Чтобы узнать истину, нужно вообразить миллион неправильностей.
Цвикки оказался настоящим ученым — он не отступил. В течение почти тридцати лет он да еще В. Бааде и Р. Минковский были, пожалуй, единственными астрономами, твердо убежденными в том, что нейтронные звезды существуют.
Чтобы найти нейтронную звезду, предсказанную методом направленной интуиции, Цвикки полностью посвятил себя исследованию сверхплотных звезд.
Но как увидеть вспышку сверхновой?
В нашей Галактике последняя такая вспышка, видимая с Земли, произошла в 1604 году. Значит, вся надежда на счастливый случай и на вспышки в других галактиках. Но уже в тридцатых годах число известных галактик — звездных островов во Вселенной — достигало десятков тысяч. В какой из них ждать вспышку? Для того чтобы наверняка «поймать» момент вспышки сверхновой в другой галактике, нужно наблюдать сразу много галактик. В 1933 году в обсерватории Маунт Вилсон был организован патруль сверхновых. На небе были выбраны 175 площадок, в которых наблюдались около трех тысяч довольно близких галактик. Эти площадки регулярно фотографировали, и снимки сравнивали между собой. Из ночи в ночь. Недели и месяцы. За три года было сделано 1625 снимков, на которых удалось обнаружить 12 сверхновых. Конечно, каждую вспышку сразу же исследовали — этим занимались Бааде, Минковский и М. Хьюмасон. Главными задачами были — получить спектры вспышек и построить для каждой вспышки кривую блеска, то есть описать, как меняется со временем блеск сверхновой.
Спектры сверхновых, как следовало из наблюдений, совершенно непохожи на спектры обычных новых звезд, вспыхивающих в Галактике. В чем же разница? В спектре новой звезды видны яркие линии излучения, а вскоре после максимума блеска появляются и многочисленные линии поглощения, хотя и довольно размытые, но все же достаточно четкие, чтобы можно было сказать, какому элементу они принадлежат. В спектрах новых звезд были обнаружены линии гелия, водорода, натрия, углерода, кислорода, других элементов. Линии были смещены в голубую сторону — оболочка новой приближалась к наблюдателю со скоростью до 2 тысяч км/с.
В спектрах сверхновых, полученных Хьюмасоном, линий не было. Вместо них в совершенно неожиданных местах были обнаружены очень широкие полосы излучения. Только две полосы удалось довольно быстро отождествить — это оказались очень сильно расширенные линии кислорода, такие, какие наблюдаются в спектрах полярных сияний.
Чтобы отождествить остальные полосы, понадобилось почти тридцать лет. Сделать это удалось лишь в 1963 году Д. Мак-Лафлину. Он сказал: а что если все наоборот? Что если на самом деле мы видим не полосы излучения на темном фоне, а полосы поглощения на ярком? И Д. Мак-Лафлин доказал, что в действительности в спектрах наблюдаются темные полосы углерода, кислорода (что бросилось в глаза — водорода не было!), но размытые до неузнаваемости, и при этом смещенные в голубую сторону спектра на величину, соответствующую огромной скорости движения до 10–20 тысяч км/с!
Спектры исследованных 12 сверхновых были очень похожи друг на друга. Похожи были и кривые блеска. Вывод напрашивался: сверхновые являются однородной группой объектов.
Но… вывод был слишком поспешным. В 1940 году Р. Минковский получил спектр очередной сверхновой и не узнал его. Спектр был не похож на все предыдущие. И Минковский был вынужден объявить: вспышки сверхновых бывают по крайней мере двух типов. Сверхновые I типа имеют яркие полосы в спектре (дело было задолго до работ Д. Мак-Лафлика), а сверхновые II типа не имеют. Более того, оказалось, что сверхновые II, типа вспыхивают не реже, чем сверхновые I типа. И то, что за несколько лет патрулирования удалось открыть 12 вспышек I типа и лишь одну II типа, было следствием слепой игры случая. Того самого случая, который путает даже самые правильные рассуждения…
Выяснилось, что спектры и кривые блеска всех сверхновых I типа похожи друг на друга, как близкие родственники, а характеристики сверхновых II типа могут меняться в очень широких пределах, которые до сих пор еще четко не установлены.
В начале сороковых годов были добыты новые сведения и о галактических сверхновых. Точнее, об одной сверхновой — вспышке 1054 года. Крабовидная туманность считалась в то время единственным известным остатком вспышки сверхновой. Положения на небе остальных исторических вспышек были так неопределенны («на полциновки от Близнецов»…), что поставить в соответствие оптической вспышке какую-нибудь газовую туманность или звезду было невозможно. Естественно, что интерес «ловцов сверхновых» сосредоточился на Крабовидной туманности.
Морфологический анализ позволил в конце тридцатых годов сделать еще несколько «научных пророчеств», оправдавшихся впоследствии. Ф. Цвикки утверждал, например, что большая часть энергии вспышки сверхновой должна излучаться не в видимой области длин волн, а в области невидимых ультрафиолетовых, рентгеновских и гамма-лучей, а также в радиодиапазоне. Все эти виды излучений были затем (через два-три десятилетия!) обнаружены у Крабовидной туманности.
Предсказание прямо следовало из предположения, что при вспышке сверхновой рождается нейтронная звезда. Гравитационная энергия нейтронной звезды около 1053 эрг, а гравитационная энергия Солнца около 1048 эрг. Если сжать Солнце до размеров нейтронной звезды, разница между этими энергиями должна быть потеряна в пространство. Потеряна в виде излучения, кинетической энергии оболочки или иным способом. Сверхновая при вспышке излучает в оптическом диапазоне «всего» 1050—1051 эрг — в сотни раз меньше. Где остальная энергия? Естественно предположить, что она выделяется в такой форме, которую мы пока наблюдать не можем. В виде рентгеновских, гамма-, радиолучей, то есть всех излучений, наблюдать которые в тридцатые годы не умели.
Ф. Цвикки построил ось возможных излучений, и были на ней не только электромагнитные волны. ученый писал еще о протонах и электронах — частицах космических лучей, которые, по мнению Ф. Цвикки, образуются при вспышках сверхновых. Но протоны и электроны — это ведь не все возможные частицы? Нет, и об этом упущении Ф. Цвикки нам еще предстоит вспомнить впоследствии. Так что и морфологический анализ не столь уж совершенен, недостатки его очевидны. Один из них — не всегда удается учесть все параметры на оси… Позже мы поговорим о других методах, а сейчас вернемся к Крабовидной туманности.
Неизвестно, что еще удалось бы предсказать Ф. Цвикки с помощью его метода, но помешала вторая мировая война. Ученый, который к тому времени стал уже гражданином США, был призван на военную службу и до конца войны занимался разработкой ракетных систем. Он и здесь применил морфологический метод: составил морфологический ящик для ракетных двигателей, в котором оказалось 36 864 возможные комбинации. Если астрономы так и не взяли метод направленной интуиции на вооружение, то инженеры-изобретатели пользуются им и по сей день…
На Маунт Вилсон остались В. Бааде и Р. Минковский. В. Бааде тоже собирался получить американское гражданство и даже подготовил документы, но потерял их. Началась война, и военные власти объявили В. Бааде «лицом, сочувствующим врагу». В результате ему запретили выезжать за пределы округа, где расположена обсерватория Маунт Вилсон. Условия для астрономических наблюдений были прекрасными — в Лос-Анджелесе ввели светомаскировку, никакие помехи не мешали исследованиям.
Получив в свое распоряжение крупнейший в мире телескоп, В. Бааде начал наблюдения Крабовидной туманности и зимой 1942 года обнаружил удивительные изменения, которые в ней происходили. Временами в центральной части туманности возникали и исчезали очень яркие «жгутики». «Жгутики» перемещались по туманности, и В. Бааде измерил скорость их движения: 26 тысяч км/с! Жгуты двигались в 25 раз быстрее самой туманности. Они возникали и исчезали, просуществовав всего несколько месяцев. Почему они возникали? Почему двигались? Почему исчезали? В. Бааде правильно связал эту удивительную особенность Крабовидной туманности с наличием в ней нейтронной звезды — мертвого тела, оставшегося после взрыва.
Пока В. Бааде исследовал туманность, Р. Минковский изучал две слабенькие звездочки, издавна наблюдавшиеся на фоне ее светящейся массы. Одна из звездочек, как надеялись В. Бааде и Р. Минковский, и могла быть искомым объектом. На фотографиях обе звездочки мало отличаются друг от друга — обе имеют 16-ю величину, обе напоминают цветом довольно холодные звезды, именуемые желтыми карликами. В. Бааде обратился к двадцатилетней давности работе Дж. Дункана, который тоже наблюдал эти звездочки и измерил их собственное движение. Выяснилось, что звезда, расположенная севернее, почти не движется. А южная звезда, напротив, движется очень быстро — со скоростью по меньшей мере 100 км/с. Обычно звезды не движутся так быстро. Что же приключилось с южной звездой, что заставило ее лететь с такой скоростью?
Еще более удивительным оказался спектр южной звезды. Нужно сказать, что даже в наше время получить хороший спектр звездочки 16-й величины — далеко не простая задача. А в 1942 году работа, выполненная Р. Минковским, была пределом мастерства наблюдателя. Удалось получить спектры обеих звезд. Северная звезда ничем не выделялась — в спектре были видны линии поглощения, свойственные желтым карликам. А вот в спектре южной звезды линий не было вовсе! Чтобы понять всю удивительность этого факта, достаточно вспомнить, что обычно в спектрах желтых карликов видны сотни линий, и десятки из них имеют такую ширину и глубину, что не заметить их на спектрограмме даже того качества, какая была у Р. Минковского, невозможно. Значит, линий не было на самом деле. Почему?
В. Бааде и Р. Минковский были уверены, что южная звезда в Крабовидной туманности и есть звездный остаток вспышки 1054 года. Если это так, то именно южная звезда ответственна за излучение всей туманности. Р. Минковский считал, что Крабовидная туманность светится потому, что газ в ней нагрет до высокой температуры. Но что нагревает туманность? Предоставленная сама себе, она давно остыла бы. Ее греет южная звезда, сказал Р. Минковский. И в этом была его ошибка.
Между прочим, представления В. Бааде и Р. Минковского лучше всего описаны не в их статье, а в опубликованном в 1946 году фантастическом рассказе М. Лейнстера «Первый контакт». Действие рассказа разворачивается в Крабовидной туманности, и писатель-фантаст описывает «сцену» в полном соответствии с научными данными. С данными, которые оказались ошибочными.
Вот, что написано в рассказе:
«Это было облако газа, бесконечно разреженного, занимавшего пространство, равное половине пути от нашего Солнца до ближайшего другого. В глубине тумана горели две звезды, двойная звезда, одна из составляющих частей была знакомого желтого цвета, похожего на цвет земного Солнца, другая казалась сверхъестественно белой».
И дальше:
«Сама туманность появилась в результате самого гигантского взрыва из всех известных человечеству… Вещество, выброшенное из центра взрыва, разлеталось со скоростью два миллиона триста тысяч миль в час; более чем тридцать восемь тысяч миль в минуту; свыше шестисот тридцати восьми миль в секунду. Когда телескопы двадцатого века нацелились на место этого громадного взрыва, осталась только двойная звезда… и туманность. Более яркая звезда из пары была почти уникальной, имея такую высокую температуру своей поверхности, что спектральный анализ оказался недейственным. Линий не было. Температура поверхности Солнца равна примерно семи тысячам градусов Цельсия выше нуля. Температура же раскаленной звезды равнялась пятистам тысячам градусов. У них с Солнцем почти одинаковая масса, а диаметром она в пять раз меньше, то есть она плотней воды в сто семьдесят три раза, свинца — в шестнадцать раз, иридия — в восемь. Это было самое тяжелое вещество из всех известных на Земле. Но даже такая плотность несравнима с плотностью карликовой белой звезды — соседа Сириуса. Белая звезда в Крабовидной туманности была неполным карликом; эта звезда находилась еще в процессе распада…»
Любопытная ситуация: фантаст воспользовался научными данными и ошибся. Если бы он избрал самый фантастический из вариантов — нейтронную звезду, — то оказался бы прав вопреки наблюдениям. Вывод: воображение писателя-фантаста должно опережать науку, и если уж пользоваться идеями ученых, то — самыми фантастическими.
Числа, приведенные в рассказе, взяты из работы Р. Минковского. Налицо явное противоречие. Размер южной звезды получился у Р. Минковского слишком большим: всего впятеро меньше Солнца. Либо нужно признать, что в центре Крабовидной туманности нет нейтронной звезды, либо сказать, что теория излучения туманности неверна. Р. Минковский верил, что нейтронная звезда должна быть, но в то же время не видел альтернативы для механизма излучения. Это было проявлением психологической инерции, свойственной многим астрономам. Астрономы привыкли считать, что любое небесное тело излучает потому, что оно нагрето. Они, конечно, знали, что есть и другие механизмы излучения. Но применять их даже к такому явно необычному объекту, как Крабовидная туманность, не решились. Так, стараясь спасти оба предположения, противоречившие друг другу, они упустили открытие.
Долгое время на возникшее противоречие никто не обращал внимания. Астрофизиков вполне устраивала привычная картина излучения нагретого газа, а то, что при этом не остается места для нейтронной звезды, это даже хорошо — кто верил тогда в нейтронные звезды?
Так продолжалось до конца сороковых годов. Лишь в 1948 году произошло событие, показавшее всем, что противоречие действительно существует. Дж. Болтон, один из первых радиоастрономов, обнаружил на небе четыре ярких источника радиоизлучения. Один из источников был расположен в созвездии Тельца. Год спустя Дж. Болтон и Дж. Стэнли уточнили координаты этого источника, и оказалось, что они в точности совпадают с положением Крабовидной туманности. Вот факт, и вот противоречие. Крабовидная туманность излучает в радиодиапазоне слишком много! Если это действительно просто нагретый газ, то его радиоизлучение должно быть совершенно ничтожно по сравнению с оптическим. На деле же все наоборот: в радиодиапазоне Крабовидная туманность излучает гораздо больше, чем в оптическом.
Это было противоречие между наблюдением и его интерпретацией. Разрешил его в 1953 году советский астрофизик И. С. Шкловский. Он предположил, что в Крабовидной туманности излучает вовсе не газ, а электроны, движущиеся с почти световыми скоростями в магнитном поле туманности. Физикам такое излучение было известно, называлось оно синхротронным. Причина излучения такова. Электрон — заряженная частица. Попав в магнитное поле, он подвергается действию так называемой силы Лоренца. Действие силы приводит к тому, что заряд начинает двигаться ускоренно. А ускоренно движущийся заряд должен излучать. Чем больше ускорение (создаваемое магнитным полем, а значит, чем больше поле) и чем больше энергия электрона, тем интенсивнее он излучает. А сверхбыстрые, так называемые ультрарелятивистские, электроны, «запутавшись» в магнитном поле Крабовидной туманности, излучают во всех диапазонах длин волн. Идея была проста и объясняла наблюдательные данные так естественно, что сразу была принята. Правда, от объяснения загадки свечения Крабовидной туманности нисколько не прибавилось веры в то, что в этой туманности находится нейтронная звезда.
Никто, даже В. Бааде с Р. Минковским, не возвращался к загадке южной звезды. А ведь она стала еще загадочнее, чем была! Если излучение Крабовидной туманности синхротронное, то нагревать газ в туманности вовсе не нужно, и значит, нет необходимости предполагать, что в туманности находится горячая звезда. А размер южной звезды был получен Р. Минковским именно в предположении, что звезда очень горячая. Все рассыпалось… Что же это такое — южная звезда? Есть ли теперь основания считать ее остатком взрыва?
Казалось бы, основания есть. Ведь для того чтобы существовало синхротронное излучение, нужны сверхбыстрые электроны. Откуда им взяться, если не из южной звезды?
Можно возразить: электроны большой энергии могли остаться в туманности и со времен взрыва. Об этом писал еще Ф. Цвикки, когда объяснял происхождение космических лучей.
Но это предположение было опровергнуто в 1956 году советским астрофизиком С. Б. Пикельнером. Вот ход его рассуждений. Чем больше скорость движения электрона, чем больше его энергия, тем быстрее электрон эту энергию теряет. Электроны, ответственные за радиоизлучение Крабовидной туманности, теряют энергию не очень быстро, они действительно могли остаться после вспышки и «дожить» до наших дней. Но электроны, ответственные за оптическое излучение, за сто лет должны растерять весь свой запас энергии! А взрыв произошел девять веков назад. Девять раз должен был обновиться в туманности состав «оптических» электронов. Электроны, которые излучают сейчас, не могли возникнуть при взрыве — они появились в туманности значительно позже. В Крабовидной туманности должна быть «пушка», непрерывно стреляющая быстрыми электронами. Где же эта пушка? Одно из двух: либо электроны как-то ускоряются в самой туманности, либо источником их является южная звезда. Вспомним опять о ее необычных свойствах: отсутствии спектральных линий, высокой скорости движения…
Однако астрономы-наблюдатели на эти странности не обращали внимания вплоть до шестидесятых годов. Исследование остатков вспышек сверхновых пошло иным путем.
В 1948 году английские радиоастрономы М. Райл и Ф. Смит обнаружили мощный источник в созвездии Кассиопеи — самый мощный на небе. Еще раньше, в 1946 году, голландский астроном Ж. Оорт обратил внимание на огромную оптическую туманность в созвездии Лебедя, имевшую форму тонких волокон. В туманности не было яркой звезды, способной заставить светиться такую массу газа. Это и навело Ж. Оорта на мысль, что волокнистая туманность в Лебеде, как и Крабовидная, — остаток вспышки сверхновой. Источник в Кассиопее тоже образовался после взрыва сверхновой. Были обнаружены радиоисточники и оптические волокнистые туманности и на местах, где вспыхивали сверхновые Тихо и Кеплера. Именно исследованием остатка сверхновой Кеплера и занялись В. Бааде с Р. Минковским после того, как отступились от южной звезды в Крабовидной туманности. В. Бааде еще в 1943 году обнаружил на месте вспышки сверхновой Келлера слабенькую туманность и сказал — вот остаток! А ведь долгие годы на месте вспышки звезды Кеплера найти ничего не удавалось. И вот появились сразу несколько «подозреваемых», появилась возможность искать погибшие звезды не только в Крабовидной туманности.
Но… исследовались туманности, а не возможные звездные остатки в них. В конце сороковых годов в существование таких звездных остатков верили только Ф. Цвикки, В. Бааде и Р. Минковский. Что они могли сделать втроем? В. Бааде и Р. Минковский изучали газовые туманности, оставшиеся после вспышек сверхновых, — это была кропотливая работа, отнимавшая все силы. А Ф. Цвикки вернулся к патрулированию сверхновых в других галактиках.
Кроме того, внимание астрономов было привлечено открытием в конце сороковых годов первых радиозвезд, природа которых представлялась совершенно загадочной. Впоследствии удалось доказать, что это — далекие галактики, проявляющие небывалую, немыслимую по масштабам активность. Исследование радиозвезд отвлекло силы наблюдателей и теоретиков от природы сверхновых.
И еще. Ф. Цвикки говорил о конце жизни звезды, а астрономов в то время больше интересовало начало ее жизни. Связано это было с тем, что в 1947 году советский астрофизик В. А. Амбарцумян открыл скопления горячих голубых звезд, названные им звездными ассоциациями. И сделал заключение, буквально перевернувшее представления астрономов о Галактике. Звезды рождаются и в наши дни, причем не поодиночке, а группами, комплексами, — таким было заключение. В Галактике есть звезды самых разных возрастов, в том числе и звезды-младенцы. Находятся эти младенцы в колыбелях — звездных ассоциациях. Интересы астрофизиков сконцентрировались в четко очерченных областях — происхождение звезд и внегалактическая астрономия. Этим объясняется временный спад интереса к исследованиям звездных взрывов.
Но ведь и теоретики не занимались нейтронными звездами! Расследование «гибели» звезд затянулось на десятилетия… Пожалуй, и это объяснимо. Попытка найти нейтронную звезду в Крабовидной туманности не удалась — южная звезда оказалась даже больше белого карлика. Это было ошибкой, но Р. Минковский ее не увидел. Для идеи, тем более парадоксальной, нужна мощная поддержка энтузиастов. Такой поддержки у идеи нейтронных звезд не было. Кроме того, сверхновые — явление экзотическое. Что важнее для астрофизики? Выяснить причину взрывов, которые происходят один раз в несколько столетий, или понять, как возникают звезды, которых только в нашей Галактике — сотня миллиардов? Дилемма ясная — нейтронным звездам пришлось подождать… Подождем и мы, отложив продолжение расследования до следующей главы. А пока история науки идет своей дорогой, поразмышляем о пути, поговорим о методике открытий.
В конце сороковых годов в инженерном деле начал использоваться еще один способ ускорения генерирования новых идей. В американских промышленных фирмах начали применять предложенный А. Осборном метод, названный мозговым штурмом. А. Осборн заметил, что одни люди больше склонны к генерированию новых идей, чем другие. В творческом коллективе всегда есть признанные генераторы идей, и есть люди, которым это не удается, но зато разработка готовой идеи получается у них лучше. А. Осборн предложил собрать вместе генераторов идей, запретить им критиковать друг друга и предложить решить какую-нибудь техническую задачу. В момент «штурма» любая высказанная идея может лишь подхватываться и развиваться (никакой критики!). Все критические замечания откладываются на потом. Доброжелательное отношение к любой идее создает особый психологический климат, расслабляет тормоза в сознании, расшатывает инерцию мышления. Возникают экстравагантные идеи, которые обычно в голову не приходят. Из них-то и выбирается потом решение.
Мозговой штурм хорош тем, что лучше метода направленной интуиции снимает психологическую инерцию. Но систематичности у него нет, и значит, нет гарантии, что решение не будет упущено. Обычно мозговой штурм используется для решения не очень сложных задач, когда необходимая «мера безумия» не очень велика.
В науке, где безумные идеи играют значительно большую роль, чем в технике, метод А. Осборна все же не привился. Как, впрочем, и другие методы активизации творчества, придуманные инженерами. А разве не заманчиво было бы, скажем, собрать конференцию по космическим лучам, посадить за круглый стол десяток ученых — признанных генераторов идей, дать им полную свободу. Воображайте, предлагайте, но не критикуйте!
Попробуем представить себе такую конференцию по космическим лучам. Она прямо связана с нашим расследованием. Ведь именно проблеме космических лучей была посвящена статья В. Бааде и Ф. Цвикки…
1-й ученый. Предлагаю такую идею — космические лучи были всегда. Они достались нам в наследство от самого момента взрыва Вселенной, как, скажем, реликтовое излучение.
2-й ученый. Что-то грандиозное могло происходить во Вселенной еще до того, как сформировались галактики…
3-й ученый…Или уже после того, как они сформировались. Вспомним взрывающиеся галактики. Или квазары. Вот где действительно грандиозные взрывы! Вполне вероятно, что и в квазарах, и во взрывающихся галактиках существуют сильные переменные магнитные поля, в которых и ускоряются частицы.
2-й ученый. Наверняка. Ведь известны радиогалактики — они излучают огромное количество энергии в радиодиапазоне, излучают примерно так же, как Крабовидная туманность, нетепловым образом. Значит, в радиогалактиках откуда-то берутся быстрые электроны! Наверняка их порождают сверхмощные взрывы в галактиках.
1-й ученый. Верно, это наблюдаемое явление. Космические лучи могут зарождаться в радиогалактиках, квазарах, а потом пересекать межгалактические бездны и достигать Земли…
2-й ученый. У меня возникла еще такая идея. Чтобы ускорить частицы, нужны электрические поля. Что-нибудь вроде небесных конденсаторов огромной емкости. Или небесные циклотроны. Представьте два «космических облака плазмы, заряженных по-разному. Между ними возникает разность потенциалов, как между поверхностью земли и грозовой тучей. Разряд становится неизбежен, и на многие парсеки бьет «космическая молния». Возникает канал, в котором ускоряются до огромных скоростей и энергий заряженные частицы…
3-й ученый. Действительно, в космосе много плазменных облаков. И обладают они не только электрическими потенциалами, но и магнитными полями — это надежно установлено. Вот и еще один механизм. Предположим, что в пространстве летит заряд (например, электрон), а навстречу ему движется флюктуация магнитного поля — межзвездное облако. Поле нарастает, энергия частицы увеличивается. Если же поле движется не навстречу электрону, а вслед ему, догоняя, то энергия частицы уменьшается. Казалось бы, это симметричный процесс — сколько облаков летит навстречу электрону, столько же и догоняет его. Однако на самом деле — это можно показать простым расчетом — процесс не вполне симметричен. При столкновениях с магнитными полями заряд приобретает больше энергии, чем теряет. Ненамного больше, после каждого столкновения энергия частицы возрастает на небольшую величину. Но ведь столкновений много, временем мы не ограничены — в запасе миллионы лет…
2-й ученый. Верно, такой механизм ускорения существует и называется статистическим. Хочу дополнить. Ведь частицы в космическом пространстве должны откуда-то браться. Они могут выбрасываться из звезд. Например, из вспыхивающих звезд — мощная вспышка в атмосфере звезды приводит к тому, что некоторое количество частиц ускоряется вихревыми электрическими полями и «впрыскивается» в межзвездную среду. А уж там статистический механизм доводит ускорение до конца.
1-й ученый. Частицы могут вылетать и из обычных звезд! Солнце, например, тоже может быть поставщиком частиц для космических ускорителей. Конечно, энергия солнечных вспышек значительно меньше, чем энергия вспышек в звездах типа, скажем, UV Кита. Но зато сто миллиардов звезд Галактики — это сестры нашего Солнца. С миру, как говорится, по частице, а Галактике — космические лучи.
3-й ученый. Вспомним еще, что больше половины звезд в Галактике — двойные. Если расстояние между звездами в двойной системе невелико, а сами звезды несут электрические заряды, то они индукционно, через космос, должны влиять друг на друга. В пространстве между звездами возникнут переменные магнитные поля — вот вам и ускорители частиц…
2-й ученый. Если говорить о генерации частиц во время звездных вспышек, то чем мощнее вспышка, тем лучше, не так ли? Вспышки новых и сверхновых — вот неисчерпаемые запасы! Ведь одна вспышка сверхновой эквивалентна многим тысячам миллиардов вспышек на Солнце.
3-й ученый. Так, так… А если объединить эту гипотезу со статистическим механизмом? Ведь чем быстрее движутся межзвездные облака, тем лучше идет ускорение… А газовый остаток вспышки сверхновой расширяется со скоростью тысячи километров в секунду!
2-й ученый. Значит, достаточно, чтобы при взрыве в оболочку выбрасывались заряженные частицы и попадали затем на ударный фронт, а уж там, где перепады давлений, плотностей, и где огромные, сверхзвуковые, скорости движения…
1-й ученый. Вот именно! «Затравочные» частицы будут постоянно ускоряться.
Не критиковать — первая заповедь мозгового штурма. Одна гипотеза нанизывается на другую, возносится на ней как на гребне волны. Но затем предстоит выбрать единственно верную идею. И после того как «генераторы идей» скажут свое слово, протоколы попадают на суд «критиков». Те идеи, что предлагались выше, обсуждались в научной литературе в течение многих лет. Статистический механизм ускорения был исследован Э. Ферми и носит его имя, идея небесных циклотронов принадлежит X. Альвену, различные варианты первичного ускорения частиц в звездах обсуждались X. Сваном, Р. Дэвисом, Д. Бэбкоком, Я. П. Терлецким, ускорение частиц в двойных системах — А. 3. Долгиновым, ускорение на ударном фронте в остатке сверхновой — Г. Крымским, М. Беллом. К всякий раз идеи наталкивались на многочисленные возражения. Суд критиков был беспощаден. Реликтовая теория космических лучей потерпела фиаско, потому что заряженные частицы, как выяснилось, довольно быстро теряют свою энергию на излучение — они не «живут» больше нескольких десятков миллионов лет, а ведь после Большого взрыва, в котором зародилась Метагалактика, прошло в тысячу раз больше времени!
Взрывы галактик тоже не объясняют многих особенностей галактического фона космических лучей. Грозовой разряд между плазменными космическими облаками уж и вовсе экзотичен — нужны такие огромные разности потенциалов (больше 10 миллиардов электронвольт), которые не реализуются в условиях межзвездной среды. А статистический механизм Ферми увеличивает начальную энергию частиц всего в несколько раз — этого слишком мало, чтобы объяснить колоссальные, до 1018 электронвольт, энергии частиц в космических лучах.
Не вполне пока ясно, насколько эффективно действует механизм ускорения, предложенный советским ученым Г. Крымским и независимо от него М. Беллом. Исследования продолжаются, и через несколько лет, возможно, идея будет либо доказана, либо опровергнута.
С трудностями сталкиваются и гипотезы о начальном ускорении частиц в звездах. Это энергетические трудности — все нормальные и вспыхивающие звезды в Галактике не способны вместе дать столько энергичных частиц, сколько наблюдается.
Вот что могли бы сказать «критики идей», если бы их собрали вместе и ознакомили с протоколами мозгового штурма. На самом деле процесс рождения и гибели идей растянулся на десятилетия… И без потерь вышла из горнила дискуссий только одна идея. Предложенная Ф. Цвикки, потом забытая в пылу споров, и опять возродившаяся подобно птице Феникс, идея о том, что космические лучи возникают во время взрывов сверхновых.
Для того чтобы придумать безумную, но верную идею, недостаточно одного лишь желания. Мозговой штурм оправдал себя пока в решении не особенно сложных технических задач. Техника имеет дело с известными законами природы, а ученому приходится открывать их самому. Иной подход, иной стиль мышления.
Но столь ли существенна разница? Мы говорили уже о существовании открытий и научных изобретений (так мы назвали создание новой теории). Для выдвижения новой концепции, новой теории, то есть для научного изобретения, нужно активизировать работу мысли именно так, как это делается для изобретений технических. И то и другое — плоды деятельности человеческого воображения, работы творческой фантазии. Для предсказания открытий, возможно, нужны иные методы, но почему бы не попытаться использовать для создания новых теорий то, что уже существует в технике?
Новое в науке, как и в технике, возникает в результате устранения противоречия. Возникновение противоречия — признак наступления кризиса, признак того, что нужна, требуется новая система взглядов. Или открытие.
С одной стороны, ученый имеет дело с явлениями природы, с результатами измерений. С другой стороны, с мысленными образами, с представлениями о них, с теоретической интерпретацией. Возможны поэтому три типа научных противоречий:
1. Противоречивыми могут оказаться два экспериментальных факта, два наблюдаемых явления. Значит, для устранения такого противоречия придется изменить один из «фактов», наверняка ошибочный. То есть открыть явление, снимающее противоречие. Научным изобретением здесь не обойтись, нужно именно открытие.
2. Противоречивыми могут оказаться две теории, два представления об одном явлении. Значит, одно из представлений неверно, и разрешить такое противоречие можно с помощью научного изобретения.
3. Противоречить друг другу могут экспериментальный факт и его интерпретация. Здесь возможны два выхода: либо нужно менять интерпретацию (сделать научное изобретение), либо усомниться в правильности экспериментального факта (этот путь ведет к открытию). Наконец, создав новую теорию (сделав научное изобретение), можно предсказать новое, ранее неизвестное явление (предсказать открытие).
П. Дирак предсказал существование позитрона (предсказал открытие!), пользуясь выведенной им формулой (научным изобретением). Научное изобретение сделал Ф. Цвикки, но при этом предсказал открытие! Однако для научных изобретений вполне применимы методы, созданные для изобретений технических. Так что не нужно резко отграничивать изобретения от открытий.
Нельзя сказать, что ученые вовсе не пользуются приемами ускорения творческого процесса. Психологи давно исследуют особенности мышления ученого. Да и сами ученые не отстают. Почитайте прекрасные книги венгерского математика Д. Пойа «Как решать задачу», «Математическое открытие», французского математика Ж. Адамара «Исследование процесса изобретения в математике». В этих книгах много дельных советов. Но заметьте — относятся они к математике — науке, в которой можно лишь изобретать (что подчеркивается и названием книги Ж. Адамара), то есть использовать приемы, известные в инженерном изобретательском творчестве. Или наоборот — можно применять в инженерном деле приемы, созданные для решения математических задач.
Вот один из приемов: если задача не решается, возьмитесь за решение более общей задачи — возможно, она окажется проще. Еще прием: если не получается решение «в лоб», ищите обходные пути. Совершенно верные правила, беда которых лишь в том, что они неконкретны. Да, нужно решать более общую задачу, а как? Да, нужно искать обходные пути, но где? Ответов нет. Точнее, и Д. Пойа, и Ж. Адамар дают тот же ответ, что и Р. Фейнман. Ответ, от которого мы хотим уйти. Вот этот ответ: главное — интуиция, догадка, работа воображения. Д. Пойа, перечисляя правила рассуждений, заключает, что все эти правила должны помогать процессу угадывания решения…
Очень важная задача — научить человека мыслить быстрее, раскованнее, шире, активизировать мышление. Хотя бы в рамках все того же метода проб и ошибок. Этому служат морфологический анализ, мозговой штурм. А также синектика, метод фокальных объектов и другие методы, известные инженерам-изобретателям, но так и не взятые на вооружение учеными.
Метод синектики был предложен в 1960 году У. Гордоном.
Синектика — модифицированный мозговой штурм. Так же собираются вместе несколько профессионалов, так же генерируют идеи. Но допускаются элементы критики. Главное же отличие в том, что участнику должны обязательно использовать четыре «закона синектики»:
— вспомните, как решаются задачи, похожие на данную,
— дайте в двух словах образное определение сути задачи,
— подумайте, как бы эту задачу решили сказочные персонажи,
— попробуйте войти в образ объекта, о котором говорится в задаче, и начните рассуждать с его точки зрения.
Однажды американский изобретатель Ч. Кеттеринг создал проект легкого мотора, в котором стальные поршни были заменены алюминиевыми. Один из членов комиссии, обсуждавшей проект, решил, что изобретатель шутит. Ведь алюминий просто не выдержит нагрузок! «Вы уверены?» — спросил Кеттеринг. «Конечно, ведь я раньше работал инженером». — «Допустим, — сказал изобретатель, — но я сомневаюсь в том, что вы работали поршнем в двигателе…»
Синектика — шаг вперед по сравнению с мозговым штурмом. При мозговом штурме психологическую инерцию ослабляет лишь стимулирующий пример соседа, генерирующего более фантастические идеи. Синектика же предлагает четыре конкретных способа-задания, ослабляющих психологические тормоза. Вот, скажем, наша задача — выяснить причину взрыва сверхновых. Поставьте себя на место звезды перед взрывом и попробуйте рассуждать с ее «звездной» точки зрения…
А в методе фокальных объектов главная цель — навязать совершенно случайные аналогии, которые могут помочь найти решение. Этот метод способен вызвать неожиданные ассоциации. Выбирается совершенно случайно какой-нибудь объект, называемый фокальным, и его свойства переносятся на объект исследований. Этот метод, как и синектика, как и мозговой штурм, как и морфологический анализ, увеличивает вероятность рождения неожиданной идеи.