СЛЕДИМ ЗА СОБЫТИЯМИ Сочиненная ДНК

В свое время мы рассказывали о том, как американские ученые создали первый в мире синтетический микроб, «склеив» в определенном порядке кусочки природных ДНК (дезоксирибонуклеиновых кислот) (см. «ЮТ» № 1 за 2003 г.). Недавно же японские ученые сумели впервые в истории создать почти полностью синтетическую молекулу ДНК. Чего можно ожидать от этого эксперимента?



Японский «фокус»

Создателями молекулы, еще не известной природе, стала группа сотрудников университета Тоямы под руководством Масахико Инойе. Экспериментаторам удалось собрать молекулу ДНК из нетипичных элементов. В ней все четыре «буквы» используемого природой генетического «алфавита» — азотистые основания аденин, гуанин, тимин и цитозин — были заменены на видоизмененные азотистые основания, в частности, на изо-гуанин, изо-тимин и так далее. Затем они были встроены в природный каркас знаменитой двойной спирали ДНК, состоящий из дизоксирибозы. В итоге получилась стабильная молекула, которая закручена в точности так, как и ее природный прототип.

В принципе ученые уже давно научились собирать из кусочков натуральных ДНК и РНК нужные им цепочки. Еще в 1959 году испанец Севере Очоа и американец Артур Корнберг получили за соответствующие работы Нобелевскую премию. Удавалось ученым собирать ДНК и с частично замененными «буквами», но вот заменить весь «алфавит» получилось впервые.

Никакого логичного кода искусственная ДНК пока не содержит. Ученые, словно дошкольники, составили из изобретенных ими «букв» некое сочетание. Тем не менее, на мысль о возможности появления в какой-нибудь лаборатории доселе невиданных «зверей» такой эксперимент уже наводит. Ведь ДНК — хранительница генетической информации живых организмов. Стало быть, научившись менять ДНК по своему усмотрению, можно, в принципе, «конструировать» организмы с наперед заданными свойствами. Например, вырастить груши на вербе или воссоздать мифического кентавра.


Смысла пока не имеет…

Впрочем, ряд ученых предлагает не торопиться с выводами. Вот какой точки зрения, к примеру, придерживается заведующий лабораторией генетических основ клеточных технологий Института общей генетики им.

Н.И. Вавилова Российской академии наук профессор Сергей Киселев. «Создание японскими учеными первой почти полностью синтетической молекулы ДНК является яркой демонстрацией тончайшей техники эксперимента, но для генетических исследований, биологической науки значение полученного результата пока не очень понятно», — сказал он.

«В природе молекула ДНК всегда несет в себе некий смысл, некую генетическую информацию, — пояснил ученый, — молекула же, синтезированная японскими учеными, представляет собой химическую молекулу неживого вещества».

Таким образом, по мнению нашего ученого, «собранная в Японии молекула — это скорее успех комбинаторной химии или структурного моделирования химических молекул». Тем не менее, усилия экспериментаторов не пропали даром. «Искусственная ДНК предоставляет возможность хранения огромного объема информации за счет комбинирования букв генетического алфавита, — считает С. Киселев. — Полученный результат представляет собой определенный шаг вперед, поскольку на основе таких молекул, возможно, удастся создать биокомпьютер».



Элемент нанобиоэлектрoники

Сходной точки зрения придерживается и директор Института математических проблем биологии РАН Виктор Лахно. Он полагает, что разработанная профессором Масахико Инойе и его коллегами методика может оказаться весьма полезной, например, в области нанобиоэлектроники.

Основная идея этого научного направления заключается в том, чтобы использовать для создания электронных элементов — транзисторов, диодов, сопротивлений — не полупроводники, а биологические элементы — белки, ДНК, РНК и другие, поскольку молекулы ДНК проводят ток. А синтетические ДНК можно будет даже попробовать наделить свойствами сверхпроводимости.

Обнаружение же проводящих свойств молекулы ДНК, полагает российский ученый, открывает ошеломляющие перспективы. Как уже говорилось, ДНК является хранилищем всей генетической информации у всех живых существ. Причем параметры этого хранилища весьма впечатляющи. Так, диаметр молекулы ДНК составляет 2 нанометра, то есть всего две миллиардные доли метра. И длина ее не так уж велика — около 2 м. Вместить же она может такое количество информации, которое и не снилось самым сверхсовременным суперкомпьютерам.

ДНК уникальна еще и тем, что это единственная молекула, которая способна воспроизводить саму себя. Стало быть, методами самосборки из ДНК можно конструировать различные схемы, пространственные фигуры, решетки…

В Институте математических проблем биологии уже предложен проект создания электронного нанобиочипа, работающего на принципах измерения проводимости отдельных фрагментов ДНК. Его использование позволит не только диагностировать множество заболеваний, но и открыть невиданные перспективы моделирования жизни любого человека, своевременного вмешательства с помощью генетической терапии в случае какой-либо угрозы его здоровью.

Другим важнейшим для нанобиоэлектроники направлением является создание логических элементов на основе небольших фрагментов ДНК, что позволит в миллиард раз увеличить производительность компьютеров.

Сейчас уже создана биоэлектронная память на основе вируса табачной мозаики, которая в 100 раз превосходит по емкости полупроводниковую память. Использование проводящих свойств ДНК позволяет сделать плотность записи информации в миллионы раз большей, чем в современных устройствах. Вся информация, накопленная человечеством за время его существования, сможет поместиться на одном крошечном чипе.

В России, по словам ученого, освоена также технология создания нанопроводов на основе ДНК и бактериофагов. Причем нашими специалистами совместно с французскими коллегами сделано фундаменальное открытие — выявлена сверхпроводимость ДНК-проводов при сверхнизких температурах.


Чем опасна искусственная ДНК?

Создав же на основе ДНК нанокомпьютеры, далее можно будет подумать и о создании киборгов — кибернетических организмов, которые будут наделены заранее определенным набором свойств и возможностей. Если не завтра, то послезавтра генным инженерам по силам станет создание, например, дракона — чудища, похожего на динозавра с крыльями, да еще и умеющего изрыгать огонь…

Для чего это нужно? Ну, дракон, быть может, пригодится разве что в качестве персонажа очередного фильма. А вот если мы сумеем создать некий организм, способный переносить температуры до 500 °C, давление около 400 атмосфер, обходиться без кислорода и воды, то его можно отправить для изучения, а потом и колонизации Венеры.

Пока это дело отдаленного будущего. Нужно еще решить множество предварительных задач. Как напомнил профессор С. Киселев, со времен получения в США первой полусинтетической ДНК, в которой были заменены два из четырех азотистых оснований, прошло уже около 20 лет, и работа японцев — всего лишь второй шаг, который удалось сделать в области конструирования ДНК. Стало быть, потребуется еще несколько десятилетий, чтобы освоить технологии столь тонкого манипулирования фрагментами молекул.

Отвечая на вопрос, не несут ли в себе подобные эксперименты потенциальной опасности для человека, профессор С. Киселев сказал: «Если это единичные, очень тонкие и высокотехнологичные работы, то опасности они, скорее всего, таить в себе не будут».

Более того, самопроизвольное слияние синтетических и натуральных ДНК, в результате которого могли бы появиться некие чудовища, весьма маловероятно. А вот польза от использования ДНК-технологии, скажем, в той же наноэлектронике ожидается огромная.

И. ЗВЕРЕВ, В. ЧЕРНОВ

* * *
Знакомьтесь GAKKEN


Что может быть интереснее радиоуправляемой игрушки? Только радиоуправляемая игрушка, собранная своими руками. Игрушки компании Gakken помогают в наглядной и увлекательной форме познакомиться с кинетической энергией и действиями коленчатых рычагов, валов, кривошипов, шарниров и других устройств.

В модельном ряду Gakken — удивительные механические создания. Вряд ли кто-нибудь останется равнодушным к гусенице-землемерке или металлической многоножке с 32 ногами, которая способна волнообразно ползти в любом направлении. А механический краб передвигается, прижимаясь к полу, и приподнимает ноги, чтобы переступить через препятствие. Для сборки моделей понадобятся лишь отвертка и гаечный ключ — все остальное входит в комплект. А благодаря понятной схеме и подробной инструкции построить собственное механическое чудо сможет даже десятилетний инженер.

«Семь Пядей» — первая в России сеть магазинов и интернет-магазин умных развлечений. Здесь вы найдете интеллектуальные наборы, конструкторы, наборы для исследований, сборные модели, наборы для творчества, настольные игры, развивающие игрушки и многое другое.

Сеть магазинов «Семь Пядей» — официальный дистрибьютор компаний Qiddycome, Gakken, Gigo, Maxitronix, Capsela, Sky-Watcher, Optitech, Lyonaeec и Bornimago.

Москва: (495)363-01-90, Санкт-Петербург: (812) 333-17-17, Нижний Новгород: (831) 218-54-63.

http://www.7pd.ru


Загрузка...