Глава VII Искра-труженица

Когда медь бывает тверже стали

Медь тверже стали? Возможно ли? Действительно, достаточно припомнить, как стальным зубилом вырубают отверстие в медной пластинке, чтобы не сомневаться, какой из названных двух металлов тверже.

Но героиней нашей книжки является плазма, и вы не ошибетесь, если предположите, что именно она может перевернуть все вверх дном, сделать одни тела податливыми, как воск, а другие — твердыми, как кремень.

Когда нужно обработать какую-либо деталь, главным является вопрос об инструменте. В схватке с металлом инструмент должен выйти победителем. А это может быть в том случае, если он значительно тверже обрабатываемой детали.

Много лет делали сверла, резцы, фрезы из стали, и она прекрасно справлялась с порученной работой. Но вот появились очень прочные сплавы, и прославленная сталь начала сдавать. Инструмент быстро изнашивался, а то и совсем выходил из строя, плавился или ломался. Придумали очень твердую керамику, но и она не всегда выходила победительницей в борьбе с металлом.

Тогда обратились к плазме.

Два советских ученых — супруги Б. Р. и Н. И. Лазаренко — трудились над важной проблемой: как увеличить долговечность контактов, разъедаемых искрой при включении и выключении тока.

Поместив контакты в жидкое техническое масло, ученые заметили, что оно мутнеет. «Наверно, пригорает масло», — решили они, хорошо зная, что попрыгунья-искра может быть прекрасным «химиком».

Но когда муть появилась в чистой воде, исследователи задумались: откуда она взялась? Какого она происхождения? И еще: каковы ее свойства?

К воде, налитой в стеклянную банку, поднесли магнит. Мутное облачко притянулось к магниту. «Все ясно, — решили ученые, — в воде оказались осколки железных контактов, „брызги“, разлетавшиеся после каждого удара искры. Значит, можно, используя это явление, получать металлические порошки». И они стали конструировать «искровую мельницу». Во время опытов исследователи заметили, что металлическая пудра отделяется от контакта, соединенного с положительным зажимом источника тока. Значит, пластинку, предназначенную для переработки в «пудру», следует соединить с плюсом. Известно было также, что именно искра разрушает металл. Значит, рассуждали изобретатели, второй электрод нужно сделать острым, с него будут прыгать искры при значительно меньшем напряжении.

Кроме того, на нем меньше будет оседать железных пылинок, появляющихся в масле.

Зная, что отрицательный электрод остается невредимым, изобретатели взяли шестигранный медный стержень и заставили его подпрыгивать над стальной пластинкой. Прыжок — искра, второй прыжок — новая искра и новые частички металла оказываются в масле.

Но вот стержень-электрод вдоволь напрыгался над стальной пластинкой. Масло в ванночке сильно замутилось. А что стало с электродами?

Когда их вытащили из масла, то оказалось, что медный электрод насквозь «пробил» стальную пластинку, причем форма отверстия в точности повторила очертания медного стерженька — оно тоже было шестигранным.

Замечательное открытие! Искрой можно «сверлить» отверстия. Ее чудесная сила помогает медным стержнем «пробивать» отверстия в стали! Без всякого предварительного разогрева, без специального инструмента!

Так родилась электроискровая обработка металлов, без которой немыслимо современное производство.

Промышленность нашей страны выпускает сотни типов станков для такой обработки металлов. Они уже значительно совершеннее установок Лазаренко, но принцип их действия тот же. Они выполняют почти любую работу. Нужно просверлить отверстие в сверхтвердом сплаве — делают отверстие. Требуется сделать углубления в штампе или извлечь из металла сломанные сверла и метчики — справляются и с этой работой.

Электрической искрой можно на листе металла «нарисовать», выгравировать любой орнамент, пейзаж и даже портрет, какими бы сложными они ни были.

Почему такая работа стала по плечу электрической искре — этому едва заметному кусочку плазмы? Что происходит там, где вспыхивает и гаснет искра? Проскакивая между пластинкой и стерженьком, она каждый раз вырывает у положительно заряженного изделия частичку металла. Простым глазом эта частица незаметна, но «вода камень точит», говорится в народной пословице. Так и маленькие искорки, отрывая одну частицу металла за другой, освобождают путь для столь необычного «сверла», например, медной или латунной проволочки.

Электрической искре любой материал «по зубам». Но не только в этом ее преимущество. В новых, электроискровых, станках нет особо прочных, массивных деталей, не найдете там и вращающихся деталей, без которых не обходится ни один обычный металлорежущий станок.

Являясь по устройству предельно простым, электроискровой станок тем не менее оказался способным выполнять очень сложную работу. Если раньше детали мудреной формы делали, как правило, вручную, то теперь веера искр изготовляют их без вмешательства человека. На его заботе осталось лишь следить за тем, чтобы станок исправно выполнял распорядок работы.

Теперь представляете, каким могуществом обладает плазма, если в содружестве с ней обыкновенная медная проволочка может в куске стали делать борозды, уступы и отверстия любой формы?


Гроза под водой

Можно сделать так, что искра, родившаяся под водой, станет делать работу, которая под силу только мифическому титану. Например, она сможет расколоть на части гранитную скалу.

Первым такую «физическую» силу искры обнаружил студент-ленинградец Л. А. Юткин. Было это несколько десятилетий назад.

Юткин опустил на дно обыкновенной тарелки два электрода и заставил электрическую искру проскочить между ними. К великому удивлению студента, тарелка раскололась. Опыт был повторен — результат тот же самый. Пытливый студент заинтересовался открытым им явлением и стал изучать его. Свою работу он продолжил и после того, как получил диплом инженера.

Годы упорного труда принесли успех. Советский инженер, возглавивший лабораторию, создал удобное «оружие» для большого числа промышленных производств.

Но прежде чем рассказывать о том, что делает плазма в новой для нее роли, посмотрим, как получается «гроза» под водой, как протекает физический процесс после возникновения искры.

Электрическая искра под водой, как и в воздухе, мчится с огромной скоростью — свыше десяти тысяч километров в секунду.

Молекулы воды, которые плотной толпой окружают искровой канал, получают короткий и резкий удар. Вода под натиском плазмы расступается в стороны. Там, где промчалась искра, на мгновение образуется пустота.

Но вода во много раз плотнее воздуха. И вслед за искрой она мгновенно смыкается, как и над камнем, брошенным в воду, но только во много раз быстрее.

Заполнение водой пустоты за хвостом искры вызывает второй удар, который называется кавитационным. При этом ударе в воде возникают такие давления, что даже огромный булыжник, если разряд произведен в его середине, разваливается на отдельные куски. Электрическая энергия непосредственно переходит в механическую.

Теперь горняки могут не закладывать взрывчатку в скважины. Достаточно наполнить их водой, поместить туда электроды, подать по проводам высокое напряжение и включением рубильника произвести «взрыв».

Изобретение инженера Юткина прошло проверку временем. Созданные им умные «машинки» взрывают крепчайшие валуны, бурят скважины, измельчают камни. «Искровая мельница» супругов Лазаренко могла превращать в пудру куски металла, установки инженера Юткина силой искр умеют размельчать в песок камни и валуны.

Есть еще одно применение «подводной грозы» — получение эмульсии.

Существуют жидкости-враги. Например, масло и вода. Масло всегда собирается над водой, смешать воду и масло обычным перемешиванием не удается. Трудно также получить однородную смесь газа и жидкости. А такие смеси — эмульсии — очень нужны. Они широко применяются при обогащении руд, при омылении жиров, при производстве маргарина и т. д.

Много лет эмульсии получали простым перемешиванием. Сейчас с этой работой хорошо справляется электрическая искра. В семействе приборов, сконструированных инженером Юткиным, есть такой, который создает в жидкостях каскады искр и образует идеальные эмульсии.

Можно не сомневаться, что приборы и установки, делающие «грозу под водой», в ближайшие годы станут такими же распространенными, как автоматические сварочные аппараты, станки для холодной штамповки и скоростной обработки металлов и другие совершенные машины, которые работают в цехах заводов и фабрик.


Плазма — упрочнитель и плазма — резец

Едва ли можно сейчас найти какое-либо предприятие или мастерскую, не говоря уже о больших фабриках и заводах, где не было бы токарного, сверлильного, фрезерного или какого-либо другого металлорежущего станка. Любой такой станок мертв без инструмента — сверла, резцов, фрезы, метчика. В совнархозах нашей страны есть десятки предприятий, которые только тем и занимаются, что день и ночь делают режущий инструмент. И все равно его не хватает. Слишком много у нас всевозможных станков, слишком велико количество изделий, изготовляемых на них.

Поэтому проблемой номер один в станкоинструментальном производстве является увеличение срока службы резцов, сверл, метчиков.

В каком случае сверло или резец проработает больше времени? Разумеется, в том, когда оно, обрабатывая металл, само не будет тупиться.

Ученые предложили немало способов продления жизни инструмента.

Важнейшим из них является закалка инструмента. Она состоит в том, что стальную деталь сильно разогревают, а потом опускают в масло или в воду.

Чтобы инструмент не стал хрупким, нужно закаливать лишь его рабочую поверхность, то есть те его части, которые режут металл. Делают это как правило в мощных индукционных печах.

Кажется, предпринято все, чтобы инструмент исправно и долго работал. Но плазма заявляет: «Нет, еще не потрудилась я. А если потружусь, то почти вдвое увеличу жизнь этих сверл и резцов…»

И трудится, делает инструмент прочнее и выносливее, помогает экономить материалы и средства.

…На столе стоит небольшой чемоданчик. В нем собран простой выпрямитель переменного тока. Кстати, выпрямительной лампой в нем служит газотрон — плазменный прибор, о котором в этой книжке будет рассказано особо.

Таким образом, потребляя из электрической сети переменный ток, наш чемоданчик превращает его в постоянный — чтобы «кормить» электрический разряд, чтобы получать искры, плазму.

Предположим, нужно удлинить жизнь резца, сделать его поверхность более прочной. Для этого резец проводом соединяют с минусом выпрямителя, а плюс подключают к небольшой пластинке из твердого сплава. Эта пластинка сидит в гнезде вибратора и, когда прибор включен, непрерывно прыгает то вверх, то вниз.

Теперь, чтобы дать искре возможность показать свои способности, нужно прикоснуться пластинкой к резцу и водить ею по поверхности металла.

Вибрирующая пластинка — анод, «танцуя» на резце, будет то замыкать, то размыкать электрическую цепь. Крохотные искорки, получающиеся при этом, тотчас начнут делать свое дело.

Помните, я говорил, что внутри электрической искры, несмотря на ее «тщедушность» и «несолидность», температура на мгновение достигает десятка тысяч градусов. Искра-упрочнитель, касаясь резца, нагревает его до четырех-пяти тысяч градусов. Не весь, а одну ничтожную по размерам точку. Такая температура держится меньше миллионной доли секунды. Но этого достаточно, чтобы закалить металл.

Вспомните опыты супругов Лазаренко, создавших «искровую мельницу». У них превращался в пудру положительный электрод.

В нашем аппарате электроискрового упрочнения положительным электродом является пластинка из тугоплавкого металла, вставленная в вибратор. От этой пластинки тоже отрываются мельчайшие частички металла. Часть этих частиц расплавлена, часть — твердая. Расплавленные капельки металла успевают соединиться с азотом воздуха, образовав более прочные вещества — нитриды, которые вместе с твердыми осколками электрода-пластинки увязают в металле резца и еще больше повышают его прочность.

Вот видите, какие последствия вызывает еле заметная искорка, ударяющаяся в поверхность инструмента. Немало пришлось потрудиться ученым, чтобы обнаружить все это. Работа искр окупается с лихвой. Сейчас с помощью простых и удобных аппаратов, рождающих искры, увеличивают рабочий стаж сверл, фрез, зубил, осей, лопастей бетономешалок и сотен других деталей. При этом расход энергии получается более чем скромным: для обработки тысячи квадратных сантиметров поверхности деталей требуется столько же энергии, сколько потребляет одна сорокаваттная осветительная лампа в течение часа. Это стоит меньше полукопейки.

Итак, плазма умеет не только сверлить, резать и долбить сталь, но и делать ее прочнее.

Может возникнуть вопрос: уж коль плазма способна делать так много, то нет ли такого устройства, где бы она одновременно обрабатывала металл и улучшала бы его свойства?

Оказывается, подобное устройство есть. Оно появилось совсем недавно. Подойдешь к этой машине и скажешь: это токарный станок. И действительно, здесь те же самые узлы и детали, что и у токарного станка, здесь так же вращается шпиндель с зажатой стальной болванкой, как и в токарном станке. Одного нет — резца. Вместо него укреплен на оси массивный металлический диск, к которому подведено напряжение.

Вращается этот диск, крутится болванка, становясь все тоньше и тоньше — металл срезается мощной дугой плазмы, вспыхнувшей между болванкой и ползущим вдоль нее диском. За один проход дуга может содрать добрый сантиметр толщины детали. Одновременно происходит упрочнение поверхностного слоя детали, чего нельзя добиться ни на одном металлорежущем станке. И все это благодаря плазме.

Такая электроконтактная обработка применяется там, где режущий инструмент не способен выполнить работу, а именно: для грубой обдирки литья и других заготовок из очень твердых сплавов.

Плазма не только выполняет, казалось, непосильное дело, но и позволяет экономить средства, потому что себестоимость работы уменьшается по сравнению с точением в два-три раза.


Молния работает на человека

Если вести рассказ о разных видах плазмы, соблюдая хронологию, то нужно было бы прежде всего рассказать о молнии. С нею человек столкнулся сразу же, как появился на земле. Есть мнение, что огонь люди получили «из рук молнии», поджегшей лес. Это первое благое дело, совершенное плазмой. Но молния — плазма, созданная в лаборатории природы, — пожалуй, больше приносила вреда, чем пользы. Она нередко убивала людей и домашних животных, поджигала посевы, леса, жилища.

Со времени изобретения громоотвода началось приручение молнии. Уже Ломоносов и Рихман заряжали ее энергией лейденские банки. Попов заставил молнию выполнять роль радиопередатчика, а потом изобрел свой искровой передатчик.

Служит ли сейчас человеку молния? И если служит, то как?

В настоящее время полным ходом ведутся наблюдения за грозами, регистрируются атмосферные электрические разряды.

«Грозоотметчик» Попова не мог ответить, откуда движется грозовой фронт, на каком расстоянии находится он от наблюдателя. Он только «отмечал» сам факт возникновения грозы.

Сейчас в распоряжении метеорологов находятся и радиолокаторы, и пеленгаторы, и чувствительные приемники, и «дальнобойные» передатчики. В течение нескольких минут, пустив в ход эту аппаратуру, они узнают, где появляются грозовые фронты и куда они идут.

«Гроза над Марселем! Гроза над Анкарой!» — то и дело поступают сообщения на Центральный пункт метеорологической службы.

Данные о грозах и другие сведения, добытые на метеостанциях, помогают точнее предсказывать погоду.

В последние годы пристальное внимание ученых привлекли электромагнитные колебания, длина волны которых во много раз больше длины радиоволн, используемых для радиопередачи. Оказалось, что эти сверхдлинные радиоволны обладают целым рядом преимуществ по сравнению с привычными для нас радиоволнами. Они, например, могут распространяться на очень большие расстояния, и связь, установленная на них, отличается завидной устойчивостью. Даже магнитные бури, происходящие то и дело в атмосфере, не влияют на поведение этих волн.

Любая электрическая искра излучает целый «букет» радиоволн. Чтобы убедиться в этом, включите радиоприемник. Когда лампы прогреются, щелкните несколько раз электрическим выключателем света. Приемник немедленно отзовется на эти щелчки: в такт им будет слышаться треск. Антенна приемника приняла радиоволны, которые возникли от маленькой искорки, проскакивающей в выключателе.

Теперь перейдите на другой диапазон и повторите то же самое. Приемник и на другой волне, получив порцию радиоволн, будет трещать.

Молния — это мощная искра. И, как доказали ученые, она излучает радиоволны от карликов в несколько миллиметров до гигантов, измеряемых многими километрами.

Для изучения сверхдлинных волн не стали на первых порах делать специальные генераторы таких волн, их с успехом заменили атмосферные электрические разряды — молнии.

Грозы возникают на разных расстояниях от места приема и в любое время суток. Это позволяет хорошо изучить, как сверхдлинные радиоволны могут преодолевать большие расстояния и какие причины влияют на их поведение.

Можно не сомневаться, что и этот участок электромагнитных колебаний будет покорен человеком.

Природная плазма — молния — помогает ученым сделать это быстрее.

Загрузка...