Мои движения автоматичны. Одной рукой включаю осветитель микроскопа. Другой — кладу шлиф на столик. Микрометрическим винтом подправляю фокусировку.
Вот сейчас подключу анализатор микроскопа — и начнется то, чему я посвятил многие бессонные ночи.
Иные устремляются в свободное от работы время на выставки произведений изобразительных искусств, в зрительные залы театров и клубов, в филармонию. А для меня высшее наслаждение — наблюдать под микроскопом таинственный мир, который можно видеть в любом невзрачном камне. Стоит только вырезать из него тоненькую пластинку, положить ее на столик микроскопа — и тотчас словно сказочная палитра неведомого мастера вспыхивает перед глазами. Ни на одной художественной выставке не найдешь такого разнообразия красок. Их вызвал к жизни поляризованный свет. И каждый раз этот красочный мир против моей воли перебрасывает меня в иную сферу — сферу звуковой гармонии.
Максимилиан, герой повести Генриха Гейне «Флорентийские ночи», слушая игру великого Паганини, испытывал жуткие в своей реальности зрительные галлюцинации. Музыкант чудесным образом превращался в мага, чародея, повелевающего стихиями. Мир вокруг него преображался в сказочные многоцветные картины.
Гейне не выдумывал. У многих людей, когда они слушают музыку, возникают зрительные ассоциации. А у меня наоборот когда я вижу красочные картины, возникают ассоциации звуковые.
Многие ученые, инженеры и художники в разные годы пытались уловить связь между цветом и звуком. Некоторые создавали на специальных экранах движущийся хаос красок во время исполнения симфоний.
Инженер К. Леонтьев показал в начале шестидесятых годов скрябинскую поэму огня — «Прометей». С первыми же аккордами на экране вспыхнули багровые и красные цвета, а затем, повинуясь ритму музыки, экран несколько успокоился, и зрители увидели набегающие волны изумрудно-зеленого цвета.
Рассказывая о законах сочетания цвета и звука, положенных в основу исполнения «Венгерской рапсодии» Листа, Леонтьев подчеркивал, что в напряженные, мощные моменты экран должен багроветь. Тема воли делает цветовые ощущения ослепительными. С повышением динамики звука цвет становится более насыщенным, с понижением — блеклым.
Много книг посвящено цветомузыке, но, пожалуй, только И. Ефремову в «Туманности Андромеды» удалось передать впечатление, вызванное синтезом звука и цвета. Особенно поражает третья часть созданной им симфонии фа-минор в цветовой тональности 4750 мю.
«Третья часть симфонии началась мерной поступью басовых нот, в такт которым загорались и гасли уходившие в бездну бесконечности и времени синие фонари. Прилив грозно ступающих басов усиливался, и ритм их учащался, переходя в отрывистую и зловещую мелодию. Синие огни казались цветами, гнущимися на тоненьких стебельках. Печально никли они под наплывом низких гремящих и трубящих нот, угасая вдали. Но ряды огоньков или фонарей становились все чаще, их стебельки — толще. Вот две огненные полосы очертили идущую в безмерную черноту дорогу, и поплыли в необъятность вселенной золотистые звонкие голоса жизни, согревая прекрасным теплом угрюмое равнодушие двигающейся материи…»
Почему мне вспомнился именно этот отрывок? Дело в том, что вчера мне встретился шлиф, в котором были фрагменты этой симфонии.
Несколько дней назад я получил для определения породу с длинным и кажущимся хитрым названием — пренитизированный долеритовый порфирит. Этот кусок камня большинство людей назвало бы просто булыжником, куском неживой природы.
Ну, а в тончайшем прозрачном срезе — в шлифе — под микроскопом раскрылась симфония камня.
Как следы элементарных частиц, как треки на желатине разбежались в шлифе индигово-синие пятнышки на густо-синих стрелах пренита. И невольно послышались басовые тона, загудели невидимые музыкальные инструменты. Рокот контрабасов покрывал все звуки… Он становился нестерпимым… Казалось, какая-то грозная непостижимая сила растекалась вокруг и заливала все видимое пространство… Не было сил перевести дыхание.
А в углу притаилась какая-то серая тень. Уловить контуры ее невозможно. За ней угадываются сочетания красочных, пока еще трудно различимых глазом, цветов и пятен. Их связывают с общей мелодией чуть слышные звуки флейты…
Легкий поворот столика микроскопа — и все изменилось. Пробежала по синим лучам лавандово-серая тень, преобразился пейзаж. Яркий свет желтых вееров ударил в глаза. Усилились и зазвенели флейты. Лишь кое-где им вторила виолончель на бархатных басовых нотах. Это остатки индигово-синих цветов местами врывались в панораму, напоминая о только что перенесенном потрясении…
Можно часами сидеть перед микроскопом и незначительным поворотом столика вызывать грозные синие волны цвета и звука, слышать при этом удивительные переходы к нежным звукам флейт. Краски, порой бьющие в глаза, порой нежные, светлые, создают восхитительный танец огненных и синих стрел.
Нет. Довольно. Надо взять что-то иное для перемены впечатлений. Но что? Быть может, вот этот шлиф цирконовой породы? Разбитый причудливыми трещинами, сложным узором линий, он чем-то напоминает витражи в древних храмах. Они запомнились мне при осмотре готических церквей в Брюсселе. Стрельчатые окна храмов там заполнены таким же непонятным рисунком.
Каждое пятно этого шлифа написано в своей цветовой тональности. Здесь можно видеть сиренево-фиолетовые, нежные темно-розовые, густо-голубые пятна, исчерченные неповторимой в каждом куске ретушью, создающей сказочно странный пейзаж. Ну и, конечно, каждому цвету, каждому сочетанию красок соответствуют свои аккорды.
Чем больше всматриваешься в пятна этой цветовой мозаики, тем сильнее и сильнее всплывают мощные движения фугированных отрывков музыкальных звучаний. Словно сам Иоганн-Себастьян Бах на неведомом органе природы создавал эти повторяющиеся в разных голосах, бегущие друг за другом мелодии.
А вот вспыхивает в объективе микроскопа новый шлиф. И из глубин памяти выступают полузабытые слова. Я вспоминаю, что об этом я где-то читал.
Ну конечно, это Стендаль. Его «Письма о прославленном композиторе Гайдне». Это же рассказ об оратории «Сотворение мира». Косые срезы кристаллов циркона напомнили мне и витражи и бессмертное произведение Гайдна.
«„Сотворение мира“ начинается увертюрой, изображающей хаос, — писал Стендаль. — Слух ваш поражен каким-то глухим и неясным шумом — звуками, лишенными всякой мелодичности и словно нечленораздельными (это я видел картины расфокусированного изображения); вы различаете затем отдельные отрывки, построенные на приятных мотивах, но они еще недостаточно отделаны, и им по-прежнему не хватает каденции; вслед за этим возникают образы с еле очерченными контурами — одни из них суровы, другие нежны; все переплетается, отрадное и резкое на слух следует друг за другом по воле случайности; великое граничит с ничтожным, мрачное сливается с веселым. Самое необычное сочетание различных музыкальных форм — трелей, volante, mordente, синкоп и диссонансов — прекрасно передает, по общему мнению, картину хаоса».
И все это само собой вызвано к жизни сочетанием красок. Розовый цвет соседствует с лиловым и синим. А зеленое и ярко-оранжевое граничит с черной бездонной пустотой…
Конечно, было бы наивно думать, что все геологи, занимаясь изучением шлифов в поляризованном свете, только и думают о том, как сочетать цвет и звук. Нет. Перед геологами стоят более прозаические задачи определения названий пород и минералов под микроскопом.
И все же волны таинственных огнецветов всюду преследуют поклонников камня. Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мертвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включенных в состав породы. Странным «неземным» цветом вспыхивают и многие другие минералы, не содержащие никаких примесей.
Целый день я провел в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелеными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-желтым.
В глазах рябило. Надо было как-то отвлечься. Дома меня ожидала интересная книга сказок различных народностей. В ней-то я и нашел любопытное сказание индейцев Северной Америки о сотворении мира могущественным духом Виской. Мир этот вначале был совершенно прозрачным, и великий дух Виска любовался разноцветными камнями, видимыми на дне первичного океана.
Но однажды Виска заметил кражу. Его враг — великий завистник Бобр — нырял на дно океана и забирал себе самые красивые камни. Рассердился великий дух. Он призвал к себе своего верного помощника Серую мышь, приказал ей опуститься на дно и принести оттуда немного ила. Мышь выполнила просьбу повелителя. Из этого ила сделал Виска острова в океане. Разрослись они, скрыли под собой большую часть поверхности Земли, замутили воду океана, и исчезли с глаз завистника красивые камни. С тех пор Бобр уже не мог таскать их в свою нору.
А что если бы на самом деле мы, как бог Виска, могли посмотреть на мир всепроникающим взглядом? Что было бы, если бы Землю окутывала темная атмосфера, не пропускающая лучи видимой части спектра? О таком фантастическом предположении говорит профессор М. А. Константинова-Шлезингер во введении к монографии «Люминесцентный анализ».
«Дадим на мгновение волю фантазии, — пишет она, — и представим себе, что к атмосфере, окружающей Землю, примешан „черный газ“, пропускающий только ультрафиолетовые лучи.
Нашему глазу при этом открылась бы удивительная картина. В вечном мраке мы видели бы у людей только ослепительно белые зубы и сине-голубые ногти. Черная земля оказалась бы содержащей яркие включения минералов — красного кальцита, желтого ортоклаза… Разлитая по земле нефть напоминала бы лужу грязного молока, а содержащиеся в ней минеральные масла были бы густо-синими и голубыми».
Этими свойствами люминесцентного свечения пользуются декораторы для усиления эффектов восприятия цвета.
Мне пришлось однажды побывать в кабачке «Мулен-Руж» («Красная мельница») в Брюсселе.
Густой красный свет — общий фон зала — усилен был там необычными красочными эффектами. Музыканты были одеты в костюмы старинного испанского покроя, окрашенные люминесцентными красками. Во время исполнения несложных мотивов невидимый ультрафиолетовый и катодный свет перекрашивал костюмы исполнителей в такт музыки в сказочно яркие пестрые цвета. Впечатление усиливали танцовщицы, исполнявшие под эту «светомузыку» то африканский «Мамбу-ламбу», то (специально для советской делегации) «национальный» русский танец «Ехал на ярмарку ухарь купец»…
А цвета этой гаммы были подобраны тоже «со смыслом». Может быть, декоратор был знаком с книжечкой Д. Хмельницкого, изданной в Нижнем Новгороде в 1913 году. Она называлась «Попытка доставить эстетическое удовольствие в музыке световыми комбинациями». В ней предлагалось узаконить значение цветов: нежно-голубым цветом означать жалость, желто-серым — покорность, яблочно-зеленым — радость, цветом кофе с молоком — сытость, цветом табачного дыма — сон, темно-розовым — удовольствие, оранжевым — размышление, шоколадным — тоску, светло-голубым — свидание…
В турецких сказках часто упоминается мифический камень — сабур. Он желтый. Сабур-камень впитывает в себя все человеческое горе. А когда переполнится этим горем — трескается.
У бразильцев выражение «все голубое» означает «только хорошее». Да и Остап Бендер говорил о «голубой мечте» своего детства.
Конечно, не все здесь верно, но какая-то зависимость между цветом, настроением и, я бы сказал, характером, несомненно, существует.
На одной из популярных лекций я слышал, как лектор — известный физик — для иллюстрации стопроцентной глупости сказал: «Это все равно, что спрашивать, какой цвет имеет характер».
Как известно, характер — совокупность определенных психических свойств человека — вырабатывается под воздействием окружающей его среды. Поступки и действия человека определяются условиями его жизненного пути. Но какими? Психологам известен классический случай «выработки» массового количества драчунов и забияк на фабрике братьев Люмьер во Франции, где фотографические пластинки изготавливались при красном свете. Изменили процесс. Изъяли красный свет. И люмьеровцы из забияк превратились в спокойных, уравновешенных людей.
О субъективности восприятия цвета камней говорит лучший знаток камня — А. Е. Ферсман. Он называет самоцветы, связывая с ними определенную зависимость (правда, условную) между психологическим и физиологическим влиянием цвета и субъективным его восприятием.
Желтый цвет (например, цвет берилла) — возбуждающий, оживляющий, теплый, бодрый, веселый, суетливый, кокетливый, несколько дерзкий. Это цвет веселья и шутки, символ солнечного света, тепла, счастья.
Оранжевый (цвет янтаря) — возбуждающий, жаркий, бодрый, веселый, пламенный, жизнерадостный, шумный, кричащий, не интимный.
Красный (рубин, сердолик) — возбуждающий, горячий, самый активный и энергичный, экспансивный, мужественный, страстный, кричащий; цвет доблести, силы, мощи, храбрости; огонь, пламя, жар.
Зеленый (изумруд, нефрит) — спокойный, умеренный и освежающий, создает впечатление мягкого, приятного и благотворного покоя. Символ весны, плодородия, юности, свежести, жизни, радости, надежды, воспоминания…
Представим себе существо, обладающее способностью видеть поляризованный свет, воспринимать катодные, ультрафиолетовые и рентгеновские лучи. Попробуем, обладая таким зрением, посмотреть на Урал на широте города Свердловска.
На окраине города, близ Шарташского озера, высятся гранитные каменные палатки. Из такого же гранита, взятого в Шарташских каменоломнях, изготовлена облицовка некоторых зданий города — горсовета, Политехнического института и других. Несмотря на монументальность зданий, гранит придает им какой-то серый, сумеречный облик.
А существо с особым, поляризационным зрением не заметило бы этой серости. Взору такого существа открылась бы дивная, сказочная картина.
Каждое зерно шарташской каменной громады расцветилось бы яркими, сочными красками. Запели бы и заиграли своими красочными голосами и всеми нюансами даже сверхмикроскопические кусочки, слагающие гранит. Светло-желтые пятна ортоклаза чередовались бы с прозрачными зернами кварца. И над всем этим властвовали бы зеленые и коричневые розетки, полосы и пятна слюды, сочные зеленые тона вкраплений роговой обманки и пироксена.
Если перевести все увиденное в гранитах на язык красочных ощущений, то светло-желтые и особенно разнообразные зеленые тона создадут настроение радости, покоя, надежд… В тон этим впечатлениям зазвучат музыкальные всплески ласкающих слух, набегающих издали мелодичных, многократно повторяющихся аккордов.
Кто же видит и воспринимает все это?
Еще и еще раз думаешь — ведь внешне камни выглядят невзрачно и буднично. Почему от нашего взора скрыт этот праздник цвета и музыки?
А микрополяризационный пейзаж к западу от Свердловска по разрезу горы Волчихи я сравнил бы с буйным вихрем дантова ада, выраженным музыкальными фразами из «Франческо да Римини» Чайковского.
В предисловии к рукописной партитуре этой симфонической поэмы Чайковский писал: «Данте, сопутствуемый тенью Виргилия, опускается во вторую область адской бездны. Воздух здесь оглашен стенаниями, воплями и криками отчаяния. Среди могильного мрака рвется и мечется буря. Адский вихрь неистово мчится, унося в своем диком кружении души людей, разум коих помрачила в жизни любовная страсть… И над всем этим властвует голос судьбы: „Оставь надежду всяк сюда входящий“».
Мрачные скалы горы Волчихи внешне не вызывают ярких эмоций. Но в шлифах отчетливо различим бешеный, адский пламень сочетаний самых разнообразных красок. Видны здесь и минорные тона и частые многоцветные аккорды буйных мелодий, словно отголоски неугасающей страсти.
И опять — для чего все это?
Я могу дать бесконечную цепь подобных описаний горных пород любой части света. И каждый раз, перебирая их в сознании, я вновь и вновь задаю все тот же вопрос: кто видит эту «неземную» красоту нашей Земли?
Может быть, какие-либо иноземные существа — планетолетчики, — обладающие этим сверхзрением, попав на нашу планету, увидели бы красочные пейзажи горных пород Земли?
Почему существует эта антицелесообразность, и мы, властители планеты, не видим всей красоты подвластного нам мира?
В самом деле, не принимать же для объяснения всех этих гримас антицелесообразности гипотезу индейцев о сотворении мира духом Виской.
Конечно, вряд ли возможны и прямые сопоставления звука и цвета: звука, якобы застывшего в камне. Это все-таки очень субъективная ассоциация.
Принимать все эти гаммы без объяснения, как выражение антицелесообразности, бессмысленности, только лишь слепой случайности, тоже нерезонно.
Невольно возникает мысль, что явления цветовой гармонии относятся к области еще не вскрытых наукой законов и тайн природы. Конечно, при этом напрашиваются самые невероятные объяснения. Не служат ли своеобразными ориентирами все эти яркие краски тем, кто (или что) может беспрепятственно проникать через горные породы?
Всю Землю пронизывают сейсмические волны. Не им ли нужны ориентиры? Вряд ли. Для них важнее плотность пород.
Идут сквозь Землю нейтрино. О поведении этой элементарной частички мы вообще мало что знаем. И чтó для нее горные породы, если через всю толщу Земли она проходит как через пустоту.
Не связана ли раскраска пород с прохождением через нашу планету электромагнитных волн?
Мне не раз приходилось видеть в полярных зонах красочную музыку северных сполохов. Слова почти бессильны для передачи тех впечатлений, которые возникают, когда видишь полярные сияния! Но вот что пишет об этом знаменитый исследователь Севера Фритьоф Нансен:
«…Нет ничего изумительнее, ничего прекраснее полярной ночи! Сказочная картина, разрисованная красками нежнейших оттенков, какие только может придумать воображение. Это как бы расцвеченный эфир, от легкого колебания один пейзаж переходит в другой, и не знаешь, где, собственно, начинается один тон и кончается другой, и, однако, все они существуют, все многообразие налицо. Твердых очертаний нет, все меркнет, переливается тихой, дремлющей музыкой красок, далекой бесконечной мелодией невидимых струн.
…Чувствуется опытный мастер, в совершенстве владеющий своим инструментом. То он как будто лишь шутя трогает струны, то одним ударом смычка легко и изящно переходит от наивысшего проявления страсти к тихой, будничной лирике, чтобы вслед за тем несколькими смелыми взмахами снова подняться до пафоса…»
Но ведь эта картина до деталей напоминает симфонии камня!
Несомненно, связать многоцветную игру полярных сияний со столь же яркой игрой каменных громад можно пока только в плане научной фантастики. Не пифагорова ли музыка сфер, не звуки ли космоса, передаваемые электромагнитными колебаниями, отразились и застыли в мертвых камнях?
В мертвых ли?
Камни живут. Они живут сложной, многообразной и многоликой жизнью. Наш век — это эпоха открытий. Кто знает, может быть, именно изучение законов электромагнитной жизни Галактики и Солнца позволит глубже познать законы происхождения горных пород?
Конечно, видимая целесообразность живой природы — это только выражение приспособленности организма к условиям среды, следы тончайшего естественного отбора. Отсюда чудесная красота осенних лесов, жаркие краски южного лета, великолепная свадебная одежда павлина. Нет ли и в жизни камня сходных законов? Быть может, красочная музыка шлифов станет ориентиром для нового Дарвина?
А может быть, есть в природе животные, способные воспринимать эту чудесную гамму красок? Нет ли среди жителей нашей планеты существ, обладающих способностью видеть поляризованный, люминесцентный, инфракрасный свет? Не для них ли природа расцветила мир?
Впрочем, как бы там ни было, а геологи уже научились по-своему читать эту музыку камня.
Картины, возникающие в поляризованном свете, имеют и весьма прозаическое значение. В специальном геологическом (поляризационном) микроскопе есть дополнительная линза из исландского шпата. Минерал, из которого сделана эта дополнительная приставка, особенный — он обладает двойным лучепреломлением.
Каждому школьнику известен такой рисунок: на надпись «Исландский шпат» положен ромбоэдрический кристалл. В кристалле отчетливо видно, что надпись раздваивается.
Вот эти два луча проходят дальше к глазу наблюдателя с разной скоростью. Если на их пути поместить прозрачную пластинку — шлиф, то в шлифе скорости хода лучей изменяются в зависимости от минерального состава расшлифованной породы. А это вызовет окраску, свойственную только данным минералам.
Можно на пути хода лучей поставить отполированную поверхность. Пучок света, отразившись от такой поверхности, как зайчик от зеркала, и пройдя через приставку с исландским шпатом, также вызовет окраску, свойственную только этому минералу. Так определяют в отраженном свете различные непрозрачные минералы, главным образом руды металлов.
Геолог-петрограф умеет по показателям преломления или отражения различных раскрасок точно определить в шлифе название всех минералов, а по минералам — и горную породу. Всю жизнь геологи-петрографы и заняты этим давно известным делом.
Но недавно открылся новый путь применения поляризационного микроскопа. Открыл этот путь крупный ученый — профессор Ефрем Александрович Кузнецов.
Если бы Кузнецова спросили, сколько шлифов он просмотрел за свою жизнь, он вряд ли ответил бы на этот вопрос. Во всяком случае, сказал бы — сотни тысяч.
В этих сотнях тысяч световых картин заключались многие закономерности. Одни из них расшифровали его коллеги, другие… А другие еще предстояло раскрыть. Но для этого нужно было не просто смотреть, а думать, сопоставлять, проверять, экспериментировать.
То, что предложил Ефрем Александрович, ошеломило даже видавших виды геологов. Его открытие вызвало вначале настороженное молчание и даже недоверие. Это бывает (я замечу в скобках) не только у геологов. Все новое, ошеломляющее всегда вызывает недоверие у людей, которым свойственна инерция мышления.
Ефрем Александрович длительное время пытался растолковать сущность многих цветовых аномалий. Как объяснить, например, аномалии ярких расцветок? Как возникают яркие тона, отсутствующие в обычном спектре? Просто сказать, что это свойство некоторых минералов. Расшлифуйте, мол, эпидот, цоизит, пренит… и получите такие расцветки. Что тут особенно думать? Такие аномалии и помогают определять минералы.
И десятки тысяч геологов так поступали, не задумываясь над сущностью вопроса.
А Ефрем Александрович, занявшись глубоким изучением многих подобных этому цветовых явлений, долго экспериментировал. Он подбирал светофильтры, составлял диаграммы. Словом, делал что-то не то, что принято, искал скрытые закономерности. И наконец обрел желаемое.
По цветовым аномалиям он стал определять химический состав минералов. Особенно его интересовали радиоактивный изотоп калия и возникающий при его распаде аргон. Они легко определялись в полевых шпатах, в слюдах, встречающихся в разнообразных породах.
А дальше мысль заработала необычайно четко: если можно определить под микроскопом эти элементы, то, значит, можно рассчитать и время их возникновения.
Но если это так, то открыт новый метод определения абсолютного возраста горных пород!!! Следовательно, не нужно производить дорогостоящих определений возраста на специальных аппаратах в геохимических лабораториях. Нужно взять в экспедицию обычный портативный поляризационный микроскоп со специальными приставками к нему, десятка три-четыре светофильтров, таблицы и легкий шлифовальный станок с приводом к автомашине. Тогда прямо у скалы можно определять возраст пород! Это же осуществление мечты многих поколений геологов!
Остается сказать, что за свое открытие профессор Е. А. Кузнецов награжден золотой медалью и премией имени Ломоносова.
Конечно, метод Е. А. Кузнецова не дает нам права браковать другие методы, которыми пользуются геологи. По-прежнему будет во все возрастающих объемах производиться определение абсолютного возраста горных пород по продуктам распада радиоактивных изотопов урана, радия, калия и других. По-прежнему будет иметь основное значение метод относительного определения возраста пород по тем окаменелым органическим остаткам, которые находят в них палеонтологи. С помощью этих мертвых окаменелостей оживают древние страницы истории жизни Земли.
«Внимание, внимание! Слушайте жители всех планет нашей Галактики! Говорит экипаж космического корабля, благополучно достигший планеты загадок!»
Так могла бы начаться первая передача с Земли, если бы на ее поверхность приземлился экипаж планетолета, сплошь начиненного разнообразными кибернетическими устройствами, позволяющими решать задачи любой сложности.
Так же как и мы, возможные жители иных планет ждут любой информации о новом для них мире. И конечно, каждое слово, переданное с Земли в космос, представляло бы для всех необычайный интерес. Конечно, планетолетчики были бы представителями иной, не похожей на человеческую, цивилизации.
Наряду с информацией о рельефе Земли первые ее посетители передали бы ошеломляющую новость о необычайном развитии биосферы — о живых существах, населяющих планету.
Объективная информация выглядела бы необычно для нас. Исследователи насчитали бы свыше 1 миллиона 200 тысяч ныне существующих и некогда живших видов живых существ. А среди них (это было бы передано крупным шрифтом) СВЫШЕ 86 ПРОЦЕНТОВ ЧЛЕНИСТОНОГИХ, ВКЛЮЧАЮЩИХ ОКОЛО 80 ПРОЦЕНТОВ НАСЕКОМЫХ!!!
«Земля — планета насекомых!!!» Так кричали бы все газеты всей Галактики! Среди насекомых планеты первое место (опять-таки по количеству видов) занимают жесткокрылые жуки, потом идут бабочки и мотыльки, затем «общественные» формы: муравьи и пчелы, собранные в крупные коллективы, и, наконец, небольшую группу составляют «прочие» виды насекомых, с низшими формами объединений — такие, например, как саранча, временами тучами покрывающая Землю.
Кропотливые информаторы раскопали бы, что одна из саранчовых туч (не самая крупная) однажды покрыла пространство в 6 тысяч квадратных километров. Она весила столько же, сколько может весить все количество меди, свинца и цинка, добытое человечеством за 100 лет.
А дальше следовали бы новые, столь же невероятные цифры. Такие существа, как кольчатые черви, нематоды, кишечнополостные, губки, иглокожие и (какие-то) млекопитающие составляют примерно по одному проценту от общего количества видов!
Про одну из групп этих млекопитающих — про человека — информаторы сказали бы, что она тоже, как и некоторые из насекомых, слагает общественные коллективы. Что люди, как и термиты, муравьи и пчелы, сооружают постройки, иногда весьма громоздкие…
А в горных породах кибернетические устройства обнаружили бы остатки древних обитателей планеты.
Впрочем, мы знаем о них и сами и обойдемся пока без помощи кибернетики и сведений инопланетных существ.
Снежные заносы закрыли в декабре 1964 года все дороги и перевалы из города Сринагара в южных отрогах Гималаев в Дели и Калькутту — научные центры Индии. В снежном плену оказалась Кашмирская экскурсия геологов XXII Международного геологического конгресса. Но геологи не унывали. Они обжились в походных условиях и разговорились.
Не так часто участникам крупных международных совещаний удается набеседоваться всласть. Обычно программы конгрессов пересыщены докладами до предела. И вдруг, к счастью, заносы.
Сколько было высказано интересных мыслей! Как много поведано необычных историй! Еще больше было завязано дружеских связей.
Одну из историй рассказал норвежский ученый — доктор Л. Штёрмер. Вот она в записи советского палеонтолога, члена-корреспондента Академии наук СССР И. И. Горского. Я лишь дополнил ее некоторыми деталями.
Однажды шотландские мальчишки забавлялись, кидая в воду плоские галечки и подсчитывая, сколько раз плитка ударится о поверхность воды.
Одна из плиток не полетела в воду только потому, что была слишком велика. Зато ее увидели палеонтологи.
Профессор Уиллс обнаружил на плиточке необычный отпечаток, заинтересовавший всех палеонтологов мира. Ему удалось доказать, что окаменелость принадлежит гигантскому скорпиону, который был в два раза больше современного и достигал 30–35 сантиметров.
Интерес к скорпионам в эти годы был подогрет уникальными наблюдениями французского исследователя Анри Фабра.
Часами просиживал Фабр перед стеклянной клеткой с этими насекомыми, наблюдая их жизнь. Пожалуй, самым удивительным из всех наблюдений было описание многодневных брачных танцев: совместных прогулок самца и самки, взаимных ухаживаний, «поцелуев», поглаживаний друг друга лапками, на которых имеются осязательные ворсинки.
Л. Штёрмер рассказал о найденных им осязательных волосках у скорпиона, пролежавшего в земле 300–350 миллионов лет. Ископаемый скорпион сохранился настолько хорошо, что, когда ворсинки очищали от породы, они не обломились. Штёрмер сделал из них тончайшие препараты.
Современная техника биологических исследований позволяет с помощью микротома — резательного аппарата — делать срезы толщиной в 1–2 микрона.
В срезах осязательных волосков скорпиона под микроскопом обнаружились тончайшие внутренние тяжи — нервы. Ископаемые нервы!
Значит, не только по облику, но и по микроскопическим особенностям внутреннего строения ископаемый скорпион был похож на современного, отличаясь от него только размерами. Треть миллиарда лет назад природа создала идеальное (для подобных индивидов) существо, создала настолько хорошо, что в дальнейшем пришлось вносить в эту конструкцию очень немного доделок!
Первых скорпионов из всех известных на Земле описал в 1966 году Эрик Къеллесвиг-Веринг. Он нашел их в силурийских отложениях штата Нью-Йорк в США. Хотя они были известны еще с 1880 года, их пришлось заново изучать и описывать. Переисследованный «Проскорпиус осборни» имел в отличие от последующих форм по два когтя на ходильных ногах. Ему требовались еще и парные сложные боковые фасеточные глаза. Дышал он жабрами, но могли быть у него и зачаточные трахеи.
Жил «Проскорпиус осборни» в морском мелководье, в заливах, лагунах, эстуариях. Возможно, ему приходилось выходить и на сушу. По своему образу существования он чем-то напоминал знаменитого «целаканта» — двоякодышащую рыбу. Но жил он значительно раньше «целаканта». Их отделяет промежуток времени не менее чем в 50 миллионов лет.
Три года шаг за шагом Л. Штёрмер восстанавливал и очищал от породы тело скорпиона. Особенно хорошо сохранилась кожа. У нее была пленка, состоящая из хитина, — органического вещества, сходного с роговым. Этот хитин имел темно-янтарный цвет.
На поверхностях «бедра» и «большой берцовой» последней пары конечностей обращал внимание странный струйчатый орнамент. Его создавали какие-то палочкообразные тела, иногда близко расположенные друг к другу, иногда расходящиеся причудливыми разводами.
Опять в дело пущены были микротом и микроскоп. Много месяцев длилось исследование. И наконец бесспорно вырисовались контуры и очертания «палочек». Детали их строения удивили даже самих исследователей. «Палочки» представляли тельца длиной около 250 микрон. Одна часть их тупо заканчивалась, имея недалеко от окончания пережим в виде шеи. Внутри «палочки» был обнаружен канал диаметром 3 микрона. Такое строение характерно для червей-нематод, питающихся падалью.
Вывод Штёрмера о принадлежности палочковидных тел к нематодам подтвердил крупнейший знаток этих существ доктор X. Вельч из Беллвильского исследовательского института в Канаде.
Нематоды — нитчатые черви — самые опасные паразиты человека, животных и растений. К ним принадлежат и аскариды, и медицинский струнец, вызывающий страшные нарывы, и червецы, пожирающие трупы животных, и многие другие.
Нематоды накинулись на труп скорпиона сразу же после его гибели. Но накопившаяся над трупом скорпиона порода прижала друг к другу пластинки хитина и погребла падалеядов. Они скончались, не успев уничтожить скорпиона. Штёрмер показал на массе срезов, как черви задохнулись, закрытые герметически со всех сторон. Только некоторые из них вырвались из плена, пробурив отверстия в хитине. Большинство же нематод окаменело вместе с скорпионом.
Захоронением нематод не закончилась история «посмертных мучений» скорпиона. Штёрмеру удалось рассмотреть, что срезы некоторых нематод пронизаны тончайшими нитями, во много раз более тонкими, чем канал внутри нематоды. Произведя ряд последовательных срезов и восстановив по ним картину пространственной ориентировки нитей, Штёрмер обнаружил сходство в их расположении с распространением гифов (нитей) грибов, развивающихся на падали. Гифами были частично уничтожены не только нематоды, но и часть хитинового покрова скорпиона.
Между гифами грибов оказались крошечные тельца, менее микрона диаметром, представившие для исследователя новую загадку.
Штёрмер обратился за помощью к профессору Муру из Шеффилдского университета (Англия), и тот высказал предположение, что эти тельца являются частями бациллоподобных форм, принадлежащих к актиномицетам — лучистым грибкам, низшим растительным организмам, похожим и на бактерии и на простейшие грибы.
В наши дни некоторые из актиномицетов служат для получения лекарств-антибиотиков. С их помощью изготовлен стрептомицин, подавляющий туберкулезные палочки, микробы чумы, туляремии и дизентерии.
Конечно, нам неизвестно, жили ли 350 миллионов лет назад такие актиномицеты, которые подавляли болезнетворные микробы, но не исключена возможность, что именно они сыграли какую-то роль в консервации органической массы скорпиона и приостановлении процессов гниения.
Профессору Муру удалось найти такие же актиномицеты и в других образцах пород из Шотландии, одновозрастных с породами, содержащими скорпиона.
Так было доказано, что актиномицеты не были занесены в тело скорпиона в наши дни, а пролежали в земле также сотни миллионов лет.
Еще более удивительные образования встретились Штёрмеру внутри хитинового слоя скорпиона рядом с гифами грибов и комочками актиномицетов. Эти образования были кристаллическими. Размер кристалликов не превышал 25 микрон, и поэтому подвергнуть их обычным методам изучения минералов и кристаллов было невозможно. Штёрмер обратился за помощью к ученым, владеющим более тонкими методами исследований.
Еще в начале нашего века русскому ученому Е. С. Федорову удалось доказать связь химического состава вещества с кристаллографической огранкой.
Так возникла кристаллохимия. После этого открытия учеными других стран была доказана возможность изучения кристаллохимических особенностей вещества с помощью рентгеновских лучей. Рентгенограммы позволяют точно рассчитать структуру кристалла и его атомный каркас и дать ответ на вопрос о химической природе вещества.
Результаты рентгеновского изучения не заставили долго ждать. Рентгенологи определили, что кристаллы принадлежат пропионовому барию и кальцию. Кристаллы такого состава возникают как конечный продукт сложных реакций, идущих под воздействием особого вида бактерий, живущих и ныне.
Деятельность пропионовых бактерий в настоящее время люди используют в промышленных масштабах для производства негорючей кинопленки, особых лаков, искусственного шелка.
Благодаря комплексным усилиям коллектива ученых, привлеченных Штёрмером для изучения тела скорпиона, выявилась сложная картина событий, окутывающих прошлое гиганта из мира насекомых.
Обычную жизнь вел в прибрежно-морских зарослях наш скорпион. Он так же, как и все скорпионы Земли, любил свою подругу, исполнял с ней замысловатый танец любви, сражался со своими противниками…
Но вот пришла смерть. Скончался скорпион на берегу моря. Прибой уничтожил хвостовую часть его тела. Но волны принесли и тонкую глинисто-песчаную муть, прикрывшую остальное тело насекомого. Понемногу накапливалась толща песчано-глинистых пород, надежно закрывая скорпиона от разрушения прибоем.
Но и под покровом породы, в своем «загробном существовании», скорпион не нашел покоя. Немедленно собрались у трупа черви-нематоды. Они, конечно, съели бы скорпиона, но сами нашли преждевременную смерть, придавленные хитиновыми пластинками.
И после этого жизнь в теле скорпиона продолжалась. Но жили уже не черви, а грибы, разъедавшие и насекомое и нематод. В свою очередь, их уничтожали актиномицеты, возможно, тут же выделявшие свои секреты — антибиотики, стерилизовавшие среду. Все это пожиралось пропионовыми бактериями, строившими на чужих телах свою жизнь.
А потом все эти существа окаменели. Некогда живые и активные, они замерли на сотни миллионов лет. Казалось, они обрели вечный покой.
В наши дни их разбудил человек. Началась новая жизнь и скорпиона и всей колонии, занявшей его тело. Скорпион привлек внимание палеонтологов, биологов, микологов (специалистов по изучению грибов), бактериологов, рентгенологов и людей многих других профессий. Они помогли доктору Л. Штёрмеру восстановить далекое прошлое, казалось, бесследно исчезнувшее в пучинах миллионолетий. Но гений человеческой мысли смог из-под савана прошлого извлечь картину жизни, смерти и нового бытия одного из обитателей нашей планеты.
Скорпионы — это потомки еще более удивительных существ из мира членистоногих. Их предки были когда-то великими и нераздельными властителями нашей планеты. Вот о них-то мы и поведем далее наш рассказ.
Крик, страшный беззвучный крик, разнесшийся над безмолвной прежде акваторией, был необычен. В нем звучал сигнал опасности, вопль о спасении. Все, все, все предупреждались этим криком, что свершилось нечто невиданное, неотвратимое, ужасное…
«Спасайся, спасайся, спасайся!» — разносилось над илистым дном.
И все, кто слышал этот сигнал, зарывались в ил, залезали в глубокие норы или просто удирали без оглядки.
Паника не была напрасной. За миллиарды лет существования Земли ничего подобного никто никогда не видел.
Полчища пришельцев — бронированных чудовищ — неотвратимо захватывали метр за метром жизненное пространство. Ничто живое не могло им противостоять! Пути расселения этих чудовищ никому точно не известны. Поэтому для каждого района они были действительно пришельцами.
Вот группа приземистых страшилищ, одетых в тяжелые доспехи, подняв кверху «антенны», выползла на пологий бугор. Вот их уже можно рассмотреть в мерцающем свете придонной части моря. В этом призрачном свете они казались гигантами.
На коротких, многократно сочлененных ногах сидело прочное туловище, защищенное гибким панцирем. Тело чудовища казалось трижды надломленным, отчленяя этим голову, туловище и хвост. Это были трилобиты — трехчленные твари. Против них не было ни у кого оружия. Голова и хвост трилобитов были одеты плотной, непробиваемой броней из ороговевшего кожного слоя, пропитанного для прочности солями фосфорнокислого кальция. Средняя часть тела была гибкой. Панцирь здесь был так ловко расчленен на части, наползавшие друг на друга, что трилобит мог изгибаться и перед броском свертываться в комок.
Гордостью пришельцев были глаза, сидевшие на роговом панцире головы. Они были выпуклыми и состояли из тысяч маленьких фасеточек. С их помощью трилобит видел сразу всю полусферу.
Вдруг в поле зрения одного из трилобитов попала какая-то тень. Мгновенно последовала реакция. Упруго сжалось его тело. Мощный удар хвостом о воду. Резкий бросок — и в лапах пришельца забилась, извиваясь, очередная жертва. Насытившись, захватчики устраивались на отдых тут же, на бугорке, чуть-чуть прогретом лучами солнца, пробившимся сквозь толщу воды. Набитый желудок отягощал голову. Не нужно было ни от кого прятаться. Можно было и отдохнуть.
Пришельцы, получившие название трилобитов, появились на Земле 570 миллионов лет назад, в самом начале палеозойской эры.
До их прихода мир был населен в течение многих сотен миллионов лет мирными существами. Черви, медузы, водоросли, строматолиты, бактерии без особых раздоров находили себе пропитание в водах Мирового океана. Природа делала еще робкие шаги, приспосабливая живые организмы к сложным условиям существования.
Даже не все специалисты — палеонтологи знают о существовании типа мягконогих, или малакопод, населявших илы морских бассейнов до палеозойской эры и в начале палеозоя. Это были странные существа, одетые в мягкий хитиновый покров. В длину они достигали 15–20 сантиметров. Тело их было разделено на сегменты. Короткие мягкие лапки (не менее 10 пар) с трудом передвигали по илистому дну такое тело. Голову малакопод украшали «антенны». Как и их прародители — кольчатые черви, малакоподы заглатывали ил, пережевывая его своими челюстями. В морских слоях Швеции найден отпечаток малакоподы, названной «ксенусионом». Некоторые палеонтологи пытались считать это существо за предка трилобитов, но ныне окончательно доказано, что малакоподы не являются прямыми предками членистоногих. Это стало очевидным после детального изучения современной малакоподы, обнаруженной среди илистых осадков современных теплых морей.
И вот в мирную идиллию допалеозойских существ вторглись одетые в панцирь трилобиты, явившиеся неведомо откуда. (Это действительно так. Предыстория трилобитов пока еще остается загадкой для палеонтологов.) В кратчайшее время они завоевали весь обитаемый мир. На суше жизни еще не было.
Многое отличало пришельцев от всех живых существ. Но главными отличиями были органы (именно органы!) зрения, осязания, вкуса, ориентировки в пространстве.
Глаза трилобитов вызывали удивление многих исследователей. На окаменелых отпечатках хорошо сохранившихся древних трилобитов можно видеть фасеточное строение глаз этих существ.
Фасетки — мелкие линзы, посаженные в трубочках, отделенных друг от друга светонепроницаемыми оболочками. Таких фасеток в каждом глазу насчитывается от нескольких сотен до 15 тысяч!
Фасеточные органы зрения теперь хорошо изучены. Оказывается, такие глаза обладают рядом преимуществ перед глазами позвоночных.
Свет от блестящей точки попадает только в ту фасетку, которая точно направлена на источник света. В соседних фасетках луч света попадает только на светонепроницаемую оболочку.
Значит, первый вывод напрашивается сам собой: это органы ориентации. Можно точно держать определенное направление, если луч света пойман только одной или группой фасеток!
Потомком древних трилобитов является современный мечехвост. Изучение мечехвостов — это ключ к прошлому. Американский ученый Хартлайн установил у мечехвостов цветовое зрение! Удалось обнаружить у них способность различать окраску в инфракрасных и ультрафиолетовых частях спектра! А американский зоолог Уотерман обнаружил способность мечехвостов видеть поляризованный свет!
Второй вывод отсюда еще более ошеломляющий. Трилобиты могли ориентироваться и по ультрафиолетовым, и по инфракрасным сигналам, и, что особенно важно, по поляризованным лучам.
Зарывшись в ил, трилобит видел окружающее пространство в яркой цветовой тональности. Чешуйка слюды — биотита, отразившая поляризованный свет, воспринималась трилобитом как ориентир темно-зеленого цвета, а рядом могло располагаться зеленое пятно роговой обманки.
Существа, жившие более полумиллиарда лет назад до появления человека, умели видеть цветовые следы поляризованного, ультрафиолетового, инфракрасного света — тот многокрасочный мир, который открывается нам только с помощью сложных приборов.
В темный, непогожий день ориентиры, отражавшие солнечный свет, не выделялись. Но это не смущало трилобитов. Невидимый человеческому глазу поляризованный свет отлично служил для ориентировки.
У мечехвостов обнаружена еще одна особенность глаза. Клетки зрительных нервов соединены перекрестно. Взаимодействуя друг с другом, подавляя слабые сигналы, такие соединения способствовали увеличению контрастности изображения. Этот принцип недавно использован в телевидении.
Исследование свойств глаз трилобитов продолжается. В 1965 году Е. Н. Кларкзон опубликовал интересную заметку о том, как он изучал глаза силурийских трилобитов. На специальном столике, приделанном к бинокулярной лупе, ученый измерял положения в пространстве оси каждой фасетки глаза трилобита. Результаты измерений наносились на стереографическую сетку, позволяющую фиксировать положение зрительной поверхности в пространстве. Изучались и личиночные и взрослые формы.
В результате оказалось, что, несмотря на рост глаза при росте трилобита и увеличение с возрастом количества фасеток, углевой размер зрительного поля оставался постоянным. Удалось установить также, что глаза трилобитов были приспособлены к восприятию движущихся объектов.
Еще нет пока научных исследований, посвященных изучению органов осязания и вкуса у трилобитов. Об этих органах можно судить только по аналогии с другими существами.
Исследователи не раз отмечали наличие чувствительных волосков — щетинок, сохранившихся иногда на «антеннах», иногда на головных щитках трилобитов.
Что воспринимали эти чувствительные рецепторы? Пока мы вряд ли ответим удовлетворительно на данный вопрос. Можно лишь сказать, что волоски «антенн» таких животных могли служить и для целей осязания, и для определения вкуса, и, возможно, для передачи и приема других сигналов.
А дальше можно говорить и о координации систем биоориентации этих удивительных существ.
В предисловии к книге по проблемам бионики академик А. И. Берг рассказывает, что у некоторых насекомых (бабочек, жуков) имеются особые органы — гиротроны. Устройство этих органов весьма просто и гениально. Пара усиков таких животных все время колеблется в строго горизонтальной плоскости. Если животное сбивается с курса, то концы колеблющейся системы вызывают силовые напряжения, воздействующие на нервные клетки, расположенные у основания усиков. Автоматически, после сигнала того или иного усика, нервный центр дает команду, как следует поступить, чтобы выправить курс.
По типу этих аппаратов созданы современные гиротроны, применяемые в самолетах. Роль усиков в них выполняют камертоны, приводимые в движение электромагнитными импульсами.
Единая система ориентации предусматривает учет и определение скорости передвижения. Эти функции легко выполняет фасеточный глаз. Система ориентации и определила то, что у многих насекомых средством передачи информации стал танец.
У нас нет оснований сомневаться в том, что у трилобитов было что-либо иное. Ориентироваться во время передвижения в море им помогали гидрогиротроны. Их роль могли исполнять и «антенны» и любая пара конечностей.
На самом деле: для чего? Прошло почти полмиллиарда лет. Забылся даже облик некогда грозных властителей Земли, царствовавших на планете более 100 миллионов лет. Невольно встает вопрос: можем ли мы сейчас осветить смысл существования всего трилобичьего племени? Каков итог их многомиллионолетнего владычества? Что дала нашей планете жизнь всех трилобитов? Можем ли мы сейчас разрешить те проблемы, которые, конечно, не могли поставить и на которые не могли дать ответ сами трилобиты?
Однажды, лет сорок назад, я шел в Ленинграде мимо Таврического дворца. Засмотрелся. Споткнулся. Вывернул из тротуара плитку известняка. Поднял ее. На ней был четкий отпечаток трилобита.
Тротуары Петербурга-Ленинграда в свое время мостили известняком — плитняком из каменоломен, заложенных в известняковых массивах. Плитняки эти накопились на дне древнего моря, некогда покрывавшего территорию Ленинградской области.
Такие трилобитовые известняки можно встретить почти на всех материках, там, где распространялись полмиллиарда лет назад морские бассейны. География в то время была иной. Вот и находим мы на нынешней суше слои с окаменелыми трилобитами.
Значит, первый ответ на вопрос о том, какую роль сыграли трилобиты в жизни Земли, напрашивается сам собой. Они изменили состав верхних слоев земной коры. Возникли слои с окаменелыми остатками этих животных. Для геологов это очень важно. Найдешь в земных слоях окаменелого трилобита и знаешь, что в великой летописи планеты ты столкнулся с весьма древними слоями.
Палеонтологи совместно с геохимиками точно определяют этапы палеонтологической летописи, выделяя слои с предковыми формами трилобитов, с высокоразвитыми экземплярами и слои с вымирающими представителями этого племени.
Не гладко развивалась жизнь трилобичества. Особые потрясения они перенесли на рубежах в 70 миллионов лет после их массового появления, а также в 100 и 160 миллионов лет от этой же даты.
Для геологов такие рубежи, сопровождавшиеся массовым вымиранием старых видов и появлением новых, являются хорошими реперами на великой лестнице развития жизни. По трилобитам очень удобно выделять первые ступеньки палеозойской эры: кембрийский период — 570–500 миллионов лет, ордовикский период — 500–440 миллионов лет, силурийский период — 440–410 миллионов лет. И для каждого из названных периодов характерен свой комплекс трилобитов, различать который геологи научились.
А для эволюции жизни на Земле особенно велика была роль трилобитов как мощного фактора борьбы за существование, выработки жизнестойкости и своих отрядов и тех, кто им противостоял. В жестокой битве за жизнь выживали наиболее приспособленные. В этом второй и самый главный смысл существования не только трилобитов, но и других групп живых существ.
Тысячами радужных искр отвечало голубому небу и ярким солнечным лучам морское дно. Ничем не омрачалась морская гладь. Лишь легкая тень от отряда трилобитов прошла по разноцветному дну. Тень не задержалась и прошла мимо.
И вдруг дно зашевелилось. Поблекли краски. Отчетливо стали видимыми какие-то уроды, копошившиеся на дне.
Так или примерно так приспосабливалась к борьбе с врагами одна из прогрессивных групп организмов, вступившая в борьбу за жизнь.
Что могло противостоять обостренному цветовому зрению царей природы — трилобитов?
И жизнь четко ответила на этот вопрос. Есть два пути: либо столь же яркая защитная окраска, либо создание полного затемнения.
Во всякой войне побеждает тот, кто применяет новое тактическое или стратегическое оружие.
Я видел современных головоногих моллюсков, изменяющих свой цвет.
Мы расположились на пляже курортного города Саранды, в Албании, на берегу Ионического моря. Купались. Дурачились. Прозрачная вода давала возможность рассмотреть мельчайшие детали и яркие краски морского дна.
Тихо проплыла лодка. Морской охотник-рыболов был вооружен острогой. Миг… Удар… И там, где мы только что видели чистое разноцветное дно, затрепыхалась добыча.
Это был небольшой осьминог. Мы бросились на помощь рыбаку. С трудом отцепили от бортов лодки щупальца-присоски. А осьминог на наших глазах становился то серым, то коричневато-пурпурным.
Природа выработала у головоногих моллюсков не только защитную окраску. Выжили те экземпляры, которые могли и нападать.
В силурийском море, 440–410 миллионов лет назад, выжили те из головоногих, которые могли, подпустив трилобита, задержать его своими мощными присосками. А потом пойманная жертва притягивалась к роговым челюстям клюва и перемалывалась во рту на терке из многочисленных рядов пластин и крючков.
Пищи для таких головоногих было много. И они стали наращивать свои размеры. Обычны в силурийских осадках окаменелые остатки раковин головоногих моллюсков до 2 метров длиной. Попадаются среди них экземпляры и до 4,5 метра длины.
Если кому-либо встретится в Ленинграде, на какой-нибудь старой улочке тротуар из такого плитняка, о котором говорилось в предыдущей главе, то внимательно присмотритесь к нему. На плитах можно встретить отпечатки каких-то странных палок. Это и есть окаменелые раковины головоногих моллюсков, называемых палеонтологами «эндоцерасами».
Большие размеры «эндоцерасов» не способствовали мобильности. И, как это ни парадоксально, «эндоцерасы», заняв на короткое время главенствующее положение, погибли… от хорошей жизни. Раздобрев, увеличившись в размерах, потеряв мобильность, они сами стали добычей других, более приспособленных форм.
И все же головоногие моллюски не раз достигали главенства. Живут они и сейчас, занимая скромное, но прочное положение среди прочих обитателей океана.
Из современных нам организмов весьма интересна сепия. Ее тело окрашено в желто-розовый цвет. Глаза у нее синеватые, руки зеленоватые. В возбужденном состоянии она становится темно-каштановой. Глаза переливаются всеми цветами радуги. Если это изменение окраски не помогает, сепия мгновенно «пускает пыль в глаза» — выбрасывает чернильную жидкость и скрывается в «дымовой завесе».
Мгновенный бросок сепии или другого современного головоногого — кальмара связан с особой формой движения — реактивной.
Такой головоногий моллюск, набрав воды в мантийную полость, плотно запирает ее в организме мощным хрящеватым замком. А в случае необходимости следует мышечный импульс — и вода выбрасывается через профилированное поворотное сопло. Всасывание и выброс воды чередуются с молниеносной быстротой. Вода всасывается во время движения тела по инерции.
Гидрореактивный движитель головоногих моллюсков сочетается с совершенными органами ориентации — продольными килями, с помощью которых можно не только сохранять направление, но и легко менять его. Изобретен этот двигатель был свыше 400 миллионов лет назад.
Некоторые из головоногих моллюсков в прошлом не раз изменяли форму раковины. Она у них стала спирально закрученной. Другие выработали внутренний скелет. Третьи наращивали только мягкую ткань. Об этих третьих мы мало что знаем. Каменные плиты не сохранили нам их следов.
Первое впечатление от новых властителей природы — рыб — их необычайная красота. Вот золотая макрель. Она, по описанию Брема, «плывя на поверхности воды, сверкает блестяще-синим или пурпурным цветом, с металлическими отблесками всевозможных оттенков и отливов, смотря по тому, находится ли она на свету или в тени; только хвост сохраняет свой золотисто-желтый цвет. Когда макрель вытянута из воды и принесена на палубу, эти цвета изменяются в другие, также красивые: горящий пурпур и золотисто-желтый цвет переходит в серебристый, на котором сверху переливаются первоначальные пурпурные и золотистые отливы».
Другие рыбы — краснобородковые — особенно ценились у древних римлян за их окраску. Для удовольствия гостей в столовую приносили большие сосуды с этими рыбами. Сначала любовались движениями рыб, яркими переливами чешуи и блеском жабер, а потом их быстро жарили и съедали.
К сожалению, в ископаемых остатках поблекли все эти краски. В знаменитом местонахождении ископаемых рыб, живших на территории современной нам Шотландии в слоях, накопленных 370–380 миллионов лет назад, тысячами обнаруживаются великолепные экземпляры. Но среди них нет ни одной цветастой рыбы — краски умерли.
То же можно сказать о рыбах из других местонахождений. Вот рыбы из хребта Каратау в Южном Казахстане. Они значительно моложе шотландских. Им всего около 150 миллионов лет, но и они впитали только цвет вмещающей их породы.
Мне подарили однажды отпечаток рыбы из черных медистых сланцев Мансфельда (ГДР). Отпечаток тоже стал черным. В земле эта рыба пролежала 250 миллионов лет.
Как знать, может быть, предки современных рыб соревновались в приобретении защитной окраски с головоногими моллюсками? Современная бородавчатка так приспособила свою окраску к цвету кораллов, что когда она лежит на пурпурном ложе, то самый внимательный наблюдатель не отличит ее от кораллов.
Но не цветовая гамма вывела рыбий род в число главенствующих в море организмов.
Конструкторское бюро природы выдало рыбам патент на гениальное изобретение, практическое применение которого обеспечило многим из них победу над врагами.
Рыб, обладающих способностью атаковать врага мощными электрическими ударами, человек знал давно. Брем приводит рассказ одного из таких охотников за электрическими угрями.
«Я поднял в перчатках, защищавших меня от электрических ударов, здоровенный экземпляр угря более чем в 1,5 метра длиною, сильно бившийся у меня в руках, и только что собрался было бросить его в приготовленный сосуд, как угорь вдруг выскользнул у меня из рук, упал к моим ногам, его голова и хвост коснулись сразу моих обеих ног, и я получил несколько сильнейших электрических ударов. На несколько секунд угорь оставался в вышеописанной позе, но от страха я не в состоянии был пошевельнуться, так как сильно раздраженное чудовище буквально как градом сыпало в меня свои страшные разряды; я громко кричал от нестерпимой боли, пока, наконец, угорь не отполз от моих ног и не ускользнул в реку мимо загороженного сетями пространства».
Строение черепа ископаемых рыб показывает, что в определенной части их мозга также наблюдаются увеличения, подобные тем, которые есть у современных электрически активных рыб. Если уж человек кричал от нестерпимой боли, то что делалось с прежними царями природы — трилобитами и головоногими! Они легко доставались в пищу новым властителям водной стихии.
Еще Дарвин в свое время удивлялся: зачем некоторым рыбам слабые электрические органы? И относил их к непознанным явлениям природы.
Разгадка пришла в наши дни. Наблюдения над нильским длиннорылом, излучающим низкочастотные электромагнитные колебания, показали, что это органы локации. Отраженные от препятствий, эти колебания воспринимаются особыми органами рыбы, расположенными в основании спинного плавника.
Рыбы ориентируются и по запахам, и по солености воды, и по температурным изменениям, и по магнитному полю, и по звуковым сигналам. Органы чувств рыб воспринимают малейшие изменения окружающей обстановки. И развились эти приспособления у рыб вместе с удивительной способностью к покорению пространства, силой и мощным зубным аппаратом.
В настоящее время наиболее быстроходные рыбы развивают скорость до 120–130 километров в час. И в немалой степени способствуют этому гармоничные пропорции их тел. Биологи, заглянувшие в труды Н. Е. Жуковского, Л. Эйлера, Д. Бернулли — творцов аэро- и гидродинамики, были ошеломлены сходством проекций очертаний корпуса многих акул с профилями самолетов, рассчитанными для получения большой подъемной силы.
Но что самое удивительное — рыбы освоили так называемый кавитационный режим. Кавитация, пишут специалисты, — это нарушение сплошности текущей жидкости, которое сопровождается образованием пузырьков газа; взрываясь, они вызывают разрушающий гидродинамический удар. Кавитационная энергия ежегодно выводит из строя десятки тысяч тонн металла гребных винтов. Ученые многих специальностей работают над проблемой кавитации. Например, создатели быстроходных судов трудятся над ее устранением. А буровики, наоборот, разработали даже особый режим кавитационного бурения и рассчитывают, что в скважине на определенной глубине сила гидродинамического удара пузырька воздуха будет равна заряду в 20 граммов тротила. Миллионы таких пузырьков раздробят горные породы любой твердости.
А рыбы освоили кавитацию! Пузырьки газа около их тела не взрываются, а помогают им добиваться огромных скоростей. И изобрели все это сотни миллионов лет назад!
Не удивительно, что еще во второй половине силурийского периода — в нижнем девоне, то есть более 400 (!) миллионов лет назад, уже существовал царь рыб «Цефаласпис». Он был закован в гибкие латы, обладал совершенными органами локации и, судя по его очертаниям, развивал скорости кавитационного режима.
Нет ничего удивительного, что рыбы и сейчас продолжают владычествовать над океаном.
Вот из зарослей древовидных папоротников показалась зловещая тень. Прижимаясь к земле и как-то странно покачивая задней частью тела, выполз страшный зверь. Один вид его вызывал ужас и оцепенение. Он был чем-то похож на современного и ископаемого тигра. Та же мощная грудь. Страшные когти на лапах. Вытянутая морда. В оскаленной пасти — страшные клыки. Раскосый взгляд.
Миг. Прыжок! И на земле бьется не менее ужасное и столь же гигантское, почти трехметровое тело. Но, несмотря на ужасный облик, это всего лишь безобидный парейазавр, попавший на обед хищнику — иностранцевии.
Этот эпизод выдуман не мной. Я просто описал то, что изображено на обложке книги академика Н. М. Страхова «Историческая геология».
Произошло это событие, а по существу рядовой эпизод из жизни животных, около 230–240 миллионов лет назад.
А потом по какой-то причине скончалась и иностранцевия. Кости этих зверей перенесла река. Они затонули в спокойных ее плесах.
На рубеже XIX и XX столетий их открыл профессор В. П. Амалицкий. Отпрепарировал находки.
Кто хочет взглянуть на этих наших страшных предков — садитесь на автобус или троллейбус и поезжайте в Палеонтологический музей Академии наук СССР на Ленинском проспекте в Москве. Там выставлены для всеобщего обозрения окаменевшие остатки наших далеких родственников.
Если вы живете не в Москве, а, скажем, в ГДР, советую посмотреть в вестибюле Естественно-исторического музея города Карлсруэ интересный стенд. Вы сразу увидите десятиметровую стену из черных сланцев, с вделанными в нее скелетами морского крокодила, двух ихтиозавров, различных рыб и моллюсков. Все эти животные жили в юрском периоде — 140 миллионов лет назад.
Думаю, что можно не называть адреса других естественно-исторических отделов музеев в различных городах и странах. В каждом из них можно встретить что-нибудь удивительное.
В большинстве случаев во всех этих учреждениях наше внимание концентрируется на тех животных, развитие которых привело к возникновению человека. Сначала показывают отпечатки червей. Их считают родоначальниками всех позвоночных (хотя никем это не доказано). Потом демонстрируют рыб. Из рыб произошли земноводные, а потом рептилии. Из рептилий — млекопитающие. Венцом развития млекопитающих явился человек.
Мы искренне переживаем трагедию млекопитающих в мезозое, в эру расцвета рептилий. Свыше 150 миллионов лет находились млекопитающие под гнетом гигантских рептилий. Некоторые ученые считают, что это было связано с особым «изобретением», разработанным рептилиями. С помощью своеобразного термометра они необычайно точно фиксировали температуру окружающего пространства. Тысячные доли градуса учитывались ими. А это означало, что любое теплокровное, пробегающее мимо рептилии, мгновенно уничтожалось.
По не вскрытым еще наукой причинам крупные рептилии вымерли в конце мезозойской эры, 70 миллионов лет назад. И сразу начался расцвет млекопитающих. От сумчатых — к человеку, так можно назвать этот этап.
За всю историю развития позвоночных конструкторская мысль природы выдвигала много полезных и разумных приспособлений, проверяя их на полигоне жизни. Особенно много ценных «изобретений» было сделано при переходе животных из водной среды на сушу и в воздух.
Первыми были «изобретены» ноги. Произошло это у позвоночных около 400 миллионов лет назад. «Старина четвероног» — целакант — первая «ходячая рыба». Кроме ног, целакант «изобрел» и легкие. Это было двоякодышащее существо.
Другие двоякодышащие — амфибии — использовали ноги, «изобретение» целаканта, усовершенствовали их, развив необычайную прыгучесть.
Амфибиям пришлось соревноваться с рептилиями. У тех появилось новое преимущество — зубы и страшная сила.
Силовое направление в развитии позвоночных было необычайно важным. Но и прыгучесть не считала себя побежденной. В жизненном соревновании постепенно удлинялись прыжки. Освоили их и рептилии. И не только освоили, а довели до совершенства. Летающие драконы надолго завоевали мир. Они соединили в себе ловкость, длительность полета, грубую силу и страшные зубы.
Самым крупным из драконов был летающий ящер птеранодон, живший в меловом периоде. Он летал лучше современных альбатросов. Размах его крыльев превышал 8 метров. В планирующем полете никто бы не смог соревноваться с ним.
Завоевание воздуха требовало и новых приемов ориентировки. Судя по современным летучим мышам, многие из летающих тварей овладели техникой ультразвуковой локации. Ультразвук, испускаемый животным, отраженный от препятствий, давал возможность не только огибать в полете препятствия, но и ловить даже мельчайшую дичь.
Среди летающих животных долго длилось соревнование между чешуей, шерстью и перьями. Что лучше в полете?
Проверка временем (а такая проверка длится миллионы лет) показала лучшее качество перьев. Почему птица может пролететь без отдыха огромные пространства? Возможно, здесь имеет значение электростатический заряд, легко удерживающийся и возникающий в полете при трении перьев о воздух? В общем факт, что в жизненном соревновании победили птицы!
А у млекопитающих опробовались лучшие формы конечностей, сила, зубы, скорость передвижения, теплокровность, позволяющая сохранить активность даже в холодное время года, и, наконец, умственные способности, высокое развитие мозга.
Что лучше: копыта, когти или ласты?
Каждый тип конечностей требовал полного к ним приспособления всего организма.
Рассказывают такой эпизод из жизни одного из крупнейших палеонтологов прошлого столетия — Жоржа Кювье. Он был большой сторонник и автор закона корреляции — закона полного приспособления любого организма к определенным жизненным условиям, закона полного взаимного соответствия органов. Студенты решили напугать своего профессора. Один из них, нарядившись чертом, вошел в комнату, в которой спал Кювье, разбудил его и стал делать вид, что хочет его съесть. Кювье, взглянув на переодетого студента, сказал: «Раз у тебя имеются рога и копыта, ты, по закону корреляции, — травоядное существо и съесть меня не можешь», — повернулся на другой бок и заснул.
Законы корреляции привели к тому, что те существа, которые возвратились к морскому образу жизни, стали иметь и соответствующий облик. Дельфины, например, уже десятки миллионов лет имеют облик рыб, но взяли на вооружение то, что изобрели их сухопутные родичи, — ими освоен ультразвук. Используя ультразвук, взяв скорости передвижения от рыб и, что самое важное, обладая мозгом, превышающим мозг высокоразвитых сухопутных млекопитающих, дельфины стали полноправными обитателями морей.
Из-за ярко-красного кораллового утеса выглянуло что-то невообразимо жуткое. Представьте себе полуметровый жбан вместо головы с огромными, как гигантские лупы, глазами. Вперед, примерно на метр от головы, у чудовища были выставлены гигантские клешни, напоминающие кузнечные клещи. Короткий рывок, удар хвостового плавника — и вперед вырвалось трехметровое чудовище с гибко сочлененными 13 сегментами туловища, одетыми в непробиваемый панцирь!
Снова удар хвостовым плавником — и чудовище скрылось, оставив позади себя лишь легкий след взмученного ила.
Все это не выдумка. Я привел лишь бледное описание птериготуса — трехметрового чудовища, жившего в морях раннего девона, около 400 миллионов лет назад.
Как-то раз мне пришлось быть в Омске. Первое, что я сделал там, — это, конечно, осмотрел музей. В естественно-историческом отделе я наткнулся на необычное чудовище. Оно было под стеклом в витрине. Размер его около полуметра. И как назло, надпись так «удачно» сделана, что без очков не прочтешь, а для очков — далеко. Пришлось дождаться «зрячих» посетителей. Ими оказались всезнающие ребятишки. Они-то и успокоили меня:
— Не пугайся, дяденька. Это невсамделишный. Там написано, что так бы выглядел таракан, если его увеличить до полуметра.
До полуметра. А трехметровое чудовище было не выдуманным, а «всамделишным»!
«Конструкторы природы» при создании бесчисленных членистоногих «пробовали и испытывали» самые разнообразные варианты. По-видимому, гигантские размеры (силовое направление) оказались невыгодными, хотя и до сих пор этот вариант «не снят с производства». Гигантские крабы дальневосточных морей и сейчас являются объектом для испытания надежности этого направления в эволюции членистоногих.
«Вся местность была освещена палящим светом, сила которого во много раз превосходила силу полуденного Солнца. Этот свет был золотым, пурпурным, фиолетовым, серым и синим». Так описывает Г. Д. Смит в своей книге «Атомная энергия для военных целей» яркую вспышку при первом атомном взрыве. Во многих других рассказах о последующих взрывах всегда отмечается какой-то странный, «неземной» свет.
Есть существа, которые умеют видеть радиоактивное излучение. В наибольшей степени наделен этой способностью таракан.
Что видит таракан за печкой? Серые и синие тона радиоактивных импульсов, все время врывающихся к нам? Может быть, действительно эти вспышки имеют необычную яркость?
Ведь таракан к тому же видит и инфракрасный свет. А какие краски дает этот свет? Что изобретено тараканом в области освоения световых волн?
К сожалению, проникнуть в мир того, что видит таракан, мы не в состоянии. Мы не умеем видеть всего этого без сложных приборов.
А таракан «изобрел» видение в инфракрасном свете около 350 миллионов лет назад!
Тогда он был полуметровым чудовищем, населявшим первые леса каменноугольного периода. Этот страшный хищник, охотившийся ночью, умевший видеть в полной темноте, был поистине грозой тех времен.
Тараканы кусаются.
Как-то раз на меня напали полчища прусаков.
Это было в районе станции Академической, на Валдайской гряде. Мне, тогда студенту Ленинградского университета, было поручено сфотографировать для Географического музея в Ленинграде ряд типичных пейзажей конечно-моренной гряды.
Техника в то время была довольно примитивной. Снабжен я был фотокамерой 18×24 в деревянной оправе, четырьмя дюжинами стеклянных пластинок, кабинетным штативом и снаряжением для проявления. Все это оборудование вместе с моим несложным имуществом весило более двух пудов.
Я заснял двенадцать великолепных пейзажей. К вечеру, добравшись до одной деревеньки, попросился переночевать, с тем чтобы ночью проявить пластинки.
Еще в сумерки, готовясь к проявлению, я обратил внимание на армию рыжих прусаков. Но хозяйка успокоила меня, сказав, что они здесь «с исстари века».
Проявил. Снимки оказались чудесными. Прислонил негативы к оконным стеклам. Ночь провел в тревоге. Все время отбивался от озверевших тараканов.
А утром обнаружил, что вся эмульсия пластинок начисто съедена. Ну и ругался же я, дублируя снимки!..
Я представляю, как они пировали, рассматривая красивые пейзажи (для них, может быть, цветные) на вкусном, мягком желатине!
Но ведь это наши мирные, домашние прусаки. А их дикий предок, кусающийся полуметровый таракан, был действительно страшен.
Конечно, у нас нет доказательств того, что древние насекомые из карбона и перми видели так же, как и современные тараканы. Но и предполагать появление таких особенностей у подобных животных только в наши дни мы тоже не можем.
Вместе с тараканообразными в лесах каменноугольного периода жили другие великие «изобретатели» — стрекозы. Их открытие гениально. Стрекозы первыми завоевали воздух!
Над гигантскими древовидными папоротниками и хвощами легко парит изящное существо, освоившее и осуществившее вертикальный взлет, вертикальную посадку, способность развивать большие скорости в полете и зависать в воздухе над одной точкой. Наши авиаконструкторы только на воздушном параде 1967 года показали нечто подобное тому, что освоено было стрекозами 350 миллионов лет назад!
Как это произошло? Об этом они сами рассказывают нам, повторяя в своем индивидуальном развитии путь предков.
В июне 1941 года мне пришлось наблюдать, как десятки тысяч странных существ выползали из озера. Это было в районе туристской базы, расположенной в окрестностях Ильменского государственного минералогического заповедника имени В. И. Ленина на Южном Урале. Так начинали новую жизнь личинки стрекоз.
Они хищники — эти ненасытные, прожорливые твари. Их нижняя губа оттянута в так называемую маску — хватательный орган, прикрывающий рот. Дышат личинки стрекоз жабрами. Как только настает время перерождения, они выползают на берег, обсыхают. Кожа их разрывается, и в воздух поднимается еще более прожорливое и хищное существо.
Современные крупные стрекозы бывают 10–12 сантиметров в длину. Их предки в карбоне достигали 70 сантиметров и даже метра!
Судя по находкам окаменелых остатков, уже древние стрекозы обладали великолепным зрением. Фасеточные глаза стрекоз позволяли им видеть в ультрафиолетовом свете, ориентировать полет по определенным точкам (даже звездам) при закрытом облаками небе, по проникающим через атмосферу лучам поляризованного света. Кто знает, может быть, они умели видеть то, что мы наблюдаем сейчас только с помощью линз, поляризующих свет? Если так, то мир стрекоз был раскрашен волшебной палитрой. И те дополнительные цвета, которые улавливались насекомыми, служили им для точной ориентировки на местности.
В тридцатых годах я вел геологические исследования на Тимане. Тиманский кряж, протянувшийся от Баренцева моря на юго-восток, — это край непуганых птиц, рыбных угодий, нетронутой вековой тайги. Сюда, в водораздельную зону рек, впадающих в Мезень и Печору, прилетают плодиться дикие утки и гуси. В верховья речек, преодолевая пороги, идет нереститься семга.
Пробираться по тайге из-за сплошных завалов невозможно. Единственный способ передвижения — лодки. Естественно, рыбная ловля сопутствовала работе. Косяки хариусов встречались на порогах и перекатах.
— Почему на порогах?
И местные охотники-проводники разъясняли:
— Клопа рыба с себя сбивает. Ну, как свинья о забор чешется, так и хариус о струю.
Тут же мне демонстрировали белесых плоских тварей, всплывших в ведре от мертвой рыбы. Величиной они были с рыбью чешую. Они примащивались под чешую и высасывали рыбью кровь.
Вот так же и в далекую палеозойскую эру, сотни миллионов лет назад, приспособились паразитировать эти существа — сначала на царях водной стихии рыбах, а потом на покорителях суши амфибиях, рептилиях и млекопитающих.
Вольготно жилось паразитам в лесах каменноугольного периода 350 миллионов лет назад. Часть паразитов прижилась к животным, часть — оседлала растительный мир.
Другой кровосос — клещ — имеет столь же почтенную и длительную родословную.
В Шотландии была описана уникальная находка. В нижнедевонских сланцах, накопившихся в континентальных условиях, был обнаружен окаменелый клещ. Он пролежал в земле почти 400 миллионов лет! Но не это самое удивительное. Поражает его облик. Он был столь же отвратителен, как и сейчас. Конечности клеща были так же снабжены колючками, позволяющими цепляться за любую поверхность живой ткани. Облик этого существа за 400 миллионов лет почти не изменился!
Клещ сделал удивительное открытие, позволившее ему столь длительное время процветать, сохраняя свой облик. Он изобрел анестезирующее вещество!
Прежде чем впиться в жертву, клещ выпускает маленькую капельку жидкости, обладающей обезболивающими свойствами. От этого вещества притупляется чувствительность нервных окончаний. Миг — и рот паразита в жертве. Вырвать присосавшегося клеща почти невозможно.
Каждому из нас приходилось охотиться за молью. Вот летит маленькое, безобидное на вид существо, портящее одежду. Конечно, его надо убить! Хлопок ладошками, и… моль благополучно летит над головой или близко от пола. Еще удар — и опять мимо!
Не только от наших хлопков моль умеет стремительно бросаться в сторону. Точно так же она спасается от всех, кто пытается за ней охотиться.
В далекую мезозойскую эру масса летающих существ оккупировала воздушное пространство. К этому их побудило не только стремление спастись от наземных хищников, но и обилие пищи. Еще с палеозоя воздух прочно был завоеван насекомыми.
Началась схватка. Казалось, побеждали летающие ящеры. Ведь у них было могучее оружие — ультразвук! Дробинка, падающая в воздухе, не может ускользнуть от луча ультразвукового локатора!
А вот моль, заслышав сигналы локатора, — повторяю, только заслышав! — мгновенно бросается в сторону и этим спасается от охотника!
Сейчас установлено, что в слуховом аппарате моли есть генератор ультразвуковых колебаний. Он синхронно настроен на локаторы летучей мыши. Это и дает возможность дичи предупреждать действия охотника.
Но ведь это означает, что моль 150 миллионов лет назад «изобрела» антилокатор! Размеры аппарата исчисляются долями миллиметра! Это пока неразрешимая задача для нашей техники.
Как-то раз студенты поделились со мной своим «открытием». Им только что закончили чтение раздела математики по теории вероятностей. Пользуясь формулами, студенты легко рассчитали, сколько облигаций государственного займа нужно иметь, чтобы в каждом тираже обеспечить себе определенный выигрыш, и уговаривали меня купить такое количество облигаций.
Расчет несложный. Но как данный раздел математики освоили насекомые? Вот об этом открытии рассказать сложнее.
Паук, с нашей точки зрения, совсем неприметное существо. А строит он свою паутину, исходя из законов теории вероятностей. Именно в том месте, где раскинуты тенета, должна пролететь муха.
Теорию вероятностей освоили многие существа. В первую очередь те из них, которые не заботятся о своем потомстве. Они откладывают яйца в массовом количестве, «рассчитывая», что какое-то одно или несколько из них выживет и даст взрослую особь.
Известен несложный расчет: что было бы, если бы у устрицы выживали все дети? Оказывается, через несколько поколений объем биомассы всех устриц превысил бы объем земного шара.
Теория вероятностей в применении к выживающим формам объясняет нам многие из путей эволюции органического мира. Выживают только те особи, у которых в условиях данной среды выявились наилучшие признаки. У одних это свойство ткать паутину; у других — особая форма конечностей, переродившаяся в клешню; у третьих — крылья и т. д.
Мы, люди, — наследники животных предков. Многое из того, что было необходимо для борьбы за существование, нами растеряно за ненадобностью. Но многое и сохранено, только в скрытом виде. И лишь у некоторых людей эти скрытые свойства проявляются неожиданно сильно, и тогда они кажутся таинственными и чуть ли не сверхъестественными.
Рассказывают, что однажды вельможному барону Рейхенбаху, ученому и естествоиспытателю, встретился необычный человек. Внешне это был самый заурядный крестьянин, абсолютно ничем не выделявшийся из толпы подобных ему баварцев.
— Господин барон, — сказал крестьянин, подобострастно согнувшись, — вся ваша одежда пылает красным светом. Это цвет пылкой любви. Несомненно, вы добрый человек. А вот вчера я видел пастора. Кто бы мог подумать, он весь был мертвенно-синим. Он не только обругал меня, но пнул ногой. Это злой, нехороший человек. И почему он поставлен над нами пастором?
В этот день господин барон Рейхенбах был в отличнейшем настроении. Сегодня ему удалось совершить величайшее открытие. На своем предприятии — первом в мире крупном заводе по перегонке древесины — он получил неизвестное ранее науке вещество. Он назвал его парафином. Вещество это иногда как-то странно светилось.
Вообще в последнее время господина барона преследовала мысль о том, что каждому веществу свойственно свое собственное свечение. В этом он не раз убеждался, исследуя разнообразные минералы. Фосфорический, «неземной» свет видел он при пропускании электрического тока через воду.
— Эй, любезный, — крикнул крестьянину барон, — приди сегодня вечером в мой хауз! Я там подробно займусь с тобой.
Кланяясь в ответ, крестьянин бормотал:
— И скажите, мой барон, почему я не такой, как все? Почему я умею видеть не то, что видят все люди?
Не знал Рейхенбах, что эта встреча перевернет всю его жизнь. Не знал, что теперь он лишится на всю жизнь покоя. Не знал он, что теперь будет посвящать все свое время выяснению «таинственной» магнетической силы. Не знал, что отныне все ученые будут называть его шарлатаном…
В 1850 году барон Рейхенбах писал, что пришедший к нему крестьянин был особым существом. Он обладал способностью видеть лучи таинственной силы «Од», управляющей жизненными процессами. Он был сенситивом!
И в доказательство Рейхенбах рассказывал, как крестьянин описывал ему свечение, виденное им около полюсов обычного магнита. Свечение было настолько сильным, что яркие, пестрые, красные, зеленые, желтые тона временами были ему видны даже днем.
Сколько ни проверял господин барон самого себя и всех лиц, его окружающих, свечение видели только особо избранные люди. Возможно, писал он, сенситивы есть и в животном царстве.
Исследования различных животных, проведенные в наши дни, показали, что среди них действительно есть если не сенситивы, то регистрирующие магнитную силу. Найдены были такие существа и среди ископаемого царства.
Мы сейчас отчетливо знаем, что 1,5–2 миллиарда лет назад жили на Земле существа, улавливающие магнитные волны. Это стало известно благодаря кропотливым исследованиям члена-корреспондента Академии наук СССР А. Г. Вологдина. Ему удалось доказать, что так называемые строматолиты сооружали свои жилища, ориентируя их по древним меридианам.
Сегодня, чтобы посмотреть законы, управляющие жизнью строматолитов, не надо опускаться на морское дно. Оно давно уже стало сушей. Его можно видеть и в Китае, и на Урале, и в Карелии, и на Тимане.
В стране тысяч озер — Карелии — на берегу Сунд-озера вытянулись конусовидные постройки строматолитов — древнейших известковых водорослей — хозяев Земли, безраздельно владычествовавших на дне морском в течение первых миллиардов лет. Они строили рифы и банки. Их колонии воздвигали слой за слоем, иногда по миллиметру в год, конусовидные столбы. Некоторые из конусов достигали 36 метров в высоту. И это стало известно на основе пытливого проникновения в их тайны. Вологдин увидел на срезах строматолитов удивительную повторяемость их слоев, кратную одиннадцати!
Одиннадцать! Это число, довлеющее над всей солнечной системой. Раз в одиннадцать лет меняет свой режим Солнце! И строматолиты подчинялись этому числовому закону. А отсюда легко было подсчитать, что тридцатишестиметровая колония жила 36 тысяч лет!
Во время вспышек солнечной активности увеличивался поток корпускул от Солнца. Вспыхивали таинственным светом северные сполохи. Зеленые, красные, оранжевые занавеси, дуги и драпри горели странным светом на небе. И все это регистрировали каменные сенситивы юной планеты!
Вытянутые по древнему меридиану строматолиты позволяют вычислить ориентировку и долготы и даже широты местности!
Вологдин полагает, что угол наклона земной оси к той плоскости, в которой Земля вращается вокруг Солнца, был в то время иным — не 23,5 градуса, как сейчас, а около 30–35 градусов.
Так обстоят дела в мире ископаемых. Что же касается живых, то более столетия ведутся споры: могут ли видеть электромагнитное поле особо одаренные люди? Ведь электроразведка с помощью приборов, а также магниторазведка полезных ископаемых приняты на вооружение современной наукой. Доказано, что над месторождениями полезных ископаемых действительно существуют и наблюдаются ореолы электрических и магнитных полей. Конечно, заманчиво найти таких людей, которые могли бы все это видеть без приборов. Французский аббат Були назвал таких людей радиоэстезистами.
Искусству радиоэстезии обучают французских офицеров в военно-инженерной школе в Версале. 25 тысяч таких специалистов зарегистрировано в США.
Конечно, среди них много и шарлатанов, но проверка их деятельности привела к неожиданным результатам.
Эксперт ЮНЕСКО, голландский профессор С. В. Тромп, проводил анализ радиоэстезии на средства «фонда психофизических исследований» ООН. Работы длились пять лет. Специальная группа студентов-геологов анализировала маршруты, проведенные ранее геофизиками, установившими на опытном полигоне ряд магнитных и электрических аномалий. Студенты были снабжены не только «волшебными лозами» и маятниками, но и кардиографами и датчиками, определявшими электрический потенциал кожи. Все студенты одинаково отмечали зоны аномалий; особенно четко улавливались области с низким удельным электросопротивлением. Как известно, к таким областям могут быть приурочены разнообразные полезные ископаемые.
С. В. Тромп сделал вывод о необходимости дальнейших исследований этих физиолого-геологических связей.
Возможно, что существует какая-то связь между электрическими полями живых организмов и электромагнитным полем Земли. Такие электрические поля нервов людей зарегистрированы недавно сотрудниками лаборатории физиологической кибернетики Ленинградского университета. Они же обнаружили мощную аурограмму вокруг нерва лягушки. Электрическое поле нерва ощущалось приборами на расстоянии 25 сантиметров от нерва. Конечно, скоро с помощью высокочувствительных усилителей можно будет регистрировать взаимодействия электрических полей Земли и человека, и тогда станет реальной проблема создания новых методов поисков полезных ископаемых.
Психиатр Владимир Леви в своей отличной книге «Охота за мыслью» пишет: «Известный рентгенорадиолог Г. А. Зубовский рассказал мне, что некоторые, очень редкие люди способны видеть в темноте без экрана внутренности человека в рентгеновых лучах. Он же говорил мне, что техник (по роду службы ему приходилось опасаться радиоактивного облучения) выработал у себя способность определять радиоактивность прямо на ощупь, без всяких счетчиков. В присутствии Г. А. Зубовского ему устроили проверку. Ему предложили среди 12 абсолютно одинаковых металлических цилиндров узнать тот единственный, где был радиоактивный цезий. Быстро ощупав цилиндры, техник безошибочно указал радиоактивный».
Способность воспринимать радиоактивные излучения непосредственно, без приборов, помогла бы в поисках не только урана, радия, тория, но и некоторых нерадиоактивных полезных ископаемых.
А если бы мы могли не только выявить и развить эту способность восприятия, но и промоделировать ее?
«Кинология? Да, знаю. Это что-то из области научного кино. Нет, кажется, наука о самом кино…» — так говорили мне «знатоки», когда я при них произносил это слово.
Конечно, они не правы.
«Кинология» — слово греческое. Вернее, в нем соединены два слова, которые вместе переводятся как учение о собаках.
«А тогда при чем тут геология?» — спрашивали меня те, кому я разъяснял смысл слова.
А вот при чем. Я расскажу о необычном соревновании, устроенном финскими геологами. Соревновались собака Лари и младший геолог, фамилия которого засекречена.
Условия соревнования были сложными. Надо было найти наибольшее количество валунов, содержащих медную руду. Для каждого из соревнующихся отвели одинаковую площадь в 3 квадратных километра.
И вот дан старт. Соревнования длились три дня.
Тысячу триста раз пролаяла Лари! Ее находки были безупречны. В каждом из облаянных валунов содержалась медная руда.
Геолог работал не так успешно. Он открыл только 270 валунов. Несколько раз он ошибался.
Об этих соревнованиях рассказал нам, участникам Всесоюзного семинара общества «Знание», в феврале 1967 года кандидат геолого-минералогических наук из Петрозаводска В. Робонен. Он говорил, что кинологический метод в геологии был впервые применен в 1962 году финскими геологами. Оказывается, многие руды издают свой собственный аромат. В старинных легендах упоминается, например, что золото иногда несет печать дьявола. Оно пахнет чесноком. Этот запах ему придает минерал арсенопирит, действительно пахнущий чесноком.
Валуны, содержащие медные руды, тоже обладают специфическим запахом. Вот почему немецкая овчарка Лари победила геолога.
А в Карелии всех поразил своими геологическими способностями пес Мурат. Ему пришлось соревноваться с геофизиками. Различными методами (электрометрическим, магнитным и другими) геофизики выявили ряд аномалий. Они считали, что все аномальные зоны расположены над рудными телами, скрытыми под слоем наносов. Геологи должны были проверять правильность заключений геофизиков.
Вот тут-то и отличился Мурат. Над некоторыми аномалиями он заливался лаем. Над другими молчал. Молчание означало: аномалии безрудны. Пес безошибочно определял рудные залежи, даже если они были под слоем торфа и болота в 5 и даже в 7 метров!
Кинологический метод применялся зимой, при снежном покрове в 40 сантиметров!
Животные поражают нас своими способностями ощущать запахи. Известно, что наибольшей чувствительностью обладает обычный речной угорь. Он регистрирует запах алкоголя при умопомрачительной концентрации: грамм спирта, разведенный в Ладожском озере!
Регистрируют запахи лошади, птицы. Даже петухи удивляют нас такими способностями.
Я думаю, кинологическому методу в геологии предстоит большое будущее. Рассказывают, что геологи США приступили к конструированию «электронной собаки», обладающей чутьем большим, чем у любой собачьей породы. Конечно, такая «собака» принесет пользу в разведочном деле.
А вот другое открытие — организация коллектива, освоенная пчелами, муравьями, термитами много миллионов лет назад. По 50–70 тысяч особей насчитывается в каждом из сообществ. Триллионы триллионов существ, объединенных в такие крупные коллективы, населяют нашу планету.
В организованных в крупные сообщества коллективах насекомых каждый член общества знает свое дело. В пчельнике матка откладывает яйца. Рабочие пчелы заняты сбором нектара, переработкой его, изготовлением сотов, уходом за молодежью.
Свой распорядок в муравейнике. У них тоже главным занятием является уход за потомством. Они дружат с разнообразными существами. Их «дойными коровами» служат тли, выделяющие сладкий сок, слизываемый муравьями. Они выращивают специальные сорта грибов.
Армии термитов строят свои удивительные постройки. А когда на их пути встречаются поселения человека, они вступают с ним в битву, попросту съедая то, что им мешает. Недавно ТАСС сообщило, что термиты съели клуб, библиотеку и несколько домов в Каршинской степи.
Они вполне довольны таким образом существования и не меняют его с древних пор. Среди отложений, имеющих возраст около 60 миллионов лет, найдены обломки древесины, изъеденной термитами.
Такой же почтенный возраст имеют муравьиные сообщества. Массовые находки ископаемых муравьев известны из шиферных пластов Енингена, в Баденском озерном округе.
Неплохое кладбище древних пчел нашли в ГДР в одном из торфяников. Там были встречены обызвествленные остатки 80 рабочих пчел. Только один из этих экземпляров оказался трутнем. По-видимому, все 80 экземпляров — члены одной семьи. Известно, что пчелы не любят чистую воду. Парижские пчеловоды знают, пишет знаток пчел Реми Шовен, что милые парижские пчелки любят пить влагу из городских писсуаров. Не удивительно поэтому скопление пчел у грязной лужи ископаемого болота, существовавшего 60 миллионов лет назад. Для нас это лишь подтверждение древности существования объединений насекомых.
Много пчел и преимущественно крылатых муравьев обнаружено в балтийском янтаре — смоле, застывшей десятки миллионов лет назад. Кусочки янтаря с включениями насекомых высоко ценились еще в старину древними римлянами и греками. Истории известны даже фальсификаторы таких находок. Сейчас окаменелости из янтаря обрели новую ценность. Они вскрывают нам фрагменты жизни на Земле.
В земных слоях остались следы жесточайших битв, разворачивавшихся на жизненных полигонах. Неудачные конструкции уничтожались. Выживали наиболее приспособленные. Они владычествовали какое-то время над миром. Но царство их было не вечным. Иногда мир потрясали эпохи массовых вымираний. Что вызывало такие потрясения? Ученые спорят, называют разные причины: общее похолодание, эпидемии, увеличение радиации… Причин много.
Для геологов такие рубежи смерти, запечатленные в земных слоях массовыми скоплениями окаменелостей, представляют своеобразный компас для путешествий в прошлое. В этом далеком прошлом мы читаем историю бесконечных дискуссий.
Что лучше: ползать во влажном песке, проедая в нем себе путь, или сидеть неподвижно на поверхности ила, одетым в каменный панцирь, или активно плавать в океане?
Этот спор ведут три группы животных: черви, брахиоподы и бесчелюстные рыбы. Спорят они об этом более полумиллиарда лет!
Американский ученый Ф. Цейнер составил своеобразную таблицу. Я назвал бы ее «Таблицей жизни». Он выборочно взял несколько групп животных и показал примерно период их существования на Земле, привязав эту таблицу к шкале геологического времени.
На эту «Таблицу жизни» можно смотреть часами. Ее каждый может дополнять сколько угодно. Из нее выводятся и некоторые тайны бессмертия.
Бессмертие! Его нельзя понимать примитивно, как длительность жизни одного существа. Мы здесь рассуждаем о большем — о бессмертии тех видов, что соревнуются на полигоне жизни.
На вопрос о том, кто лучше: черви, брахиоподы или бесчелюстные рыбы — отвечала жизнь. Одно время казалось, что побеждают брахиоподы. Их царство было в палеозое, особенно в девонском и каменноугольном периодах. Некоторые из червей в это время даже стали перенимать их образ жизни и тоже обзавелись панцирем.
В жестокую годину, на грани палеозойской и мезозойской эр, выжили черви. А брахиоподы в массе вымерли. До настоящего времени дожили лишь немногие их представители. Черви и бесчелюстные рыбы торжествовали!
По четыреста с лишним миллионов лет живут и соревнуются хищники и паразиты.
Хищники — это скорпионы, наделенные «кинжалом» с ядом. Хищники — это акулы. Позднее к этой группе примкнули многие из рептилий, птиц и млекопитающих.
Паразиты формировались из червей. Но среди паразитов позднее было много насекомых. Да и из других групп животных вербовались эти существа.
Тайны бессмертия раскрываются при дальнейшем анализе «Таблицы жизни». Более 300 миллионов лет существуют те из животных, которые освоили новое приспособление. Насекомые научились летать, амфибии — прыгать, а рептилии — применять на суше силовые приемы.
Особенно интересен из насекомых тараканий род. Боковая его ветвь — термиты — обрела новое и притом огромное преимущество: общественный путь развития!
Конечно, многое еще не вскрыто из их жизни наукой. Долгое время даже считали, что термиты имеют за плечами значительно меньшее количество лет. На основе находок окаменелых форм термитов в плитках сланца в районе деревни Ротт в ФРГ, а также по окаменелостям в пеплах Колорадо в США их считали ровесниками пчел и муравьев, то есть ограничивали время их существования кайнозойской эрой.
Термиты освоили и новые виды пищи. Они в содружестве с бактериями научились разлагать клетчатку растений и стали есть то, что никто не ел.
Общественный путь развития — это тот путь, на который стал человек, появившись всего около полутора миллионов лет назад. Этот путь дал человеку возможность опередить всех своих конкурентов на жизненном пути.
Но он, конечно, иной, чем у насекомых. В соревновании общественных форм развития уже ясен его выигрыш. Коллективный труд, общественное производство, преобразование природы — вот что сделало человека властелином Земли.
В области, казалось бы, безжизненных скал, в зоне вечного снега, на высотах в 4,5–5 тысяч метров, в предгорьях Центрального Тянь-Шаня ученые открыли своеобразные каменные документы. Экспедиция биологов-альпинистов, поднявшись на вершины Тянь-Шаня, обнаружила, что многие скалы покрыты черной корочкой. В задачу исследователей входило изучить причины образования таких корочек. Оказалось, что в каждом грамме вещества черной корочки содержится до 1 миллиона микроорганизмов — различных водорослей, грибков и бактерий. Причем выяснилось, что каждой горной породе или минералу соответствует свой комплекс микроорганизмов. Микроорганизмы, живущие на полевых шпатах, перенесенные на слюду, умирают с голоду, а микроорганизмы, живущие на слюде или роговой обманке, перенесенные на кварц, также не развиваются и гибнут.
Многие из этих организмов усваивают азот из воздуха. Подсчитано, что при деятельности 1 тонны перерабатывающих азот микробов возникают азотистая и азотная кислоты. Этими кислотами может быть растворено 2,5 тонны известковой породы, то есть 1 тонна микробов разрушает 1 кубометр породы.
Не только на вершинах гор, но и в почвах различных климатических зон имеются в огромных количествах разнообразные микроорганизмы: бактерии, фильтрующиеся вирусы, бактериофаги и т. д.
В поверхностном слое обычных черноземных почв, глубиной 1–2 метра, число бактерий исчисляется десятками и сотнями миллионов на 1 кубический сантиметр породы. Один гектар пахотного слоя почвы лесо-луговой и степной зон содержит от 5 до 10 тонн живых микроорганизмов. Поверхность клеток этих микроорганизмов равна примерно 500 гектарам. Академик В. И. Вернадский в свое время подсчитал, что вся атмосфера Земли весит 5300 триллионов тонн. В течение года эта воздушная масса несколько раз проходит сквозь живые организмы при их дыхании и питании.
Существуя, бактерии вырабатывают различные азотистые и углекислые соединения; некоторые из них могут вырабатывать сероводород, расщеплять фосфорные соединения и так далее.
Бактерии, усваивающие азот воздуха, образуют летом в черноземных почвах по 1,5 тысячи килограммов селитры на 1 гектар. Железные бактерии для построения 1 грамма своего тела вырабатывают 464 грамма углекислой закиси железа, накапливая в процессе своей деятельности своеобразные железистые соли.
При распаде органических масс бактерий образуются органические кислоты, эфиры, спирты, углеводы и целый ряд других соединений, активно воздействующих на горные породы.
Так называемые нитрозные бактерии, чтобы получить энергию, необходимую для восстановления 1,5 грамма углекислоты, превращающейся в вещество их тела, окисляют около 20 граммов аммиака и образуют при этом 50 граммов азотистой кислоты. Азотистая кислота разрушает почти любую горную породу.
Не только на горных вершинах и в почве осуществляют свою работу бактерии; невидимый мир живых существ воздействует на морские илы больших океанских глубин. В глубоководных илах Тихого океана обнаружены бактерии, приспособленные к жизнедеятельности только в условиях высоких давлений.
Во всей массе океанов и морей земного шара располагается такое количество микроорганизмов, что если бы их собрать и переработать на нефть, то только за один год мы превзошли бы все известные ныне мировые запасы, исчисляемые в несколько десятков миллиардов тонн.
Невидимый мир живых существ с их воздействием на различные горные породы отмечен не только в слоях нашей геологической эпохи. Ископаемые микробы обнаружены в самых различных слоях. Особенно интересен в этом отношении так называемый доманик. Он представляет собой темно-серую, слегка песчанистую массу; под микроскопом в такой породе можно увидеть разнообразные микроорганизмы. Размеры некоторых существ, сохранившихся в доманике, исчисляются микронами, но, накапливаясь, они обеспечили огромные запасы нефти «Второго Баку».
Из окаменевших микроорганизмов состоит мел — они отчетливо видны под микроскопом.
На восточном склоне Урала среди третичных и меловых отложений встречается интересная горная порода, называемая диатомитом. Эта порода образована мириадами так называемых диатомовых водорослей — микроорганизмов, различных по форме, величине и строению. У всех этих микроорганизмов скелетные части состоят из кремнезема.
Мы видим, таким образом, что во всех слоях всех геологических эпох можно отметить следы жизнедеятельности микробов. Большей частью эти следы представляются наслоениями отмерших раковин или скелетов микроорганизмов; в иных же случаях мы встречаемся с продуктами их жизнедеятельности в виде некоторых руд — например, железных. Роль микробов в формировании многих горных пород еще недостаточно выяснена. Но в последние годы техника исследований позволила глубже заглянуть в мир бактерий. Особенно интересны в этом отношении работы упоминавшегося уже нами А. Г. Вологдина. Оказывается, мы теперь почти не знаем такого геологического времени, когда бы не работали бактерии! Вологдин спустился в своих исследованиях по геологической лестнице до пород, возраст которых исчисляется в 2 миллиарда 600 миллионов лет! И всюду он встретил бактерии! Вологдину уже тесно в рамках нашей геологической шкалы. Он спускается по лестнице времен все глубже и глубже. И везде отмечает в первую очередь наличие железобактерий. Он нашел их в рудах Кривого Рога, Сибири, Дальнего Востока и Кольского полуострова.
Оказывается, наибольшие скопления железных руд приурочены именно к тем зонам, которые ранее нами назывались докембрием и считались безжизненными. И пока мы не вскрыли этот мир удивительных тружеников, мы, конечно, ссылались и на вулканы, и на подземные магматические очаги, чтобы объяснить такие концентрации.
Армия невидимых живых существ подготавливает поверхностные участки суши для заселения их более высокоорганизованными формами. На скалах появляются лишайники, мхи, а затем споровые и цветковые растения. Их геологическая работа сводится к механическому разрушению горных пород, производимому корневой системой, к химическому воздействию на породы органическими кислотами — продуктами жизнедеятельности растений — и к созданию новых пластов за счет накопления отмерших организмов.
Корни растений проникают в землю на различную глубину. Скажем, корни пшеницы имеют длину до 2 метров; подсолнечника — около 5 метров; а саксаула — более 30 метров. Проникая в глубь земли, они увеличивают трещины, способствуют разрыхлению грунта. В Москве, на Земляном Валу, на одной из старых церквей не так давно можно было видеть стройную березку, выросшую на уровне трехэтажного дома. Корневая система этой березки пронизывает крепкую каменную кладку стены. Точно так же корневой системой разрушаются породы любой крепости.
Вокруг корней идет активная химическая работа. Через корневую систему растения берут из горных пород необходимые для питания элементы: натрий, калий, фосфор, кальций, серу, железо, магний, алюминий, кислород, водород, марганец, бор, кремний. После отмирания все эти элементы в виде различных химических соединений возвращаются в землю, видоизменяя солевой состав верхних частей земли.
Геологическая работа растений запечатлена в пластах ископаемых почв.
Типичных ископаемых почв очень много среди отложений четвертичного периода. Они сохранились и под лёссовыми толщами, и под оползнями, и в древних речных террасах, и под ледниковыми отложениями, и даже под лавами.
В бассейне реки Мезени, у поселка Сульского, в береговом обрыве реки Сулы можно видеть интересные соотношения слоев. Вверху залегает четырехметровый слой ледниковых отложений, являющихся мореной последнего оледенения; под мореной видна двадцатиметровая толща ленточных глин и ленточных песков, накопившаяся в межледниковое время в озерном бассейне. В середине озерной толщи сохранился полуметровый слой торфа. Он свидетельствует о том, что режим озера был непостоянным: в один из этапов озеро обмелело и начало зарастать; постепенно оно подернулось торфяным покровом. В среднем в год может накопиться 1–2 миллиметра торфа; полуметровый слой, следовательно, сформировался за 50–100 лет. Затем вновь изменились условия: озерный бассейн переполнился водой, и слой торфа погребли новые толщи озерных отложений. Ну, а потом в особых условиях, при достаточной стерилизации, торфянистые массы могут переходить в бурые, а затем в каменные угли. Если же эти особые условия отсутствуют, растительная масса и почвенный гумус нацело распадаются, не оставляя в земных слоях документов о древних почвенных процессах. Следовательно, свидетельством этих процессов являются не только ископаемые почвы четвертичного периода, но и пласты ископаемого угля, накопившиеся в прошлые геологические эпохи.
Если наблюдать каменный или бурый уголь под микроскопом, то при увеличении в несколько сот раз можно видеть не черную, а оранжевую или буровато-красную массу. В этой массе различимы обрывки древесины, коры, споры, остатки торфяной массы, подтверждающие происхождение ископаемых углей из накопившейся в наземных условиях растительной массы.
К силурийской системе палеозойской эры относят первые наземные растения. С появлением их на суше начали формироваться почвы.
По реке Барзас, к северо-востоку от Кузнецкого бассейна, располагается один из самых древнейших пластов ископаемого угля, относящийся к началу или к середине девонского периода. Изучение этого угля под микроскопом показало, что он сложен остатками примитивных растений — псилофитов.
Академик П. И. Степанов, обобщивший весь материал по угольным месторождениям мира, выделял три главные эпохи угленакопления: каменноугольную и пермскую, юрскую, третичную. Наибольшее количество мировых запасов угля приурочено к третичным отложениям (54,4 процента), на втором месте по количеству ископаемых углей стоят каменноугольный и пермский этапы накопления (39,1 процента), на третьем месте находится юрский этап (4 процента).
В геологической литературе до сих пор обсуждается вопрос о климате эпох угленакопления. Большинство ученых приходит к выводу, что современные болота тропического пояса по условиям накопления растительной массы близки к болотам палеозоя, но неизвестно, был ли тропический климат равномерным по всей Земле — от тропиков до Шпицбергена? В современных условиях накопление торфяников происходит главным образом в области средних и северных широт; может быть, в таких же климатических зонах шло угленакопление и в прошлом.
Большую геологическую работу, кроме микроорганизмов и растений, ведут животные организмы. Следы этой деятельности также отражены в многочисленных каменных документах. Многие из морских животных могут просверливать крепчайшие горные породы. Мировую известность получили колонны храма Сераписа, построенного в IV веке нашей эры в Поццуоли, близ Неаполя. В результате вековых колебательных движений колоннада храма погрузилась в море, и там колонны подверглись нападению моллюсков-камнеточцев, просверливших в них многочисленные отверстия. В XVI столетии в результате тех же вековых колебательных движений колоннада вновь оказалась на суше. И в некоторых отверстиях можно видеть отмершие раковины камнеточцев.
Разрушающую работу ведут не только моллюски. Черви, кроты, суслики и многие другие разрыхляют поверхностные породы, видоизменяя структуру горных пород.
Основная геологическая роль разнообразных животных организмов сводится к образованию биохимических пород, возникающих в результате их жизнедеятельности.
В морской среде растворено много различных химических соединений: поваренной и калийной солей, карбонатов, кремнистых солей и других. Многочисленные организмы, населяющие моря, строят свои раковины и скелеты из углекислого кальция и кремнезема. Отмирая, раковины и скелеты попадают в осадок. Вместе с минеральными частицами они образуют мощные биохимические осадки. Так возникли многие пласты известняков, некоторые яшмы…
Палеонтология — наука о древней жизни. Она хорошо освещает прошлое. Но и у нее есть свой предел. Ее власть кончается там, где началась жизнь. Правда, это немало. 2600 миллионов лет — такой колоссальный период времени охватывает палеонтология. Но она ничего не может сказать о том, что было раньше, до возникновения жизни.
Так что же — все предыдущие этапы развития Земли так и останутся тайной и мы никогда не узнаем, как возникла и сформировалась наша планета? Нет, геология и здесь сказала свое веское слово. И путь к разгадке тайны происхождения Земли она нашла на этот раз в космосе. Такова удивительная диалектика развития и взаимодействия наук.
И надо такому случиться! Об этом в свое время писали все газеты мира. Приключилось событие 17 января 1955 года… Но расскажу все по порядку.
Мой друг метеоритчик Иван Александрович Юдин рассказал мне об истории, которую стали забывать, а многие о ней и не слышали. У нас в СССР сведения о происшедшем были опубликованы только в специальном бюллетене, который никто, кроме метеоритчиков, обычно не просматривает.
Некий Гавторн, астроном-любитель, построил в своем имении, в районе Киркленда в штате Вашингтон, частную обсерваторию. Его любимым занятием было наблюдение за падающими небесными телами.
Около одиннадцати часов утра, когда Гавторн вышел из обсерватории и стал заниматься хозяйственными делами, раздался звук, подобный «динамитному взрыву», и звон разбитых стекол.
Вбежав в обсерваторию, Гавторн увидел на кресле, на котором он обычно сидел, два дымящихся осколка. Они оказались метеоритами! Один из осколков весил 119,2 грамма, другой — 113,2.
«Конечно, Гавторн был бы убит», — резюмировали журналисты. Ведь небесные камни состояли из чистейшего самородного железа.
В литературе описаны случаи прямых попаданий метеоритов в строения и животных.
14 июля 1847 года, в Браунау, метеорит весом 5 килограммов пробил крышу, потолок и пол дома.
22 сентября 1833 года камень весом около 3 килограммов пробил в Забродье (Россия) крышу дома.
2 сентября 1938 года метеорит весом 1770 граммов пробил крышу гаража, автомобиля и подушку сиденья. Случилось это в местечке Бенд (США).
В 1892 году в Аргентине был найден железо-каменный метеорит под останками мегатерия — вымершего млекопитающего. Эти животные обитали в Южной Америке в четвертичном периоде. Находка была сделана на глубине 6 метров. Предполагают, что мегатерий был убит метеоритом. Вес метеорита — 33 грамма. Все это было. Но чтобы попало в обсерваторию! Такого еще не случалось.
Еще не так давно люди вообще не верили в возможность падения камней «с неба». В 1790 году во Франции бургомистром было засвидетельствовано падение метеорита. Комментарий к этому сообщению весьма просвещенного ученого Бертолле был неожиданным. Бертолле писал: «Как печально, что целый муниципалитет заносит в протокол народные сказки, выдавая их за действительно виденное, тогда как не только физикой, но и ничем разумным вообще их нельзя объяснить».
Уж если так писали о возможности падений метеоритов ученые, то что говорить о простых людях. Не мудрено, что подобные явления содействовали суевериям.
Метеорит «Андерсон Тауншип» найден в США в алтаре древнего могильника. Другой метеорит, «Хопевел Маундс» (также США), был обнаружен вблизи алтаря могильного кургана. Случайно? Нет. Могильники нарочно делали вблизи «небесных камней».
Но самым удивительным из всех «священных камней», конечно, является мусульманский Кааба (К’аба, или К’аб, по-арабски — куб).
Журналист Ю. Тычинский недавно побывал в центре мусульманского мира. Он видел и этот знаменитый черный камень.
Каждый правоверный хоть раз в жизни стремится побывать в Мекке, где в главной мечети, в восточной наружной ее стене, под хрустальным куполом хранится эта святая святых всех мусульман.
Паломникам приходится много трудиться, чтобы заработать дорогу в рай — к вечному блаженству и к гуриям. Труден этот путь. Нужно совершить омовение в источнике Замзам, забраться на гору Арафат, семь раз пробежать вокруг Каабы и забросать камнями три белых скалы, в которых сатана собрал все зло мира.
«Европейцы, — пишет Тычинский, — не допускаются на эти церемонии. Чужак должен быть умерщвлен».
Ну, а в наши дни пришла разгадка всех этих таинственных падений камней с неба. На всем земном шаре обнаружено свыше 1500 метеоритов. Многие из них раздроблены на кусочки. Поэтому во всех музеях мира хранятся десятки, если не сотни тысяч обломков метеоритов. Все они пронумерованы, тщательно описаны и изучены. Каждый из метеоритов имеет свое собственное имя, данное по месту его находки.
Разделены все метеориты на три группы: каменные, железные и железо-каменные. Железные состоят из самородного и никелистого железа с некоторой примесью кобальта, меди, фосфора, серы и углерода. В каменных метеоритах найдены многие минералы, имеющиеся и на Земле, но есть и свойственные только метеоритам. Их немного, не более десятка. Но химический состав их близок земным минералам.
При детальном изучении метеоритов сегодня возникают другие загадки, пока еще не разрешенные наукой.
Существует, например, группа тел, о которых у ученых нет единого мнения. Одни считают их метеоритами и называют тектитами. Они похожи на вулканическое стекло. Возраст их «всего» несколько миллионов лет. Не образовались ли они за счет метеоритной бомбардировки поверхности Луны?
Непонятно, почему иногда в одном и том же метеорите (железо-каменном) железные части в десять и более раз моложе каменных. Не образовалось ли железо по каким-то еще нами не открытым законам непосредственно в космосе?
А может быть, есть и другие типы метеоритов, не только железные и каменные? Так, австралийский ученый доктор Крук считает, что 130 миллионов лет назад на территорию Австралии упал ледяной метеорит, содержащий значительное количество газов. Газы, выходящие сейчас из слоев этого возраста (в 130 миллионов лет), и являются остатками и свидетельством этого космического события.
Неразгаданной пока является и тайна события, происшедшего 30 июня 1908 года в Тунгусской тайге.
На площади тысячи километров диаметром были слышны в 7 часов утра 30 июня 1908 года громовые раскаты. Очевидцы видели и яркое, сверкающее огненное тело, влетевшее к нам на Землю с юга, со стороны Иркутска. Непонятное тело взорвалось в зоне реки Подкаменной Тунгуски. Места эти были тогда незаселенными. И скоро забылось это событие…
Лишь в 1921 году исследователю метеоритов Л. А. Кулику случайно попал листок отрывного календаря за 1910 год, в котором кратко сообщалось о падении в Сибири гигантского метеорита.
Сначала никто не сомневался, что в 1908 году действительно упал метеорит. Все исследования так и проводились, чтобы найти хоть кусочек этого гиганта, упавшего с неба. Но, несмотря на тщательнейшие поиски, ничего не было найдено.
После Великой Отечественной войны интерес к тунгусской тайне был подогрет писателем А. Казанцевым, высказавшим предположение, что в Тунгусской тайге пытался совершить посадку космический корабль, но неудачно. С тех пор дискуссия о природе тунгусского феномена не сходит со страниц научной и научно-популярной печати.
Десятки энтузиастов в свое отпускное время, за свой счет, без всяких дотаций, посещали Тунгусскую тайгу, чтобы получить хоть крупицу фактов, чтобы пролить свет на то, что произошло в начале века в глухой Сибири.
К настоящему времени насчитываются десятки различных теорий и гипотез, пытающихся объяснить тунгусский феномен.
Многие советские ученые принимают гипотезу академика В. Г. Фесенкова, считающего, что в 1908 году сюда прилетело ядро кометы. Масса ядра была весьма значительной, но при взрыве тело его распылилось. Крупицы метеоритного железа, найденные в почве, и являются остатками этого ядра.
Но выдвинуты и другие гипотезы, авторы которых пытаются иначе оценить тунгусское событие.
Гипотеза ядерного взрыва обычно называется первой. Вполне естественно, что в наши дни возникло представление о том, что в Тунгусской тайге произошел именно ядерный взрыв. Познание явлений, связанных с распадом и синтезом вещества, создание атомной и водородной бомб способствовали разработке ядерной гипотезы тунгусского взрыва. В пользу этой гипотезы свидетельствуют и необычайная мощность взрыва, и геомагнитные явления, подмеченные некоторыми обсерваториями в июне 1908 года, и усиление биологической активности растений (ускорение роста деревьев после взрыва), и баллистические расчеты.
Американские ученые лауреаты Нобелевской премии Клайд Коуэн и В. Либби предположили другое. Их точка зрения сводится к тому, что в Тунгусском районе упал сгусток антивещества. При этом произошла аннигиляция. Один из авторов этой гипотезы — профессор Либби — известен всему миру как автор радиоуглеродного метода определения абсолютного возраста Земли. Либби и здесь, для расшифровки тунгусской загадки, привлек радиоуглеродный метод. Он исследовал срез дерева, срубленного в штате Аризона, своим методом. В годовых кольцах дерева был ясно выражен скачок аномального содержания радиоуглерода, начиная с 1908 года. Это, по мнению Либби, свидетельствует в пользу гипотезы аннигиляции.
Уже накопилась обширная литература о событии, происшедшем в 1908 году в Тунгусской тайге. Количество гипотез ежегодно лавинообразно нарастает. Мы сегодня еще далеки от того, чтобы отдать предпочтение какой-либо из них. Ясно лишь одно: в 1908 году человечество встретилось со сложной космической загадкой. Разрешить тунгусскую тайну мы сможем лишь в будущем.
На основе анализа «небесных камней» мы строим наши представления о происхождении не только нашей Земли, но и всех планет солнечной системы.
Я помню фильм, одним из авторов которого был известный ученый, путешественник, творец космогонической гипотезы, академик Отто Юльевич Шмидт. Как эффектны некоторые кадры этого фильма! Вот с гулом и грохотом летит сверкающий в солнечных лучах метеорит. Навстречу ему стремительно несется другое небесное тело. Удар! И оба тела, слились в один комок. Еще метеорит. Еще удар! И увеличилось тело слипшихся в единый шар метеоритов.
И мы верили, что так и было. Верят этому и сейчас многие из тех, кто задумывается над проблемами происхождения планет.
Такое представление о происхождении небесных тел из кусков метеоритов было развито во многих гипотезах и до Шмидта. Отто Юльевич лишь предположил, что при ударах не возникает повышения температуры. Он даже математически доказал, что если бы в такой первичной туманности температура повысилась, то никаких планет из сгустков метеоритов (из метеоритного роя) не получилось бы. Такая туманность просто распалась бы.
При столкновении метеоритов и космической пыли суммировалось движение. В итоге планеты получали то вращение вокруг своей оси, которое не замедляется вот уже многие миллиарды лет.
А так ли это? Можно ли считать установленным, что планеты, получив импульсы вращения, сохранили первичную скорость до наших дней? Что-то не верится, что никаких тормозящих факторов за всю историю солнечной системы не было. И, вполне естественно, дальше начинают комбинироваться другие вопросы.
Хорошо, допустим, что планеты возникли из метеоритов или метеоритоподобных тел. А откуда взялись эти метеоритоподобные тела?
Всем очевидно, что метеориты состоят из минералов, а те, в свою очередь, из химических элементов. Следовательно, совершенно ясно, что нужно вначале ставить вопрос о происхождении элементов. Над решением этого вопроса бьются химики, физики, астрономы, геологи, философы.
Не безразлично, с каких позиций мы будем подходить к этой проблеме: с идеалистических или материалистических.
Идеалистические воззрения приводят к мысли об актах творения материи.
Известный английский астрофизик Ф. Хойл в работах 1950 года говорил о непрерывности творения вещества, сейчас он пересмотрел свои взгляды, а примерно в те же годы (в 1952 году) австрийский математик Г. Бонди даже подсчитал, что за каждый миллиард лет в кубическом сантиметре мирового пространства создается масса, равная массе атома водорода.
Близко к таким воззрениям стоит и попытка рассматривать известную формулу А. Эйнштейна E = MC2 не только как выражение эквивалентности массы и энергии, но и как уничтожение материи, превращение ее в «чистую» энергию или, наоборот, возникновения материй из энергии.
Материалистические представления приводят нас к рассмотрению законов эволюции химических элементов и составляющих их элементарных частиц.
В наши дни не приходится доказывать существования двух главных направлений эволюции химических элементов: распада и синтеза.
Распад тяжелых элементов — это закон жизни радиоактивных химических элементов. Конечным продуктом распада урана являются свинец и гелий. Радиоактивный калий дает инертный газ аргон и т. д.
Уже давно явления радиоактивности освоены геологами, определяющими по продуктам распада элементов абсолютный возраст горных пород.
Синтез элементов «освоен» в водородной бомбе. Из четырех протонов при взрыве создается более тяжелый элемент — гелий. В звездных мирах выявлены другие циклы синтеза вещества.
Вот на основе этих двух главных форм движения материи и развиваются современные представления об эволюции вещества планет и нашей Земли.
Нам пока еще недостаточно ясна причинность этих явлений; неясен и конкретный путь перехода от эволюции элементов к созданию минералов и горных пород. Возможно, что в будущем придется отказаться от представления об обязательности создания сначала метеоритных тел, а потом сгустков вещества. Так, например, советский ученый В. И. Попов в 1964 году выступил с гипотезой происхождения Земли за счет ядерных реакций в космосе. Попов говорит, что происхождение Земли из случайных твердых метеоритов просто невозможно.
В общих чертах теория В. П. Попова сводится к следующему. Под влиянием электромагнитных полей Галактики возникло дискообразное скопление рассеянной межзвездной материи. В центре этой туманности образовалось сгущение, породившее в дальнейшем Солнце.
Внутри Солнца температура и давление увеличились до пределов, при которых начались термоядерные реакции. На поверхности Солнца образовались турбулентные пятна, которые явились полюсами магнитного поля.
Внутри пятен происходили возмущения, возникали термоядерные реакции, в результате чего могли возникать новые химические элементы.
Эти процессы сопровождались выбросами вещества пятен солнечной атмосферы в виде протуберанцев. Из выброса и отрыва от Солнца крупнейших протуберанцев около 5–6 миллиардов лет назад образовались планеты, в том числе и Земля.
Шарообразной Земля стала под влиянием электромагнитного поля, а также пятен на ее поверхности, подобных солнечным. В этих пятнах протекали термоядерные реакции, которые вызвали возникновение и концентрацию радиоактивных элементов. Окончательное расслоение железо-никелевого ядра и перидотитовой мантии произошло около 3–4 миллиардов лет назад.
Однажды на очередной лекции по геологии я получил от студентов записку: «Уважаемый Анатолий Алексеевич! Как понимать следующее высказывание Ф. Энгельса: „Но все, что возникает, заслуживает гибели“. Может быть, пройдут еще миллионы лет, народятся и сойдут в могилу сотни тысяч поколений, но неумолимо надвигается время, когда истощающаяся солнечная теплота будет уже не в силах растапливать надвигающийся с полюсов лед, когда все более и более скучивающееся у экватора человечество перестанет находить и там необходимую для жизни теплоту, когда постепенно исчезнет и последний след органической жизни, и Земля — мертвый, остывший шар вроде Луны — будет кружить в глубоком мраке по все более коротким орбитам вокруг тоже умершего Солнца, на которое она в конце концов упадет. Одни планеты испытают эту участь раньше, другие позже Земли; вместо гармонически расчлененной, светлой, теплой солнечной системы останется лишь один холодный, мертвый шар, следующий своим одиноким путем в мировом пространстве…»
Внизу была приписка: «Не есть ли это выражение той тепловой смерти вселенной, которая отвергалась самим же Энгельсом?»
В записке была дана и ссылка: «„Диалектика природы“, Госполитиздат, 1960, стр. 15–16».
Пожалуй, более образно, без ссылки на Энгельса, но, несомненно, под его влиянием, дал представление о гибели Земли знаменитый полярный путешественник Фритьоф Нансен. Он писал:
«А Земля? Я заглядываю далеко вперед через многие века… Медленно и незаметно уменьшается теплота Солнца, и так же медленно и незаметно понижается температура Земли. Тысячи, сотни тысяч, миллионы лет исчезают в вечности. Ледниковые периоды наступают и проходят. Но Солнце греет все слабее и слабее, массы плавучего льда постепенно захватывают все более широкие пространства, заходят все дальше к югу, — и в конце концов все моря сливаются в один Ледовитый океан. С лица Земли исчезает всякая жизнь, ее можно найти лишь в глубине морей. Но температура продолжает падать, ледяной покров растет, становится все толще, царство жизни уменьшается, катится век за веком, и — лед достигает дна. Исчезают последние следы жизни, снегом заносит всю Землю. Все, для чего мы жили, больше не существует, плоды всех наших трудов, всех наших страданий уничтожены, погребены под ледяным покровом. Земля застыла и безжизненной ледяной массой продолжает кружиться по своей орбите в мировом извечном пространстве. Матовый, красноватый шар Солнца проходит по небу; Луна померкла, ее почти не видно с Земли. Но северное сияние, быть может, все еще продолжает играть над ее ледяными пустынями, и звезды блещут так же мирно и приветливо, как и раньше. Некоторые угасли, но появились новые. А вокруг них вращаются новые светила с новыми мирами жизни, новыми бесцельными страданиями. Таков бесконечный круговорот вечности. Вечный ритм природы…»
Фритьоф Нансен сумел прочесть в «Диалектике природы» Энгельса значительно больше того, что сумел почерпнуть из этого же труда студент, приславший мне записку.
Ф. Энгельс, говоря об эволюции всего существующего, в этом же труде дальше пишет:
«Но здесь мы вынуждены либо обратиться к помощи творца, либо сделать тот вывод, что раскаленное сырье для солнечных систем нашего мирового острова возникло естественным путем, путем превращений движения, которые присущи от природы движущейся материи и условия которых должны, следовательно, быть снова воспроизведены материей, хотя бы спустя миллионы лет, более или менее случайным образом, но с необходимостью, присущей также и случаю».
И далее:
«Мы приходим, таким образом, к выводу, что излученная в мировое пространство теплота должна иметь возможность каким-то путем, путем, установление которого будет когда-то в будущем задачей естествознания, — превратиться в другую форму движения, в которой она может снова сосредоточиться и начать активно функционировать. Тем самым отпадает главная трудность, стоявшая на пути к признанию обратного превращения отживших солнц в раскаленную туманность».
Отсюда ясно, что Энгельс с гениальной прозорливостью предвосхитил те грандиозные открытия, которые стали всеобщим достоянием в наши дни. На основе ядерных реакций осуществляются превращения отживших миров в новые звездные скопления. Общепризнанная теория рождения и гибели миров, разработанная академиком В. Амбарцумяном, является ответом тем, кто пытается говорить о «тепловой смерти» и «гибели» всей вселенной.
С этой точки зрения более правомочной является конец нашей солнечной системы, описанный в научно-фантастической повести «Спасательный отряд» английского ученого и писателя Артура Чарлза Кларка.
На видеоэкране спасатели увидели такой конец солнечной системы:
«Материк под ними медленно оседал под ударами штурмующих побережье волн высотой в милю. Последние картины жизни Земли: огромная равнина, озаренная серебристым сиянием невероятно яркой Луны. Через равнины глянцевитые валы устремились к возвышающейся вдали горной гряде. Море взяло вверх, но его торжество продлится недолго, скоро не будет ни моря, ни суши. Зрители в главном отсеке молча наблюдали картину разрушения, а уже приближалась несравненно более грозная катастрофа.
Вдруг словно рассвет занялся над залитым Луной ландшафтом: Луна обратилась во второе Солнце. Около тридцати секунд поразительное, сверхъестественное сияние озаряло обреченный край…
На фоне бархатного занавеса космоса висел бело-голубой шар, как бы составленный из множества концентрических оболочек раскаленного газа. Хотя на таком огромном расстоянии нельзя было различить движения, было очевидно, что шар расширяется с огромной скоростью. В центре его сверкала ослепительная точка: белый карлик, в который превратилось Солнце…»
Ученые говорят, что Солнце испускает энергию многие миллиарды лет. По самым скромным подсчетам, его энергии хватит еще примерно на 5–10 миллиардов лет. Следовательно, то, что произойдет, нас не должно пугать. Большинство ученых отрицает и возможность превращения Солнца в новую звезду. Да и писатель, говоря о гибели Земли, посадил всех ее обитателей на межпланетные корабли. И все человечество ринулось в космос, в зону новых миров…