СДЕЛАЙ ДЛЯ ШКОЛЫ Мегавольт по… капельке

Сегодня почти вся электроэнергия получается в генераторах, действующих на принципах магнитной индукции. Они развивают токи в тысячи ампер напряжением в тысячи вольт. Но технике иногда нужны токи не большие, но при напряжении в сотни тысяч и миллионы вольт. Их легче получать в электростатических генераторах. Простейшим из таких генераторов вы пользуетесь каждый день. Когда вы проводите по сухим волосам расческой, слышен треск и летят искры длиною до 5 см. Это соответствует напряжению 3…5 тысяч вольт!

В опытах для ускорения заряженных частиц требуются напряжения в миллионы вольт, и расческой здесь, конечно, не обойтись. Получают высокие напряжения при помощи электростатического генератора, изобретенного голландским физиком Ван де Граафом в 1931 году.

Состоит генератор из замкнутой в кольцо резиновой ленты, натянутой на двух шкивах. Верхний шкив находится в полости металлического шара, нижний расположен снаружи (см. рис. 1).

Рис. 1.Генератор Ван де Граафа окружен защитной оболочкой, которая делает его безопасным для окружающих. Внутри оболочки сухой сжатый воздух легко выдерживает напряжение в миллионы вольт. Собственно генератор состоит из полированного медного золоченого полушария на фарфоровом изоляторе и зарядного устройства. Зарядка шара производится при помощи двух бесконечных резиновых лент (на рисунке показаны красным). Генератор, построенный по такой схеме, служил для получения искусственных радиоактивных элементов.


К нижнему концу ленты прикасается проволочная гребенка, соединенная с источником напряжения в несколько тысяч вольт. Под ее влиянием лента электризуется и переносит появившиеся на ней заряды внутрь полости металлического шара. Там она входит в соприкосновение с такой же гребенкой, но соединенной с шаром. В результате заряды стекают с ленты и оказываются на шаре. По мере вращения ленты заряд на шаре растет.

Рано или поздно его электрическое поле достигает такой силы, что начинает срывать заряды с поверхности ленты и они уже перестают достигать полости шара. Зарядка его прекращается. К тому времени шар удается зарядить до потенциала 15–20 миллионов вольт.

Один из самых крупных генераторов Ван де Граафа был построен в СССР до Второй мировой войны. На двух фарфоровых изоляторах высотой около 20 м были установлены пятиметровые металлические шары. К одному из них внутрь подходила лента генератора. Разность потенциалов между шарами достигала 15 миллионов вольт. Получались молнии длиною более 15 м!

Однако время, необходимое для одной зарядки, превышало десять минут. Поэтому средняя электрическая мощность такого генератора не превышала 100 ватт.

Для лабораторных целей подобные генераторы выпускают и сегодня, но мощность их за эти годы возросла незначительно. Однако энергетики хотели бы иметь сверхвысоковольтный генератор на мощность в миллионы киловатт. Он позволил бы заметно упростить электростанции и передавать высокое напряжение на огромные расстояния почти без потерь. Пытаясь решить задачу «в лоб» при помощи генератора Ван де Граафа, они подсчитали, что для этого площадь его ленты нужно увеличить в тысячи раз и во много раз увеличить скорость ее движения. Такую машину создать нельзя. Нужно искать новые принципы.

Один из вариантов — замена ленты заряженными пылинками. Их общая площадь получалась огромной. Эти пылинки должны были двигаться со сверхзвуковой скоростью, влекомые потоком газа реактивного двигателя. Учитывая огромную мощность струи реактивного двигателя, ученые надеялись, что такая установка сможет заменить целую ГРЭС.

Первые эксперименты со сжатым воздухом от компрессора, поставленные в конце 60-х годов прошлого века, подтвердили правильность идеи. Но при попытке подключить реактивный двигатель возникло множество неожиданных трудностей, а потом публикации о работах в этой области исчезли.

Можно предположить, что идея пылевого электростатического генератора родилась не на пустом месте. Во многих лабораториях долго проработали простые и надежные электростатические генераторы, некогда разработанные знаменитым советским физиком А.Ф.Иоффе. Такой генератор мы и советуем собрать для изучения электростатики в школе (см. рис. 2).

Из заземленной металлической или стеклянной трубки двумя потоками вытекает вода. Кран регулируется так, чтобы она текла крупными каплями. Эти капли пролетают через металлические трубки. Их соединение показано на рисунке. Все цилиндры укреплены на хорошо изолированных штативах.

Перед началом работы левый верхний цилиндр А электризуют, коснувшись, например, заряженной расческой. При этом получает заряд и соединенный с ним цилиндр А. Капля, отрывающаяся от трубки а, подлетая к цилиндру А', через индукцию получает заряд противоположного знака.

Под цилиндром А находится цилиндр В', соединенный с цилиндром В. Каждая капля, стекающая из отверстия b и попадающая в цилиндр В, приносит ему некоторый заряд q. Потенциал цилиндра мало-помалу повышается, как и потенциал цилиндра В'. Капли, стекающие из отверстия Ь, получают несравненно более сильный заряд, чем капли, вытекающие из а. Таким образом, начинает повышаться потенциал цилиндра А и связанного с ним цилиндра А', что в свою очередь сказывается на увеличении заряда капель, стекающих из А. Потенциалы как цилиндра А, так и цилиндра В стремятся к бесконечности.

Однако рано или поздно возникает коронный разряд со всех острых частей прибора, а также возрастает утечка тока с изоляторов, которые при высоких напряжениях делаются похожи на проводники.

«При тщательном исполнении, — писал А.Ф.Иоффе, — отсутствии острых граней, соединении цилиндров не проволокой, а медными трубками диаметром в 1 см и при хорошей изоляции возможно получать многие тысячи вольт».

А.ИЛЬИН

Рисунки автора.

Кстати…

Не задумывались, почему 220 В опасны для жизни, а напряжение на расческе, которое в десятки раз его превышает, не наносит никакого вреда?

Дело в том, что клеткам организма вреден не электрический ток, а те химические и физические изменения, которые он вызывает. А для этих изменений нужна большая энергия.

Полагая, что каждый зубец и волосы представляют собою две обкладки конденсатора, нетрудно подсчитать энергию «расчесочного» разряда через известные вам формулы емкости и энергии конденсатора. Оказывается, она равна 0,0001 Дж. Такой энергией обладает дохлая муха, падая с высоты 1 м. Да и то если не считать потерь на сопротивление воздуха.

Загрузка...