СДЕЛАЙ ДЛЯ ШКОЛЫ К тайнам света на гребнях волн



Большинство оптических явлений, свойства линз и зеркал, микроскопов и телескопов наиболее полно объясняются с позиций наличия у света волновых свойств. Но свет — это не более чем часть широкого диапазона электромагнитных волн. Понимание их законов поможет разобраться и в таких важных для нашей жизни вещах, как радиолокационные антенны, волоконная оптика, рентгеноструктурный анализ. Более того, тем же волновым законам подчиняются и явления другой природы: звуки и движение электронов на их орбитах, распространение нервных импульсов в мозгу и сердечной мышце, слухи, психозы, пожары, даже эпидемии болезней!..


Однако самые подробные объяснения учителя трудно понять, если нет возможности посмотреть на движение волн глазами.

Брошенный в воду камень создает круговые волны. В этих волнах происходит интенсивное круговое движение и перемещение масс воды. Плавающую в воде пробку они интенсивно относят в сторону. Подобных свойств нет у световых или других перечисленных видов волн, так что для иллюстрации волновых свойств света они не пригодны.

Другое дело — очень малые волны длиной 1–2 см и высотой 2–3 мм. Брошенные на поверхность, по которой бегут такие волны, мелкие кусочки пенопласта остаются практически на месте. Это позволяет считать волны поперечными, похожими на световые. А отсутствие переноса вещества позволяет моделировать с их помощью и другие волны, в частности звуковые.

Скорость наших волн зависит от глубины сосуда, и это делает их очень полезными при изучении законов преломления. Такие волны получают обычно в волновых ваннах (в прошлом веке волновые ванны заливали ртутью (рис. 1).



Волны на ее поверхности были хорошо видны и двигались очень медленно). Чтобы волны были видны всему классу, через них приходится про пускать свет от точечного источника.

Бывают ванны с зеркальным дном (рис. 2).



Их можно устанавливать на столе. Но лучше использовать ванны с прозрачным дном. Учителя часто делают их самостоятельно, монтируя под откидной крышкой стола (рис. 3).




Если свет лампы пропускать через увеличительное стекло с нанесенными на него цветным прозрачным лаком для ногтей разноцветными — красной и синей — кольцевыми зонами, получится очень своеобразный эффект. Гребни и впадины волн получатся на экране разноцветными. Это не только красиво, но и делает более заметными волны малой высоты, особенно на наклонном экране. Но неплохо выглядит картина и на потолке.

Прерывая луч света с определенной частотой, картину движения волн можно замедлить, остановить и даже пустить вспять. Для этого луч света пропускают через обтюратор — вращающийся диск с прорезью. Этот диск установлен на универсальном электродвигателе, скорость вращения которого регулируется изменением питающего напряжения.

Теперь опишем несколько демонстраций. Для показа круговых волн и их интерференции в ванну наливают слой воды глубиною 0,5 см.

Дно ванны при помощи уравнительных винтов или подкладок выставляют строго горизонтально. Следует обратить внимание на края ванны. У ванн с зеркальным дном они делаются пологими. Благодаря этому достигающие их волны не отражаются, а затухают. В самодельных ваннах края обычно прямоугольные. Отражение волн от них портит наблюдаемую картину. Для устранения отражений края ванн обкладывают толстой рыхлой тканью или сукном. На краю ванны устанавливают стандартный вибратор с плоской пружиной, который приводят в действие пальцем.

Существуют и механические вибраторы, работающие от миниатюрных электродвигателей постоянного тока, допускающих регулировку скорости вращения при помощи реостата.

Очень удобен вибратор из миниатюрного реле (РЭС-10,13) со снятым корпусом (рис. 4).



Соединяя последовательно катушку и нормально замкнутые контакты, его переводят в автоколебательный режим.

Стандартный вибратор имеет различные насадки с шариками, служащие для образования круговых волн. С ними легко получить картины интерференции. Регулируя частоту прерывания света, можно замедлить их движение вплоть до остановки, что позволит разглядеть картину в подробностях. Полезно, немного наклонив вибратор, получить сдвиг фаз между волнами и обратить внимание на изменение положений максимумов в интерференционной картине. Наблюдаемый эффект уместен для иллюстрации рассказа о радиолокаторах с фазированными антенными решетками.

Как мы уже сказали, изменением частоты прерывания света можно получить обратное движение волн. Вопреки бытующему мнению эта картина имеет физический смысл. В этом случае излучатели изображают систему синхронных приемников, работающих с одинаковой частотой и фазой. При этом происходит прием сигналов от источников, расположенных в зонах интерференционного максимума. В частности, на таком принципе работает акустическая антенна пассивного звуколокатора подводной лодки.

Теперь о демонстрации прохождения волн через линзы.

На дно ванны положите плоскую модель линзы от прибора «оптическая шайба Гартля». Залейте в ванну воды, так чтобы она была выше линзы на 4–5 мм. Используя в качестве излучателя плоскую пластину, можно получить параллельный пучок волн с плоским фронтом (рис. 5).



Рис. 5


Облучая им модель собирающей линзы, при стробоскопическом замедлении картины можно заметить, как скорость волн над линзой уменьшается и как это замедление приводит к наибольшему отставанию в центре линзы. Фронт волны изгибается, и получается сходящийся пучок волн. На псевдоцветной проекции можно хорошо разглядеть увеличение высоты волн в фокусе.

А теперь попробуйте поставить, казалось бы, абсурдный опыт. Поставьте модель плоско-выпуклой линзы на попа и облучите ее плоской, по возможности короткой волной. Вы вновь получите пучок сходящихся волн (рис. 6).



Объяснить его физический смысл нетрудно, зная о зависимости скорости волн от глубины. Опыт иллюстрирует принципы так называемой градиентной оптики.

Речь идет о новых типах линз, представляющих собою плоскую пластину, в которой коэффициент преломления стекла симметрично меняется (имеет градиент) относительно центра. Пока линзы, основанные на этом принципе, можно увидеть лишь в лабораториях. Однако метод градиента преломления широко применяется в некоторых изделиях декоративного искусства.

Вы наверняка встречали дверные и оконные стекла, через которые прекрасно проходит свет, но все искажается так, что ничего не разглядишь. Издали они похожи на грубо отесанный кусок льда. Но подойдите и пощупайте — перед вами плоские пластины…

Волновая ванна позволяет наглядно и в динамике показать удивительно много физических процессов, лежащих в основе важнейших устройств современной техники. Не исключено, что работа с ней может привести к большим и малым открытиям и изобретениям. Поэтому такой прибор особенно ценен для физического кружка в современной не слишком богатой приборами школе.

Тому, кто захочет серьезно заняться этим делом, советуем прочесть интересную книгу.

Роберт Вихард Голь. Механика, акустика и учение о теплоте. Учебник издавался у нас с 1953-го и, по крайней мере, до 1971 года. На случай, если будет возможность выбора, учтите: в ранних изданиях есть много очень интересных, выпущенных позже мест…

А. ВАРГИН

Рисунки автора

Загрузка...