ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Свет как рентген

Мы привыкли думать, что только рентгеновские лучи и некоторые другие виды радиационного излучения имеют способность проходить сквозь непрозрачные предметы. Менее известно, что и обычный видимый свет может проходить сквозь некоторые объекты — например, сквозь краску, человеческую кожу и подкожные ткани. Это имеет большое прикладное значение для медицинских исследований и некоторых других областей, пишет журнал Nature.



Обычные световые волны могут когда-нибудь заменить рентген или даже позволить специалистам удалять опухоли с помощью лазера вместо хирургических операций. Практическая же проблема заключается в том, что такой свет либо поглощается, либо рассеивается после прохождения через непрозрачный объект. По крайней мере, так было до недавних пор, пока ученые из Университета Твенте, Голландия, не разработали методы обратного сбора рассеянного света, что позволяет получать снимки объектов, сквозь которые он прошел.

Для этого они модифицировали астрономическую технику под названием «адаптивная оптика». Объект освещается лазером с использованием некоего «пространственного светового модулятора», который позволяет задерживать отдельные части луча. После того, как свет проходит через модулятор и исследуемый объект, детектор может определить, откуда пришел рассеянный свет, и собрать цельную картинку.

Другие научные команды подхватили идею и сумели применить ее к фокусированным ультразвуковым волнам, которые позволяют сдвигать частоту лазерного излучения. Смещенные лучи отражаются обратно сквозь объект, создавая эффект, условно говоря, «лампочки внутри стены». Эта технология позволила исследователям получить снимок флуоресцентного шарика диаметром всего 1 мкм, спрятанного между двумя слоями непрозрачного материала.

За этим последовали другие инновационные эксперименты — например, ученым из Парижа удалось получить снимок уха живей мыши со всеми кровеносными сосудами. И хотя технология требует еще серьезной доработки, она позволяет надеяться, что этот метод окажется полезным не только в медицине, но и, скажем, в археологии, а также и для реставрации картин и других произведений искусства.

К сказанному остается добавить, что еще в 90-х годах XX века стараниями ученых Института радиотехники и электроники удалось доказать, что человеческое тело прозрачно не только для рентгена и ультразвука но и отчасти для обычных световых лучей. В этом наглядно можете убедиться и вы сами, поставив ладонь на просвет настольной лампы.

Ученым удалось создать опытный прибор, представлявший собой лазер, зондировавший кожу и подкожные ткани короткими световыми импульсами, и ряд светоприемников, которые улавливали отраженное излучение от разных слоев кожи и подкожных тканей. Расшифровав эти сигналы с помощью специальной компьютерной программы, медики получили возможность узнать количество кислорода, содержащегося в крови, понять, как организм расходует его при различных нагрузках…

Сюрпризы ультразвука

Ультразвук, то есть звук с частотой выше 20 000 Гц, давно уже используется в науке и технике. Например, ультразвуковое сканирование внутренних органов в медицине позволяет выяснить, все ли с ними в порядке.

А в технике ультразвуковые колебания используют не только для диагностики внутренних дефектов деталей и узлов, но и для очистки их поверхности.

И это еще не все, на что способен ультразвук. Недавно обнаружены его новые уникальные свойства.


Сила звука

Так, например, еще один способ использовать силу ультразвука — акустическая левитация. Обычно, чтобы заставить парить в воздухе тот или иной предмет, используют левитацию магнитную. Если обычный магнит поместить над другим магнитом или сверхпроводником, то магнит будет парить в воздухе.

Однако для получения эффекта сверхпроводимости нужны сверхнизкие температуры.

А вот ультразвук дает возможность бесконтактно перемещать любые объекты без всякого охлаждения. Это подтверждают эксперименты с ультразвуковой или акустической левитацией, которые ведутся сразу в нескольких лабораториях мира. Например, физики из Университета Сан-Пауло в Бразилии предложили способ, с помощью которого можно заставить небольшие объекты не только парить в воздухе, но и перемещать их в нужном направлении. Чтобы преодолеть силу тяжести, исследователи использовали давление, которое оказывают звуковые волны.



С помощью ультразвуковых волн можно удерживать и даже передвигать в воздухе небольшие предметы. На фото показана левитация над поверхностью отражателя шарика из полистирола и капель воды (справа).


«Ощутить силу звука можно, если встать напротив мощной акустической колонки или громкоговорителя, — объясняют экспериментаторы. — Звук представляет собой колебание, возникающее в какой-либо среде — воздухе, воде или твердом теле. С физической точки зрения, передача звука в воздухе представляет собой движение областей высокого и низкого давления. Колебания давления создают силу, которая может воздействовать на механические объекты».

При этом исследователи используют так называемые стоячие волны. Простейший пример таких волн описан во многих учебниках. Если закрепить один конец длинной веревки, а другой перемещать рукой с постоянной частотой вверх-вниз, то некоторые точки веревки будут оставаться неподвижными.

Образование такой стоячей волны происходит вследствие наложения двух волн — исходной, созданной движением свободного конца веревки, и отраженной. Эффекты, возникающие при наложении звуковых волн друг на друга, легли в основу разработанного метода ультразвуковой левитации.

Излучатель испускает акустические колебания, которые отражаются от расположенной на некотором расстоянии поверхности. Излученные и отраженные волны складываются, образуя что-то вроде коридора, в котором чередуются области высокого и низкого давления. Если предмет попадает в область стоячей ультразвуковой волны, то ее энергии хватает, чтобы компенсировать силу тяжести.

Впрочем, добиться стабильного удержания предметов в воздухе оказалось весьма непросто. Поначалу никак не удавалось создать стоячую ультразвуковую волну необходимой мощности. Кроме того, достаточно было малейшего смещения излучателя или отражателя — и эффект пропадал.

Чтобы решить эту задачу, Марко Андраде и его коллеги изготовили специальный вогнутый отражатель ультразвука, с помощью которого удалось достичь многократного отражения колебаний с целью формирования стоячих волн. В итоге ныне небольшие пластиковые шарики висят в воздухе даже без точной настройки системы.


Фармацевты в наушниках

Ряд подобных экспериментов был осуществлен также в Швейцарии. Там исследователи тоже выяснили, как с помощью силы звука перемещать предметы в воздухе. «Прорыв в акустической левитации позволит физикам применять этот метод в различных сферах, включая фармацевтическую отрасль и производство электроники», — полагает ведущий автор исследования, инженер-механик Димос Поликакос из научно-технического университета Швейцарии, опубликовавший результаты тестов в профильном онлайн-издании «Труды Национальной академии наук».

Команда Поликакоса провела ряд экспериментов, таких как объединение в воздухе капель воды или химических растворов, приготовление крошечной порции растворимого кофе, а также исследователи смогли удерживать в воздухе деревянную зубочистку, поворачивая и перемещая ее.

Ученые объяснили, что звуковые волны оказывают давление, когда сталкиваются с поверхностью объекта. Это практически незаметно глазу, пока интенсивность колебаний волн не станет достаточно мощной и звук сможет противодействовать влиянию гравитации.

Поликакос и его коллеги использовали звук громкостью около 160 дБ. Это больше, чем может выдержать человеческий слух, поэтому ученые вынуждены работать в специальных наушниках. Они также использовали частоту 24 000 Гц, которую человеческое ухо не воспринимает, потому что предельный диапазон для органов слуха у людей составляет около 20 000 Гц.

«Сложнее всего было добиться того, чтобы объекты в воздухе перемещались аккуратно, без повреждений», — отметил Димос Поликакос. В итоге исследователи поняли, что ключ к успеху заключается в балансе, то есть приходится выдерживать определенную силу и частоту звуковых волн, чтобы регулировать передвижение капель. Они полагают, что в будущем их наработки пригодятся, например, фармацевтам, которые смогут смешивать лекарства, не притрагиваясь к составляющим веществам.


По рецепту Бабы-яги?

Следующий шаг, независимо от европейских коллег, сделали сотрудники кафедры прикладной физики китайского Северо-Западного политехнического университета. Они заставили левитировать как предметы неорганические — например, шарики из иридия и жидкой ртути, так и биологические объекты — мелких насекомых и даже рыбок.

Когда руководитель проекта Вэнь Цзюньсе с помощью пинцета стал помещать под излучатель, создающий воздушные колебания при длине звуковой волны 20 мм, мелкую живность — муравьев, пауков, жуков, пчел, головастиков, под влиянием ультразвуковой вибрации они зависали в воздухе. По словам Вэнь Цзюньсе, результаты опыта могут подвигнуть ученых на важные открытия в области биофизики. Кроме того, он позволил себе предположить, что некоторые сказочные персонажи — например, ведьмы, летавшие в ступах и на метлах, — в силу неких природных аномалий могли быть источником подобных невидимых волн и с помощью вибраций преодолевали силу притяжения. (Подробности см. в «ЮТ» № 12 за 2011 г.)

Японским исследователям — сотрудникам Токийского университета и Технологического института Нагои — тоже удалось привести в движение мелкие объекты с помощью сложной системы акустической левитации. Звуковые волны перемещали в пространстве частицы пластика диаметром от 0,6 до 2 мм.

Чтобы двигать по воздуху капли воды, пластиковые частицы, кусочки дерева и даже шурупы, понадобились 4 ряда звуковых колонок. Эти объекты перемещались во всех направлениях в пределах, допускаемых условиями эксперимента, опять-таки с помощью настройки стоячих ультразвуковых волн.

Пока ученые могут использовать акустическую левитацию только для перемещения небольших и легких объектов. Но в скором времени команда швейцарских инженеров-механиков обещает новое исследование по управлению при помощи силы звука тяжелыми предметами, такими как стальные шарики.

Да и вообще звуковая левитация — это весьма перспективный способ преодоления земного притяжения, считают ученые. Поэтому уже сейчас устройствами для акустической левитации заинтересовались в НАСА. Не исключено, что в перспективе подобные устройства можно будет использовать для создания уникального транспорта.

Кстати, конструируя свои устройства для левитации, многие исследователи опирались на теорию российского физика-теоретика Льва Петровича Горькова, опубликованную в статье «О силах, действующих на малую частицу в акустическом поле в идеальной жидкости», которая была напечатана в журнале «Доклады АН СССР» еще в 1961 году.

В литературе также описан опыт, который можно произвести, скажем, в школьном кабинете физики. Если поднести к ультразвуковому генератору полоску бумаги так, чтобы ее свободный конец располагался в 3–5 мм над торцом стержня — излучателя ультразвука, а затем включить генератор, то кончик бумажной полоски под воздействием звуковой волны взовьется вверх и неподвижно зависнет над стержнем.



Осязаемая голограмма воспринимается как поверхность упругого мяча.


Кстати…

ТАКТИЛЬНЫЙ ОБМАН

Мы уже рассказывали вам (см. «ЮТ» № 1 за 2015 г.) об удивительном покрытии, под которым не прощупываются спрятанные предметы. Но это, оказывается, не единственный способ обмануть наши органы чувств. Исследователи теперь способны сделать осязаемыми виртуальные трехмерные изображения — голограммы.

Особенно успешно в этом деле продвинулись ученые Бристольского университета, Британия. На научной конференции SIGGRAPH Asia 2014 (г. Шеныжэнь, Китай), прошедшей в декабре прошлого года, они продемонстрировали технологию, которая генерирует объемную форму, дополняющую изображение 3D-дисплея.

Говоря проще, предложенный метод опять-таки использует ультразвук, который ощущается рукой, как некий предмет. Это происходит потому, что фокусировка сложных ультразвуковых узоров, излучаемых специальным устройством, создает воздушные колебания в виде стоячих волн, о которых говорилось выше. Они как раз и воспринимаются рукой, подобно упругой поверхности резинового мяча.

На основе этой технологии сотрудники компании Ultrahaptics уже создали специальный сенсор Leap Motion. Он позволяет отслеживать положение руки в воздухе и фокусировать ультразвук так, чтобы создавалось ощущение объемного предмета.

Загрузка...