ПАТЕНТЫ ОТОВСЮДУ Энергия «ниоткуда», или почти вечные источники и двигатели

Мы уже рассказывали (см., например, «ЮТ» № 8 и 10 за 2008 г.) о том, какими хитроумными или, напротив, неожиданно простыми способами современные изобретатели научились получать энергию почти что ниоткуда. Как оказалось, мы перечислили далеко не все способы. Вот какие интересные факты собрал по нашей просьбе патентовед Алексей ДРОЗДОВ.


Небесные электростанции

Разработчики во главе с известным нидерландским физиком и астронавтом Ваббо Окелсом, профессором Политехнического университета Делфта, предложили использовать для генерации электроэнергии кайты, поднятые на большую высоту.

Кайтами, как известно, называются особые воздушные змеи типа «летающее крыло». Обычно спортсмены используют их как некое тяговое устройство, чтобы скользить по воде или по снегу на досках для серфинга.

Нидерландские же ученые нашли кайту еще одну работу. Недавно они продемонстрировали оригинальную энергетическую установку, запустив кайт площадью 10 кв. м, который вырабатывал в полете 10 кВт энергии, что вполне достаточно для обеспечения электричеством жителей десятка коттеджей.

В следующий раз они обещают запустить в небо уже 50-киловаттную конструкцию, названную Laddermill («Лестница-мельница»). Ну а конечной своей целью ученые видят создание целой системы из множества кайтов, способной вырабатывать до 100 МВт.



В полете такой «энергокайт» использует силу ветра, чтобы автоматически подниматься и опускаться, приводя в движение струны, натянутые между ним и расположенным на земле генератором. Произведенная таким образом энергия, по подсчетам авторов, вдвое ниже, чем у стандартных ветряных турбин.

Еще одно преимущество кайтов — возможность забираться на большую высоту. Башни современных ветряков имеют высоту не более 80 м; их энергоустановки работают при средней скорости ветра около 5 м/с. Между тем, на высоте порядка 800 м она уже превышает 8 м/с. А поскольку эффективность использования силы ветра пропорциональна кубу его скорости, по отдаче кайты, парящие на этой высоте, могут значительно превосходить наземные ветряки. Вдобавок на больших высотах ветер дует практически постоянно и с одной и той же скоростью.


За счет разницы температур

В декабре 2007 года ученые из Океанографического института Вудс Холл под руководством Дейва Фратантони спустили на воду у Виргинских островов прототип термального глайдера, который курсирует между островами Сент-Томас и Санта-Крус по сей день, пройдя уже тысячи миль. В отличие от обычных, перемещающихся с помощью гребного винта плавсредств, этот корабль движется благодаря изменению своей плавучести — он то погружается в глубины, то поднимается на поверхность. Подъем обеспечивают его крылья, а горизонтальные перемещения — вертикальный хвостовой «плавник» и руль. Управление судном осуществляется с берега с использованием системы GPS.

Термальный глайдер потому так называется, что черпает энергию для своего движения из разницы температур и плотностей океанической воды на разной глубине.

Собственная плавучесть глайдера близка к нулю. Поэтому, когда он находится близ поверхности, теплая вода разогревает особый воск в трубках. Этот воск расширяется, превращая таким образом тепловую энергию и механическую, которая выталкивает воду, находящуюся в особом резервуаре внутри корабля, через сопло наружу. Получив таким образом реактивный импульс, глайдер погружается в глубину, где температура воды ниже, а ее плотность больше. Воск застывает, и глайдер, имеющий чуть меньший удельный вес, чем окружающая среда, поднимается к поверхности. И все начинается сначала.

«Нынешняя экспедиция — это тест-драйв, позволяющий выяснить недостатки и преимущества подобной конструкции, — говорят ученые. — Кроме того, она имеет и исследовательскую цель, поскольку судно-робот попутно собирает данные о вращении потоков воды в воронках, которыми изобилует море у Виргинских островов»…



Термальные глайдеры готовят к плаванью.


Гравитационное электричество

Говорят, этот уникальный торшер под названием Gravia, для работы которого не нужны ни электрическая сеть, ни аккумуляторные батареи, вскоре появится в продаже. Светится Gravia за счет действия гравитационных сил, что позволяет лампе работать в любом месте и в любое время.

Конструкцию торшера придумал выпускник Вирджинского политехнического института Клэй Моултон. Основные элементы Gravia — это генератор и стержень, по которому в вертикальном направлении перемещается довольно массивный груз. Для того чтобы «включить» лампу, нужно просто поднять «гирю» вверх, после чего в дело вступает сила тяжести. Медленно перемещаясь по стержню, груз раскручивает ротор генератора, питающего десяток экономичных светодиодов.

Внешне торшер напоминает цилиндр высотой около 1,2 м, боковые стенки которого выполнены из прозрачного акрила. Благодаря такой «уловке» удалось добиться свечения практически всей поверхности лампы, а не только той ее части, в которой размещены светодиоды. Причем по мере эксплуатации лампы акрил будет стареть и превращаться в своеобразный «фильтр», блокирующий часть спектра, соответствующую синему цвету. В результате свет лампы будет становиться все более естественным, близким к солнечному свету.

Gravia способна выдавать световой поток в 600–800 люмен в течение 4 часов. То есть интенсивность освещения примерно такая, какую дает обычная лампа накаливания мощностью 40 Вт. После этого нужно будет снова поднять груз в верхнее положение.

Моултон утверждает, что срок службы механизма Gravia около 10 лет при практически круглосуточной работе.



Гравитационная лампа.


Ток при трении

Интересную статью опубликовали недавно ученые из Технологического института Джорджии в Атланте. В работе описывается ткань, нити которой способны вырабатывать электричество. Если из такой ткани сшить одежду, то надевший ее человек при движении превратится в своего рода электрогенератор, способный подзаряжать аккумулятор мобильника, плеера и другой электроники.

Суть явления такова. Наногенератор использует уникальные свойства оксида цинка, который одновременно является полупроводником и пьезоэлектриком. Из оксида цинка вокруг обычных кевларовых нитей ученые научились выращивать густую «шубу» из нановолокон диаметром 50 — 200 нм и длиной 3–4 мкм. После этого достаточно ворсинки другой нити покрыть тонким слоем золота, сплести ее с первой, подсоединить к их концам проводники — и наногенератор готов.

Контакт между золотым покрытием ворсинок одной нити и ворсинками из оксида цинка другой образует диод, пропускающий ток только в одном направлении. А когда вплетенная в ткань пара нитей трется друг о друга, ворсинки изгибаются и на них, благодаря пьезоэффекту в оксиде цинка, образуются электрические заряды, которые через диод попадают во внешнюю цепь. Одна ворсинка способна выдать до 45 мВ напряжения, но суммарное напряжение многих миллионов ворсинок может достигнуть нескольких вольт, необходимых для питания мобильных устройств. По расчетам, один квадратный метр такой ткани сможет вырабатывать до 80 мВт.

Впрочем, пока эксперименты проводились лишь с парой нитей длиной всего несколько миллиметров. И над тем, как обеспечить надежные электрические соединения тысяч таких нитей в ткани, исследователям еще предстоит поломать голову.

Другая проблема заключается в том, что оксид цинка боится сырости и вряд ли выдержит стирку. Так что одежду или придется делать одноразовой, или придумать какую-то гидрозащиту нановолокон.



Теперь и при трении получают ток.

Загрузка...