…Правит природа вещами посредством тел незримых.
Чудаки украшают жизнь. Мир бы выглядел весьма бледно, не будь у него чудаков, этих вечно ненасытных, ужасно беспокойных, необыкновенно пытливых и безгранично любопытных людей. Упорно выискивают они мало кому понятные проблемы, бьются над ними, копаются в них. Упорно что-то открывают, изобретают, изготовляют. Хорошо сказал казахский поэт Олжас Сулейменов:
Каждому племени нужен один человек,
Ушибленный звездой. Заводите таких.
Не стоит далеко заходить, чтобы найти такого человека. Любой истинный ученый — хоть капельку чудак. Жажда знания в нем неистребима. Ничто — ни войны, ни голод, ни разруха, ни личные невзгоды — не в силах заглушить любознательность ученого, эту драгоценнейшую человеческую черту.
В осажденных Сиракузах Архимед решал математические задачи. В тюремных застенках Кибальчич заканчивал проект космического корабля. В голодном Петрограде, в блокадном Ленинграде продолжала жить настойчивая, неугасимая мысль исследователей.
Много проблем ставит перед нами жизнь. Одни из них решаются очень легко. Над другими бьются ученые нескольких поколений.
Казалось бы, тривиальный, почти детский вопрос: «Как устроен мир?» А ведь ответа на этот вопрос люди ищут более двух тысяч лет.
Ребенок берет в руки игрушку, и жгучая мысль пронзает его: а что там, внутри? И сразу появляются разломанные куклы, разбитые волчки, разобранные будильники. Иной ребенок, не обнаружив ничего существенного для себя, отбрасывает вместе с игрушкой и неинтересную для него проблему. У другого вопрос о внутреннем строении игрушки остается на всю жизнь, перерастая в вопрос о внутреннем строении мира. Такой ребенок неизбежно становится потом ученым.
В VI веке до нашей эры этот по-детски наивный и по-философски глубокий вопрос — вопрос о внутреннем устройстве мира — впервые задал взрослый человек.
Из какой материи состоит мир? — спросил себя древнегреческий мыслитель, один из основоположников науки, Фалес Милетский. Ему, как и другим ученым ионийской школы, казалось, что неизбежно должны существовать некие материальные частицы, какие-то вполне осязаемые элементы, из которых складывается, строится все остальное.
Спустя столетие последователь Фалеса Демокрит впервые нащупал ответ на этот каверзный вопрос. Демокрит полагал, что мир строится из двух элементов: из невидимых глазом мельчайших, нерассекаемых частиц-атомов и из пустоты. Для Демокрита природа — это «беспорядочное движение атомов во всех направлениях».
В красивой, поэтической форме изложил атомистическую гипотезу Демокрита древнеримский философ-материалист Тит Лукреций Кар. Именно со слов этого первого популяризатора науки мир познакомился с одной из величайших гипотез — с гипотезой об атомах.
Почти две тысячи лет наука довольствовалась умозрительной гипотезой Демокрита — Лукреция. И лишь в XIX веке английский химик и физик Джон Дальтон занялся экспериментальной проверкой атомистических воззрений древних.
Опыт следовал за опытом. Кропотливо и скрупулезно, как это умеет делать только химик, взвешивал Дальтон количество веществ, вступающих в реакцию, сравнивал результаты с количеством веществ, получаемых после реакции.
Длительные химические эксперименты Дальтон закончил важным выводом: каждое химическое вещество соединяется с другим только в определенной пропорции. Как в калейдоскопе из одних и тех же кусочков стекла получается огромное число причудливых композиций, так из мельчайших «кусочков» разных веществ складываются молекулы.
Аппетит приходит во время еды. Дальтон разжег аппетит химиков к дроблению вещества. Они в буквальном смысле начали «пытать» материю: нагревали, перегоняли, испаряли и расплавляли сотни химических соединений. Соединения распадались на отдельные «обломки», на отдельные «кусочки» разных сортов. Но «кусочки» эти держались стойко и ни на что уже больше не распадались.
Ну как тут было не принять эти «осколки» химических элементов за элементарнейшие частицы материи, мельче которых уже ничего нет и не может быть? Как тут не отождествить их с гипотетическими атомами Демокрита?
На этом, атомном, уровне строения материи высшим достижением науки, стремящейся узнать, как устроен мир, было создание периодической системы химических элементов Д. Менделеевым. Он создал ее, опираясь только на значение атомных весов известных в то время элементов и на свою, как сказал впоследствии Н. Бор, «потрясающую интуицию».
Таблица Д. Менделеева обогатила нас знаниями относительно всего того многообразия форм живой и неживой природы, которое царит на нашей планете. Она сыграла исключительно важную роль в химии и в физике, стимулировала поиски новых химических элементов, для которых в ней были оставлены пустые места.
Сегодня она служит планированию синтеза новых сверхтяжелых элементов, предсказанию свойств еще не созданных синтетических химических соединений. На ее основе строится вся химическая промышленность и металлургия.
Но сам Д. Менделеев испытывал чувство неудовлетворенности оттого, что не знал, какие законы природы лежат в основе угаданной им периодичности в химических и физических свойствах элементов. Фундаментальные законы природы, законы квантовой механики, отражением которых и была периодическая система элементов, удалось открыть лишь после того, как ученые стали исследовать строение материи на следующем — ядерном уровне.
«Прозрение внутренних причин явлений по их внешним проявлениям, может быть, и есть самое важное, самое дорогое и увлекательное во всей науке», — отмечает академик Я. Зельдович.
Сейчас наука о строении вещества обладает такими возможностями, которые позволяют ей проникнуть в глубь материи до 10–15 сантиметра. Физики изучают свойства еще более «элементарных» кирпичиков вещества, чем атомы. Для чего это нужно?
Когда они сумеют найти законы, объясняющие детали их поведения, все их качества, предсказывающие, сколько их должно быть, то мы получим «таблицу Менделеева» для элементарных частиц. Она даст нам ключи к пониманию гораздо более широкого круга явлений: от микромира до космологии включительно.
«Однако, — как говорит В. Гейзенберг, — единая теория микро- и макромира все еще остается на сегодняшний день в значительной степени „музыкой грядущего“».
Но, вероятно, уже подрастает тот композитор, который сумеет написать ее…
А теперь снова вернемся к тем далеким временам, когда атомистика переживала свой триумф.
Химия не только подарила нам атомы, но и снабдила их специальным ярлыком. Ярлык, прикрепленный к изделиям, громогласно заявляет об их качестве и содержит инструкцию об их использовании. Химический ярлык на атомах провозгласил неизменяемость и неделимость их основным качеством.
Безапелляционность суждения химиков определила в то время и соответствующее негативное отношение к атомам. Действительно, раз они неделимы, то к чему, спрашивается, тратить время, пытаясь понять их устройство?
Ньютон писал: «Мне представляется, что бог с самого начала сотворил вещество в виде твердых, непроницаемых, подвижных частиц и что этим частицам он придал такие размеры, и такую форму, и такие другие свойства и создал их в таких относительных количествах, как ему нужно было для этой цели, для которой он их сотворил».
Все собранные к этому времени доказательства сводились лишь к одному — к невозможности химического воздействия на атомы.
Почему только химического воздействия? А где были физики? Физики тогда не интересовались атомистикой. И не потому, что атомистика не заслуживала их внимания. Просто-напросто физики в то время были почти безоружны. Они глядели на атомы глазами химиков, чистосердечно доверяя им во всем.
Физики были почти безоружны. Но вот в небогатом их арсенале нашелся один прибор…
Физикам повезло. Им не нужно было изобретать и патентовать новое устройство. Не нужно было строить сложнейшую дорогостоящую установку, подобную современному ускорителю. Всё оказалось гораздо проще.
Хрупкая стеклянная колба длиной в несколько десятков сантиметров, с впаянными в нее электродами преданно служила уже не одному поколению физиков. С ее помощью изучались электрические разряды в газах с пониженным давлением.
Это была разрядная трубка — популярнейший прибор XIX века. Именно она стала тем инструментом, на котором зазвучали первые аккорды атомной и ядерной физики.
Спокойно и неторопливо изучали физики электрические разряды в газах. Спокойно и неторопливо заносили они в тетради факты и цифры с характеристикой этого, столь обычного для них явления.
Если б они только знали! Но никто даже не догадывался, что в трубке находится отнюдь не то вещество, с которым мы постоянно сталкиваемся в обыденной жизни, что в трубке под действием приложенного к ней напряжения появляется вещество в новом, неведомом еще ученому миру состоянии. Вещество, разложенное на отрицательно и положительно заряженные частицы. Вещество в новом, четвертом состоянии!
В обыкновенной, всем хорошо известной разрядной трубке находилась плазма. Та самая плазма, без которой сегодня немыслима физика.
Но пути науки неисповедимы — это сейчас знают все. Еще в середине прошлого века английский физик и химик Уильям Крукс открыл, что в разрядной трубке от катода к аноду струится поток отрицательно заряженных частиц. Физики приняли это сообщение весьма равнодушно. Но сам Крукс сделал из него необыкновенный вывод.
«Мы уже, — писал он, — как бы схватили повинующиеся нашему контролю неделимые частицы, о которых с достаточным основанием можно предполагать, что они являются физической основой вселенной». Науке потребовалось тридцать долгих лет, чтобы убедиться, что в газоразрядной трубке под действием напряжения несется поток обломков «неделимых» атомов!
Профессор Кавендишской лаборатории Джозеф Джон Томсон, которого друзья звали запросто «Джи-Джи», начал детально изучать катодные лучи.
Все началось с естественного для физика желания узнать природу обнаруженных в трубке неизвестных частиц. Прекрасный экспериментатор, Дж. Дж. Томсон ставил серию тонких, остроумных опытов. И выяснил, что катодные лучи — это поток электронов — носителей единичных отрицательных зарядов. Позже он измерил отношение заряда к массе и, наконец, массу электрона.
В новой серии экспериментов Дж. Дж. Томсон решил выяснить: зависят ли свойства электронов от того, какой именно газ находится в разрядной трубке?
Ответ застал ученого врасплох. Все электроны оказались совершенно одинаковыми. Так, значит, кроме атомов, существуют и другие мельчайшие частицы? Так, значит, частицы эти входят в состав всех атомов всех элементов? И атомы, единые и неделимые во веки веков, не так уж просты?
Спокойный, уравновешенный Дж. Дж. Томсон и по складу ума и по характеру менее всего подходил к роли новатора в науке. Он не только не обладал энергичным темпераментом ниспровергателя основ, но никогда и не желал ниспровергать эти основы.
Новаторство — удел молодежи. Сорокалетнему же профессору Кавендишской лаборатории свойственно было скорее закрепление на завоеванных, устоявшихся жизненных позициях. Томсон был воспитан в лучших традициях классической физики. Он никогда не сомневался в ее всеобщности и могуществе.
И вот все рухнуло. Что же делать? Продолжать молиться на ярлык химической атомистики? Или же признать существование еще каких-то частиц, более элементарных, чем сам «неделимый» атом?
К чести Дж. Дж. Томсона борьба в нем двух людей — новатора и консерватора — окончилась победой новатора. Физик-экспериментатор, для которого факты — реальнейшая, если не единственно реальная, вещь на Земле, победил в нем человека, скованного по рукам и ногам канонами современной ему классической физики.
Атомный Рубикон был перейден. Простейшие кирпичики мироздания оказались сложенными, по крайней мере, из электронов.
За три года до конца XIX века в науке произошла смена лидера. Химия потеснилась, а физика начала новое столетие. Сам факт открытия первой элементарной частицы — электрона, то есть еще одной формы материи, трудно сопоставить с чем-либо другим. С крушением мифа о неделимости атома рушилась целая философская система, менялось старое мировоззрение, выработанное многими поколениями ученых.
Перешагнув «атомную черту», физики лишились поддержки классической механики Ньютона. Они лишились почвы, на которой веками стояло здание их науки.
Новой же теории, описывающей только что открытые атомные явления, пока не было. Рождения квантовой механики нужно было ждать еще несколько десятилетий. И физика повисла в воздухе — весьма неудобное состояние для науки.
Открытие электрона, за которое Дж. Дж. Томсон был удостоен Нобелевской премии, еще не прояснило главного. Каверзный вопрос — как устроен атом? — остался открытым.
Но не будем несправедливы к веку наших бабушек и дедушек… Ибо на самом финише прошлого столетия физики получили наконец тот инструмент, с помощью которого уже в наш век удалось проникнуть в глубь атома.
Все началось в Новозеландском университете, где за студенческой партой сидел будущий отец ядерной физики Эрнст Резерфорд. Этот студент осмелился не доверять царившим в химии взглядам на атом. И в подтверждение этого назвал свою первую научную работу «Эволюция элементов».
Окончив университет в 1894 году, Резерфорд приехал на стажировку в Англию. Ему очень повезло: он попал в Кавендишскую лабораторию к Дж. Дж. Томсону.
В это время произошло событие, на которое автор «Эволюции элементов» не мог не обратить самого пристального внимания. В 1896 году представитель большого семейства французских физиков Беккерелей — Антуан-Анри — открыл радиоактивность. Другими словами, он открыл явление самопроизвольного распада атомов. Это окончательно подорвало авторитет атомов как мельчайших, неделимых частиц вещества.
Вместе с Томсоном Резерфорд занялся изучением природы недавно открытого излучения. И вскоре наткнулся на одну многообещающую особенность. Резерфорду удалось доказать, что радиоактивное излучение неоднородно и состоит по меньшей мере из двух компонентов. Из легких бета-частиц, в которых легко узнать томсоновские электроны, и тяжелых, положительно заряженных альфа-частиц.
Золотые дни сотрудничества с Томсоном быстро кончились. Резерфорд переехал на работу сперва в Канаду, а затем — в Манчестер. Но Кавендишскую лабораторию покидал он не с пустыми руками. В заднем кармане его брюк лежал, образно говоря, заряженный пистолет. А раз появившись на свет, пистолет обязательно стреляет. Обязательно — рано или поздно.
Пистолет Резерфорда выстрелил поздно. Ему уже было за сорок, он почитался уважаемым профессором Манчестерского университета, известным специалистом по радиоактивности, лауреатом Нобелевской премии.
Резерфорд стрелял тяжелыми альфа-частицами по атомам. Между источником альфа-частиц и фотопластинкой он помещал тонкие пленки из разных веществ. В этом случае черное пятно на проявленной фотопластинке — след попадания на нее альфа-частиц — имело размытые края. Атомы пленок слегка изменяли направление полета альфа-частиц.
Резерфорд стрелял по атомам. Но его альфа-снаряды не должны были поражать цель, они должны были зондировать ее.
Первые выстрелы были неудачны. Быстрые альфа-частицы легко проносились сквозь тончайшие пленки, почти не отклоняясь от прямого пути. Выходило, что прав был старик Томсон, утверждавший, что атом — это положительно заряженная сфера, сплошь заполненная электронами?
Но Резерфорда что-то не удовлетворяло в модели атома Томсона. И это чувство толкало его к продолжению начатой работы.
Стрелять альфа-частицами Резерфорд поручил своему ученику Марсдену. И напутствовал его словами: «Я не ожидаю ничего любопытного от ваших опытов, но все же понаблюдайте».
«Понаблюдайте» — характернейшее слово Резерфорда! Оно полно оптимизма. «Понаблюдайте, а вдруг обнаружится что-то новое». Наука для Резерфорда была постоянно растущим деревом, которое самому садоводу нужно и формировать. И всегда быть готовым обрубить засохшие ветви, чтобы дать возможность появиться новым росткам.
Новые ростки появились очень скоро. Марсден обнаружил, что некоторые альфа-частицы, проникая в тонкий слой вещества, отклоняются на 90, а иногда и на 180 градусов!
Сам Резерфорд позднее писал: «Это событие казалось примерно настолько же вероятным, как если бы выстрелили 15-дюймовым снарядом в кусок папиросной бумаги и этот снаряд отразился бы назад и попал в вас».
Что же произошло? Ответ напрашивался сам собой: альфа-частицы сталкивались с массивным заряженным телом, куда более тяжелым, чем электрон или сама альфа-частица.
Первые разведчики, заброшенные в глубины материи, принесли неслыханную весть — в центре полупустого атома лежало ядро. Оно было положительно заряжено и в сто тысяч раз меньше самого атома. А за его мощным электрическим барьером, как за высокими крепостными стенами, были надежно спрятаны сокровища атома. Но какие? Может быть, там находятся неизвестные частицы с положительным электрическим зарядом?
Физики — увлекающиеся люди. Открыв что-нибудь новое, они тотчас набрасываются на него.
Атомное ядро! Только на нем сосредоточились теперь все интересы Резерфорда. Как подобраться к ядру поближе, как преодолеть его электрический барьер? Это очень легко сделать сегодня — достаточно разогнать протон до энергии всего лишь в один мега-электрон-вольт.
Но у Резерфорда ведь не было ускорителя!
Думал Резерфорд, думали его сотрудники, думали его ученики. Первым нашел выход внук великого Чарлза Дарвина, работавший в те дни у Резерфорда. Он предложил начать с ядер самых легких элементов — ведь у них меньше заряд и, следовательно, куда слабее защита.
Самый легкий элемент вселенной — водород. Поэтому специальную камеру, наполнили водородом и начали бомбардировать его альфа-частицами. Опыты проводил все тот же Марсден.
Но что значит — проводил? Это сейчас к услугам физиков самая разнообразная регистрирующая аппаратура. Она все делает: обнаруживает, запоминает, записывает, изображает в виде графика и даже систематизирует результаты опыта.
Тогда было все не так. Марсден часами просиживал перед камерой. На экране одна за другой вспыхивали светлые звездочки. Это не были альфа-частицы — они просто-напросто не могли бы долететь до экрана. Значит, в камере они передавали свою энергию легким ядрам водорода, вспышки которых и появлялись на экране.
Затем Марсден откачивал из камеры водород и для контроля наполнял его азотом. Но вспышки появлялись снова: что это, ошибка? Откуда в наполненной азотом камере появляются ядра водорода? Может быть, камера плохо очищена? Или?.. Проверить, обязательно проверить.
Первая мировая война разрушила все планы. За несколько дней опустела лаборатория. В английской армии сражался Марсден, а против него, в германской, — его друг и ближайший сотрудник Резерфорда Ганс Гейгер. На фронте погиб любимый ученик Резерфорда — Генри Мозли.
Резерфорд с несколькими лаборантами, бросив научные исследования, занялся созданием прибора для обнаружения подводных лодок.
Но в мыслях он постоянно возвращался к необычным результатам, полученным Марсденом перед самой войной. А что, если камера была откачана чисто? Что, если Марсден считал на экране не ядра атомов водорода? Но что тогда?
И Резерфорд, радуясь и страшась этой мысли, по ночам проверял опыты своего ученика. Много раз откачивал он камеру, в ней, казалось, уже не должно было остаться ни одного атома водорода. Но стоило Резерфорду заполнить ее азотом, как на экране снова появлялись вспышки.
Как ему не хватало в эти минуты его европейских друзей, как ему мешала война! Она не только разобщила ученых, но и затормозила самую науку.
И Резерфорд писал своему другу, датскому физику Нильсу Бору, в конце 1916 года: «Я обнаруживаю и подсчитываю легкие атомы, приводимые в движение альфа-частицами, и эти результаты проливают яркий свет на характер и распределение сил вблизи ядра. Я пытаюсь таким же методом взломать атом».
И дальше, самое главное: «Я получил некоторые, как мне кажется, довольно удивительные результаты, но потребуется тяжелый и продолжительный труд, чтобы представить надежные доказательства моих выводов».
Что же это за «некоторые» результаты? Ни много ни мало, а первая в мире ядерная реакция! Первое искусственное расщепление альфа-частицей ядра азота, сопровождающееся вылетом более легкого ядра атома водорода.
Исследователь попеременно заполнял камеру то азотом, то воздухом, то чистым кислородом. И в первом, и во втором, и в третьем случаях экран выдавал присутствие ядер водорода. Но список исследованных элементов очень скоро оборвался — более тяжелые ядра были недоступны альфа-частицам малой энергии.
Резерфорду, однако, полученных результатов было вполне достаточно. Он уже не сомневается в том, что нашел ту самую положительно заряженную «деталь», которую включают в себя все атомные ядра.
Этот вывод подтверждался и теми учеными, которые тоже искали самую легкую частицу с положительным зарядом в разрядной трубке. Там в обратную сторону — от анода к катоду — двигался поток ионов газа, то есть двигались атомы с содранными электронами. И самой легкой частицей среди них оказалось ядро атома водорода, потерявшего свой единственный электрон.
Так «родилась» на свет вторая элементарная частица — протон — ядро атома водорода.
Протон в две тысячи раз тяжелее электрона. Он полностью соответствовал представлению ученых о возможном носителе положительного заряда в атоме, прекрасно ассоциируясь с огромной массой атомного ядра.
Открытию не сопутствовала ни борьба с канонами науки, ни преодоление психологического барьера. Можно сказать, что весь шум и всю кровь научных баталий взял на себя электрон.
И вот перед физиками лежали два основных «кирпича» материи. И физики вроде бы были этим весьма довольны. Любое вещество строилось у них из атомов, атомы же, в свою очередь, — из электронов и ядер.
Но и тут отыскалась логическая прореха. Ядро атома, несомненно, устойчиво, но вот как представить себе устойчивое ядро, состоящее из одних протонов? Ведь нельзя же, в самом деле, взять да и отменить электрическое отталкивание между частицами с зарядом одинакового знака!
В те годы еще ничего не знали о ядерных силах притяжения между частицами. Поэтому выход нашли в искусственной, чисто умозрительной конструкции, решив, что ядро содержит протоны плюс электроны, уравновешивающие электростатические силы.
До чего простая и вместе с тем приятная для глаза картина! О такой картине строения мира можно только мечтать: никакой сутолоки десятков «простейших, неделимых» атомов. Вместо них — всего две элементарные частицы: легкий электрон и тяжелый протон.
Небольшой кусочек радиоактивного вещества лежал около пластинки из бериллия. Альфа-частицы проскальзывали сквозь бериллий, выбивая протоны. Счетчик Гейгера, сменив легко устающий и легко ошибающийся глаз экспериментатора, щелкал, отсчитывая число вылетающих из пленки частиц.
В одной из физических лабораторий Германии в самом начале 30-х годов был обычный, трудовой день. Профессор Вальтер Боте и его друг Бекер приводили в порядок свои записи.
Когда подсчет протонов был окончен, счетчик Гейгера отодвинули настолько, чтобы протоны, вылетающие из бериллия, не долетали до него. И для определения числа фоновых отсчетов снова включили высокое напряжение.
Но счетчик Гейгера продолжал работать. Его отодвинули еще дальше. Счетчик работал. Удивление сменилось растерянностью. Что мог регистрировать счетчик на таком большом расстоянии?
Может быть, это были гамма-кванты — электромагнитное излучение, более проникающее, чем протоны? Против гамма-квантов есть прекрасный заслон — свинцовая пластинка. Но и свинцовая пластинка не помогла: щелчки продолжали следовать в том же ритме. Вторая и третья пластинки также оказались бессильны.
К счетчику Гейгера шла волна какого-то необычного излучения, для которого толстый слой свинца был не страшнее листика папиросной бумаги. Но Боте и Бекер не смогли сделать решительный шаг и воскликнуть: «Так это же новые, неизвестные нам частицы, господа, выбитые из ядер бериллия!» Профессор Боте и Бекер молча записали в лабораторный журнал: «Обнаружены обыкновенные гамма-кванты с большой энергией».
Во Франции «бериллиевым» излучением заинтересовались супруги Ирен и Фредерик Жолио-Кюри. Но французские физики просто повторили вывод своих немецких коллег. «Необычайно проникающие гамма-лучи» — такой вывод сделали супруги Жолио-Кюри. Сделали, несмотря на то, что этот вывод нарушал основной закон механики — закон сохранения импульса.
«Личность» дважды потерпевшей фиаско частицы помог установить ученик Резерфорда, член Лондонского королевского общества, будущий лауреат Нобелевской премии Дж. Чедвик.
В феврале 1932 года, спустя месяц после сообщения о «необычайно проникающих гамма-лучах» супругов Жолио-Кюри, в английском научном журнале «Природа» появилось коротенькое письмо в редакцию, подписанное Дж. Чедвиком.
«Эти экспериментальные результаты, — писал автор, — очень трудно объяснить на основании гипотезы, что излучение бериллия представляет собой электромагнитное излучение, но они непосредственно вытекают из предположения, что излучение состоит из частиц, которые имеют массу, равную массе протона, но не имеют заряда».
Дж. Чедвик дал почти точный «портрет» нейтральной элементарной частицы — нейтрона. Нейтрон не имел электрического заряда, поэтому он оказался таким неуловимым.
Тяжелая нейтральная частица — нейтрон — очень понравилась физикам. Она своим появлением снимала каверзный вопрос об устойчивости ядра. С появлением нейтронов, которые могли надежно противостоять электростатическим силам отталкивания, электроны были навсегда изгнаны из ядра.
Список элементарных атомных частиц был завершен. Из тяжелых протонов и нейтронов (их стали — называть нуклонами) складывались ядра атомов любых химических элементов, а электронные оболочки задавали тон их химическому поведению.
Ребенок, собирая картинку из разноцветных шариков, кладет их в специальные лунки. Художник, создающий мозаичную картину, скрепляет ее отдельные детали цементом.
Физик же создает свою картину мира, складывая атомы и ядра атомов из разных совокупностей элементарных частиц. Но какая картина может считаться законченной, если отдельные ее компоненты ничем не скреплены? Где цемент, где тот клей, который скрепляет протоны и нейтроны в ядрах? Какие силы удерживают их вместе?
Может быть, это хорошо знакомые нам гравитационные силы? Нет, силам взаимного тяготения не удержать протоны и нейтроны в ядрах, их массы слишком малы. Электромагнитные силы тоже не подходят на эту роль: одинаково заряженные протоны разлетелись бы в разные стороны. А что удерживало бы в этом случае нейтроны?
После открытия атомного ядра Резерфорд стремился проникнуть в тайну сил, действующих внутри открытого им микрообъекта. Он внимательно наблюдал за «встречей» альфа-частиц с ядрами. «Раз эти силы не были обнаружены раньше, — размышлял Резерфорд, — значит они появляются только на малых расстояниях. Но как близко можно почувствовать их влияние?»
Опыт следовал за опытом. Проходили годы, но однозначного ответа на вопрос все еще не было. Ничего особенного не удалось заметить и при сближении атомных разведчиков с тяжелыми ядрами на расстояние до 10–12 сантиметра. Отмечалось лишь тривиальное электростатическое отталкивание. Точно такое, как у одинаково заряженных шариков при демонстрации в школе закона Кулона.
И вдруг большая радость! Альфа-частицы, оказавшись на расстоянии, в десять раз более близком (равном 10–13 см) к ядрам водорода — протонам, встретили необычный прием. Их взаимодействие не было электростатическим. Оно происходило совсем по-иному. Пространство на расстоянии 10–13 сантиметра находится под контролем ядерных сил.
За один знаменательный 1924 год Резерфорду с сотрудниками удалось расщепить ядра почти всех легких элементов. И всегда, во всех случаях ученые наблюдали появление протонов с энергией, значительно большей, чем передавали им альфа-частицы.
Но почему — большей? Неужели все-таки нарушается закон сохранения энергии?
Ничего подобного. Просто-напросто это результат действия ядерных сил. Протоны получали дополнительный импульс за счет внутренних энергетических ресурсов ядра. За счет той самой ядерной энергии, которую мы уже сегодня используем в атомных электростанциях.
Так был обнаружен «цемент», с помощью которого природа создает мозаику разных веществ.
Ядерные силы в тысячу раз интенсивнее электромагнитных. Они одинаково легко удерживают вместе один протон и один нейтрон в ядре изотопа водорода — дейтерия и сотни протонов, сотни нейтронов в тяжелых ядрах, подобных ядрам урана.
Итак, физики открыли новые силы в природе и придумали им название. Но это отнюдь не значит, что ученые тотчас же поняли их сущность, что они сразу же выяснили всю их подноготную. Открытые силы назвали «ядерными». Но разве можно по одной только фамилии Иванов догадаться, что это за человек?
Впрочем, столкнувшись с незнакомым вам Ивановым, вы, по крайней мере, твердо уверены, что это все-таки человек. А вот физическая основа ядерных сил до сих пор неизвестна. На проблему ядерных сил со времен Резерфорда было потрачено «больше человеко-часов, чем на любой другой научный вопрос в истории человечества». Ученым удалось установить многие их свойства, но строгой теории ядерных сил до сих пор не существует.
Физики пока еще не в состоянии облечь в точную математическую форму это необыкновенно сильное влечение протонов и нейтронов друг к другу. Всемогущая математика в данном случае бессильна.
Нельзя ли хотя бы представить себе механизм действия ядерных сил? Но как пытаться описывать новое явление в микромире, когда нет ни теории, ни экспериментальных результатов?
Изучая макромир, физики нередко прибегают к аналогии. А применим ли этот метод в ядерных процессах?
Аналогия опирается на принцип материального единства мира. Как ни удивительны элементарные частицы, все они материальны по своей природе. Все они обладают такими свойствами объектов макромира, как движение, энергия и т. д.
Опираясь на метод аналогии, академик И. Тамм и профессор Д. Иваненко еще в 1934 году предположили, что ядерные взаимодействия, по-видимому, передаются с помощью электрона и нейтрино, которые испускаются при бета-распаде ядер. Примерно так же, как заряженные тела действуют друг на друга, обмениваясь частицами электромагнитного излучения — фотонами.
Преподаватель университета в городе Осака двадцативосьмилетний теоретик Хидэки Юкава подхватил эту идею и сделал новый, чрезвычайно смелый шаг. Через год он составил новую роль для не открытой еще элементарной частицы — переносчицы ядерных сил. Подробно описывая свойства, которыми должна обладать претендентка на вакантное место, японский теоретик предложил экспериментаторам поискать ее в космических лучах.
До сих пор физики сперва открывали очередную элементарную частицу, а потом уже находили ей место в общей картине строения материи. Теперь же впервые экспериментаторы начали работу, имея точное задание теоретиков.
В то время ученые как раз всерьез заинтересовались космическим излучением, возникающим в верхних слоях атмосферы Земли. Они изучали механизм взаимодействия космических лучей с веществом атмосферы, пытались измерить их энергию с помощью камеры Вильсона.
Камера Вильсона — интересный, простой и полезный прибор. В ней пересыщенный пар охлаждается и в виде капелек тумана оседает на ионах, которые оставляет за собой пролетающая через камеру заряженная частица. Созданный еще в 1911 году Ч. Вильсоном, этот прибор быстро приобрел большую популярность и стал «высшим кассационным судом в физике». В самом деле, раньше можно было наблюдать за поведением лишь больших масс частиц. Камера Вильсона позволила сделать видимыми и сфотографировать следы отдельных жителей микромира.
«Закинули» экспериментаторы свой «невод» — камеру Вильсона — в космические лучи и через год «вытащили» незнакомую частицу. Она очень походила на ту, о которой писал Юкава. И массу имела как раз промежуточную между массой протона и электрона. Поэтому назвали ее мезоном от греческого слова «мезос», что означает — средний.
Возликовали физики, но недолго длилась их радость. Рассмотрели они новую частицу повнимательней и ахнули от удивления. Мю-мезон, так стали называть новую частицу, оказался сверхпроникающей частицей космического излучения. Он очень неохотно общался с нуклонами. И благодаря этому совершенно не годился на роль частиц Юкавы.
Вот ведь как бывает в физике — как в жизни. Ищешь одно, а находишь другое. Но зачем существуют эти мю-мезоны? Какая у них «специальность»? Куда девать мезонный кирпичик, подаренный щедрой природой?
Ситуация, в которой оказались физики, напоминала затруднительное положение любознательной крыловской мартышки, раздобывшей очки, но не знающей, что с ними делать.
Почти четыре десятилетия пытаются физики выявить особое дарование мю-мезона, но все их усилия пока что напрасны. Жизнь этой частицы изучена до мельчайших подробностей. Появилось даже новое научное направление, имеющее практическое применение, — мезохимия. Но какой же хитрый этот мю-мезон! Кто он? Неизвестно. Известно лишь, что в микромире он проявляет себя только в двести раз более массивным исполнителем роли электрона. Загадка мю-мезона до сих пор не разгадана.
Прошло двенадцать лет. И вот однажды при столкновении быстрых протонов с ядрами атомов обнаружилась еще одна частица. Тяжелее предыдущей, она имела все данные, которые позволяли ей претендовать на роль частицы Юкавы. Неравнодушная к нуклонам, новая частица в отличие от мю-мезонов бурно реагировала с атомными ядрами.
Восторгу физиков не было предела. Открытая частица — ее назвали пи-мезоном — полностью соответствовала тому образу, который ученые составили о переносчиках ядерных сил. Непрерывно перекидываясь мезонами, нуклоны в ядре оказываются связанными в единую группу так же, как связаны между собой артисты цирка — жонглеры, перебрасывающиеся одновременно несколькими предметами. Но если жонглеры в цирке получают вполне стабильный реквизит, то нуклоны перебрасываются мезонами, которые сами мгновенно испускают и поглощают. Нейтроны и протоны обмениваются между собой мезонами с положительным и отрицательным зарядом, а протоны с протонами и нейтроны с нейтронами — нейтральными…
В 1947 году открытие это завершилось вручением Хидэки Юкава Нобелевской премии.
К 1950 году мир представлялся устроенным из протонов, нейтронов, электронов, мю-мезонов, пи-мезонов, фотонов. Ученые знали, как из этих кирпичиков складывается гигантская пирамида макромира. И понимали, почему не разваливается на элементарные частицы любой кусок вещества.
Не знали только одного куда приложить мю-мезонный кирпичик?
В одну из последних ночей 1846 года немецкий астроном Иоганн Галле нашел в заранее указанной математиком Урбаном Леверье точке неба новую планету. Ее назвали Нептун. Это был триумф классической физики.
«Физика в наши дни, — писал в 1956 году американский ученый Филипп Моррисон, — ждет другого подобного открытия. Существует свой Нептун среди ее элементарных частиц — удивительная частица, упоминаемая физиками в любом обзоре, хотя до сих пор она еще не была открыта».
Какая же еще частица понадобилась физикам? И для чего она им была нужна?
После обнаружения нейтрона, протона и электрона казалось, что извечный вопрос о строении материи наконец решен. И вопрос этот можно было снять с повестки дня, если бы не возникло одно маленькое, но очень серьезное затруднение.
Нетрудно рассчитать энергию пули, вылетающей из ствола винтовки, — она всегда постоянна. Пуля при взрыве пороха в патроне уносит с собой определенную энергию заряда.
Нетрудно рассчитать энергию электрона, вылетающего из радиоактивного ядра. Энергия, освобождающаяся при распаде, как считали сорок лет назад, делится только между электронами и самим ядром. И делится всегда по строгому закону механики — обратно пропорционально их массам.
Но когда физики измерили энергию электронов, то растерялись. Такой картины никто не ожидал: электроны уносили из ядра меньше энергии, чем причиталось на их долю. Мало того, каждый раз количество этой энергии было разное.
Первой, как всегда, была мысль, что произошла ошибка. Ученые лихорадочно искали ее в собственных опытах. Для опровержения странных результатов ставились все новые и новые эксперименты. Но никакие ухищрения не помогали. Опыты упорно подтверждали, что часть энергии словно проваливается под землю.
Так родилась на свет нашумевшая история о «пропаже» энергии при бета-распаде ядер.
И вот тогда у некоторых физиков зародилась крамольная мысль: а может быть, в некоторых ядерных процессах закон сохранения энергии не выполняется? Мысль была настолько кощунственной, что ее прогоняли, о ней старались забыть.
Ученые были в замешательстве. И лишь один из них, швейцарец Вольфганг Паули, нашел удачный выход из затруднения и тем самым ликвидировал угрозу, нависшую над законом сохранения энергии.
В декабре 1930 года он отправил письмо на научный семинар в Тюбинген, заканчивающееся словами: «…не рискнув, не выиграешь; необходимо поэтому серьезно обсудить любой путь к спасению. Итак, мои дорогие радиоактивные дамы и господа, проверяйте и судите».
Паули предположил, что существует еще одна, не открытая еще частица, которая вылетает вместе с электроном при бета-распаде ядер. И между тремя участниками этого события — электроном, ядром и неизвестной частицей — энергия делится уже произвольным образом, точно так же как энергия пороха произвольно распределяется между дробинками, вылетающими из ружья.
И все сразу стало на свои места. Если электрон вылетал с меньшей энергией, то другую, недостающую часть энергии уносила с собой таинственная незнакомка.
Гипотезу Паули признали далеко не все. И начали тогда физики судить да рядить. С одной стороны, трудно было отказаться от фундаментального закона сохранения энергии. С другой стороны — волей-неволей приходилось вносить еще одну, да еще такую необычную, частицу в целиком и полностью укомплектованный атом.
Судите сами. Другие частицы как частицы. Их можно зарегистрировать в счетчике Гейгера, они оставляют следы в камере Вильсона. А нейтроны или гамма-кванты выдают свое присутствие, толкая протоны или выбивая из атомов электроны.
Но таинственная частица никак не давалась экспериментаторам. А Паули, словно подсмеиваясь над ними, уже заготовил «удостоверение», где значились основные приметы незнакомки: легкая, с массой, почти равной нулю, без электрического заряда — нейтральная.
Так это же «паспортные» данные нейтрино! «Что-то маленькое и нейтральное» — так переводится его название с итальянского на русский.
Прорезая массу плотного вещества, нейтрон проделывает путь в несколько метров, не задев ни одного ядра. Много? Конечно. Но не по сравнению с нейтрино. Эта пронырливая частичка летит сквозь толщу плотного вещества до первого столкновения миллиарды лет со световой скоростью.
Фантастическая проникающая способность! В ней-то и заключена главная тайна нейтрино.
В жизни мы сталкиваемся с двумя типами взаимодействия. Одно из них — гравитационное притяжение. О нем мы узнаем еще в раннем детстве, потирая ушибленные при падений колени и лбы. Но сила тяготения не только швыряет нас на землю. Она же и удерживает нас на Земле. Она цепко держит Луну, около Земли, планеты около Солнца.
С другим, с так называемым сильным взаимодействием мы познакомились на примере ядерных сил, которые удерживают в ядре протоны и нейтроны. На малых расстояниях они в тысячу раз сильнее электромагнитных сил.
А нейтрино открыл для нас новый вид взаимодействия — слабое. Все другие элементарные частицы могут общаться между собой разными способами. Нейтрино же природа обделила, не предоставив ему такого выбора. Его удел — одно только слабое взаимодействие.
Очень слабое — в сотни миллиардов раз слабее электромагнитного, взаимодействие это делало нейтрино необыкновенно «необщительным». В течение четверти века экспериментаторам не удавалось обнаружить эту необычную частицу. Неуловимое нейтрино проскальзывало сквозь приборы, как крошечный малек сквозь сети с крупной ячеей.
А значение этой частицы по мере понимания роли слабых взаимодействий все возрастало. Уже было ясно, что нейтрино возникают во время ядерных реакций на Солнце и на далеких звездах. Нейтрино вездесущи. Каждый квадратный сантиметр Земли ежесекундно пронизывают миллиарды нейтрино. Поистине мы живем в бездонном нейтринном океане.
Незадолго до открытия нейтрино один из участников этого эксперимента преподнес своим коллегам новогодний подарок. Под праздничной оберткой находилась раскрашенная спичечная коробка с подписью: «Заведомо содержит, по крайней мере, 100 нейтрино».
Физики смогли обнаружить маленького невидимку, только создав ядерные реакторы — мощные источники нейтрино. Всего лишь одна частица из 1020, проходивших через прибор, застревала в нем. Но поток нейтрино был так велик, что и этой мизерной доли оказалось достаточно для ее обнаружения.
Так в 1956 году Ф. Райнес и К. Коуэн из Лос-Аламосской лаборатории уничтожили таинственный ореол вокруг нейтрино.
Всегда так: если радуется дождю садовод, то турист проклинает этот некстати разразившийся ливень. Жарко светит солнце — и опять кому-то хорошо, а кому-то и нет. Увы, идеала на свете не бывает, и угодить на всех невозможно.
До открытия нейтрона физики думали, что атомное ядро состоит из протонов и электронов. Это очень огорчало теоретиков — в их расчетах не сходились концы с концами. Но зато совершенно спокойны были экспериментаторы, изучавшие радиоактивный бета-распад ядер. Им не приходилось ломать голову над тем, откуда берутся электроны.
Нейтрон своим появлением перевернул все вверх дном. Теперь радовались теоретики, потому что нейтронно-протонная модель строения ядра ликвидировала все их затруднения. Но радость гасла и меркла от одного взгляда в сторону тех, кто занимался исследованием радиоактивности. Они требовали ответа на один-единственный, но чрезвычайно тяжелый вопрос: откуда берутся электроны при бета-распаде ядер, если их там нет?
Неужели опять надо отказаться от такой чудесно простой картины строения ядра и сделать шаг назад? Неужто, увидев наконец ясные горизонты, снова погружаться в пугающую пучину непонятных, не согласующихся друг с другом фактов?
Поставленный в упор вопрос: откуда же в ядре берутся электроны? — заставил физиков сделать громадный шаг вперед. Быть может, не менее серьезный, чем шаг с признанием электронов.
Двадцать три века назад Демокрит наделил мир атомов свойством неделимости, неизменяемости. В самом конце XIX века физики сорвали этот ярлык с атомов и ничтоже сумняшеся перевесили его на элементарные частицы! Очень трудно было физикам представить себе кирпичики материи без привычного спокойного и надежного ярлыка.
Основатель квантовой механики Вернер Гейзенберг первый разрешил загадку ядра. Он предположил, что нейтрон в ядре может иногда превращаться в протон плюс электрон и нейтрино. Протон остается в ядре, а остальные «возникающие» частицы покидают его. Внешне такое превращение выглядит как радиоактивный бета-распад.
Так вот откуда берутся электроны! Впервые исследователи микромира открыли взаимную превращаемость элементарных частиц.
Нейтрон, как потом выяснилось, вне ядра живет не более 12 минут, распадаясь на протон, электрон и нейтрино. Со свободным протоном ничего подобного не случается. Но в радиоактивном ядре энергетическая обстановка складывается так, что даже стабильный протон может превратиться в нейтрон, позитрон и нейтрино. По имени элементарной частицы — позитрон — это событие в жизни радиоактивного ядра стали величать позитронным распадом.
Что это за новая частица — позитрон?
Она и новая, и будто бы уже давно знакома нам. Это точная копия электрона, только с обратным знаком электрического заряда. Казалось бы, и упоминать о ней нечего, если она необходима лишь для нескольких слов о позитронном распаде ядер.
Но нет. Частица эта играет особую роль в истории физики элементарных частиц. Открытие позитрона приоткрыло двери в мир античастиц. Оно продемонстрировало нам еще одно свойство материи — ее способность превращаться из весомой формы в форму энергии!
Все началось с того, что в 1931 году молодой физик-теоретик Кембриджского университета Поль Дирак получил уравнение, описывающее движение электрона. Вскоре он обнаружил, что уравнение это имеет два решения, то есть, помимо электрона, оно пригодно для описания еще одной частицы. Получалось так, что эта частица должна быть полностью аналогична электрону, но с положительным электрическим зарядом.
В то время — а случилось это более сорока лет назад — никто не слыхал об античастицах, а единственной известной физикам частицей с положительным зарядом был протон. Но протон из-за большой массы не отвечал второму решению уравнения Дирака.
Сначала казалось, что это чисто математический курьез. Но все попытки исключить второе решение ни к чему не привели. Одно из двух: либо неверна теория Дирака, либо в природе существует положительно заряженный электрон.
Предсказание Дирака было настолько необычным, что даже крупнейшие ученые далеко не сразу приняли его. Ландау, например, слушая в Харькове доклад Дирака об античастицах, приговаривал: «Дирак — дурак, Дирак — дурак». А спустя три десятилетия заявил: «Кто спорит, что Дирак за несколько лет сделал для науки больше, чем все присутствующие в этой комнате за всю свою жизнь?»
Спустя год, в 1932 году, в космических лучах был обнаружен позитрон. В камере Вильсона нашли следы частиц, которые могли принадлежать только электрону, но с положительным зарядом.
При исследовании космических лучей с помощью камеры Вильсона экспериментаторы использовали метод, предложенный еще в 1927 году советским физиком Д. Скобельцыным. Камера Вильсона помещалась между полюсами электромагнита. Это давало возможность не только видеть след элементарной частицы, но и по его искривлению в магнитном поле измерять энергию и определять знак электрического заряда пролетевшей через камеру представительницы микромира. На фотографиях, полученных в камере Вильсона, было отчетливо видно, что следы электрона и позитрона отклоняются в противоположные стороны.
Опыт подтвердил теорию. Двадцативосьмилетний Поль Дирак пополнил список лауреатов Нобелевской премии.
После открытия позитрона возник вопрос: а не имеет ли каждая элементарная частица «антиотражения»? Экспериментаторы занялись поисками антипротона в космических лучах. Электрон-позитронная пара будто бы подтверждала теорию Дирака. Но нет-нет да и закрадывалась мысль об исключении, сделанном природой именно для этих частиц.
«Интервал времени между предсказанием антипротона и его наблюдением в 1955 году был слишком велик, — говорил академик Я. Зельдович, — и у некоторых теоретиков нервы не выдержали — в последние годы появились попытки построить теорию без антипротонов».
Лишь четверть века спустя после предсказания Дирака группа американских ученых под руководством Эмилио Сегре и Оуэна Чемберлена обнаружила антипротон. А через год нашли и антинейтрон.
Ухватившись за позитронный конец, физики сначала медленно, а затем все быстрее и быстрее стали вытягивать сеть с античастицами. И теперь никто уже не сомневается в том, что у каждой элементарной частицы есть своя тень — соответствующая античастица.
Изучая следы позитронов в камере Вильсона, физики сразу же обнаружили, что электрон и позитрон, встречаясь друг с другом, взаимно уничтожаются — аннигилируют.
За природу бояться было нечего — она при этом ничего не теряла. Масса обеих частиц превращалась в другой вид материи — в энергию, количество которой легко подсчитать по известной формуле Альберта Эйнштейна E = mc2.
«Этот результат новейшей физики, — писал лауреат Нобелевской премии Макс Лауэ, — является самым потрясающим из всего, что когда-либо приносило развитие естествознания».
Какими же странными оказались элементарные кирпичики материи! Даже такие стабильные частицы, как протон и электрон, могли «исчезнуть» вместе со своими античастицами. Невольно закрадывалась мысль: как могли до нашего времени сохраниться древние породы, сложенные из такого непрочного материала?
Но дело все в том, что элементарные частицы проявляют готовность к превращениям только в специфических условиях радиоактивных ядер и при встрече с античастицами. В доступной нам области мира стабильных ядер неизмеримо больше, чем радиоактивных. А от аннигиляции нас спасает отсутствие в заметных количествах античастиц.
Не так давно еще робость порой мешала физикам признать преподносимые природой новые частицы. Но к началу 50-х годов психология физиков заметно изменилась. Осмелев, они начали «сочинять» новые роли для неоткрытых элементарных кирпичиков, а потом подыскивать для них исполнителей. Как мореплаватели времен Колумба, физики устремились в манящую, неизведанную страну микромира, увлеченные поисками новых частиц.
Ученые с помощью камер Вильсона изучали столкновения элементарных частиц с ядрами. В камеру помещали пластинки из необходимого вещества и прослеживали путь частицы до нее, а также следы тех частиц, которые вылетали из пластинки.
И вот в 1951 году на «приманку» — свинцовую пластинку — клюнула необычайно «странная» частица. Космические лучи высокой энергии, сталкиваясь с протонами и нейтронами свинцовой пластинки, родили новую нейтральную частицу. Сама она не оставила следа, но невдалеке от пластинки были видны расходящиеся из одной точки туманные следы двух заряженных частиц, на которые распалась невидимка. Так заканчивалась короткая жизнь новой частицы, длящаяся всего 10–10 секунды. Но сколько волнений доставили физикам эти мгновения!
Когда начали изучать фотографии со следами деятельности новых частиц, то обнаружили такое, что впору было схватиться за голову. Оказалось, что открыта не одна частица, а два разных вида элементарных кирпичиков: тяжелые ка-мезоны и более массивные, чем нуклоны, гипероны. Сейчас мезонов и гиперонов уже больше дюжины. И хотя никто не нуждался в появлении новых частиц, да еще в столь большом количестве, и никакая из существующих теорий ничего не предсказывала на этот счет, приходилось как-то привыкать к новым обстоятельствам. Приходилось принимать мир элементарных частиц таким, каков он есть.
Одну привычку, в конце концов, всегда можно заменить другой. К «странности» же новых частиц физики не могут привыкнуть до сих пор. Но почему новый «улов» частиц назвали «странным»? В чем их «странность»?
Ка-мезоны и гипероны рождались в результате сильных взаимодействий между нуклонами за невероятно короткое время, намного меньшее того, что мы обычно называем мгновением ока. Распадались они тоже на сильно взаимодействующие частицы, а значит, и исчезать должны были за такое же короткое время. В действительности частицы эти живут в сто тысяч миллиардов (100 000 000 000 000) раз дольше! Ну как тут не назвать их «странными»?
И все-таки «странные» гипероны, по-видимому, довольно близкие родственники нуклонов. Они мирно уживаются рядом не только в таблице элементарных частиц, но и в одном ядре. Нейтральные лямбда-гипероны могут подменить один или даже два нейтрона.
Сам по себе гиперон в ядре не возникает: ядро получает его при столкновении с космическим протоном большой энергии. Один из осколков уносит с собой этот гиперон как память о происшедшей катастрофе. Гиперядро — так назвали осколок — существует столько же, сколько и сам гиперон, приблизительно 10–10 секунды.
Но если гипероны ведут себя более или менее сносно, то родственники пи-мезонов — тяжелые ка-мезоны — оказались настоящими бунтарями и нигилистами. Они не желают считаться с важнейшими законами микромира. С момента открытия и по сегодняшний день опыты с ка-мезонами все время в центре внимания физиков.
Видите, как незаметно, движимые детским вопросом «как все устроено?», мы нашли сначала восемь, а к 1960 году — около тридцати сортов кирпичиков материи. Важность и необходимость первых трех частиц была неоспоримой. Поразмыслив, «пристроили к делу» еще шесть вновь открытых. Но тридцати частицам до сих пор не найдено применения!
Безмерная щедрость природы озадачивала. Теперь уже никто не брал на себя смелость доказать: сколько именно элементарных частиц должно существовать в природе? Когда завершится список кирпичиков материи? Может быть, список этот уже завершен? А может быть, он только еще начинается?
Нежданно-негаданно физики стали владельцами довольно обширного, «многоотраслевого хозяйства» элементарных частиц. Тут и массивные ядерные нуклоны и гипероны, тяжелые мезоны и легкие нейтрино, мю-мезоны и фотоны. Подробно все и перечислить невозможно.
Частиц стало так много, что невольно закрадывалось сомнение: неужели можно достаточно уверенно отличить одну от другой? Бессмысленно говорить о внешнем виде или цвете гиперонов. Но тем не менее частица каждого сорта вскоре после открытия получала паспорт. Фамилию, национальность, социальное положение ей отлично заменяли значения массы, заряда, времени жизни. Не менее важен был и спин частицы — величина, связанная с ее собственным вращением, либо же магнитный момент, имеющий прямое отношение к распределению токов внутри частицы.
В мире растений и в мире животных особи одного и того же вида всегда, хоть и незначительно, но отличаются друг от друга размерам, окраской, поведением. Иногда малоопытный ботаник или зоолог может даже допустить ошибку в классификации из-за сильного отклонения признаков особи от обычных видовых свойств.
Физику-экспериментатору это не грозит. Элементарные частицы одного «сорта» совершенно одинаковы. Все протоны и все нейтроны тождественны друг другу, и неважно — получены они на ускорителе или возникли в космических лучах. Поэтому нет никакой необходимости каждый раз на опыте досконально исследовать все их свойства. Достаточно лишь установить, к какому «сорту» относится данная частица.
По фотографии следа, которая у заряженных частиц играет роль паспортной карточки, можно найти массу частицы. Если след весь укладывается на снимке и вам известна скорость частицы, то считайте, что вы измерили и время ее жизни. Магнитное поле подскажет знак ее заряда.
Все остальные интересующие физика сведения он получает из таблицы элементарных частиц, составленной по «паспортным» данным каждой из них. Загляните в эту таблицу, и вам сразу же бросится в глаза, что один вид частиц отличается от другого в первую очередь по величине массы, времени жизни или способу распада.
Масса частиц изменяется в огромном диапазоне от ноля (у нейтрино и фотона) до величины, равной полутора тысячам масс электрона у самого тяжелого Ω (омега) — гиперона. А время жизни — от 10–23 секунды у ро-мезона до 1028 лет у протона!
Но какое унылое однообразие в графе «Электрический заряд»! Нейтральная, отрицательно и положительно заряженная — вот и весь диапазон изменений. Правда, слова «отрицательно» и «положительно» заряженные означают лишь знак заряда и ничего не говорят о его величине. Может быть, эта величина варьируется так же сильно, как масса и время жизни?
Для заряда, однако, природа сделала приятное исключение. Частица либо вообще не имеет заряда, либо же у нее заряд в точности равен заряду электрона.
Просматривая таблицу элементарных частиц, мы уже заметили, что одни частицы легче, другие тяжелее; одни живут долго, а другие только мгновение. Но таблица ничего не говорит об их бурной и наполненной удивительными событиями жизни.
Элементарные кирпичики материи рождаются либо в ядерных катастрофах, при столкновении частиц огромных энергий, либо же в «спокойном» радиоактивном распаде. Нестабильные частицы заканчивают свои «дни» распадом на более легкие. Иногда их захватывают атомные ядра вещества, в котором они останавливаются.
Элементарные частицы испытывают превращения при взаимодействии друг с другом. Причем каждая частица проделывает это на свой лад. Именно в этом проявляется основное качественное различие между частицами.
По характеру их взаимодействия нуклоны и гипероны объединили в группу адронов. Ка-мезоны и пи-мезоны выделили в другую группу. А легкие частицы мю-мезоны, электроны и нейтрино — назвали лептонами.
Нуклоны не могут подменить ка-мезоны в ядерных реакциях. В гиперядре лептоны никогда не заменят гиперонов. Нейтрон не может распадаться так, как это делают «странные» частицы. А пи-мезон не может родиться в радиоактивном бета-распаде ядер.
Мало кто из сидящих в цирке догадывается, каким способом иллюзионист совершает тот или иной трюк. Но ни у кого это не вызывает ощущения непознаваемости. Все понимают, что аттракцион основан на определенных правилах, если хотите, своего рода законах, где ловкость рук соединяется с изобретательностью и фантазией.
Пока что физики похожи на зрителей цирка. Они не всегда знают, почему именно так ведет себя та или иная частица. Но, изучая микромир, физики поняли, что никакого хаоса в нем нет. Поведение частиц подчиняется четким, строгим законам.
Наш рассказ об открытии элементарных частиц остановился на 1960 году, когда на руках у физиков оказалось около 30 сортов простейших кирпичиков материи и не осталось никаких сомнений в том, что в скором времени число их может удвоиться.
К этому времени физика элементарных частиц перестала питаться только сведениями, поступающими от исследователей космических лучей. В научных лабораториях появились мощные ускорители.
Уже в 1949 году в Институте ядерных проблем АН СССР начал работать самый мощный в то время ускоритель в мире. С его помощью физики узнали много нового о свойствах атомных ядер, о взаимодействии быстрых протонов и нейтронов с веществом. Полученные экспериментальные результаты позволили советским ученым через несколько лет решить проблему мирного использования атомной энергии. Пуск в 1954 году в Обнинске первой в мире атомной электростанции открыл новую эру в развитии энергетики.
В апреле 1957 года в подмосковном городе Дубна в Объединенном институте ядерных исследований был запущен новый ускоритель — синхрофазотрон, «производящий» протоны с энергией до 10 миллиардов электрон-вольт.
Ни в одной другой лаборатории мира еще не получали тогда частиц столь большой энергии. Ученым социалистических стран удалось проникнуть еще глубже в тайну строения материи. На этом ускорителе было открыто несколько новых элементарных частиц, в том числе одна из семейства гиперонов: анти-сигма-минус-гиперон.
Все частицы могут рождаться при столкновении любых двух частиц, например протонов большой энергии с атомными ядрами. А где все это происходит — в космосе ли, на границе ли с атмосферой Земли или в мишени ускорителя — не имеет принципиального значения. Правда, космические протоны обладают намного большей энергией, чем протоны, разогнанные на самых мощных ускорителях. Зато насколько удобнее работать с лабораторными пучками пи-мезонов, чем отлавливать их в космических лучах.
Уточняя паспортные данные частиц, физики обратили внимание, что большинство известных частиц живет дольше 10–14 секунды. Меньше всех — около 10–19 секунды — существует лишь одна частица под названием эта-мезон.
Но ученые не могли понять, почему не обнаружено частиц с временем жизни в интервале от 10–19 секунды до так называемого «ядерного» времени, равного 10–22–10–23 секунды? Того самого минимального времени, необходимого новорожденной частице, чтобы заявить о своем появлении на свет. Но едва физики успели задать себе этот вопрос, как частица, рождающаяся на столь краткое мгновение, что и мгновеньем-то его нельзя назвать, была открыта!
За два года до смерти пятидесятилетний Энрико Ферми на Чикагском ускорителе низких энергий поставил опыт, чтобы выяснить детали взаимодействия пи-мезонов с нуклонами. Результаты оказались удивительными! При некоторой энергии пи-мезона его взаимодействие с протоном меняло свой характер. Это напоминало, например, резкий всплеск интенсивности электромагнитных волн, когда частота излучения генератора приходит в резонанс с частотой, на которую настроена передающая антенна.
Здесь же в резонанс вошли кинетическая энергия пи-мезона и потенциальная энергия его взаимодействия с протоном. Мезон в течение времени, сравнимого с ядерным временем, как бы «задерживался» около протона, и возникала новая сложная частица. Но в те дни этот резонанс не рассматривался еще как частица.
Когда появились более мощные ускорители, энергия протонов была уже так велика, что при столкновении с нуклонами вещества протоны рождали одновременно несколько частиц разных сортов. Физики задумались. А что, если это осколки какой-то первичной, сверхтяжелой частицы, которая распалась в течение «ядерного» времени?
Если измерить углы разлета всех рождающихся частиц и их энергию, то можно было вычислить массу этой «прачастицы». После проделанных измерений и расчетов физики пришли к выводу, что «прачастицы» существуют. Они в течение 10–23 секунды распадаются на обычные уже знакомые нам нуклоны, гипероны и мезоны. Новые частицы получили название «резонансов», в котором отражена история их открытия.
Как выяснилось, образование резонансов не исключительное, а довольно общее свойство сильно взаимодействующих частиц. При достаточно большой энергии столкновения могут образоваться две, три и больше вторичных частиц, объединяющихся в неустойчивые комплексы.
Первые открытые резонансы были комплексами двух частиц. Одни из них распадались на два пи-мезона, другие — на ка- и пи-мезоны. Потом обнаружились новые, более сложные комбинации.
«Ловлей» новых частиц стало заниматься так много экспериментаторов, что большинство резонансов обнаруживали одновременно в нескольких лабораториях.
«Досадно, что Ферми, обнаруживший в 1953 году первый случай так называемых адронных резонансов, не смог увидеть продолжающегося до сих пор триумфального развития этого направления и появления в таблицах элементарных частиц сотен резонансов», — писал в воспоминаниях об Энрико Ферми его ученик, советский академик Бруно Понтекорво.
Так сколько же, наконец, элементарных частиц известно на сегодняшний день?
Настало время подвести итог, хотя это и не так просто сделать. Рамки довольно скромной, как мы теперь видим, таблицы элементарных частиц, составленной физиками к 1960 году, были сметены потоком открытых за короткое время новых частиц — резонансов.
Известные нам ранее 30 элементарных частиц, которые еще несколько лет назад могли претендовать на исключительное внимание, оказались лишь относительно устойчивыми и более легкими собратьями огромной совокупности образований. Но и по сей день от экспериментаторов то и дело поступают сообщения об открытии все новых и новых частиц. И все они пока что относятся к резонансам.
Даже специалистам, работающим в области физики элементарных частиц, трудно назвать точное число всех кирпичиков материи. Их уже более двух сотен! Сейчас специальный международный центр ежегодно выпускает стостраничный журнал со сведениями о вновь открытых частицах.
Итак, пытаясь ответить на вопрос, «как все устроено», физики прошли длинный путь. Вначале была сложная картина строения материи — около девяти десятков «элементарных» атомов. Ее сменила наипростейшая, состоящая всего из трех основных кирпичиков — протона, нейтрона, электрона. И в конце концов пришли к открытию удивительного мира элементарных частиц.
Увлекательны путешествия в космос, на дно морей и океанов. Но не менее увлекательно путешествие в глубины материи!
Альфа-частицы впервые позволили Резерфорду исследовать пространство на расстоянии 10–13 сантиметра. А современные сверхскоростные атомные снаряды дают возможность зондировать пространство на расстоянии до 10–15 сантиметра!
Кроме новых масштабов пространства, элементарные частицы дали возможность нам познакомиться и с абсолютно новыми масштабами энергии.
После открытия реакций деления, физики были потрясены количеством энергии, выделяющимся при делении одного атомного ядра урана. Но при столкновении протона с нуклонами в Серпуховском ускорителе передается и поглощается в тысячу раз большее количество энергии!
Мгновение — и во все стороны от мишени разлетаются только что возникшие нуклоны и антинуклоны, мезоны и гипероны. Мгновение — и распадаются на отдельные частицы самые тяжелые из частиц — резонансы. Каждое столкновение вызывает к жизни этот неспокойный, волнующий, изменчивый мир, все краски и разнообразие которого зависят от энергии. Именно энергия и только она — та питательная среда, в которой на мгновение расцветают необычайные «миражи» микромира.