Нобелевская премия за 2005 год по физике присуждена американцам — Рою Глауберу и Джону Холлу, а также немецкому ученому Теодору Хэншу. Они удостоены ее «за вклад в квантовую теорию оптической когерентности и развитие лазерной спектроскопии», сообщила Шведская Королевская академия наук, которой Альфред Нобель в свое время и поручил отбирать лучшие работы.
Однако что такое оптическая когерентность и лазерная спектроскопия? Какую практическую ценность они имеют? Давайте попробуем разобраться в этом, а заодно и в самой квантовой теории.
Работы нынешних лауреатов можно считать продолжением исследований, которыми занимался еще в 20-е годы прошлого столетия физик Луи де Бройль — между прочим, отпрыск старинного рода французских герцогов.
Именно де Бройль положил конец классической оптике, где свет считали либо потоком частиц, либо электромагнитной волной. Он указал, что в зависимости от конкретных обстоятельств фотон может обладать либо преимущественно корпускулярными свойствами (т. е. может рассматриваться как материальная частичка), либо волновыми свойствами (т. е. имеет вид излучения).
Поначалу современники ученого не восприняли эту идею всерьез и даже подшучивали: дескать, принцип дуализма, то есть двойственности, позволяет и самому де Бройлю выступать в двух обличьях — и как физику, и как литератору.
Однако шутки прекратились, когда Луи де Бройль в 1929 году, в 37 лет — в возрасте, можно сказать, необычно юном для такой награды, — был удостоен Нобелевской премии. А еще несколько лет спустя стал членом Французской академии как писатель. Более того, он стал одним из основоположников своего рода квантовой философии — отрасли науки, которая позволила взглянуть на окружающий нас мир совершенно иными глазами.
Так со временем повышалась точность измерений в микромире.
Сделать же это пришлось вот по какой причине. В конце XIX века многие физики пришли к выводу, что конец света не за горами в буквальном смысле этого слова. Полагая, что энергия звезд излучается непрерывно, подсчитали, что сравнительно скоро они должны прекратить свое существование, полностью истощив запасы материи и энергии. А если перестанут светить звезды, в том числе и наше Солнце, придет конец жизни на Земле.
Однако год проходил за годом, десятилетие за десятилетием, а звезды продолжали светить. Почему?
В 1900 году немецкий физик-теоретик Макс Планк выдвинул предположение: свет излучается не непрерывно, а отдельными порциями-квантами. Отсюда и экономия энергии.
Облегченно вздохнув — конец света, похоже, откладывается, — идею Планка подхватили другие ученые. И разработали в конце концов новое научное направление — квантовую механику.
Правильнее, наверное, было бы назвать ее, как уже говорилось, квантовой философией, поскольку механика традиционно имеет дело с некими механизмами, «грубыми железками», а здесь приходится оперировать квантами света — фотонами, частицами, меньше которых и придумать что-либо трудно. Однако на практике почему- то прижилось название «квантовая механика». Будем им пользоваться и мы.
Следующий шаг сделал всем известный Альберт Эйнштейн. В 1905 году он показал, что предложенные Планком электромагнитные кванты позволяют объяснить фотоэффект — явление, при котором падающий на поверхность металла свет вызывает поток электронов. Именно за это, кстати, а вовсе не за теорию относительности, как думают многие, Эйнштейн в 1921 году был удостоен Нобелевской премии.
Далее в мире науки происходило много еще чего интересного. В частности, в середине XX века были изобретены новые источники света — квантовые генераторы, или лазеры, за создание которых американец Ч. Таунс и два наших физика — Н.Г. Басов и А.М. Прохоров — также были удостоены Нобелевской премии.
Тогда же впервые выступил на сцену и один из нынешних лауреатов. А именно Рой Глаубер из Гарвардского университета в 1963 году заложил основы квантовой оптической теории. Проще говоря, установил, что свет, излучаемый обычной лампой, представляет собой поток неупорядоченных фотонов. Излучение же лазера — это уже марширующая колонна частиц, которая обладает своими особенностями. Используя их, можно послать лазерный луч на куда большее расстояние, чем, скажем, «достает» свет обычной керосиновой лампы или даже электрического прожектора.
Теории Глаубера, как и других исследователей, были затем положены в основу создания лазеров для самых различных целей, в том числе и сверхмощных, боевых.
Слева направо: Дж. Холл, Р. Глаубер, Т.Хэнш.
Далее за дело взялись Джон Холл из Колорадского университета (США) и Теодор Хэнш из Института имени Макса Планка (ФРГ). Они поняли, что даже в луче лазера каждый из фотонов, как бы ни были они похожи, продолжает сохранять свою индивидуальность.
Как удалось это установить? Ученые использовали для сортировки своего рода сито. А если точнее — «спектральную гребенку». Так в обиходе физиков называется прибор величиной с обувную коробку. В нем стоит особый лазер, который выдает набор спектральных частот, который является своего рода физическим отображением известного в математике тригонометрического ряда Фурье. Если на это эталонное излучение наложить с помощью зеркал излучение другого, контролируемого, лазера, произойдет интерференция — лучи, в зависимости от фазы, будут складываться и вычитаться. И там, где частоты одинаковы, наложившиеся волны нейтрализуют друг друга и в спектре образуется провал (или провалы), т. е. затемнение. По ним и судят о частоте контролируемого лазера.
Такую «гребенку» теперь используют в точнейших физических экспериментах, продвигающих вперед науку. Их результаты затем были использованы при разработке высокоточных часов и спутниковых устройств глобального позиционирования (GPS). Кроме того, они помогли также конструированию лазеров нового поколения, голографических систем, трехмерного телевидения…
Используют подобные исследования и для изучения микромира. Так, в 2003 году сотрудники Калифорнийского технологического института сумели загнать в лазерную ловушку одинокий атом цезия. Это достижение назвали демонстрацией «одноатомного» лазера, который сможет найти применение в квантово-информационных технологиях.
Тонкость тут такая. Обычно лазер, как уже говорилось, фотоны испускает как бы коллективно, маршевыми колоннами. Однако и в современном бою, и в нынешней науке эффективность любого действия зависит прежде всего от того, насколько правильно и быстро будет действовать каждый солдат или отдельная частица. Поэтому «одноатомный» лазер — это, кроме всего прочего, принципиальный шаг к созданию квантовых компьютеров.
Идея их создания возникла 15–20 лет назад. И теперь говорят, что на задачу, которую обычный компьютер решал бы тысячу лет, квантовый компьютер затратит всего несколько часов. Однако чтобы он реально заработал, да еще с таким быстродействием, как запланировано, необходимо еще немало потрудиться. Проблема в том, что квантовое состояние атомов и иных частиц очень хрупко, неустойчиво, подвержено даже слабым помехам и шумам. Поэтому реальные квантовые компьютеры вряд ли появятся раньше чем через 20–25 лет.
Станислав ЗИГУНЕНКО