мы рассмотрим их отдельно.
Источники внешнего облучения человека - радиоактивные вещества, содержащиеся в почве, окружающих нас горных породах, воздухе, строительных материалах, из которых построены наши жилища, и, наконец, лучи, приходящие к нам из глубин мирового пространства и носящие название космических лучей. Радиоактивные вещества, находящиеся вне организма (почва, горные породы, стройматериалы и др.), излучают все три вида радиоактивных излучений - альфа-; бета- и гамма-лучи. Из них только гамма-лучи принимаются в расчет при определении дозы, получаемой человеком. Малая проникающая способность бета- и особенно альфа-лучей является причиной того, что подавляющая часть их поглощается воздухом, органическими веществами, находящимися на поверхности земли, верхними слоями строительных материалов, одеждой человека и только незначительное количество их попадает на тело человека, да и оно поглощается поверхностным слоем кожи.
Многочисленные измерения, проведенные в различных местах земного шара, показывают, что за счет радиоактивных веществ, содержащихся в грунте и горных породах, человек получает в среднем дозу 1 - 2,4 мрад в неделю, или 50 - 130 мрад в год. Меньшие значения получены над уровнем моря, большие - над горными породами вулканического происхождения. Зимой эта величина меньше, чем летом, так как слой снега в 30 см уже снижает вдвое интенсивность гамма-излучения.
На земном шаре есть, однако, места, в которых природный уровень облучения значительно превосходит приведенные выше значения. Так, в Индии (штаты Керала и Мадрас) имеется узкая полоса земли шириной всего в несколько сотен метров, а длиной около 200 км. покрытая монацитными песками, содержащими значительное количество радиоактивного тория. Мощность дозы в пределах полосы составляет 130 - 2800 мрад/год. Такому облучению подвергается около 100 тыс. человек, живущих в пределах полосы. Аналогичные явления можно наблюдать в Бразилии (штаты Миранас, Жояс и Гояс), где годичная доза внешнего облучения доходит до 12 рад. Повышенный фон встречается и в других местах земного шара.
Большинство людей проводят значительную часть своей жизни в закрытых помещениях. Получают ли они при этом большую или меньшую дозу, чем те, кто находится на открытом месте? С одной стороны, стены домов должны защищать их от излучения грунта и горных пород, с другой - ряд строительных материалов (кирпич, бетон и др.) содержит в себе некоторое количество радиоактивных веществ. Чтобы ответить на этот вопрос, в 1954/55 г. в Швеции были проведены измерения природного фона облучения в 986 квартирах, расположенных в 677 домах, выбранных в 13 городах. Дома были построены до 1946 г., т. е. до начала массовых испытаний ядерного оружия. Данные измерений показали, что в деревянных домах мощность дозы несколько меньше, а в кирпичных и бетонных несколько больше, чем на открытом воздухе. Наибольшие значения фона получены в зданиях, построенных из гранита.
В атмосферном воздухе всегда содержится некоторое количество радиоактивных веществ - гамма-излучателей. Это радон, выделяющийся из радия, содержащегося в земной коре, продукты его распада, радиоактивные аэрозоли, образующиеся при выветривании горных пород, и радиоактивные изотопы, возникшие в воздухе под действием космических лучей. Доза, создаваемая всеми источниками, невелика и составляет в среднем около 0,013 мрад в неделю.
Наконец, к перечисленным источникам внешнего облучения человека необходимо добавить дозу, полученную за счет космических лучей. Для местности, расположенной в средних широтах (широта 50°), эта доза составляет около 50 мрад в год на уровне моря, значительно возрастая с высотой. На высоте 1 км над уровнем моря она возрастала до 90 мрад в год, а на высоте 5 км - до 800 мрад в год.
Кроме внешнего облучения организм человека подвергается еще внутреннему, источником которого являются радиоактивные изотопы, входящие в состав организма. Это - К40, содержащийся преимущественно в нервной и мышечной ткани, радий, отлагающийся в костной ткани, газообразные продукты распада радона, накапливающиеся в дыхательных путях, и радиоактивные изотопы углерода - С14, рубидия - Rb87 и полония - Ро210.
Внутреннее облучение по сравнению с внешним отличается рядом особенностей:
1. Если при внешнем облучении учитывалось только гамма-излучение, то при внутреннем основное действие оказывают альфа- и бета-излучения, имеющие возможность действовать непосредственно на жизненно важные ткани и органы человека.
2. Большинство радиоактивных изотопов накапливается в определенных тканях, что приводит к неравномерному облучению отдельных частей организма.
3. Внутреннее облучение действует все время, пока радиоактивные вещества находятся внутри организма.
Данные радиобиологических исследований показывают, что не все органы и ткани человеческого организма обладают одинаковой чувствительностью к облучению. Наиболее чувствительны гонады - половые железы и органы кроветворения. Поэтому помимо общей дозы облучения, получаемой человеком, необходимо также знать дозу, получаемую гонадами.
В приведенной ниже таблице представлены последние данные Научного комитета ООН по действию атомной радиации - мощности доз внешнего и внутреннего облучения от естественных источников в районах, не обладающих повышенным фоном радиоактивности[6]. В таблице отдельно показана доза, полученная за счет альфа-частиц и нейтронов, обладающих большей биологической эффективностью, чем гамма-лучи и бета-частицы.
Таблица 3. Годичные дозы, получаемые организмом человека в результате внешнего и внутреннего облучения от естественных источников
Приведенные данные для внешнего облучения могут изменяться в зависимости от географических условий. В этом отношении представляют интерес результаты измерения годовых доз фонового внешнего облучения для групп населения отдельных городов СССР[7]. Жители Баку, Владивостока, Еревана, Кишинева, Сочи, Якутска получают в год в среднем 60 - 80 мрад; Киева, Москвы, Новосибирска, Таллина, Тбилиси, Вильнюса - 80 - 100; Ашхабада, Иркутска, Львова, Минска, Риги - 100 - 120, Душанбе, Ленинграда, Ташкента - 120 - 140; Севастополя - 45 мрад.
В настоящее время фоновое облучение человека не ограничивается перечисленными выше естественными источниками излучений. С одной стороны, к нему добавляется излучение искусственных радиоактивных веществ, образовавшихся в результате испытаний ядерного и термоядерного оружия. С другой стороны, в наш быт прочно и повсеместно вошли и получили широкое распространение медицинские рентгеновские установки, часы и приборы со светящимися циферблатами, телевизоры, радиоустановки, в которых электронные лампы находятся под высоким напряжением, и т. п. Все они в той или иной мере источники ионизирующих излучений и в определенных условиях могут привести к увеличению фонового облучения человека. Со всеми этими источниками приходится сталкиваться большому количеству людей, далеких и от атомной промышленности, и от применения радиоактивных изотопов и излучений в тех или иных областях народного хозяйства. Интересно поэтому рассмотреть подробнее, в какой мере эти источники увеличивают природный фон облучения и могут ли они представлять какую-либо опасность для населения.
Наиболее серьезный источник дополнительного облучения населения - рентгеновское просвечивание. Ведь рентгеновские лучи по своей природе и биологическому действию аналогичны гамма-лучам радиоактивных изотопов. При этом рентгеновскому просвечиванию подвергается довольно широкий контингент населения. По данным Всемирной организации здравоохранения, в ряде стран (Скандинавские страны, Англия, США) на душу населения в год в среднем приходится 0,3 рентгенодиагностического исследования, а если учесть и массовые флюорографические обследования, то 0,5. По подсчетам английских ученых, средняя доза, приходящаяся за счет рентгеновского исследования на одного человека, составляет 20 - 25% от естественного фона облучения. Таковы средние цифры, но в отдельных случаях, когда исследования проводятся без надлежащего контроля, могут иметь место лучевые повреждения. Во избежание этого врачи ведут учет числа проводимых рентгеновских исследований с тем, чтобы в случаях, когда это не вызывается необходимостью, не подвергать больного излишнему облучению. Особенно стараются ограничить количество рентгеновских исследований беременных женщин, детей и подростков, организмы которых особенно чувствительны к облучению. При проведении рентгеновских исследований принимают меры к защите частей организма, расположенных по соседству с исследуемой областью, прикрывая их просвинцованной резиной, хорошо поглощающей рентгеновские лучи.
При рентгеновском исследовании не установлено предельно допустимых доз облучения. Возможность радиационной опасности устанавливается в каждом отдельном случае лечащим врачом на основании клинических данных. При этом учитывается то обстоятельство, что при просвечивании действию излучения подвергается не все тело человека, а только некоторые его участки. Особое внимание уделяется защите жизненно важных органов, в первую очередь гонад (табл. 4).
Таблица 4. Доза, получаемая гонадами при различных видах рентгеновского исследования (средние данные)
В последнее время при производстве рентгеновских исследований начинают все шире применять специальные электроннооптические усилители изображения, позволяющие в несколько раз уменьшить интенсивность рентгеновских лучей при просвечивании и тем самым значительно снизить дозу, получаемую больным.
Значительно меньшую потенциальную опасность в качестве источника облучения представляют часы и приборы со светящимися циферблатами. Источник излучения в данном случае - нанесенная на циферблат светомасса. В состав светомассы помимо люминесцирующего вещества - фосфора входит еще какое-либо радиоактивное вещество (чаще всего радий или мезоторий), излучение которого вызывает свечение фосфора. Количество радия, находящегося на циферблате часов, в большинстве случаев не превышает одного микрограмма, и потому опасность, которую представляют такие часы, для владельца относительно невелика. Доза, создаваемая такими часами на коже тыльной поверхности руки, составляет около 10 мрад в сутки и быстро убывает с расстоянием (на расстоянии одного метра она уже не превосходит уровня натурального фона). Так как часы обычно находятся на достаточном удалении от глаз и других чувствительных к облучению органов, то представляемая ими опасность незначительна. Так, проводившиеся в 1956 г. в Англии измерения показали, что за счет светящихся часов половые железы человека получают дозу, равную 1 % дозы от естественного облучения. Только в тех случаях, когда количество приборов со светящимися циферблатами велико или когда светящийся циферблат находится продолжительное время перед глазами, доза облучения может оказаться значительной. К непосредственному действию излучения добавляется еще действие радона, выделяющегося при распаде радия, входящего в состав светомассы. Газообразный радон может попадать в легкие людей, работающих с такими приборами.
Широкое распространение в наше время получили телевизоры: миллионы телевизоров находятся в пользовании населения. Поэтому, естественно, возникает вопрос о том, не представляют ли телевизоры радиационной опасности для лиц, пользующихся ими. Откуда же в телевизоре может взяться ионизирующее излучение? Дело, оказывается, в том, что в телевизорах изображение образуется электронным пучком, попадающим на флуоресцирующий экран. Известно, что при торможении быстро летящих электронов должны образовываться рентгеновские лучи. Это явление имеет место и в кинескопах телевизоров. Однако возникающие при этом рентгеновские лучи очень мягкие, и если анодное напряжение, ускоряющее электроны, не превышает 10 - 12 кв, как это имеет место в значительной части домашних телевизоров, то они практически полностью поглощаются стеклом стенки кинескопа. В тех случаях, когда напряжение выше 15 кв, стенка колбы кинескопа может пропускать рентгеновские лучи, причем степень излучения будет зависеть от толщины стенок колбы. При отсутствии специальной защиты могут представить опасность кинескопы, предназначенные для фотографирования телевизионных изображений и для проекции. Что касается домашних телевизоров, то, по данным ряда исследователей, создаваемая ими дополнительная доза составляет (средние данные) примерно 1 % от фонового облучения человека, т. е. практически доза отсутствует.
Говоря о дополнительных источниках облучения человека, нужно указать, что любая электронная лампа, работающая при достаточно большом напряжении, может быть источником рентгеновских лучей. Об этом может свидетельствовать хотя бы следующий случай.
8 марта 1960 г. в башне радиолокационной станции в Локпорте (Нью-Йорк) производились окончательные испытания нового передатчика типа FPS-7, принятого на вооружение военно-воздушными силами США. Однако работавшие там техники долго не могли наладить работу установки - при подключении высокого напряжения сверхвысокочастотные колебания не возникали. Тогда они решили снять с клистрона (электронная лампа, работающая в сверхвысокочастотном диапазоне) защитный чехол и попытаться вручную наладить его работу. Однако уже вскоре (через 20 - 30 мин.) двое из работавших, находившихся в непосредственной близости от клистрона, почувствовали сильную головную боль, тошноту, озноб и другие признаки заболевания, у остальных семи - аналогичные признаки появились позже. В госпитале, куда были отправлены заболевшие, был поставлен диагноз "переоблучение рентгеновскими лучами", причем у двух в тяжелой форме.
Откуда же взялись рентгеновские лучи в радиолокационной установке, да еще такой интенсивности, что за какие-нибудь полчаса вызвали тяжелое переоблучение? Причина здесь та же, что и в телевизорах,- рентгеновские лучи возникают в любой электронной трубке, если в ней имеет место резкое торможение электронов, ускоренных высоким напряжением. Источником рентгеновских лучей в данном случае явился клистрон, работавший при напряжении 150 кв; высокое приложенное напряжение стало причиной возникновения достаточно интенсивного излучения.
С подобным источником рентгеновского излучения можно столкнуться не только в радиолокационных установках. Всюду, где мы имеем дело с потоками электронов, ускоренными высоким напряжением, надо считаться с возможностью возникновения рентгеновского излучения (электроннолучевая плавка и сварка металлов, электронные микроскопы, высоковольтные кенотроны и др.). Поэтому в таких установках обычно устанавливают специальные защитные экраны для предохранения работающих от возможного рентгеновского излучения.
В связи с вопросом о дополнительных дозах облучения человека возникает еще и следующий. Поскольку в организме человека содержатся изотопы, излучающие гамма-лучи, то как действует радиоактивное излучение человека на его соседей? Производившиеся в этом направлении исследования показали, что если человек находится в толпе, где люди стоят тесно друг возле друга, то он получает от своих соседей дополнительно дозу излучения, равную приблизительно 0,01 мрад/час.
Природный фон облучения в определенных размерах колеблется в зависимости от географических условий и других факторов. Эти колебания фона, как правило, невелики и не представляют какой-либо опасности для человечества. Больше того, можно считать, что за время существования жизни на Земле человеческий организм уже приспособился к определенному фону облучения. Поэтому следует считать нежелательным и опасным для человека всякое более или менее значительное превышение природного фона.
С этой точки зрения значительную опасность представляют атомные взрывы, которые проводились (а некоторыми странами проводятся и в настоящее время) с целью испытания ядерного оружия, во время которых в атмосферу выбрасывается огромное количество радиоактивных продуктов взрыва. Наглядно это продемонстрировал всему миру трагический случай с моряками японского судна "Фукуру-Мару" ("Счастливый дракон"). 1 марта 1954 г. во время взрыва атомной бомбы на острове Бикини это судно находилось на расстоянии 160 км от места взрыва. После взрыва это судно было осыпано радиоактивными продуктами взрыва, в результате чего все 24 моряка, бывших на судне, заболели тяжелой формой лучевой болезни.
Случай этот привлек к себе всеобщее внимание и вызвал самые энергичные протесты прогрессивной общественности всего мира против ядерных испытаний.
Но при этом взрыве пострадал не только экипаж "Счастливого дракона". Лучевой болезнью заболели также 237 жителей соседних островов Ронгелан и Утерик.
Американский представитель в ООН Лодж заявил тогда, что правительство США "глубоко сожалеет" по этому поводу, и заверял, что будет проявлена наибольшая забота в отношении тех, кто был в районе испытаний. Английские ученые так оценили это заявление: "Любое проявление великодушия со стороны Соединенных Штатов Америки теперь напоминает великодушие взломщика, который, после того, как сбил хозяина дома с ног ударом по голове и переложил себе в карманы все его ценности, приготовил для своей жертвы чашку чая"[8].
Не лучшему обращению подвергаются и сами граждане США. Испытания ядерного оружия, проводившиеся на атомном полигоне в штате Невада, хотя и были покрыты глубокой тайной, но некоторые сведения о них все же просочились в печать. Так, например, жителям города Св. Георг (штат Юта), находящегося на расстоянии 200 км от полигона, как-то в течение трех часов после взрыва не разрешалось выйти на улицу. В течение нескольких дней загрязненность воздуха была так велика, что суточная доза облучения в 1260 раз превышала предельно допустимую дозу для работников атомной промышленности.
А вот и другой случай. В 1953 г., в результате неожиданного изменения метеорологических условий радиоактивное облако, образовавшееся после взрыва, начало двигаться над основными автострадами США. В результате доза облучения внутри автомашин, ехавших по некоторым автострадам, превысила 20 мр в 1 час. Это означает, что находившиеся в машинах люди за 5 часов получили дозу, равную годичной дозе от природного фона облучения.
Во время взрыва атомной бомбы образуется огромное количество радиоактивных продуктов, среди которых наиболее опасны долгоживущие изотопы стронция (Sr90) и цезия (Cs137). Подсчитано, что за время 1945 - 1962 гг. в результате испытаний ядерного оружия образовалось более 19 Мкюри (миллионов кюри) стронция - 90 и более 32 Мкюри цезия - 137.
Значительная часть радиоактивных веществ выпадает с дождями сравнительно быстро в прилегающем к месту взрыва районе. Более мелкие частицы в виде радиоактивного облака уносятся воздушными течениями далеко от места взрыва и могут несколько раз обогнуть земной шар, постепенно оседая вместе с дождями на его поверхности, иногда за много тысяч километров от места взрыва. Так, после взрыва американской атомной бомбы в Неваде 1 марта 1955 г. радиоактивные осадки выпали 8 - 10 марта в Англии, 11 марта - в Греции и Турции и 13 - 19 марта - в восточной части Европы.
При взрывах бомб большой мощности огромное количество радиоактивных продуктов взрыва вылетает за пределы тропосферы[9] в стратосферу и выше. Оседание этих веществ на поверхность Земли продолжается несколько лет.
Рассмотрим круговорот радиоактивного изотопа Sr90, который, накапливаясь в костной ткани, представляет собой наибольшую опасность для человека.
Выпадая вместе с дождями и снегом на поверхность Земли, Sr90 преимущественно концентрируется в верхних слоях грунта. Отсюда через корневую систему он попадает в растения. Вместе с растением Sr90 попадает в организм травоядных животных. Наконец, вместе с растениями, мясом и молоком животных он поступает в организм человека, где и откладывается в костной ткани.
Рис. 11. Схема путей циркуляции стронция - 90 из атмосферы в организм человека
Часть Sr90, попавшая в водоемы (моря, озера, реки), активно сорбируется водорослями и планктоном, где концентрация его может в тысячи раз превышать концентрацию в воде. Но планктон - это питательная среда для рыб, крабов, моллюсков, а отсюда прямой путь в организм человека. В 1954 г. радиоактивность рыбы в прилегающих к месту взрыва участках океана была настолько высока, что часть ее приходилось уничтожать. За 9 месяцев в Японии был уничтожен улов рыбы, доставленный на 856 судах.
На рис. 11 схематически показаны пути, по которым Sr90 попадает в организм человека. Значительное накопление этого элемента в организме опасно: распределяясь неравномерно в костях, он может вызвать в отдельных местах перерождение ткани и образование злокачественных опухолей.
Стремительный рост количества испытаний атомного и термоядерного оружия грозил человечеству лейкозом, раком и другими болезнями. Поэтому народы всего мира горячо приветствовали принятие в 1963 г. Московского договора о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.
Уже подведены первые итоги подписанного в 1963 г. договора. Научно-исследовательскими институтами Академии медицинских наук СССР вместе с радиологическими группами санитарно-эпидемиологических станций Министерства здравоохранения СССР было установлено, что через год общая радиоактивность осадков уменьшилась в сотни раз по сравнению с периодом производства испытаний. За счет распада короткоживущих радиоактивных продуктов ядерных взрывов значительно снизился уровень внешнего дополнительного облучения человека. Постепенно начинает уменьшаться количество Sr90 и Cs137 в организмах людей[10].
Значит ли это, что проблемы радиоактивных выпадений уже не существует? Нет, и вот почему.
Еще некоторое время будут выпадать продукты ранее произведенных взрывов. Кроме того, не все государства подписали Московский договор. Французское правительство заявило, например, о своем намерении продолжить испытания ядерного оружия. В конце 1964 г. стало известно про первый взрыв атомной бомбы в Китае, за которым последовали и другие.
Условием безопасной работы с радиоактивными изотопами и источниками ядерных излучений является соблюдение таких правил, при которых ни один работник не смог бы получить дозу облучения выше допустимой, т. е. такой, при действии которой в организме не возникает необратимых генетических и соматических изменений.
При установлении допустимого уровня облучения учитываются не только непосредственные последствия воздействия ионизирующей радиации, но и возможные отдаленные результаты - сокращение продолжительности жизни, возникновение лейкозов и других злокачественных новообразований, уменьшение способности к воспроизведению потомства и, наконец, генетические последствия, которые могут появиться у потомства облученных людей.
Многолетние наблюдения показали, что у народов, живущих в течение тысячелетий в местах с повышенным вдвое и больше уровнем фона естественной радиоактивности (например, на нагорьях Тибета и Перу), наследственных аномалий обнаруживается не больше, чем у народов других местностей. Это дает основание для вывода, что мощность дозы, соответствующая удвоенному уровню натурального фона, совершенно безопасна для человеческого организма и не наносит серьезного ущерба наследственным факторам.
Действующие в Советском Союзе санитарные правила[11] устанавливают, что допустимый уровень дополнительного облучения для населения (за исключением лиц, так или иначе связанных с работой с радиоактивными изотопами и источниками ядерных излучений) не должен превышать 80 - 90 мрад/год, т. е. не должен быть больше уровня натурального фона.
Таблица 5. Предельно допустимые мощности дозы и относительная биологическая эффективность различных видов ионизирующих излучений
Для лиц, работающих с радиоактивными изотопами и излучениями, установлены предельно допустимые мощности дозы различных видов ионизирующих излучений, указанные в табл. 5. Эти дозы примерно в 100 раз превышают уровень натурального фона. Для лиц, работающих по соседству с помещениями, в которых ведутся работы с радиоактивными веществами и источниками ионизирующих излучений, но не занятых непосредственно на работах с изотопами и излучениями, предельно допустимый уровень облучения в 10 раз меньше - 10 мрад/неделю (для бета-, гамма- и рентгеновских лучей).
Указанные нормы приняты для облучения всего тела, гонад (половых органов), хрусталика и кроветворных органов. При облучении мышц, жировой ткани, печени, почек, желудочно-кишечного тракта предельно допустимые дозы облучения могут быть повышены в три раза, а при облучении кожи, щитовидной железы и костей - в шесть раз. Многочисленные эксперименты, проводившиеся на животных, а также контроль за здоровьем лиц, работающих с радиоактивными изотопами и излучениями, показывают, что такие дозы не вызывают в человеческом организме в течение длительного времени необратимых соматических и генетических изменений.
За последние 15 лет вопрос о предельно допустимых уровнях пересматривался дважды, так как по мере развития наших знаний о лучевых повреждениях и совершенствования методов экспериментальной техники было установлено, что прежние значения предельно допустимых уровней облучения завышены, так как они вызывали изменения (хотя и незначительные) в облученном организме. В результате тщательных исследований допустимый уровень был снижен с 1 рад/неделю до 0,1 рад/неделю, т. е. в 10 раз. Предельно допустимой концентрацией называется максимальная активность радиоактивного изотопа в единице объема или массы, поступление которой в организм естественными путями (с водой, пищей, воздухом) не создает в критических органах организма[12] или в организме в целом доз облучения, превышающих предельно допустимые. При этом, если только данный изотоп обладает свойством преимущественного накопления в тех или иных органах, обязательно должна учитываться доза в критическом органе. В санитарных правилах указаны предельно допустимые концентрации радиоактивных изотопов в воздухе, воде и пище.
Существуют разнообразные приборы, служащие для измерения внешнего облучения, т. е. дозы облучения, получаемого человеком от внешних источников. Но можно ли измерить дозу от радиоактивных изотопов, находящихся внутри организма, или по крайней мере определить, какие радиоактивные изотопы и в каком количестве находятся внутри человеческого организма?
Радиоактивность тела человека можно определить расчетным путем, зная среднее содержание различных радиоактивных изотопов в его организме. Но полученные таким образом данные будут относиться к какому-то "среднему человеку" и не дадут представления о радиоактивности отдельных индивидуумов, так как в зависимости от местных условий содержание радиоактивных элементов в организмах разных людей может различаться иногда в десятки и сотни раз.
О том, в какой степени радиоактивность окружающей природы влияет на радиоактивность животного организма, может свидетельствовать следующий случай. Однажды одному из авторов настоящей книги пришлось проверять радиоактивность ископаемых животных в зоологическом музее. При этом оказалось, что кости животных, умерших несколько десятков тысяч лет назад, обладали значительной радиоактивностью и стрелка прибора отклонялась, как только датчик подносили к костям. В то же время кости других животных не оказывали заметного влияния на счетчик радиоактивных излучений. В дальнейшем выяснилось, что радиоактивными были кости только тех животных, которые проживали в то время в определенной местности. По-видимому, дело было в том, что в отдельных местах радиоактивность растений, почвы и воды была выше обычной. Это в свою очередь привело к отложению в костном скелете повышенных количеств остеотропных радиоактивных элементов - урана и радия. Так как эти элементы обладают значительным периодом полураспада, то, накопившись в костях, они и до сего времени обладают заметной активностью.
Желательно поэтому уметь определять радиоактивность отдельного человека. Особенно это важно для тех, кто по роду своей работы должен сталкиваться с радиоактивными веществами, так как позволит установить, не попали ли радиоактивные вещества внутрь организма. Но измерение радиоактивности человека представляет собой значительные трудности, так как величина ее невелика и ее можно не заметить на фоне гамма-излучения естественно радиоактивных элементов почвы, строительных материалов и космических лучей.
Одно из первых измерений радиоактивности человека было произведено в Швеции. Для этого в скальном грунте вырубили специальную лабораторию. Большая толщина гранита (55 м) позволила значительно уменьшить влияние космических лучей. Чтобы не мешало излучение стен лаборатории, так как известно, что граниты содержат по сравнению с другими породами значительное количество радиоактивных веществ, стены, пол и потолок лаборатории были выложены стальными баками, наполненными водой, толщина которых составляла 1 м. Для наполнения баков привезли 160 т воды из Темзы (Англия), радиоактивность которой оказалась значительно меньшей, чем природная радиоактивность шведских вод. В результате принятых мер природный фон облучения в камере-лаборатории удалось снизить более чем в 30 раз. Для измерения активности служили 12 цилиндрических ионизационных камер размерами 200 x 40 см и объемом около 250 л, окружавших человека со всех сторон.
В настоящее время, благодаря созданию высокоэффективных сцинтилляционных счетчиков излучений, построены более простые, но высокоэффективные установки. В состав такой установки входят следующие элементы: камера для защиты от внешнего гамма- и космического излучения, сцинтилляционный детектор излучения и электронное анализирующее устройство.
Защитная камера служит для помещения исследуемого человека и детектора излучения. Для уменьшения влияния внешнего гамма-излучения и космических лучей стенки камеры делают из стали толщиной 13 - 15 см. Стальные стенки камеры снижают скорость счета от фонового излучения почти в 60 раз. Внутренние размеры камеры таковы, что человек в ней может разместиться в любом положении (сидя, лежа, стоя), в среднем - 2,4 X 2,4 X 2,2 м. Вес камеры 30 - 60 т. Камеру иногда устанавливают на глубине 5 - 10 м под землей для уменьшения фона от космического излучения. Связь и наблюдение за исследуемым осуществляются с помощью телевидения и двусторонней радиосвязи.
Чтобы внутрь камеры не попало радиоактивное загрязнение извне, исследуемый предварительно проходит через душевую, где его одежда заменяется другой, в которой нет радиоактивного загрязнения.
Детекторами для обнаружения и измерения излучений обычно служат большие кристаллы (размером 10 X 12 см) йодистого натрия, активированного таллием, в которых кванты излучения вызывают появление вспышек - сцинтилляций. Применение сцинтилляторов больших размеров позволило значительно повысить чувствительность современных установок: они могут обнаружить в теле человека 0,6 · 10-9 кюри (0,006 мккюри) радия.
Таблица 6. Содержание естественно радиоактивных изотопов в теле человека (средние значения для человека весом в 70 кг)
При измерении радиоактивности человека часто бывает необходимо не только измерить величину радиоактивности, но и узнать, какими радиоактивными элементами она вызвана. Для этого необходимо знать пектральный состав излучения изотопов, содержащихся в организме исследуемого, так как каждый радиоактивный изотоп дает гамма-излучение одной (или нескольких) строго определенной длины волны.
Эту задачу выполняет входящий в состав установки анализатор, принцип действия которого в следующем. Различные радиоактивные вещества, находящиеся в теле человека, излучают гамма-кванты различной энергии. Кванты, попадая на сцинтиллятор, вызывают импульсы тока, величина которых пропорциональна энергии квантов излучения. Эти импульсы поступают затем в анализатор, представляющий собой сложное радиотехническое устройство, сортирующее импульсы соответственно их амплитудам. Счетчик анализатора показывает числа импульсов различных амплитуд, содержащихся в общей совокупности импульсов, поступающих от измеряемого объекта. Соответственно количеству групп, на которые разбивает анализатор поступающие импульсы по амплитудам, различают 50-, 100- и более канальные анализаторы. На основании данных, полученных от анализатора, строится амплитудный спектр импульсов, представляющий графически зависимость количества импульсов от их амплитуды (от энергии квантов излучения). Описанные выше установки позволяют определять содержание в организме человека только гамма-излучателей. Однако большое значение имеет присутствие в организме человека радиоактивного бета-излучателя стронция-90. Для его определения Ю. М. Штуккенбергом предложен специальный прибор, датчик которого содержит небольшой сцинтиллирующий кристалл, прикладываемый к зубам исследуемого. Количество радиоактивного стронция определяется по интенсивности бета-излучения, выходящего из зубов человека.
Мероприятия по физической защите от вредного действия ионизирующих излучений должны обеспечить такие обязательные условия работы, при которых работающие не подвергались бы воздействию доз, превышающих предельно допустимые. Они охватывают контроль над мощностью излучения, непосредственно действующего на работников, и обеспечение защиты всех, кто соприкасается с излучением, в том числе лиц, хотя непосредственно не имеющих с ним дело, но живущих или работающих вблизи от источников излучения. Практически защитные мероприятия в отношении лиц, работающих с радиоактивными изотопами, направлены на то, чтобы исключить возможность попадания радиоактивных изотопов на поверхность кожи и внутрь организма, а также на то, чтобы путем применения специальных защитных экранов, удаления работающих от источников излучения и выбора времени нахождения вблизи источников излучения уменьшить величину дозы от наружного облучения ниже предельно допустимых значений.
Целью защитных мероприятий является уменьшение дозы внешнего облучения человека ниже предельно допустимого уровня облучения и предохранение работника от возможного попадания радиоактивных изотопов на кожные покровы тела и внутрь организма. Первая задача решается путем увеличения расстояния между рабочим местом, где находится обслуживающий персонал, и источником излучения, сооружения защитных экранов и ограждений из материалов, поглощающих излучения, и сокращения времени пребывания в сфере действия излучения.
На практике, как правило, используют все эти способы уменьшения дозы внешнего облучения человека, причем время пребывания в сфере действия излучений сокращают в тех случаях, когда нужные результаты не могут быть получены другими способами.
Защита расстоянием во многих случаях является достаточно эффективной, учитывая то обстоятельство, что для точечных источников рентгеновского и гамма-излучения интенсивность излучения уменьшается прямо пропорционально квадрату растояния от источника, т. е. при увеличении расстояния в три раза интенсивность излучения уменьшается в девять раз. При работе с изотопами, излучающими альфа- и бета-частицы невысокой энергии, учитывается, что пробег этих частиц в воздухе ограничен и для альфа- и мягкого бета-излучения измеряется сантиметрами. Например, бета-частицы серы - 35 проходят в воздухе путь до 25 см, а кальция - 45- до 45 см и т. д. Поэтому помещение изотопа на определенном расстоянии от работающего часто полностью защищает его от таких излучений.
Чтобы увеличить расстояние между источником и работником, пользуются различными манипуляторами - специальными инструментами с удлиненными рукоятками. Если при работе с большими активностями длина рукояток оказывается недостаточной, пользуются стационарными манипуляторами большей длины. Они рассчитаны таким образом, что передают усилия руки экспериментатора на значительные расстояния и позволяют находиться работникам за защитным экраном. Обычно применяют копирующий манипулятор, состоящий из двух частей, которые расположены в разных комнатах и согласованы между собой таким образом, что если с одной ветвью проводятся какие-либо манипуляции, вторая ветвь сама воспроизводит точно такие же операции. При работе с таким манипулятором оператор находится в помещении управления, отделенном от лаборатории, где находятся радиоактивные вещества, толстой защитной перегородкой со смотровым окном.
Иногда активность источника велика и защита расстоянием не позволяет в нужной степени уменьшить дозу излучения. В этих случаях между источником излучения и работающими устанавливаются защитные экраны, которые ослабляют мощность излучения в нужное число раз. Материалом для таких экранов могут служить свинец, железо, бетон, кирпич или любой иной материал, поглощающий излучения.
Длина пробега альфа-частиц невелика, поэтому надобность в специальных экранах для них отпадает. От бета-лучей, обладающих большей проникающей способностью, достаточную защиту может представить слой плексигласа толщиной 6 - 8 мм. Изготовленные из плексигласа экраны удобны еще тем, что, защищая тело работника, они вместе с тем не мешают ему наблюдать за работой.
При работе с бета-излучениями в качестве защитных средств нецелесообразно пользоваться свинцом и материалами, содержащими свинец или другой элемент с высоким атомным номером. В этом случае, в результате торможения бета-частиц в материале защиты, возникает так называемое тормозное гамма-излучение, обладающее значительной проникающей способностью. Поэтому изотопы, дающие только бета-излучение, хранят в коробках (контейнерах), изготовленных из пластмассы, и только в тех случаях, когда изотопы дают кроме бета- еще и гамма-излучение, следует применять контейнеры, изготовленные из свинца.
Более сложна защита от рентгеновского и гамма-излучения. В этом случае для расчетов необходимой кратности ослабления дозы используют специальные таблицы и графики. Под кратностью ослабления дозы понимают число, показывающее, во сколько раз должна быть уменьшена мощность дозы в результате применения защитного ограждения. Например, радиоактивный препарат активностью в 10 мг-экв на расстоянии 1 м создает мощность дозы 8,4 мр/час. Это в три раза превосходит предельно допустимый уровень облучения (2,8 мр/час для лиц, работающих с радиоактивными изотопами). Следовательно, данный препарат нуждается в таком защитном экране, который ослаблял бы интенсивность излучения в три раза в том случае, если работающий находится на расстоянии 1 м от препарата.
В качестве материала для изготовления защитных экранов от гамма-лучей применяют свинец, железо, бетон, кирпич. Наиболее сильно поглощает гамма- и рентгеновские лучи свинец. Но, если использование его целесообразно в рентгеновских установках, где толщина защитного слоя составляет всего несколько миллиметров, то для гамма-лучей применение его экономически невыгодно, так как в этом случае толщина защитных экранов должна составлять 10-15 см и больше. Поэтому свинец применяется только в контейнерах, служащих для перевозки гамма-активных изотопов. Для защиты помещений, в которых проводится работа с гамма-излучателями, обычно используют бетон, тяжелый бетон (бетон с примесями, поглощающими гамма-лучи), кирпич.
Для защиты от попадания радиоактивных изотопов на кожные покровы тела и внутрь организма работающего применяют такие меры, как специальную одежду из пластмассы и резиновые перчатки для предохранения кожи; работы с летучими радиоактивными веществами проводят либо в вытяжных шкафах, либо в специальных боксах, полностью изолирующих работника от соприкосновения с радиоактивными веществами. В наиболее опасных случаях работающие с изотопами одевают на лицо специальный респиратор "Лепесток" с фильтрующей тканью ФПП-15, которая поглощает 99,99% радиоактивных аэрозолей, содержащихся в воздухе, или же пользуются специальным изолирующим костюмом, в который подают воздух для дыхания с помощью специальной воздуходувки.
При работе с изотопами высокой активности пользуются так называемыми горячими лабораториями. В этих лабораториях все работы выполняются при помощи дистанционных манипуляторов, без непосредственного участия человека. Наблюдение за тем, что происходит в такой лаборатории, производится или через окно из свинцового стекла толщиной в несколько десятков сантиметров, или при помощи телевизионной установки.
Особые трудности возникают при защите от нейтронов, так как они обладают большой проникающей способностью и легко проходят через значительные толщи материалов, поглощающих гамма-лучи. Часть нейтронов захватывается ядрами атомов материала, из которого изготовлена защита. При этом атомы становятся радиоактивными, в связи с чем захват нейтронов сопровождается гамма-излучением. Такое гамма-излучение обладает высокой энергией (до 7 - 10 Мэв) и, следовательно, большой проникающей способностью. Следовательно, необходимо одновременно защищаться не только от нейтронов, но и от гамма-лучей. Поэтому защиту делают многослойной, чередуя слои, ослабляющие нейтроны (вода, парафин), со слоями, поглощающими гамма-лучи (тяжелый бетон, свинец). Например, в реакторе атомной электростанции АН СССР защита состоит из слоя бетона толщиной 2,3 м, слоя воды 1 м и слоя чугуна 25 см. Если защитный слой хотят изготовить из одного материала, выбирают такой, который одинаково хорошо поглощает и гамма-лучи и нейтроны - например, бетон достаточной толщины с наполнителем в виде железного скрапа (отходы мелкого лома, обрезков, стружек и т. д.).
В отдельных случаях причиной местного повышения радиоактивного фона может быть неправильное обращение с радиоактивными веществами и аварии на предприятиях атомной промышленности. Так, например, на установках по очистке урана в штате Колорадо (в США) длительное время радиоактивные отходы без всякой очистки спускали в реку Анимас. В результате содержание радия в воде реки значительно превзошло допустимый уровень. Это привело к тому, что выше допустимого уровня оказалось и содержание радия в овощах - горохе, салате, капусте и др., выращенных на берегах этой реки.
По данным Международной конференции по вопросам переработки и захоронения радиоактивных отходов, состоявшейся в Монако в ноябре 1959 г., количество радиоактивных отходов в связи со все более и более широким использованием атомной энергии увеличивается с каждым днем и должно в 1970 г. достигнуть огромной цифры - 26 млн. литров с общей активностью 3 млн. кюри, что по своей активности соответствует примерно 3 тыс. кг радия. Понятно, что если не принимать специальных мер по обезвреживанию радиоактивных отходов, то можно вызвать значительное повышение радиоактивного фона в ряде мест земного шара. Чтобы этого не случилось, в настоящее время принимают специальные меры.
Если количество радиоактивных отходов сравнительно невелико, то радиоактивные отходы высокой активности помещают в особые изолированные емкости, где их хранят до тех пор, пока активность вследствие распада не уменьшится ниже допустимой нормы. Отходы средней активности подвергаются обработке для выделения и концентрации содержащихся в них радиоактивных элементов, и только отходы малой активности выпускают в обычную канализационную систему.
Недопустимо непосредственное захоронение в грунте отходов средней и низкой активности. В Хансфорде (США) в течение 20 лет такие отходы сливались в траншеи и специальные колодцы. За это время было слито 23 млн. м3 отходов с общей активностью 3 млн. кюри. Радиоактивные изотопы распространяются с грунтовыми водами. В настоящее время они обнаружены в 22 км от места захоронения и уже загрязняют реку Колумбия. Продолжающееся распространение изотопов, особенно Sr90 и Cs37, угрожает радиоактивным заражением большому району.
В некоторых странах (США, Англия) радиоактивные отходы сбрасывают в океан в специальных контейнерах. Против этого на международных конференциях выступали представители СССР и ЧССР. Они указывали на то, что любой контейнер рано или поздно будет разрушен в результате действия морской воды, радиоактивные вещества растворятся в воде и по "пищевой цепочке" - вода - планктон и водоросли - рыбы и крабы - Человек - попадут в организм человека. Целесообразнее всего радиоактивные отходы вместе с цементным раствором заливать в заранее заготовленные траншеи с бетонными стенками и закрывать бетонными плитами. В этом случае они будут надежно защищены от воздействия почвенных и поверхностных вод.
Как показывают проведенные совещания и конференции, совершенно правильна позиция советских ученых, указывающих на недопустимость практикуемого в некоторых странах бесконтрольного сбрасывания радиоактивных отходов в окружающую среду. Основным критерием должно быть обеспечение радиационной безопасности окружающей среды в течение всего периода хранения.