РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

Гиперболоид для президента Буша

Слышал, что на военном полигоне в США лазером сбили в полете артиллерийский снаряд. Для чего нужна такая система? Есть ли подобное оружие в нашей стране?

Виктор Разинов,

г. Тула



Предполагалось, что именно так будет действовать боевой лазер.


На военном полигоне в американском штате Нью-Мексико передвижной тактический высокоэнергетический лазер, спроектированный кливлендской компанией TRW, действительно уничтожил в полете артиллерийский снаряд, выпущенный из орудия.

Сенсация? Давайте разбираться. Начнем с того, что испытания боевого лазера MTHEL (Mobil Tactical High Energy Lazer) в Нью-Мексико ведутся с 2000 года. До этого экспериментальное оружие применялось по менее скоростным целям — баллистическим ракетам, выпущенным из реактивной установки типа «Град». В общей сложности лазер успел сжечь на полигоне 25 таких ракет.

Это известие с особым интересом было встречено в Израиле, территория которого не раз подвергалась обстрелам подобными реактивными снарядами с сопредельных территорий. И Тель-Авив поспешил объявить о готовности вслед за США принять на вооружение лазерное оружие.

По мнению генерал-лейтенанта армии США Джозефа Косумано, в случае успеха испытаний MTHEL картина боевых действий изменится коренным образом. Однако генерал не случайно оговорился — «в случае успеха испытаний». Потому что до реальной боевой работы установке, на которую уже потрачено около 250 миллионов долларов, еще очень далеко. Во всяком случае, эпитет «мобильный» применительно к такому лазеру — пока явная натяжка. Ведь стрельба по артиллерийскому снаряду велась установкой, жестко закрепленной на неподвижной платформе. Кроме того, нигде в официальных сообщениях не указывается, сколько времени требуется на подготовку лазера к выстрелу. И это, похоже, не случайность.

Дело в том, что в нашей стране еще лет тридцать тому назад проводились подобные же испытания в рамках сверхсекретной тогда программы «Айдар». Лазерная пушка размещалась на борту безобидного на первый взгляд сухогруза «Диксон». А в надлежащий момент из палубной надстройки вдруг вырывался ослепительный луч, который должен был производить все то, что так красочно описано в романе Алексея Толстого «Гиперболоид инженера Гарина».

По идее, лазер действительно может кромсать броневую сталь, рушить кирпичные и бетонные стены, даже плавить каменные глыбы. Но это — «по идее».

На практике же, как выяснили после долгих экспериментов и фантастических затрат создатели того же «Айдара», на подготовку к одному выстрелу продолжительностью в доли секунды уходило до 20 часов. И за это время накопители энергии на борту успевали израсходовать практически весь наличный запас топлива. Кроме того, и это главный недостаток лазерного орудия, в атмосфере КПД светового луча весьма невысок.

Энергию его буквально на первых метрах «съедает» атмосферная влага и пыль. Во всяком случае, лучший показатель, которого удалось добиться в ходе испытаний «Айдара» — прожечь кусок самолетной обшивки с расстояния в 400 м. Снаряд из обычной авиационной пушки на той же дистанции способен нанести куда более существенные повреждения. Не говоря уж о ракетах класса «воздух-воздух», «воздух-земля» и «земля-воздух»…



Лазерная установка пока существует только в лаборатории.


Наверное, поэтому при дележе флота в Севастополе сухогруз «Диксон» оставили суверенной Украине.

Впрочем, с тех времен немало воды утекло… Быть может, в настоящее время есть существенные сдвиги в создании лазерных пушек? Да, есть.

У нас разработан самый мощный в мире мобильный лазерный комплекс МЛТК-50, выдвинутый ныне на соискание премии Правительства РФ. Однако что он собой представляет? На двух большегрузных трейлерах размещаются реактивный авиационный двигатель, используемый в качестве источника энергии, запас топлива к нему, генератор, сам лазер, приборное хозяйство… В общем, особо компактной и мобильной эту установку тоже не назвать. Так что не случайно от ее военного применения отказались еще лет 15–20 тому назад и ныне пытаются приспособить этот лазер для резки камня в карьерах и судов на металлолом в гаванях.

Недалеко продвинулись и американцы. Кроме вышеуказанной установки, у них, как удалось установить, той же компанией TRW с начала 90-х годов прошлого века ведутся работы по созданию ударного самолета YAL-1A с лазерным комплексом на борту.

Однако и эту штуку тоже не назовешь компактной. На борт большегрузного самолета «Boeing 747-400F» загружается запас реагентов для йодно-кислородного химического лазера с таким расчетом, чтобы их хватило на 6 выстрелов. После того как они сделаны, самолет должен возвращаться на базу и загружаться снова как топливом для двигателей, так и реагентами для лазера.

Говорят, таким аппаратом планируют сбивать с орбиты спутники на расстоянии порядка 500–600 км. Но об успехах тоже пока не слышно. Хотя, как сообщалось ранее, испытания данной системы были назначены на осень 2002 года, а первое звено самолетов с лазерным оружием должно было поступить на вооружение в 2006 году.

В общем, со времен «звездных войн» на создание лазерных боевых систем Пентагон потратил астрономические суммы. Ныне в этой области напряженно трудятся 28,5 тысячи ученых и конструкторов в 84 лабораториях и научных центрах. Чего и когда они добьются, мы вам расскажем.

А. ВОЛЬСКИЙ

Художник Ю.САРАФАНОВ

Дракона заказывали?

Недавно по радио передавали, будто американские генетики синтезировали некий микроорганизм. Зачем это нужно?

Александр Сахаров,

Владимирская область



Действительно, в США ведутся эксперименты по созданию первого в мире искусственного микроба. Исследователи сообщили, что его генотип будет состоять всего из трех сотен генов. Однако этого вполне достаточно, чтобы приспособить полученные микроорганизмы, например, для очистки атмосферы от парниковых газов или для получения дешевого водорода.

Но задачи исследователей намного шире.

Вы, наверное, помните итоги недавней расшифровки генома человека. У него лишь на 300 генов больше, чем у мыши.

(Для справки: у дождевого червя — 18 тыс. генов, а у растений — порядка 26 тысяч.) Получается, что разница между человеком и мышью просто микроскопическая. Точнее — микробная. Ведь, как сказано выше, именно 300 генов составят генотип первого синтетического микроба.

Но от того, какими именно будут эти гены, зависит очень многое. Можно в самом деле синтезировать микроб, который будет перерабатывать, скажем, токсичные отходы, тяжелые металлы в нечто полезное или, по крайней мере, безвредное. Но можно сделать и наоборот: подобрать синтетическому творению такие гены, что он превратится в невиданный ранее патоген — возбудитель неслыханной ранее болезни. Противоядие от этой болезни будут иметь лишь те, кто этот ген создал.

Синтетический микроб, таким образом, может стать идеальным оружием для террористов. Именно это соображение, наверное, привело к тому, что сведения о данной работе весьма скупы и не содержат ни малейшего намека о том, как именно исследователи подбирают набор генов и как идет их «монтаж», хотя в общих чертах приемы работы с генами уже известны.

Процесс этот непрост и нескор. Единичный ген невозможно взять в руки или даже пинцетом и, глядя в микроскоп, «посадить» в нужное место. Приходится прибегать к различного рода биохимическим реакциям как для разборки генома, так и для монтажа новых его вариантов.

Кроме того, сегодня стали понятны функции примерно лишь половины генов человека. Причем выяснилось, что участки ДНК, на которых записаны все эти гены, в сумме составляют всего лишь около 1 % от общего объема человеческого генома. Еще 24 процента генома приходятся на бездействующие гены различной природы, а остальные 75 % — на цепочки нуклеотидов, не содержащих не единого гена.

Ученые также установили, что, скажем, наследственная информация, ответственная за индивидуальные различия между людьми, составляет не более 0,1 % от всего генома, а понятие расы не имеет под собой никакого генетического смысла.

Возвращаясь к синтетическому микробу, можем сказать, что все вышеописанное означает: ученым приходится изучать не только функцию каждого конкретного гена, а еще и как каждый из них участвует в проявлении сразу нескольких наследственных признаков. Каких именно — это также зависит и от того, какие еще гены и в какой последовательности по соседству с ним включены…

В общем, мороки тут еще очень и очень много. Тем не менее, исследователи полны оптимизма и полагают, что уже раскрытые ими тайны генотипа позволят в скором будущем создать новые средства для лечения многих генетических болезней, в том числе неизлечимых сегодня форм рака, диабета, болезни Альцгеймера. Все эти заболевания, а также многие психические расстройства вызываются мутациями определенных генов. И если заменить их на здоровые методами генной инженерии, то человек выздоровеет как бы сам собой.

Кроме того, открываются принципиально куда более широкие возможности конструирования живых организмов с заранее заданными свойствами. И по сравнению с ними клонирование овечки Долли покажется не более чем первой пробой сил. Завтра генным инженерам вполне по силам станет возрождение в натуре мифического кентавра — гибрида человека с лошадью. Или даже дракона — чудища, похожего на динозавра с крыльями, да еще и умеющего изрыгать огонь…

Для чего это нужно? Ну, дракон, быть может, пригодится разве что в качестве персонажа очередного фильма. А вот если мы сумеем создать некий организм, способный переносить температуры до 500 °C, давление около 400 атмосфер, обходиться без кислорода и воды, то его можно отправить для изучения, а потом и колонизации Венеры.

Ну а пока это дело отдаленного будущего. На очереди создание всего лишь первого синтетического микроорганизма.

Станислав СЛАВИН

Загрузка...