ТВОРЦЫ НОВОЙ ТЕХНИКИ

Виталий Куприянович Семинский — токарь Киевского завода «Красный экскаватор» — прошел большой творческий путь от ученика до Заслуженного изобретателя Республики, лауреата Государственной премии. И сейчас его по-прежнему можно увидеть за токарным станком, на котором он своим, только ему присущим почерком вытачивает сложные детали. Все его изобретения отличаются необычайной простотой и удобством в работе.

Одно из его изобретений — способ автоматической обточки валов различной конфигурации[2]. В чем его суть?

При обработке на токарном станке, скажем, ступенчатых валов вспомогательное время, которое уходит на многократное измерение длины и диаметра шеек вала, на остановки и пуск станка, значительно больше, чем при обработке гладких валов. В условиях наиболее часто встречающегося мелкосерийного производства при обработке многоступенчатых валов на токарных станках типа 1К62 вспомогательное время составляет примерно 80%. Изобретение В. К. Семинского не только сокращает это время, но и позволяет ликвидировать некоторые вспомогательные приемы (например, остановку станка для проверки длины шеек вала, имеющих различные диаметры). Кроме того, это устройство, в отличие от других, обеспечивает обтачивание валов с прямыми углами на их ступенях.

Приспособление устанавливают на место резцедержателя токарного станка (рис. 19). В корпусе 1 по скользящей посадке 2-го класса установлена пиноль 4 с закрепленным на ней сухарем 2. Пружины 10 и 11, упирающиеся одним концом в дно стакана 7, а другим — в шайбу 8, надетую на конец пиноли, создают постоянный контакт между сухарем 2 и копировальным валиком 3. При включении самохода суппорт станка вместе с приспособлением движется по направлению к передней бабке. Резец, установленный в приспособлении, протачивает первую шейку вала, а сухарь 2 скользит по копировальному валику 3, закрепленному с помощью шарнира 5 в кронштейне 6, который установлен на станине станка со стороны задней бабки. Встречая на своем пути ступеньку копировального валика 3, сухарь 2 соскальзывает на нее, а резец вместе с пинолью под действием пружины оттягивается в горизонтальном направлении (под углом 15° по отношению к оси поперечного суппорта) на величину, равную глубине ступеньки копировального валика, и начинает обтачивать вторую ступень вала.


Рис. 19. Приспособление для обтачивания ступенчатых валов


Для получения прямого угла между ступенями вала применяют резец с углом в плане 75°. Пиноль 4 устанавливают в корпусе 1 под углом 15°, поэтому при переходе с одной ступени на другую резец отходит от детали в направлении, обратном движению суппорта. Так как скорость отхода резца с пинолью значительно больше скорости движения суппорта в сторону подачи, то прямой угол между ступенями вала полностью сохраняется. После окончательной обработки вала поперечный суппорт с резцом отводят на 30 мм от детали и эксцентриком 9 подают пиноль вперед вместе с резцом так, чтобы при возвращении суппорта в первоначальное положение сухарь 2 не касался копировального валика. Затем эксцентрик 9 возвращают в исходное положение, и процесс обработки продолжается в прежнем порядке.

С помощью этого несложного устройства, меняя копировальный валик, можно обрабатывать валы различных профилей: ступенчатые, конические, криволинейные и др. Устройство может быть использовано также для автоматического отвода резца при нарезании резьбы. В этом случае копировальный валик имеет одну ступеньку, глубина которой должна быть на 2—3 миллиметра больше наибольшей глубины нарезаемой резьбы. Применение этого копировального приспособления в 5 раз сокращает вспомогательное время при обработке ступенчатых валов (особенно таких, у которых цилиндрическая поверхность переходит в коническую), повышает в 3—4 раза производительность труда.

Другое изобретение В. К. Семинского предназначено для точного растачивания глухих сферических поверхностей на токарном станке[3]. Устройство закрепляют в пиноли задней бабки (рис. 20). Зубчатую рейку 2 устанавливают в резцедержателе суппорта. При включении поперечной подачи рейка, двигаясь вместе с резцедержателем, заставляет вращаться зубчатое колесо 1, на котором укреплен в специальном держателе резец. Описывая вместе с вращающимся колесом полукруг, резец обтачивает внутреннюю сферическую поверхность заданного радиуса. Радиус сферы можно регулировать, изменяя вылет резца. Такое приспособление значительно удобнее и экономичнее других.


Рис. 20. Устройство для обработки сферических поверхностей с помощью механической подачи


Еще одно несложное устройство В. К. Семинского предназначено для обработки конических поверхностей с любыми углами при механической подаче.

Здесь дело вот в чем. Распространенный способ растачивания и обтачивания конусов при вращении вручную винта верхних салазок суппорта не обеспечивает необходимое качество обрабатываемой поверхности, производительность труда при этом способе низкая. Известная конусная копировальная линейка, которой оснащены некоторые зарубежные станки, пригодна для обработки конусов с углами только до 7 градусов. А как быть, если надо проточить конус с углом 25 градусов, да еще на длину 200 миллиметров? Вот тут и выручит токаря устройство В. К. Семинского. Оно обеспечивает плавную механическую подачу верхних салазок суппорта под любыми большими и малыми углами на любом токарном станке.

Устройство (рис. 21) закрепляют на суппорте токарного станка, верхние салазки суппорта освобождают от винта и разворачивают на требуемый угол. Включают продольную подачу, и ведущая зубчатая рейка, соединенная с кронштейном и потому остающаяся неподвижной, начинает поворачивать колесо, соединенное с ведомой зубчатой рейкой, укрепленной на верхнем суппорте. Резец начинает свое движение к передней бабке под тем углом, на который развернут верхний суппорт.


Рис. 21. Устройство для протачивания конусов с помощью механической подачи


Все эти изобретения токаря В. К. Семинского значительно расширяют возможности токарного станка, делая диапазон работ на нем необычайно обширным.

В. К. Семинский создал также оригинальное приспособление, которое позволяет нарезать резьбу со скоростью 1000 об/мин. Опытным токарям такая скорость известна. Но достигнуть ее удается только при нарезании резьбы «на проход» или с достаточно широкой канавкой на выходе. Между тем на многих деталях необходимо иметь резьбу без выходной канавки, а то еще и с плавным и чистым сбегом резьбы, например, при изготовлении пресс-форм. В этих случаях работа идет обычно медленно и чистота сбега резьбы всегда оставляет желать лучшего. Кроме того, на деталях часто приходится нарезать резьбу в упор, что также не дает возможности увеличить скорость. Устройство В. К. Семинского во всех этих случаях позволяет нарезать резьбу быстро при высоком качестве.

Приспособление (рис. 22) устанавливают на место резцедержательной головки. Сквозь его корпус проходит подпружиненная пиноль с закрепленным в ней резьбовым резцом. Под прямым углом к пиноли сделан упорный валик, который также имеет пружину. На станине в определенном положении устанавливают упор. Как только резьбовой резец дойдет до нужного места — валик коснется упора и двинется вправо к задней бабке, а имеющийся на нем скос освободит пружину пиноли, и она вместе с резьбовым резцом плавно отойдет назад от обрабатываемой детали. Подсчитано, что на выход резца из резьбы потребуется всего 0,05 секунды. Одновременно токарь дает суппорту обратный ход и, не трогая лимба поперечного суппорта возвращает резец в исходное положение. Затем, рукояткой, соединенной с эксцентриком, возвращает пиноль в первоначальное положение. Так как резец автоматически занял положение, в котором он находился при предыдущем проходе, то при помощи рукоятки поперечной подачи суппорта подают резец в направлении детали на выбранную глубину резания, и операция повторяется.

Это приспособление обеспечивает плавный выход резца из резьбы в одной и той же точке детали, улучшает качество резьбы, облегчает труд токаря и значительно повышает производительность труда. Кроме того, оно полностью заменяет верхний откидной суппорт, который необходим при нарезании резьбы. К сожалению, этим устройством оснащены пока очень редкие типы токарных станков.


Рис. 22. Приспособление для нарезания резьбы в упор с автоматическим отводом резца


Иногда бывает так, что незначительное изменение конструкции инструмента приводит к самым неожиданным результатам. Так было и с резцом В. К. Семинского[4].

Если при наружном обтачивании удается почти всегда достичь высоких режимов резания, то при растачивании отверстий эта задача усложняется. Растачивая отверстия, скажем, диаметром 50—70 миллиметров, прежде приходилось иметь дело с резцом, поперечное сечение цилиндрической державки которого сравнительно мало, так как его диаметр должен быть меньше половины диаметра самого отверстия (для свободного выхода стружки). Поэтому таким резцам свойственна весьма малая жесткость, что, конечно, не позволяет снимать стружку большого сечения или применять высокие скорости резания. Для повышения жесткости резца и облегчения свободного выхода стружки В. К. Семинский предложил повернуть рабочую часть резца (не зажатую в резцедержателе) на 35 градусов по отношению к части, закрепляемой в резцедержателе (рис. 23). Такое простое решение оказалось очень эффективным — «скрученный» резец стал более жестким. Резец испытывали при растачивании отверстия диаметром 70 миллиметров с подачей 0,5 миллиметра на оборот и глубиной резания 15 миллиметров. Большая нагрузка отжимала резец вниз, а изогнутое ребро сопротивлялось, и резец оставался в первоначальном положении.


Рис. 23. Расточный резец В. К. Семинского


Обычный же расточной резец при таких режимах сразу начинал сильно вибрировать, а режущая пластинка отваливалась. Используя новый метод, токарям удалось в 2 раза увеличить скорость резания и значительно снизить шероховатость поверхности в обрабатываемых отверстиях. Сейчас на ряде заводов изготовляют подобные резцы для нарезания внутренней резьбы.

Токарь В. К. Семинский увлекается не только оснащением новыми инструментами и устройствами токарных станков. Его работы в области операций фрезерования также заслуживают большого внимания. Он, например, создал новые фрезы с неперетачиваемыми твердосплавными пластинками (рис. 24). Жесткий и в то же время несложный способ закрепления пятигранных стандартных пластинок позволяет снимать стружки большого сечения при очень высоких режимах резания. Замена затупившейся пластинки при этом может быть произведена быстро и без особой трудности для фрезеровщика. Одна такая фреза может заменить десятки обычных.


Рис. 24. Фреза В. К. Семинского


Мы познакомились сейчас с творчеством одного из токарей-новаторов Украины. В Республике есть немало замечательных мастеров токарного искусства, пожилых и молодых, с разными характерами, почерками работы. Каждый имеет особую склонность в области изобретательства. Но всех их объединяет одна общая черта: влюбленность в свою профессию, горячее желание помочь Родине в развитии технического прогресса.

А теперь я хочу рассказать о ленинградском новаторе — токаре завода «Большевик», лауреате Государственной премии Владимире Никитовиче Трутневе (рис. 25). В. Н. Трутнев — председатель Совета новаторов завода «Большевик», член президиума Совета новаторов Ленинграда. На его счету много различных новшеств, которые значительно облегчают труд токаря, повышают его производительность. Одно из них — это двухшпиндельная поворотная коробка для токарных станков типа 1К62 (рис. 26). Она предназначена для одновременной обработки двух одинаковых деталей.


Рис. 25. Токарь-новатор В. Н. Трутнев показывает свои методы работы на заводе «Шляйфмашинверк» в городе Карл-Маркс-Штадте (ГДР)


Рис. 26. Двухшпиндельная головка для токарных станков конструкции токаря В. Н. Трутнева


Как это делается? В коробке скоростей монтируют второй, точно такой же шпиндель, как и основной. На оба шпинделя насаживают на шпонках два одинаковых зубчатых колеса, соединенных между собой третьим — «паразитным». Это делается для того, чтобы оба шпинделя вращались всегда в одну и ту же сторону.

На нижней подушке поперечного суппорта устанавливают второй резцедержатель. В патроны зажимают две заготовки, устанавливают резцы и начинают обработку. Токарь снимает первую стружку на обеих заготовках и измеряет разницу диаметров обработанных поверхностей обоих деталей. Если она составляет, например, 0,4 миллиметра, то подающим винтом второго суппорта ее легко устранить. Для этого служит индикатор с упором, установленный в правой части второго резцедержателя. Теперь на станке автоматически будет обработана вторая деталь точно такой же конфигурации и размера.

При модернизации станка для такой работы переднюю бабку устанавливают на специальной подушке, которая позволяет поворачивать ее на определенный угол. Для этого на нижней подушке нанесены деления в градусах, а на самой бабке нулевая риска.

Возможности такого станка еще далеко не раскрыты. По-моему, его можно настроить на многие виды работ, в том числе и резьбовые. Поворот передней бабки значительно расширяет диапазон работ обычного токарного станка, позволяя обрабатывать при механической подаче конические детали, да еще по две сразу! Вот какие результаты может дать творчество токаря.

Ленинградские новаторы — это один из передовых отрядов рабочего класса нашей страны. Первый в стране Совет новаторов был создан именно здесь. Его организатор и председатель Владимир Якумович Карасев — фрезеровщик Кировского завода, создатель многих принципиально новых режущих инструментов. Его фреза, которая так и называется «фреза Карасева», известна всему миру. Патенты на нее купили многие фирмы капиталистических стран.

Если вы когда-нибудь будете в Ленинграде, зайдите в Дом техники на Невском проспекте. Там инструкторы ленинградского Совета новаторов покажут вам много интересных новшеств, вы увидите все в действии на станках и сможете потрогать своими руками.

Вот, например, несложное устройство для токарных станков, на которых обрабатывают детали из вязких материалов: латуни, нержавеющей стали, титана и т. п. Все знают, сколько неприятностей приносит длинная горячая стружка при точении таких материалов. Мало того, что ее очень трудно убирать, она еще может стать причиной травмы токаря или подсобного рабочего. Дело осложняется еще и тем, что в этом случае нельзя сделать на резце стружколом.

В ленинградском Доме техники вам покажут, как можно «укоротить» такую стружку. Для этого на станине около передней бабки устанавливают небольшую коробочку — импульсный прерыватель механической подачи. Через каждую секунду он останавливает резец на какое-то мгновенье. Однако этого достаточно, чтобы вязкая стружка прерывалась и послушно ссыпалась в корыто станка небольшими отрезками длиной приблизительно 150 мм. Перерыв в движении резца занимает ничтожные доли секунды, и поэтому на детали не остается рисок.

О новинках ленинградских станочников-новаторов можно рассказывать много. Но теперь я расскажу о некоторых работах наших столичных новаторов.

Вот, например, Сергей Александрович Новиков — слесарь-лекальщик, и тем не менее его деятельность имеет прямое отношение к нашей теме. За последние годы работа слесаря-лекальщика сильно изменилась. Десятки лет сидел он за тисками и вручную выпиливал сложнейшие шаблоны матриц и пресс-форм. Однако сейчас все стало по-другому.

Мне как-то пришлось разговаривать с известным слесарем-лекальщиком завода имени Яна Швермы в городе Брно (ЧССР). Звали его Франтишек Гамр, он — Герой Труда, изобретатель, очень разносторонне подготовленный человек. Я заметил, что на его рабочем месте и у других слесарей-лекальщиков (а он был бригадиром) нет дисков.

— Почему, товарищ Гамр? — поинтересовался я.

Переводчица перевела мне его ответ, который звучал так:

— Тридцать лет я работаю слесарем-лекальщиком и еще ни одного шаблона, штампа, матрицы или пресс-формы я не сделал вручную.

И он указал на длинный ряд профильно-шлифовальных станков. Около каждого из них стоял стеллаж, на котором было не менее сорока различных приспособлений и устройств.

— Нет такого шаблона, пресс-формы или штампа, — продолжал Гамр, — который нельзя сделать, и при том отлично, на одном из этих приспособлений методом шлифования.

С. А. Новиков давно усвоил эту «формулу» Гамра и отлично выполняет ряд лекальных работ механическим способом, без тисков. Но в своих исканиях он пошел еще дальше. Почти на каждом заводе ежедневно слесарю-лекальщику приходится изготовлять один какой-нибудь шаблон или лекало. Это его повседневная работа. Делать для этого десятки сложных устройств, какие я видел у Гамра, нет смысла. Но и в тисках такая операция отнимает очень много времени. К тому же трудно достигнуть такого качества и точности, каких требует современное машиностроение. С. А. Новиков придумал, как выйти из этого затруднительного положения, и сумел ускорить процесс изготовления одиночных и «аварийных» шаблонов и лекал.

Он создал новое устройство, которое назвал припиловочной рамкой (рис. 27). С ее помощью можно всего за 5—6 минут изготовить любой шаблон, причем отличного качества. С. А. Новикова часто приглашают показать свои новые инструменты и устройства в технические училища и на заводы (рис. 28).


Рис. 27. Припиловочная рамка С. А. Новикова


Рис. 28. Слесарь-лекальщик С. А. Новиков показывает работу своего разметочного устройства в Московском техническом училище №5


Интересны методы работы рабочего Московского завода автоматических линий имени 50-летия СССР токаря Е. С. Зубова. Начав свою творческую «карьеру» с активной работы в Московском Совете новаторов и в Доме научно-технической пропаганды еще в 1960 году, Евгений Семенович стал известным новатором, горячим пропагандистом новой техники, применяемой в металлообработке.

Основная цель его творческих исканий — это как можно больше расширить технические возможности обычного токарного станка, создать у себя образцовое рабочее место токаря. Его приспособления и устройства несложны в изготовлении и настолько просты, что смотришь на них и удивляешься, как же это раньше никто не додумался до этого. А вот Зубов додумался! Используя свои приспособления, он выполнил задания 9-й пятилетки почти на год раньше. Большинство его новшеств сделаны применительно к токарным станкам 1К62 и 16К20. Интересно, что часто новаторы идут к одной и той же цели различными путями, но все они оказываются хорошими. Вот, например, два варианта решения одних и тех же задач. Это устройства, разработанные киевским токарем В. К. Семинским и москвичом Е. Зубовым для токарных работ. Об устройствах В. К. Семинского мы уже говорили.

Для проточки длинных конусов на механической подаче у Семинского в основе решения лежит зубчатая рейка и шестерня, а у Зубова — сменные тяги с заданными углами (рис. 29). Движение торца державки с резцом по тяге получается более плавное, чем движение шестерни по рейке и поэтому качество обработки улучшается. Настройка и подгонка на заданный угол, необходимая при применении приспособления Семинского, в случае использования приспособления Зубова не требуется, так как резец точно копирует конусность тяги.


Рис. 29. Устройство для проточки длинных конусов конструкции Е. С. Зубова


Конечно, устройство Семинского имеет свои плюсы, а какие — это я, думаю, читатели-станочники видят сами.

Другое устройство предложено Е. С. Зубовым для проточки наружных и внутренних сферических поверхностей. Оно также основано на применении тяги с изменяющейся длиной. А Семинский для этой цели использовал ту же зубчатую рейку и шестерню.

Интересен также способ нарезания внутренней резьбы в упор. У Зубова он решен также оригинально. Трудности здесь для токаря известны. При каждом проходе резьбового резца необходимо успеть вовремя отвести его и одновременно дать станку обратный ход. Не управишься — сломаешь резец и безнадежно испортишь подчас дорогую деталь. Поэтому работа идет на самых малых оборотах.

Зубов создал специальную державку для резьбового резца. При приближении резца к глухой стенке нарезаемой детали специальный латунный ролик, ось которого жестко соединена с державкой резца, подходит к наружной стенке детали и не дает резцу врезаться в нее. В то же время весь суппорт станка продолжает двигаться на глухую стенку детали, сжимая специальную пружину. Токарь может, ничего не опасаясь и не торопясь, вывести резец из резьбовой канавки и, также не торопясь, дать станку обратный ход. Такое несложное приспособление позволяет увеличить производительность при нарезании глухой резьбы (диаметром 40 миллиметров и более) в 4 раза, исключить возможности брака и аварии, повысить качество изготовляемых деталей.

Токари знают, как много неприятностей приносит люфт в кулачках токарных патронов. Люфт обычно появляется уже после нескольких часов работы нового патрона. В результате деталь в патроне «бьет» и обработка получается некачественной. Кулачки приходится растачивать или расшлифовывать, а это не так просто. Небольшое изменение конструкции кулачков полностью предотвращает появление люфта кулачков в патронах на много месяцев работы. Подпружиненные шарики, взятые от старого подшипника и вмонтированные в направляющую канавку кулачка, превращают трение скольжения кулачков по корпусу патрона во время зажима и отжима детали в трение качения. Продолжительность точной работы патрона увеличивается в 200 раз.

Для подъема тяжестей у крупных токарных станков моделей ДИП-400, ДИП-500 обычно имеются кран-балки, а для наиболее распространенных средних станков типа 1К62 и 16К20 кран-балки не устанавливают. Токарям, работающим на этих станках, приходится нередко поднимать вручную на станок двадцатикилограммовый патрон, планшайбу или другие тяжелые зажимные устройства и навинчивать их на резьбу шпинделя, или же свинчивать и снимать их со станка при перестройках на разные работы. Дело это не легкое, приходится звать на помощь соседа. Да и возможность травматизма при этом не исключена.

Е. С. Зубов создал несложное, но остроумное устройство, значительно облегчающее труд токаря. У его станка сзади передней бабки прикреплен шарнирный кронштейн с цилиндрическим толстым пальцем (рис. 30). Для того чтобы снять, например, трехкулачковый патрон и поставить вместо него на шпиндель планшайбу, достаточно палец кронштейна ввести в раскрытые кулачки патрона и обжать его кулачками. Потом пустить станок на малых оборотах на обратный ход и патрон сойдет с резьбы шпинделя и останется висеть над станиной. С помощью шарнирного кронштейна токарь легко перемещает патрон за переднюю бабку и ставит его в ячейку деревянного стеллажа, прикрепленного сзади передней бабки к корпусу станка. Затем вводит палец кронштейна в стоящую в соседней ячейке, например, планшайбу, сжимает его кулачками планшайбы и легко переводит планшайбу к шпинделю станка, пускает станок теперь уже на прямой ход на малых оборотах. Так как палец свободно вращается в последнем сегменте кронштейна, планшайба легко навинчивается на резьбу шпинделя. Разжав кулачки, токарь легко завершает тяжелую операцию. Здесь важно отметить такой факт: обычно тяжелые патроны, планшайбы диаметром 300—400 мм и более лежат на полу около станка, засоряются стружкой. У Зубова же они не лежат, а стоят ребром в деревянных ячейках, и не на полу, а на уровне станины, защищенные от мусора и стружки. Это говорит о высокой культуре рабочего места станочника.


Рис. 30. Устройство для смены тяжелых патронов и планшайб на токарных станках


У токаря Е. С. Зубова можно отметить и еще некоторые «мелочи», характеризующие его рабочее место. Вот, например, зенковка заготовок — обычно довольно распространенная операция во всех механических и инструментальных цехах. На зенковку детали с двух сторон уходит около минуты. Простое приспособление с подпружиненным держателем зенковки позволяет сократить время на этой операции до трех—четырех секунд (рис. 31).

Часто требуется токарю зацентровать деталь, зажатую в патрон, и потом поджать ее задним центром для дальнейшей обработки. Тут без смены инструмента (центровочного сверла и заднего центра) не обойтись. Е. С. Зубов предложил и осуществил откидную центровку, которая всегда надета на задний центр (рис. 32). Опусти ее токарь в рабочее положение и центровое сверло окажется точно в центре заготовки. Зацентровал ее, откинул центровку наверх и тут же поджал центром. Никакой смены инструмента и нет ни малейшего «биения» заготовки. Об оснастке станка у токаря Е. С. Зубова можно было бы сказать еще многое, но давайте перейдем к новаторам других профессий.


Рис. 31. Приспособление для центровки


Рис. 32. Откидная центровка Е. С. Зубова


Говоря о московских рабочих-новаторах, нельзя не упомянуть и о слесаре-механике Московского завода счетно-аналитических машин Борисе Сергеевиче Егорове. Его изобретения имеют мировую известность. Среди них есть удивительный станок НСЕ (намоточный станок Егорова). На нем автоматически наматывается тончайшая проволока на миниатюрнейшие кольцевые катушки — сопротивления для счетно-аналитических и электронно-вычислительных машин. Таких микрокатушек в современном приборостроении и радиоэлектронной промышленности требуются миллионы. До изобретения НСЕ у нас и за рубежом тысячи работниц, напрягая зрение, наматывали эту тончайшую проволоку вручную.

Намоточные станки Егорова увеличили производительность труда на этой операции в 800 раз! Их демонстрировали на международных выставках и ярмарках в Нью-Йорке, Брюсселе, Генуе. Несколько американских и бельгийских фирм купили у нас лицензию на станки Егорова. Б. С. Егоров — Герой Социалистического Труда, заслуженный изобретатель Республики. С ним советуются инженеры и ученые.

В коллективе Московского завода счетно-аналитических машин выросли многие известные новаторы-станочники. Это расточник-координатчик А. В. Антропов — заслуженный изобретатель Республики. Созданные им новые инструменты намного сокращают вспомогательное время в работе расточника, расширяют возможности станка, улучшают качество изделий, делают труд станочника легким и производительным.

Его расточными резцами свободно можно растачивать с большой точностью отверстия диаметром 1,5 миллиметра и даже меньше. Сборный расточной патрон, станочные параллельные тиски, сучкообразные резцы являются изобретениями и представляют собой принципиально новые инструменты. Эти и многие другие новшества А. В. Антропов описал в своей книге «Рабочая честь», выпущенной издательством «Московский рабочий» в 1976 году.

Таким же замечательным новатором, выросшим на том же заводе, является шлифовщик М. С. Краморовский. Постоянно работая над изготовлением различного инструмента, он превратил свой простенький недорогой плоскошлифовальный станок Витебского станкозавода в универсальную машину для производства сложных шаблонов, матриц, пуансонов, всевозможных деталей штампов и пресс-форм. Созданные им приспособления и устройства чрезвычайно оригинальны и на первый взгляд кажутся просто удивительными. Только внимательно приглядевшись к ним, начинаешь понимать, что все они в сущности просты, что в них остроумно использованы старые, как мир, законы геометрии.

Расскажу о некоторых созданных им приспособлениях, позволяющих значительно расширить возможности плоскошлифовальных станков и успешно выполнять на них работы, рассчитанные на специальные профилешлифовальные и круглошлифовальные станки, причем делать это быстрее и более качественно.

Вот, например, приспособление для заправки шлифовального круга на точный угол (рис. 33). Оно состоит из основания, имеющего форму точного квадрата 100×100 миллиметров с вмонтированными по углам точными бобышками диаметром 20 миллиметров. Расстояние между центрами этих бобышек равно 100 миллиметров. В стойке, укрепленной на основании, в квадратном отверстии двигается свободно, но без малейшего люфта, квадратный стержень с зажатой на его конце оправкой с алмазом.


Рис. 33. Приспособление для заправки шлифовального круга на точный угол


Для заправки шлифовального круга, скажем, на 20° достаточно взять из таблицы тригонометрических величин значение синуса 20°, набрать блок концевых мер и приложить его к одной из бобышек, прижав его основанием к упорной линейке магнитной плиты станка. Двигая квадратный стержень с алмазом вперед — назад, шлифовальщик легко и быстро заправит алмазом рабочую сторону круга на требуемый угол. Ввиду того, что основание приспособления по существу представляет собой синусную линейку, ошибка заправки угла будет не более 30 секунд.

Устройство для заправки шлифовального круга на выпуклые и вогнутые кривые (рис. 34) имеет основание, установленное на магнитной плите, и вращающийся в нем круглый изогнутый кронштейн с закрепленной на конце оправкой с алмазом или алмазной иглой. Центр вращения круглой части кронштейна находится на расстоянии 50 миллиметров от основания и от магнитной плиты. Устанавливая вылет алмаза из кронштейна по концевым мерам, поставленным на плиту станка, можно заправить шлифовальный круг на выпуклую или вогнутую кривую с радиусом от 1 до 50 миллиметров с точностью до 0,01 миллиметра. Установив по концевым мерам нужный вылет алмаза, заправляют круг качанием круглой части кронштейна в обойме основания. Острие алмаза при этом описывает нужную дугу, заправляя шлифовальный круг.


Рис. 34. Приспособление для заправки шлифовального круга по радиусу, установленное в синусных тисках: 1 — приставка для правки абразива по радиусу; 2 — алмазный карандаш; 3 — синусные тиски


С помощью этого же приспособления можно изготовить радиусные токарные резцы для круглой резьбы и различных фасонных токарных работ. В этом случае вместо алмаза в гнездо кронштейна закрепляют закаленную заготовку будущего радиусного резца. По концевым мерам устанавливают нужный вылет этой заготовки и устройство подводят под прямой шлифовальный круг, сместив предварительно центр будущего резца с центра вращения шлифовального круга на 10—15 миллиметров. В результате качания устройства в обойме основания вращающийся шлифовальный круг за одну минуту создает на заготовке резца кривую с нужным радиусом. Смещение центра резца с центра вращения круга здесь необходимо для получения заднего угла резания на профиле резца.

Универсальные синусные тиски, созданные М. С. Краморовским для изготовления пуансонов и матриц вырубных и гибочных штампов, представлены на рис. 35. Эти тиски могут быть точно поставлены на плите под любыми углами как в вертикальном, так и в горизонтальном измерениях. Установку углов производят по концевым мерам, подкладываемым под специальные места в основании и подушки тисков. В тисках можно укрепить приспособления для заправки углов и сфер на шлифовальном круге, а потом зажать в эти же тиски в любых точных положениях обрабатываемые заготовки различного инструмента.


Рис. 35. Универсальные синусные тиски: 1 — подвижная губка с пазом типа ласточкин хвост; 2 — ручка; 3 — блок мерных плиток для установки тисков под углом; 4 — основание; 5 — установочные ролики


Среди новаторов Московской области мне хочется отметить и Филиппа Платоновича Соскова — наладчика токарно-револьверных станков Мытищинского машиностроительного завода. Результаты его творческой мысли перешагнули далеко за пределы механического цеха, где он работает. Ряд созданных им патронов и других зажимных устройств для револьверных станков и полуавтоматов широко используют многие заводы страны. Его бесцанговый зажимной патрон так и называют «Патрон Соскова».

У Ф. П. Соскова зарегистрировано пять изобретений и множество рационализаторских предложений, он заслуженный рационализатор республики, неоднократно избирался депутатом Верховного Совета РСФСР, был членом Президиума Верховного Совета РСФСР. У Ф. П. Соскова необыкновенно острое чутье на все новое в технике. Он не только видит изъяны в машине, но и сразу определяет, как их устранить, как улучшить ее данные.

Как-то однажды в депо «Сокол» Московского метрополитена, где ему пришлось быть по делам своего завода, он обратил внимание на множество вагонов, стоящих без движения в ремонте.

— В чем дело? — спросил он. — Ведь вагоны совсем новенькие! Оказалось, что лопаются рамы тележек. На этих рамах подвешены тяговые электродвигатели большой мощности. С тех пор, как существует Метрополитен, эта проблема стоит перед работниками не только метро. Пригородные электропоезда страдают той же «болезнью».

Ф. П. Сосков предложил изменить крепление электродвигателя к раме, сделать его шарнирным. Нашлось много противников этой идеи, но Ф. П. Сосков, со свойственной истинному новатору настойчивостью, в конце концов добился своего. Ему дали в депо бригаду из рабочих и технологов и разрешили сделать опытный образец тележки. Новое крепление электродвигателя сразу дало удивительные результаты: пробег вагона без ремонта увеличился в 10 раз. Шарнирное соединение гасит вибрацию от работы мощного электродвигателя, и рама не повреждается. А ведь над этой проблемой долго ломали голову многие специалисты. Вот чего может добиться простой рабочий, привыкший творчески подходить к любому делу.

Необычна судьба еще одного токаря-новатора — Алексея Харитоновича Друзя. В двадцатые годы он еще мальчишкой попал в США, где 25 лет проработал токарем на заводах выдающегося американского изобретателя Эдиссона. Сейчас токарь А. X. Друзь живет и трудится в Киеве. Его рационализаторская мысль принесла много пользы, сберегла государству сотни тысяч рублей. Вот некоторые из его разработок.

Обычный четырехпозиционный резцедержатель снимают с суппорта и на его место ставят держатель А. X. Друзя (рис. 36). В нем можно закрепить и зафиксировать по центру множество всевозможных инструментов: резцов — проходного, подрезного, отрезного, расточного; метчиков любого размера для нарезания внутренней резьбы; плашек для нарезания наружной резьбы; сверл и т. д. Все эти инструменты уже не нуждаются в какой-либо настройке. Достаточно двинуть рукоятку поперечного суппорта и любой из них вступает в действие. Это настоящий комбайн для токарных станков. Представляете, сколько времени сэкономит токарь, имеющий вот такой универсальный держатель. Вместе с повышением производительности труда улучшается и качество обработки деталей. Ведь теперь нет нужды вынимать детали из патрона, как это обычно делалось и приводило к нарушению соосности поверхностей детали. При таком резцедержателе деталь обрабатывают с начала до конца на одной установке в патроне.


Рис. 36. Универсальный резцедержатель с оснасткой для токарных станков конструкции А. X. Друзя


Было бы очень полезно иметь на каждом токарном станке такой многопозиционный резцедержатель. В резцедержателе современного токарного станка можно зажать самое большое четыре штуки. А в резцедержатель Друзя можно установить (при этом всегда точно по центру) 15 различных сверл, три центровки или зенковки, десяток сменных расточных резачков, метчиков, плашек нескольких размеров и те же четыре резца: проходной, подрезной, отрезной и расточной. При мелкосерийном производстве, которое имеется на большинстве машиностроительных заводов, резцедержатель Друзя может дать большую экономию вспомогательного времени, а следовательно, повысить производительность труда. Его успешно применяют на многих заводах Украины.

Интересна разработка нового измерительного инструмента новатора Виктора Алексеевича Лукьянова. Многие рационализаторы настойчиво работают над усовершенствованием инструмента, и это не случайно. Дело в том, что они руководствуются мудрым заветом Михаила Ивановича Калинина: «изобретать следует не то, что хочется, а то, что сейчас всего нужнее!» Скажем, на заводах не хватало резьбовых калибров, так как они быстро изнашивались. Тогда рабочие-новаторы создали такие калибры, износостойкость которых в 150—200 раз больше всех известных до сих пор.

Или другая проблема. Все токари знают, сколько надо измерительных скоб для проверки диаметров различных деталей в механических цехах. Их требуются многие тысячи. Делают эти скобы квалифицированные слесари-лекальщики. А на заводах их не хватает, вот и приходится токарям каждую деталь измерять микрометром, а это долгое и утомительное дело при серийной работе. Скобы к тому же быстро изнашиваются, и их тысячами списывают в утиль. Иными словами, зря переводится высоколегированная сталь, которая стоит не дешево.

Саратовский новатор Виктор Алексеевич Лукьянов предложил вместо сотни быстроизнашиваемых измерительных скоб сделать одну скобу, которая почти не изнашивается. И сделал это так, что одна скоба может проверять не один, а 30 или 40 различных размеров. Не правда ли, просто поразительный результат.

Обычная измерительная скоба представляет собой плоскую дугу, в разрезе которой делается слесарно-лекальным способом две доведенные плоскости с уступом на одной из них. Если измеряемая деталь проходит в скобу до уступа и не идет дальше, значит она годна. Если же она проходит и уступ, то это явный брак. Когда деталь получается больше размера скобы, ее необходимо доработать. Благодаря быстроте и_ удобству такой способ измерения получил очень широкое распространение в механических цехах заводов. Беда только в том, что скобы быстро изнашиваются — ведь допуск на их размер исчисляется микронами.

Скоба В. А. Лукьянова (рис. 37) представляет собой две отдельные губки 2 из поделочной стали, на которые напаяны пластинки 1 твердого сплава. Шлифуют и доводят губки в пачке сразу по 20 штук. Только на одной из пачек делают канавку и уступ, равный величине допуска на данный размер. На другой пачке шлифуют просто одну плоскость. На каждый размер (через 1 миллиметр) изготовляют концевые меры с двумя отверстиями под винты. В одной из губок нарезают резьбу под винты, во второй сверлят два отверстия, в которые свободно проходят винты 3. Обе губки вместе с концевой мерой нужного размера собирают и скрепляют винтами. Как и все измерительные инструменты, размер скобы проверяют в лаборатории. Рабочие губки новой скобы, сделанные из твердого сплава, имеющего высокую износостойкость на истирание, выдерживают число измерений в 200 раз больше, чем старые. Если нужно измерять другой размер, нет необходимости делать новую скобу — для этого достаточно поменять концевую меру. В настоящее время на многих заводах для того, чтобы увеличить срок службы быстроизнашиваемых обычных скоб, стали делать их из твердых сплавов вольфрама. Вольфрам пока является дефицитным и дорогостоящим металлом. В скобе новатора Лукьянова заложена большая экономия вольфрама, так как одна его скоба практически заменяет тридцать скоб, выпускаемых сейчас многими инструментальными цехами машиностроительных заводов.



Рис. 37. Универсальная измерительная скоба из твердого сплава конструкции новатора В. А. Лукьянова


Есть еще одно преимущество новой скобы: обработка рабочих поверхностей скобы Лукьянова значительно проще и стоит дешевле, чем такая же обработка известных неразъемных скоб, особенно на небольшие размеры, применяемые наиболее часто. Многие предприятия изготовляют и успешно применяют скобы Лукьянова.

Все эти большие и малые изобретения и усовершенствования дают огромную пользу нашей стране благодаря массовому их применению при сравнительно небольших затратах на изготовление.



Загрузка...