В этом номере «Патентного бюро» мы расскажем о способе мытья посуды, предложенном Верой Новиковой из Москвы, о простом вертолете Василия Захарова из Караганды и о двухэтажном легковом автомобиле Сергея Васильева из Смоленска.
«Я ОЧЕНЬ ЛЮБЛЮ НАВОДИТЬ ЧИСТОТУ…
…А после того, как папа купил бытовой насос высокого давления, стала охотно мыть его машину, — пишет Вера Новикова из Москвы. — Оказалось, что струя насоса может сделать очень многое. Например, я легко отмыла запачканный голубями балкон. Однажды направила струю воды из насоса на миску, из которой ест пес Тришка, сторож наших гаражей. Миска засверкала неслыханной чистотой. Тут же попробовала помыть старую сковороду. Прекрасно отмылась!..»
Вера проделала множество экспериментов и научилась мыть любую посуду струей воды под высоким давлением. Для чего? Во-первых, чтобы с легкостью мыть то, что больше ничем отмыть нельзя. Например, закопченное дно кастрюли или сковородки. А копоть — это не только эстетика. Ее тепловое сопротивление в сотни раз выше, чем у металла. Тепло пламени не успевает полностью передаться сковороде или кастрюле, и расход газа возрастает чуть ли не вдвое. Но самое главное в том, что при таком мытье не нужно моющих средств.
Схема автоматической посудомоечной машины:
1 — вращающаяся корзина для тарелок; 2 — сопло и струя воды; 3 — тарелка; 4 — замкнутая камера.
Еще в середине 1960 годов в нашей стране были произведены специальные исследования, показавшие, что даже после двенадцатого прополаскивания тарелки на ней остаются следы моющего средства. И в те времена врачи-гигиенисты запретили применять такие средства в детских садах и в общественном питании.
Сейчас моющие средства стали, конечно, несравненно лучше. Но в конечном итоге через канализацию они попадают в окружающую среду, и это ей совсем не на пользу. Мойка же посуды под высоким давлением производится чистой водой, а значит, никакого загрязнения окружающей среды не происходит. Для мытья посуды Вера разработала конструкцию, в которой можно менять даже угол подачи струи, чтобы можно было мыть как обычную, так и самую хрупкую посуду.
Экспертный совет принял решение выдать Вере Новиковой Авторское свидетельство.
ПОСТАВИТЬ НА ВЕРТОЛЕТ ВИНТ…
…с жестко закрепленными лопастями, как у самолета, невозможно. Малейший порыв ветра — и та лопасть, которая идет ему навстречу, увеличивает подъемную силу, а та, что уходит, — уменьшает, и вертолет с таким винтом переворачивается.
Поэтому каждая лопасть современного вертолета подвешена на системе хитроумных шарниров, позволяющей ей за один оборот совершить множество движений, похожих на взмах крыла, и тем самым уберечь машину от опрокидывания. Именно потому винт и особенно его втулка стали одним из самых сложных узлов машины.
Однако Василий Захаров из Караганды полагает, что на вертолете можно применять и винты с жесткими лопастями. Только поставить нужно не один винт, а сразу три или больше, причем у каждого должен быть свой мотор.
«Изменяя скорость вращения винтов, — пишет Василий, — мы можем избежать опрокидывания вертолета, а придав всей плоскости, в которой располагаются винты, некоторый наклон, получим тягу, необходимую для горизонтального полета».
Человек не сможет справиться с управлением системой винтов, утверждает Василий, и в помощь ему нужно дать автоматическое управление.
Аналогичный вертолет с четырьмя несущими винтами построил в 1923 г. в США профессор Петербургского университета Георгий Борисович Ботезат. Винты соединялись при помощи ременных передач с авиационным мотором мощностью 180 л.с. Оси несущих винтов его вертолета пересекались в точке, расположенной высоко над вертолетом. Это была как бы виртуальная точка подвеса, а вся машина (таковы уж законы механики) качалась относительно нее, как вполне реальный маятник. После случайного толчка или порыва ветра вертолет сначала отклонялся, а потом сам возвращался в прежнее положение.
Кроме того, лопасти винтов могли поворачиваться относительно продольной оси (изменять шаг) на один и тот же угол. Но для каждого винта это мог быть свой угол, который устанавливал пилот поворотом рукоятки управления. Подъемная сила при изменении шага винта изменялась, за счет этого вертолет мог изменять угол своего наклона и направление полета. Испытания машины прошли вполне успешно, и хотя денег для дальнейшего развития идеи у профессора не нашлось, его идея жива.
Взгляните на новейший английский беспилотный полицейский вертолет. У него четыре винта, каждый работает от своего электромотора. Шаг лопастей не меняется. Но на фотографии отчетливо видно, что оси вращения винтов сходятся где-то в одной точке над вертолетом. Очевидно, как и вертолет Г.Б. Ботезата, эта машина ведет себя подобно маятнику и тем самым сохраняет устойчивость.
Подъемная сила каждого из винтов может регулироваться изменением скорости вращения своего электромотора, что позволяет изменять направление полета машины. Система GPS на этом вертолете служит для определения места его положения.
Первый вертолет Г. Ботезата (1923 г.).
Современный четырехвинтовой беспилотный вертолет.
АВТОМОБИЛЬ ЗАНИМАЕТ НА УЛИЦЕ…
…много места, и это одна из причин возникновения пробок. Двухэтажный четырехместный легковой автомобиль, как считает Сергей Васильев из Смоленска, займет на проезжей части в два раза меньше места, чем обычный.
Вообще-то двухэтажные автомобили и даже автобусы пытались делать еще в 30 — 40-е годы прошлого века. Но когда скорости движения возросли, устойчивость таких машин на поворотах оказалась недостаточна. Двухэтажные автобусы стали делать шире обычных, а потом и вовсе от них почти везде отказались.
Автомобиль Сергея Васильева предельно узок. Ширина его 0,6–0,8 м. Люди сидят один за другим — двое внизу, двое наверху. Колес у автомобиля только два. Казалось бы, такая машина должна быть неустойчива. Но юный изобретатель нашел выход из положения. «Снизу моего автомобиля прочно закреплен тяжелый вращающийся маховик. Он, как волчок, постоянно сохраняет положение своей оси и не дает машине упасть, — пишет Сергей. — Поэтому моя машина, пока вращается маховик, будет устойчиво ехать или стоять, а люди по лесенке смогут спокойно залезть на ее второй этаж».
Да, такой автомобиль вполне возможен. Однако в конструкции Сергея Васильева не учтены некоторые тонкости поведения волчка или вращающегося маховика. Слегка толкните ось вращающегося волчка и посмотрите, что получится. Да, он не упадет. Но ось его начнет описывать конус. Чем быстрее волчок вращается, тем этот конус будет уже.
То же будет происходить и с автомобилем — любой толчок, и он потеряет управление. А при подъеме в гору автомобиль получит продольный наклон. Ось маховика наклонится, и на ней появится сила, которая потянет автомобиль вбок…
Из этих рассуждений следует, что жестко соединенный с корпусом автомобиля волчок применить нельзя. Однако можно использовать подвижно закрепленный волчок, наклоном оси которого можно управлять.
Двухколесный двухэтажный автомобиль Сергея Васильева:
1 — лестница; 2 — дверь на второй этаж; 3 — мотор; 4 — волчок-маховик.
Впервые двухколесный автомобиль, получавший устойчивость от вращающегося маховика (гироскопа), построил в 1913 г. граф П.П. Шиловский. В работе ему помогали такие крупные знатоки теоретической механики, как Н.Е. Жуковский и И.В. Мещерский.
Двухколесный автомобиль (гирокар) Шиловского неторопливо ездил по улицам Лондона, имея на борту водителя и четырех пассажиров. Временами он останавливался, одни люди слезали, другие садились, но автомобиль лишь едва покачивался.
Устойчивость машины обеспечивал массивный гироскоп (см. рис.), закрепленный в шарнире, который позволял наклонять его вал вдоль продольной оси автомобиля. Наклон производил специальный механизм из двух тяжелых маятников, соединенных шнуром с зубчатым сектором.
Гироскопическое устройство автомобиля П.П. Шиловского.
Двухколесный гиромобиль П.П. Шиловского на улицах Лондона (1913 г.).
Когда автомобиль «заваливался» вбок, маятники наклонялись и через шнур и систему шестерен разворачивали ось гироскопа. На гироскопе тотчас возникала боковая сила, которая устраняла наклон.
Двухэтажный автомобиль Сергея Васильева тоже можно выполнить в варианте гирокара. Скорее всего неудобство для пассажиров и сложность изготовления такой машины помешает ей появиться на свет. Тем не менее Экспертный совет Патентного бюро присудил Сергею Васильеву из Смоленска Почетный диплом за актуальность темы.