Глава 3. Классы P и NP

Заклятые друзья

Лучший способ получить наглядное представление о классах P и NP – отправиться в воображаемое Королевство заклятых друзей, в котором любые два жителя либо дружат, либо враждуют.

В Королевстве проживает двадцать тысяч человек. Глядя на каждого из них в отдельности, ничего такого не подумаешь… однако стоит только свести двух жителей вместе – и происходит нечто совершенно необъяснимое: они или немедленно проникаются взаимной симпатией и тут же становятся близкими друзьями, или с первого взгляда превращаются в злейших врагов. Никто и никогда не видел, чтобы между двумя жителями сложилось нечто среднее между дружбой и враждой (как можно было бы заключить из названия «заклятые друзья»): они всегда или дружат взахлеб, или терпеть друг друга не могут.

Никакой системы здесь не наблюдается. Друг вашего друга – точно так же, как и враг вашего врага – может быть вам другом, а может и врагом. Зависимость от пола, расы, вероисповедания и социального статуса тоже вроде бы отсутствует; известно только, что друзей у жителей Королевства обычно намного меньше, чем врагов.

В интернете можно найти массу информации о том, кто с кем дружит. Специалисты факультета компьютерных наук Королевского технологического института проанализировали данные социальных сетей, включая Facebook и Twitter, и составили практически полную базу друзей и врагов в Королевстве. В данной главе мы поговорим о том, как эти данные можно использовать.

Шесть степеней отчуждения

Выберем наугад двух жителей Королевства; пусть их зовут Элис и Джордж. Маловероятно, что Элис и Джордж дружат. Возможно, между ними существует связующее звено – общий друг Боб. А возможно, и нет. Исследователи Королевского технологического нарисовали схему, в которой каждому жителю Королевства соответствует один элемент; если жители дружат, то соответствующие элементы соединяются на схеме линией. Один из фрагментов схемы выглядел примерно так:


Рис. 3.1. Дружеские связи в Королевстве


Чтобы добраться от Элис до Джорджа, нужно пройти по цепочке из шести связей: Элис дружит с Бобом, Боб – с Кэти, Кэти – с Дэвидом, Дэвид – с Евой, Ева – с Фредом, а Фред – с Джорджем. Исследователи задумались: можно ли любую пару жителей соединить относительно короткой цепочкой дружеских связей? Проявится ли здесь феномен «тесного мира»? Кстати, название феномена пошло вовсе не от аттракциона в Диснейленде, а от слов «мир тесен», которые мы обычно произносим, когда знакомимся с кем-то и выясняем, что нас связывает нечто общее (пусть даже очень отдаленно).

В 1967 году психолог Стэнли Милгрэм поставил свой знаменитый эксперимент по проверке теории «тесного мира». Сначала он выбрал некоего биржевого маклера, проживающего в Бостоне. Имя маклера сохранялось в секрете; для удобства назовем его Том Джонс. Далее совершенно случайным образом в Небраске были выбраны сто держателей акций. Потом – сто людей, не являвшихся акционерами. И, наконец, в Бостоне по объявлению в газетах были найдены еще сто участников. Вторая группа из Небраски и группа из Бостона не имели никакого отношения к инвестиционному миру. Каждому из трехсот участников Милгрэм отослал пакет, в который вложил список инструкций, реестр и пятнадцать почтовых открыток с маркой, адресованных ему в Гарвардский университет. Инструкции выглядели так:


1. Занесите свое имя в реестр.

2. Заполните одну из открыток и бросьте ее в почтовый ящик.

3. Если вы лично знаете бостонского биржевого маклера по имени Том Джонс, перешлите пакет ему.

4. В противном случае выберите среди своих знакомых кого-нибудь, кто, по-вашему, с большей степенью вероятности знает Тома Джонса и чье имя пока не значится в реестре, и перешлите пакет ему (или ей).


Из трехсот участников двести семнадцать переслали пакет своим друзьям. Шестьдесят четыре письма в конце концов добрались до цели, т. е. до Тома Джонса. Средняя длина цепочки оказалась равна 5,2; в результате возникло понятие «шесть степеней отчуждения», означающее, что любых двух человек на планете в среднем разделяет цепочка из шести связей. Отдельные аспекты эксперимента подверглись резкой критике; впрочем, Милгрэм и сам не возводил феномен шести степеней в статус закона, однако его эксперимент показал, что мы связаны гораздо теснее, чем можно было бы ожидать.

Придумывая различные определения понятия связи – более специфические, чем простое знакомство, – можно исследовать и анализировать людские сообщества. Иногда таким образом возникают салонные игры, в которых требуется вычислить расстояние от произвольного человека до некой «центровой» персоны, обладающей, как правило, большим количеством связей. В 1994 году Кевин Бэйкон, выступая в поддержку своего фильма «Дикая река», в шутку заметил, что все актеры в Голливуде снимались либо с ним самим, либо с теми, кто с ним снимался. Тут же родилась игра под названием «Шесть шагов до Кевина Бэйкона», цель которой – найти кратчайший путь между заданным актером и Бэйконом через актеров, с которыми они вместе снимались. Для многих актеров путь до Бэйкона (и, соответственно, друг до друга) оказался очень коротким. Например, Чарли Чаплин находится от Бэйкона всего в трех шагах: в 1967 году он снял фильм «Графиня из Гонконга», в котором сам сыграл второстепенную роль; графиню играла Софи Лорен, которая в 1979 году снялась в малоизвестном фильме «Сила огня»; одну из главных ролей в этом фильме сыграл Илай Уоллак, позднее появившийся в эпизодической роли в фильме «Таинственная река»; в этом же фильме снимался и Бэйкон.

У математиков тоже есть похожая игра: через совместные публикации они ищут расстояние до Пола Эрдёша – гения комбинаторики и рекордсмена по количеству публикаций[2].

В Королевском технологическом решили выяснить, выполняется ли закон «шести степеней» для дружеских связей между жителями Королевства. Как проверить, существует ли цепочка из шести связей между Элис и Джорджем? Простейший способ – перебрать все существующие цепочки длины шесть. Вот только в Королевстве, насчитывающем 20000 жителей, таких цепочек может набраться 3198400279980000480000. Даже если предположить, что компьютер будет проверять триллион цепочек в секунду, на решение задачи уйдет более ста лет. Неужели нет способа получше?

Оказывается, есть. Существует совсем не сложная процедура, позволяющая быстро определить расстояние между Элис и Джорджем.


• Присвоим Элис число 0.

• Присвоим всем друзьям Элис число 1.

• Присвоим число 2 всем друзьям тех, кто получил число 1 и у кого пока еще нет числа.

• Присвоим число 3 всем друзьям тех, кто получил число 2 и у кого пока еще нет числа.

• Продолжаем до тех пор, пока Джордж не получит число.

• Число Джорджа и будет расстоянием между ним и Элис.


Подобные неформальные описания вычислительных процессов называются алгоритмами. Своим названием алгоритмы обязаны персидскому математику по имени Мухаммад ибн Муса Аль-Хорезми, жившему в VIII–IX веке н. э. В 825 году Аль-Хорезми написал трактат «Книга об индийском счете», благодаря которому индийская система счисления широко распространилась сначала на Востоке, а затем и в Европе. В латинском переводе книга получила название Algoritmi de numero Indorum. Имя Аль-Хорезми превратилось на латыни в Algoritmi, что в конечном итоге и привело к возникновению термина «алгоритм».

Упомянутый выше алгоритм вычисляет длину пути между Элис и Джорджем приблизительно за полмиллиона шагов. Если мы захотим найти степень отчуждения для всех пар жителей Королевства, нам потребуется средство помощнее: алгоритм Флойда – Уоршелла, который справится с задачей примерно за восемь триллионов шагов. Вам кажется, что триллион – это ужасно много? Но ведь компьютеры и сейчас уже способны выполнять миллиарды операций в секунду, так что мощные институтские процессоры вообще посчитали все за пару минут. В результате выяснилось, что средняя степень отчуждения в Королевстве чуть больше шести. При этом были найдены совершенно изолированные группы друзей, не имеющие дружеских связей с остальными жителями Королевства.

Не стоит недооценивать важность этого события. В институте, конечно, могли бы написать программу, которая методично перебирает все возможные пути, пытаясь найти минимальное количество связей между Элис и Джорджем; вот только этой программе пришлось бы проверить столько путей, что она просто не закончила бы работу за разумное время. Более эффективный алгоритм позволил вычислить степень отчуждения для Элис и Джорджа за ничтожную долю секунды, а для всех пар жителей – за каких-то две минуты.

Задача о числе паросочетаний

В Королевстве заклятых друзей залог счастливых отношений – это прежде всего крепкая дружба. Правда, дружеские связи возникают совершенно бессистемно; хорошо, если вам встретился подходящий партнер, но ведь не всем так везет!

Институтские исследователи вскоре поняли, что их база может принести пользу обществу, и решили с ее помощью повысить число удачных браков. На сайте института появилось объявление о наборе 200 волонтеров: по 100 мужчин и женщин гетеросексуальной ориентации. Волонтеры откликнулись очень быстро. Теперь ученым предстояло «поженить» как можно больше участников.

Сколько вариантов должен рассмотреть каждый участник? Первому мужчине потенциально подходят 100 женщин. Когда выбор сделан, у второго мужчины остается 99 вариантов, у третьего – 98, и так далее. Итого получается 100 умножить на 99 умножить на 98 умножить на… умножить на 2 умножить на 1 – величина, называемая факториалом числа 100 и записываемая в виде «100!». Факториал числа 100 состоит из 158 цифр и намного превосходит гугол – число, изображаемое единицей со ста нулями. Термин «гугол» изобрел девятилетний племянник математика Эдварда Казнера, когда тот попросил мальчика придумать числу название.

Название компании Google призвано отражать огромный объем информации, обрабатываемый поисковыми сереверами: это искажение от «гугол» (англ. «googol»). Впрочем, отражает оно этот объем, мягко говоря, некорректно. Интернет, конечно, большой, и измерить его точно не представляется возможным, однако объем содержащейся в нем информации и близко не подходит к гуголу, какими бы мелкими единицами мы его ни измеряли. Если мы даже составим вместе все когда-либо созданные нами компьютеры, то и тогда, вне всяких сомнений, не получим гугол (и уж тем более факториал числа сто).

Однако у ученых все же оставался шанс соединить как можно больше пар, т. е. найти максимальное число паросочетаний. Для этого просто нужно было воспользоваться специальным алгоритмом. На рисунке ниже представлены несколько пар друзей.


Рис. 3.2. Потенциальные пары в Королевстве



Рис. 3.3. Паросочетания (не максимальное число)


Посмотрим, каким образом можно из друзей составить романтические пары. Начнем с Артура и соединим его с Евой. Боб и Фелисити пока одиноки; соединим их, а также Карла с Гейл. На рис. 3.4 романтические связи обозначены пунктирной линией.


Рис. 3.4. Максимальное число паросочетаний


Теперь у нас не осталось пар друзей, в которых оба были бы свободны. Может, это означает, что мы составили максимальное паросочетание? А вот и нет.

У Дэвида нет пары, однако он дружит с Фелисити, которую мы сочетали с Бобом. Боб дружит с Гейл, но чету они не образуют. Гейл соединена с Карлом, а Карл дружит с одинокой Хелен. Разлучим Боба с Фелисити и Карла с Гейл и составим новые связи. Теперь пара есть у всех!

Вернемся к рис. 3.3. Цепь из чередующихся сплошных и пунктирных линий, первый и последний элемент которой не имеет пары, т. е. не принадлежит паросочетанию, называется увеличивающим путем. При наличии увеличивающего пути мы всегда можем увеличить наше паросочетание. В 1957 году математик Клод Берж показал, что для любого паросочетания, не являющегося максимальным, существует увеличивающий путь. Программисты Королевского технологического реализовали алгоритм нахождения увеличивающих путей, основанный на методе последовательного поиска, и в результате смогли подобрать пару для 98 процентов участников эксперимента.

Вскоре после описанных событий Королевский верховный суд вынес постановление, разрешающее однополые браки. На сайте института тут же вывесили объявление о наборе волонтеров любых сексуальных ориентаций. Схемы заметно усложнились; появились даже любовные треугольники, которые к тому же частично пересекались друг с другом (см. ниже).

Простыми методами находить увеличивающие пути уже не получалось, и исследователи обратились к трудам Джека Эдмондса. В 1965 году Эдмондс написал работу с изящным названием «Пути, деревья и цветы», в которой представил усложненный алгоритм поиска увеличивающих путей, подходящий для совершенно произвольных схем. Реализовав метод Эдмондса, специалисты института сумели подобрать пару для 97 процентов участников второго эксперимента.

«Пути, деревья и цветы» дали нам не только эффективный способ решения задачи о паросочетаниях для случая произвольной схемы. В группе из 100 человек алгоритм Эдмондса находит максимальное паросочетание примерно за 1004, т. е. 100000000 (сто миллионов) шагов, что для современного компьютера сущий пустяк. Методичный перебор всех возможных сочетаний вылился бы примерно в два квинвигинтиллиона шагов, а один квинвигинтиллион – это, между прочим, единица и 78 нулей! В работе Эдмондса есть довольно длинное отступление на тему эффективных алгоритмов. Понимая, что для такого, в сущности, интуитивного понятия, как эффективность, подобрать полноценное формальное определение очень сложно, Эдмондс все-таки предлагает некий критерий. Он называет алгоритм эффективным, если тот находит решение за «алгебраическое» время, т. е. время, «алгебраически» зависящее от размера входных данных. Для 100 человек это может быть, к примеру, 1004, 1002 или 10012. В дальнейшем класс задач, для которых существуют такие алгоритмы, получил обозначение «P» – от слова «полиномиальный», заменившего эдмондсовское понятие «алгебраический». Таким образом, класс P представляет собой все многообразие задач, которые можно решить относительно быстро. Ну что ж – в споре «P против NP» мы выслушали мнение первой стороны.


Рис. 3.5. Нетрадиционные потенциальные пары


В поисках клики

В рамках проводимого исследования институтскому профессору социологии понадобилось найти 50 жителей Королевства, которые дружили бы между собой. Своими силами справиться с задачей не удалось, и профессор обратилась на факультет компьютерных наук, где один из специалистов рассказал ей о базе дружеских связей и уверенно заявил, что клика из 50 друзей найдется без труда.

На деле выяснилось, что труд здесь требуется совершенно непосильный. Количество различных групп размера 50 оказалось непомерно огромным и выражалось числом из 151 цифры; не было и речи о том, чтобы проверить хотя бы сотую долю вариантов. Круг поиска пытались сузить всеми возможными способами – в частности, отсекли тех жителей, у которых было меньше 49 друзей, поскольку они-то уж точно не могли входить в искомую клику. Однако, несмотря на свою высокую квалификацию, исследователи не набрали и 25 друзей и при этом не смогли представить убедительное доказательство того, что клики размера 50 в Королевстве не существует.

Работа встала. Исследователи опустили руки. Внезапно одного из аспирантов осенило: «Слушайте, у нас же есть „Альфа“!» «Альфой» называлось известное, но при этом полусекретное сообщество, все члены которого, по слухам, дружили между собой. Пятьдесят «альфовцев» удалось найти довольно быстро: ведь, в конце концов, секретным сообщество было лишь наполовину. Оставалось только перебрать 1225 пар, чтобы проверить дружеские связи. К изумлению исследователей (но не самих «альфовцев», разумеется), все пятьдесят действительно оказались друзьями. Клика нашлась.

Передай скипетр

Иногда достаточно внести лишь одно незначительное изменение, чтобы задача, решение которой находится очень легко, стала прямо-таки неприступной, и сейчас мы с вами в этом убедимся.

Дети в Королевстве любят играть в игру под названием «Передай скипетр», в которой участники по очереди передают друг другу небольшую палку. Передачей считается тот момент, когда палку держат двое – передающий и принимающий.

Правила игры:

1. Палку можно передавать только друзьям.

2. Между любыми двумя друзьями палка должна переместиться ровно один раз.

Пусть в игре участвуют пятеро детей. Одно из возможных решений таково: начинают с Барбары, она передает палку Эрику, Эрик – Алексу, Алекс – Кэти, Кэти – снова Эрику, а Эрик – Дэвиду.


Рис. 3.6. Дети


Дети, которые играют в «Передай скипетр» часто, вскоре понимают: решение существует, когда нечетное число друзей среди игроков имеется не более чем у двух участников. В данном случае таких участников у нас ровно два – это Дэвид и Барбара, у каждого из которых среди играющих есть только один друг. У остальных детей количество друзей четно: у Алекса и Кэти – по два, у Эрика – четыре. Вы спросите, причем тут четность? А вот причем: чтобы передать кому-то палку, нужно сначала получить ее, поэтому каждый игрок, кроме первого и последнего, обязательно участвует в четном количестве передач.


Рис. 3.7. Дети: число друзей у всех четно


Когда у всех участников число друзей четно, в случае успешного исхода палка возвращается к тому, с кого начали.

В данной ситуации решение может быть таким: начинают с Алекса, он передает палку Эрику, Эрик – Дэвиду, Дэвид – Барбаре, Барбара – снова Эрику, Эрик – Кэти, а Кэти – Алексу.

Прообразом игры «Передай скипетр» послужила одна очень известная головоломка XVIII века. В прусском городе Кёнигсберге (а ныне российском Калининграде) через реку Прегель и ее рукава было перекинуто семь мостов (см. карту на рис. 3.8).


Рис. 3.8. Старинная карта мостов Кёнигсберга


Жителям долгое время не давал покоя вопрос: можно ли посетить все районы города, проходя по каждому мосту ровно один раз? В 1735 году знаменитый математик Леонард Эйлер придумал, как изобразить задачу в виде схемы (см. рис. 3.9).


Рис. 3.9. Схема Эйлера


Очень похоже на игру со скипетром, и критерий существования решения здесь тот же; единственное отличие заключается в том, что узами дружбы связаны уже не дети, а районы города – Северный, Восточный, Южный и Остров. Эйлер доказал, что пройти по каждому мосту ровно один раз невозможно, поскольку во всех районах города количество мостов нечетно.

Так и выяснилось, что задача о семи мостах не имеет решения. В память об этом в игре со скипетром любой подходящий путь (а их бывает несколько) называется эйлеровым. Эйлеров путь можно искать по-разному, в том числе и простым перебором, однако при увеличении количества участников число вариантов заметно возрастает. Дети в Королевстве первым делом пересчитывают игроков с нечетным числом друзей, чтобы понять, существует ли вообще решение; если оно существует, то найти искомый путь уже не составляет особого труда. Поиск эйлерова пути – еще один пример задачи из класса P, т. е. задачи, для которой существует эффективный алгоритм.


Рис. 3.10. Передай скипетр – 2: решение есть


Постепенно дети подрастают. Играть становится все легче и легче; в конце концов «Передай скипетр» надоедает им, и тогда они начинают играть в ее вариацию, которую кто-то, не мудрствуя лукаво, окрестил «Передай скипетр – 2». Правила игры следующие:

1. Палку можно передавать только друзьям.

2. Все игроки, кроме первого, получают палку ровно один раз; в конце палка возвращается к первому игроку.

Для представленной ниже схемы дружеских связей решение может быть таким: Дэвид передает скипетр Барбаре, Барбара – Эрику, Эрик – Алексу, Алекс – Кэти, а Кэти возвращает его Дэвиду.

А вот для следующей схемы решения, как выяснилось, не существует.


Рис. 3.11. Передай скипетр – 2: решения нет


Новые правила выглядят проще. Поначалу детям даже кажется, что вторая игра легче, чем первая, однако при увеличении числа участников играть в нее становится намного сложнее. В 1857 году математик Уильям Роуэн Гамильтон изобрел головоломку «Икосиан», или «Путешествие по додекаэдру», в которой нужно было выполнить обход вершин правильного двенадцатигранника, или додекаэдра.


Рис. 3.12. «Путешествие по додекаэдру»


Эта головоломка – частный случай второй игры со скипетром. Представьте, что вершины додекаэдра соответствуют жителям Королевства, а ребра соединяют друзей, – и получите самую настоящую схему дружеских связей. Сумеете сами обойти додекаэдр и решить вторую игру со скипетром? Ответ вас ждет в конце главы.

Любой путь, удовлетворяющий условиям игры, в честь создателя головоломки называется гамильтоновым циклом.


Рис. 3.13. Додекаэдр


Раскраска домов

В Королевстве вышел новый закон: по причинам эстетического характера соседние дома должны быть выкрашены в разные цвета (независимо от того, дружат их хозяева или враждуют). Нововведение вызвало волну общественного протеста: жители не желали тратить свои кровные на краски и рабочих. В результате правительство согласилось оплатить все счета при условии, что оно само выберет цвета.

Расходы на краски предстояли огромные. Правительственные чиновники стремились минимизировать количество различных цветов, поскольку каждый сэкономленный цвет позволял сохранить миллионы долларов. Королевскому технологическому выделили грант на поиск наименьшего количества цветов, достаточного для правильной раскраски всех домов, т. е. раскраски, при которой любые два соседних дома имеют разные цвета.

Ни у кого из жителей число соседей не превышает двенадцати. При самом примитивном подходе – красить каждый следующий дом в цвет, отличный от цветов всех его соседей, – потребуется тринадцать различных цветов. Однако в институте сумели обойтись малой кровью.

Когда в 1852 году английский (а впоследствии южноафриканский) математик Франсис Гатри раскрашивал карту графств Англии, ему пришло в голову, что любую карту можно раскрасить в четыре цвета таким образом, чтобы любые две смежные области получили разные цвета. Его гипотеза широко обсуждалась в математической среде; через некоторое время появились целых два доказательства: первое в 1879 году выдвинул Альфред Кемпе, второе – годом позже – Питер Тэт. Оба были опровергнуты, хотя второе продержалось одиннадцать лет, прежде чем в нем нашлись существенные изъяны. После этого проблема раскраски карт почти сто лет оставалась открытой.

Наконец, в 1976 году математики Кеннет Аппель и Вольфганг Хакен сумели доказать, что для правильной раскраски хватит четырех цветов. Правда, способ доказательства был довольно спорным: для проверки многочисленных примеров, на которых строились рассуждения, ученые использовали компьютер. Консервативно настроенные математики такой метод не приняли, поскольку не все его этапы можно было проверить вручную. Впрочем, формально доказательство Аппеля–Хакена так и не было опровергнуто, и сегодня уже мало кто сомневается в том, что любую карту действительно можно правильно раскрасить в четыре цвета.

А вдруг четыре – это не предел? Можно ли обойтись всего тремя цветами? Оказывается, нельзя, и сейчас мы с вами в этом убедимся. Давайте рассмотрим штат Невада и всех его соседей.

Неваду окружает кольцо из пяти штатов: Калифорния, Орегон, Айдахо, Юта и Аризона. Пять – число нечетное, поэтому для раскраски штатов кольца потребуется не менее трех цветов. Действительно, предположим, что цветов у нас всего два, к примеру – голубой и зеленый. Покрасим Калифорнию зеленым, соседний с ней Орегон – голубым, Айдахо – зеленым, и Юту – голубым. Осталась Аризона, которая граничит и с зеленой Калифорнией, и с голубой Ютой, так что мы не можем покрасить ее ни в зеленый цвет, ни в голубой. Следовательно, для раскраски всех пяти штатов кольца нужно как минимум три цвета. Пусть Аризона будет желтой.


Рис. 3.14. Невада и ее соседи


Невада имеет общие границы со всеми перечисленными штатами, а значит, мы не можем покрасить ее ни зеленым, ни голубым, ни желтым, и для правильной раскраски требуется четвертый цвет.

На базе доказательства теоремы о четырех красках были разработаны алгоритмы, позволявшие правильно раскрашивать карты четырьмя цветами за приемлемое время. Основываясь на этих алгоритмах, в институте создали такую схему раскраски, в которой любые два соседних дома получали разные цвета. Цветов было всего четыре, однако правительство потребовало сократить их число до трех. Доказать, что это невозможно, исследователи не сумели, поскольку на всей территории Королевства не нашлось ни одного дома, окруженного нечетным числом соседей. Отвертеться от задания не удалось.

Начались поиски решения. Через некоторое время, так и не добившись результата, исследователи вынуждены были признать, что они не в состоянии найти способ раскрасить дома в три цвета. Правительству пришлось закупать краски четырех цветов; с тех пор институту уже нечасто удавалось выбить себе грант.

На первый-второй рассчитайсь!

В Королевской начальной школе обучается 500 детей. Преподаватели решили поделить их на две группы, разлучив при этом как можно меньшее число друзей, поскольку те, конечно, хотели оставаться вместе. Вернемся к схеме дружеских связей, рассмотренной в игре со скипетром.


Рис. 3.15. Младшеклассники


Наилучшим решением будет поместить Алекса и Кэти в одну группу, а Барбару, Дэвида и Эрика – в другую: так мы разорвем всего две дружеские связи, Алекс-Эрик и Кэти-Эрик. Очевидно, что разбиения, которое разлучило бы лишь одну пару друзей, просто не существует.


Рис. 3.16. Группы младшеклассников


Директор школы обратился за помощью в институт, подчеркнув, что учителя хотят разлучить минимально возможное число друзей. Оказалось, что для решения задачи существует довольно много эффективных алгоритмов, поскольку она эквивалентна задаче о нахождении минимального разреза в графе. Институтские исследователи сумели разбить 500 учеников на две группы, «разрезав» при этом всего 17 дружеских связей.

Все были довольны и счастливы… до тех пор, пока учителя не осознали, что помещать в одну группу врагов – это еще хуже, чем разлучать друзей. И директору снова пришлось идти в институт. Теперь он просил составить группы таким образом, чтобы разделить как можно большее число врагов. Первая задача не вызвала абсолютно никаких затруднений, и директору казалось, что со второй задачей в институте справятся с такой же легкостью… однако он ошибался.

Исследователям предстояло разнести в разные группы возможно большее число врагов, т. е. решить задачу о поиске максимального разреза в графе, для которой – в отличие от случая с минимальным разрезом – эффективных алгоритмов не существовало. Никто не знал, как максимизировать количество разорванных вражеских связей.

В конце концов выход все же нашелся. Применив алгоритм, разработанный в 1995 году Мишелем Гемансом и Дэвидом Уильямсоном, исследователи сумели построить такое разбиение, при котором в разные группы попадала 1321 пара врагов. Максимальный разрез построить не удалось, однако до него оставалось совсем немного: исследователи знали, что не существует такого разбиения, при котором «разрезалось» бы более 1505 вражеских связей. Директор остался несколько разочарован тем, что оптимальное решение так и не нашли, но ему пришлось смириться. Теперь все снова были довольны и счастливы. Надолго ли?..

P против NP

Некоторые задачи заставили институтских исследователей изрядно попотеть. Давайте их перечислим: поиск клики, поиск гамильтонова пути (вторая игра со скипетром), раскраска карт и построение максимального разреза. У всех этих задач есть одна общая черта: для них легко проверить, является ли найденное решение верным. Зная всех членов общества «Альфа», можно без особых затруднений убедиться в том, что все они дружат между собой, а следовательно – образуют клику. Предполагаемое решение игры «Передай скипетр – 2» можно легко протестировать, просто начав в нее играть. Когда все дома раскрашены, можно за вполне разумное время проверить, что цвета любых двух соседних домов различаются. И, наконец, когда ученики уже разбиты на две группы, директор школы легко подсчитает число разорванных вражеских связей.

В теории сложности вычислений класс задач, для которых можно быстро проверить предполагаемое решение, обозначается NP (где N значит «недетерминированная машина Тьюринга», а P – «полиномиальное время», если уж вам так интересно). Наиболее известные представители класса NP – это как раз поиск клики, поиск гамильтонова пути, раскраска карт и построение максимального разреза.

Обратите внимание, что в классе P, в отличие от класса NP, решение можно быстро найти. Примеры – кратчайший путь, максимальное число паросочетаний, эйлеров путь (первая игра со скипетром) и минимальный разрез.

А что, если быстрый алгоритм поиска клики существует? Если в один прекрасный день какой-нибудь гениальный аспирант разработает простой метод нахождения гамильтонова пути, эффективный алгоритм раскраски карт или быстрый способ построения максимального разреза? Вдруг все эти проблемы на самом деле лежат в классе P – так же как и задачи о кратчайшем пути, максимальном числе паросочетаний, эйлеровом пути и минимальном разрезе? Такое вполне возможно; может даже оказаться, что быстрый алгоритм существует для всех задач из NP. Но пока мы этого не знаем.

В этом и заключается суть проблемы равенства (или неравенства) классов P и NP. Если P = NP, мы попадаем в совершенный мир, где для любой задачи из NP существуют эффективные алгоритмы, и можно не только быстро проверить предполагаемое решение, но и быстро найти самый оптимальный вариант. И наоборот – если найдется хоть одна задача из NP, для которой эффективного алгоритма не существует, это будет означать, что P ≠ NP.

Вопрос о равенстве P и NP – одна из центральных проблем вычислительной техники, а возможно, и всей математики. Многочисленные попытки ученых доказать равенство классов и разработать быстрые алгоритмы для поиска клики или гамильтонова пути, а также других NP-задач, успехом не увенчались. С неравенством классов дело обстоит еще сложнее: ведь для обоснования того факта, что P ≠ NP, нужно доказать невозможность построения быстрого алгоритма для клики или других задач из NP. Но как вы докажете невозможность чего бы то ни было? До сих пор ни в том, ни в другом направлении не было получено сколько-нибудь значимых результатов. Проблема P и NP настолько важна, что Математический институт Клэя предложил миллион долларов за ее решение. А я загорелся идеей написать эту книгу.

За границей королевства

Мы с вами лишь слегка коснулись огромного множества NP-задач, которые невозможно решить за разумное время. Вам, наверно, кажется, что проблема равенства P и NP интересна только жителям воображаемого Королевства да еще узкому кругу математиков, связанных с вычислительной техникой. Чтобы развеять это впечатление, рассмотрим еще несколько задач из NP, не имеющих эффективных алгоритмов решения (и принадлежащих, кстати, к разным областям науки).

Биология

Геном человека содержит двадцать три пары хромосом, каждая из которых представляет собой двойную цепочку пар оснований. Основания бывают четырех видов – аденин (A), цитозин (C), гуанин (G) и тиамин (T). Цепочки начинаются примерно так: «ACTGATTACA…»; некоторые достигают прямо-таки гигантских размеров. Самая короткая хромосома содержит около 47 миллионов пар оснований, а самая длинная – около 247 миллионов. Современные методы секвенирования ДНК позволяют за один прием обрабатывать участки длиной от 20 до 1000 пар оснований. Ученым приходится секвенировать огромное число коротких кусков, а потом придумывать, как их лучше соединить. Склейка последовательности – задача огромной вычислительной сложности и принадлежит она классу NP: ведь, имея на руках готовую последовательность, можно относительно быстро определить, складывается она из секвенированных участков или нет. Поскольку эффективные методы для поиска оптимального решения пока неизвестны, биологи при составлении карты человеческого генома вынуждены секвенировать избыточное число последовательностей; к сожалению, это не слишком спасает их от ошибок и неясных мест, которых при наличии хорошего алгоритма было бы гораздо меньше.

Последовательности ДНК содержат закодированную информацию о последовательностях матричных РНК, а те, в свою очередь, хранят информацию о синтезе белков. Белки – или, иначе, протеины – играют ключевую роль в работе клеток, формирующих любой живой организм. Для выполнения своих функций протеин должен особым образом свернуться, т. е. принять определенную пространственную форму. Сложный механизм сворачивания биологами пока не разгадан; известно только, что процессом командуют матричные РНК. Решение проблемы равенства P и NP помогло бы продвинуться на пути понимания этого механизма и, как следствие, – лечения и предотвращения болезней.

В некоторых случаях предсказать пространственную структуру белка помогает статистический метод протягивания, работающий с последовательностями РНК. Впрочем, этот метод тоже требует решения NP-задач, хотя и дает нам лишь самое отдаленное представление о механизмах сворачивания.

Физика

К классу NP принадлежит и проблема поиска состояния минимальной энергии физической системы – например, множества взаимодействующих магнитных частиц или скопления мыльных пузырей. Эффективно находить такие состояния мы пока не умеем. Но разве это не то же самое, что и состояние равновесия? Нет – потому что в состоянии равновесия энергия физической системы не обязательно падает до минимума.


Рис. 3.17. Простейшая физическая система


Рассмотрим простейшую физическую систему: шарик на неровной поверхности (рис. 3.17). При x = 3,0 уровень потенциальной энергии шарика минимален, а при x = 1,0 – нет, хотя шарик будет оставаться в этой точке до тех пор, пока его не толкнут. Таким образом, состояние покоя еще не гарантирует минимального уровня энергии. Поиск состояния минимальной энергии для сложных физических систем – задача чрезвычайно трудная, с которой подчас не справляются не только компьютеры, но и сами физические системы.

С некоторыми особо трудоемкими NP-задачами можно бороться при помощи квантовой механики; подробнее об этом вы узнаете в девятой главе.

Экономика

Менеджер хедж-фонда ищет наилучшую форму помещения капитала. Покупатель в супермаркете старается уложиться в бюджет. Оба сталкиваются с труднейшей вычислительной задачей из класса NP, решить которую получается далеко не всегда, и часто выбирают совсем не оптимальную стратегию. Каким образом отсутствие эффективных с вычислительной точки зрения алгоритмов в различных сферах рынка сказывается на экономике и на жизни общества в целом? Прекрасный вопрос; к сожалению, достойного ответа на него не может дать никто.

В книге «Игры разума» и в одноименном фильме описывается жизнь известного экономиста Джона Нэша. Нэш доказал, что в любом процессе стратегического взаимодействия нескольких сторон, или игроков, существует состояние равновесия, при котором стратегия каждого игрока такова, что он не выиграет от ее изменения в одностороннем порядке. За свою работу ученый спустя несколько десятилетий получил Нобелевскую премию. Доказательство Нэша не дает нам алгоритм поиска оптимальных стратегий; впрочем, позже выяснилось, что эта поисковая задача обладает огромной вычислительной сложностью. Маловероятно, что различные сферы рынка сами, естественным образом, смогут достичь состояния равновесия; по всей видимости, они так и будут непрерывно перетекать из одного состояния в другое, поскольку люди постоянно меняют стратегии в стремлении добиться наилучших результатов.

Математика

В 1928 году выдающийся немецкий математик Давид Гильберт сформулировал свою знаменитую проблему разрешимости – Entscheidungsproblem: существует ли универсальный алгоритм, который для любого математического утверждения определяет, истинно оно или ложно? В 1931 году Курт Гёдель показал, что некоторые утверждения невозможно доказать или опровергнуть ни в одной системе аксиом; спустя несколько лет вдохновленные его результатами Алонзо Чёрч и Алан Тьюринг независимо друг от друга доказали, что универсального алгоритма не существует.

Допустим, у нас есть некое математическое утверждение и нам требуется найти относительно короткое доказательство, которое, к примеру, уместилось бы в тоненькой книжке. Эта задача лежит в классе NP, поскольку оценить длину уже имеющегося доказательства легко, а создать его совсем не просто; будь у нас на руках все возможные доказательства, мы нашли бы искомое обычным перебором. Вот почему математики, которым удалось придумать какое-нибудь хитрое доказательство, становятся знаменитыми.

Определить условия истинности логического выражения тоже иногда бывает очень трудно, даже если выражение это не слишком сложное. Из данной проблемы выросла целая теория, связавшая вместе большинство NP-задач; подробнее мы познакомимся с ней в следующей главе.

Решение головоломки «Путешествие по додекаэдру»


Рис. 3.18. Обход додекаэдра


Загрузка...