Глава VIII Химия и плазма

Удобрения из воздуха

В далекой южно-американской стране Чили очень много полезных ископаемых. Но особенно богата она залежами селитры — ценнейшего химического удобрения. Этот минерал, состоящий из натрия, азота и кислорода, с тех пор как стали вывозить его в разные страны, так и называют чилийской селитрой. Превратив его в порошок и бросив в землю, хлеборобы заранее знают, что пашни обретут вторую молодость, дадут хороший урожай.

Но перевозить удобрения за тысячи километров дорого и хлопотно. Нужно найти какой-то выход. Геологи стали искать селитру у себя дома, химики — пробовать получать ее искусственным путем. Работа тех и других в ряде стран оказалась успешной, и сейчас уже не снаряжают корабли за далеким грузом.

Внесла свою долю в общее дело и плазма. В любой селитре содержится азот и кислород. Нельзя ли их брать из безбрежного воздушного океана? Ведь в воздухе, которым мы дышим, немало кислорода и огромное количество азота. Оказывается, можно, но для этого нужно соединить азот с кислородом, иными словами получить окислы азота.

А это как раз самая трудная задача. Азот — газ неактивный, он неохотно расстается со своей свободой. Нужно какое-то постороннее воздействие.

Генри Кавендиш первым соединил азот и кислород, взятые из воздуха.

Электрические искры, которые проскакивали через стеклянную трубку, наполненную этими газами, рождали желанные окислы азота. Но какой дорогой ценой они доставались! Три недели Кавендиш гонял электрические искры, чтобы опустошить небольшую стеклянную трубочку!

Ясно, что требовалось более мощное устройство. Русский ученый Каразин еще на заре прошлого века высказал смелую мысль: выпустить в воздух стаю воздушных шаров, ловить ими молнии и заставить эти молнии делать селитру. Но и этот план не решал задачи: «молниевая» фабрика бездействовала бы в ясную погоду и зимой и такое предприятие наверняка прогорело бы.

Плазма связана с двадцатым веком. Только бурное развитие техники и удивительные достижения науки помогли ей стать заправским химиком.

Первые промышленные установки для извлечения азота с кислородом из воздуха появились в начале нашего столетия. В них день и ночь трудилась плазма, но не в виде искр, а в виде мощной ревущей дуги.

Сильные электромагниты, создающие постоянное магнитное поле, расплющивают дугу в тонкий огненный блин диаметром метра в три. В зону огня под давлением подается воздух. Только в плазме азот «соглашается» вступить в союз с кислородом: об этом свидетельствует фиолетовый дым окислов азота, заполняющий печь.

Теперь, когда азот воздуха попал в «ловушку», с ним можно делать все, что угодно. Пропустив окислы через обыкновенную воду, легко получить азотную кислоту — жидкость, разъедающую металл. Соединив азотную кислоту с щелочью, получим селитру. Если щелочь — едкий натр, то будет натриевая селитра, или чилийская. Если щелочь — едкий калий, то селитра будет калиевой. Тоже ценный продукт. Смесь калиевой селитры с углем, серой или металлической пылью — не что иное, как дымный порох, нужный всякому охотнику. А праздничные ракеты тоже не могут совершить свой путь без помощи калиевой селитры. Широко применяется она и как очиститель золота и серебра.

Как же удается плазме заставить безразличные друг другу вещества вступить в союз? Почему вещества в четвертом состоянии становятся химически активными?

На эти вопросы может ответить только современная теория атома.

Плазма — хаос всевозможных мельчайших частиц вещества: электронов, ионов положительных и отрицательных, возбужденных атомов и молекул, электронейтральных молекул и т. д. В ней ни на мгновение не прекращаются удары электронов о молекулы и атомы, соударения ионов между собой, излучение и поглощение фотонов. Все это повышает активность веществ, находящихся в разрядной трубке. Большую роль играет высокая температура плазмы. Я еще раз напоминаю, что внутри безобидной с виду электрической искры температура достигает десяти тысяч градусов. И, хотя эта температура держится миллиардные доли секунды, этого времени достаточно, чтобы некоторые атомы соединились, дав новое вещество с новыми свойствами.

Ученые-химики в содружестве с физиками упорно и настойчиво постигают суть химических реакций, происходящих в плазме, стремятся быстрее внедрить в народное хозяйство новые способы производства. Особенно возросло значение этой работы после Пленума ЦК КПСС, состоявшегося в декабре 1963 года. Этот Пленум принял грандиозную программу дальнейшего развития химической промышленности в нашей стране. «Если бы был жив Владимир Ильич Ленин, — сказал в своем докладе на Пленуме Н. С. Хрущев, — то, видимо, он сказал бы примерно так: коммунизм есть Советская власть плюс электрификация всей страны, плюс химизация народного хозяйства».

Решения декабрьского Пленума выдвинули химическую промышленность на первый план в народном хозяйстве. За семилетие с 1964 по 1970 год производство важнейших продуктов химии увеличится в 3–3,3 раза. Такого размаха работ не знала ни одна страна в мире!

В семилетнем плане развития Большой химии намечено резкое увеличение выпуска минеральных удобрений и других средств повышения продуктивности полей и ферм, что позволит довести производство зерна к 1970 году до 14–16 миллиардов пудов.

Можно не сомневаться, что будут шире применяться и плазменные способы производства минеральных удобрений. Но в плазме заключены и другие, не менее заманчивые возможности.

Плазма-химик способна не только объединять атомы и молекулы воедино. Она может «разлучать» их, а в ряде случаев и перестраивать всю «архитектуру» веществ, в которых происходит электрический разряд. Какую же пользу извлекают из этого люди?


Чудесные превращения

Сто лет назад французский физик Бертло попробовал пропустить каскад электрических искр через газ метан, или болотный газ. Назван болотным этот газ потому, что в природе он нередко выделяется со дна болот.

Опыт ученого имел неожиданный результат: маленькие искры-труженицы сделали чудо — превратили метан в другой газ — ацетилен. И в метане и в ацетилене имеются атомы только двух элементов — углерода и водорода. Но связаны они между собой по-разному. В молекуле метана атом углерода окружен четырьмя атомами водорода, ацетилен хоть и построен из тех же «кирпичиков», но «архитектура» его другая. В молекуле ацетилена содержится не один, а два атома углерода, а водорода — не четыре, а тоже два.

Ацетилен — более ценный газ, значит, плазма трудилась не напрасно. Этот газ в наше время применяется при резке металлов, при поверхностной закалке стали, а также для получения пластмасс.

Установка Бертло была далеко не совершенной, она слишком мало давала ацетилена, чтобы можно было серьезно думать об «оснащении» искрой химических заводов.

Опыт Бертло ценен для нас другим. Он показал, что в недрах плазмы может происходить перегруппировка атомов, могут рождаться молекулы новых веществ с новыми свойствами.

Обнаружив такую способность плазмы, ученые стали настойчиво изучать химические реакции, возникающие при газовом разряде.

Работа эта дала интересные результаты.

Прежде всего нужно рассказать о новых способах получения ацетилена. До последнего времени этот ценный газ «извлекали» из светло-серого камня — карбида кальция.

В Румынии имеется огромное количество природного газа. Из него стали добывать ацетилен. Сделать это помогла плазма.

Установка, созданная под руководством румынского ученого, академика Бэдэрэу, имела на вооружении не искру, а электрический разряд высокой частоты. На разрядную трубку насажены два металлических кольца, на которые подано переменное напряжение высокой частоты. В трубке, заполняемой природным газом, ток через плазму непрерывно меняется по величине и направлению. Более сорока процентов природного газа превращается в ацетилен. Это высокий процент, и сырья имеется сколько угодно. После очистки от паров воды и других примесей ацетилен поступает в химическое производство для дальнейшей переработки.

Ацетилен — не единственный продукт, который получили румынские ученые с помощью плазмы. Им удалось создать совершенно новое вещество, получить которое химики прежде не могли.

Вещество это относится к группе углеводородов-полимеров и обладает замечательными свойствами. Оно не боится кислот, совершенно не проводит электричества, выдерживает температуру до четырехсот градусов.

Если использовать новый полимер в качестве изоляции в электрических машинах, то можно будет брать от этих машин мощность в несколько раз большую, так как перегрев таким машинам будет не страшен. Добавляя в пластмассы это вещество, можно получить такие изоляторы, что фарфор, слюда и другие изолирующие материалы окажутся совершенно ненужными.

Так плазма помогает создавать новую химию, химию искусственных веществ.

Что же еще она может?

Возьмем, например, ценный химический продукт — аммиак. Из этого газа делают удобрения, получают азотную кислоту, его применяют в текстильном производстве, в медицине. Всем известный нашатырный спирт на одну четверть состоит из аммиака.

Получают аммиак из водорода и азота в сложных установках, давление в которых может достигать тысячи атмосфер.

Чудодейственная сила плазмы позволяет производить аммиак значительно проще: в большой разрядной трубке зажигается тлеющий разряд и девяносто восемь процентов смеси водорода и азота превращаются в аммиак.

Как видите, плазма-химик может работать почти без отходов.

В 1882 году великий русский ученый Д. И. Менделеев высказал идею переработки нефти, получившей название крекинг. В специальных мощных печах с давлением до шестидесяти атмосфер и температурой четыреста — пятьсот градусов сложные молекулы нефти, состоящие из углерода и водорода, распадаются на более простые с отщеплением водорода, что дает возможность получать больше высококачественного бензина.

Но бензин бензину рознь. Моторы самолетов требуют самого хорошего, быстро испаряющегося бензина, автомобильные моторы довольствуются худшим, более тяжелым бензином.

Чтобы побольше получить авиационного бензина, обычный бензин тоже подвергают крекингу. И в этом важном деле плазма оказывается полезной.

Ученые попробовали осуществить крекинг бензина в дуговом разряде. Результат получился обнадеживающий. Хорошо себя зарекомендовал коронный разряд. В нем крекинг осуществляется при температуре пятьсот градусов. Бензин, полученный после переработки, по качеству значительно лучше, чем тот, который поступил «на коронную переработку».

До сих пор мы говорили о плазме-химике, выступающей в роли дублера обычной, хорошо всем знакомой химии. Действительно, ацетилен, аммиак, высококачественный бензин неплохо получаются в обычных, неплазменных установках.

Однако есть некоторые вещества и химические продукты, которые своим «рождением» обязаны только электрическим разрядам.

Что такое озон? Это — кислород, молекулы которого состоят из трех атомов. Обычный кислород, которым мы дышим, как известно, содержит молекулы, каждая из которых состоит из двух атомов кислорода.

Впервые озон был открыт в 1785 году голландским физиком Ван-Марумом в искровом разряде. В наши дни озон получают только в электрическом разряде, но не в искровом, а в тихом.

Озон — ценный химический продукт. Без него не обходится производство искусственной камфары, ванилина и даже мыла. Этот газ голубого цвета является сильным окислителем. Такая способность озона широко применяется для дезинфекции воздуха и воды, для уничтожения всевозможных неприятных запахов.

Есть еще одно важное применение озона — в ракетах. Озон в полтора раза тяжелее кислорода. Поэтому если взять его вместо жидкого кислорода, то окислитель займет меньше места, а ракета пролетит дальше, так как освободившееся место можно заполнить топливом.

Плазма помогает находить для ракет новые виды топлива. Можно сказать больше: она дает возможность получить горючее, выделяющее много тепла… без горения.

Все знают, что самым легким газом является водород. Молекулы его состоят из двух атомов-близнецов.

В плазме газового разряда молекулы водорода можно сделать в два раза легче: разлучить атомы, получить так называемый атомарный водород, молекулы которого состоят из атомов-близнецов.

Атомарные газы — например, водород и кислород — прекрасное горючее. Если дать атомам-одиночкам соединиться в пары, превратиться в обычный газ, то выделится очень много энергии. Одним килограммом атомарного водорода можно вскипятить полтонны воды.

Правда, имеются здесь трудности: атомарные газы неустойчивы, их трудно хранить. Кроме того, пока не удается получать их в большом количестве.

Но все это технические трудности. Наступит время, и они будут преодолены. Тогда роль плазмы-химика увеличится еще больше.


Из искры…

Итак, в плазме могут происходить самые удивительные превращения веществ. Ученые многих стран неутомимо трудятся над тем, чтобы заставить эти превращения приносить ощутимую пользу людям. Сейчас эта работа в самом разгаре.

Но рассказ о плазме-химике будет неполным, если не уделить в нем место еще одному вопросу.

Плазма может не только производить свою химическую продукцию, но и быть «запевалой», зачинательницей сложных химических процессов, в которых сама она потом участия не принимает.

Возьмем, например, взрывы.

Чтобы произвести взрыв, в нужный момент в заряд пироксилина или тротила вкладывается специальное устройство — капсюль-детонатор. К капсюлю ведет огнепроводный шнур. Взрывник поджигает шнур и прячется в укрытие. Срабатывание капсюля-детонатора заставляет взорваться весь заряд.

А как быть, если заряд весит несколько тонн и взрыв захватывает бóльшую площадь? Нужно производить взрыв на расстоянии. Осуществить это помогает плазма.

Почти сто пятьдесят лет для взрывания зарядов применяется электрическая искра. Первым дал ей такую работу русский электротехник Павел Львович Шиллинг. В наше время все большие и ответственные взрывы производятся с применением искры-запала.

В укрытии, где прячутся взрывники, ставится небольшая машинка. От нее к заряду тянутся провода, длина которых может быть любой. Внутри заряда заложен электродетонатор. К нему-то и присоединяются провода.

Стоит повернуть рукоятку взрывной машинки — и маленькая искорка, проскочившая в электродетонаторе, дает начало химическому процессу во взрывателе, который тотчас и взрывает весь заряд. В одно мгновение огромные массы земли выбрасываются вверх могучей силой, и человек избавляется от дорогостоящей и длительной работы.

При взрывах выделяется колоссальное количество тепла и образуются нагретые, сильно сжатые газы, которые являются не чем иным как плазмой. Давление в очаге взрыва достигает нередко сотен тысяч атмосфер, а скорость движения взрывной волны — нескольких километров в секунду.

Взрыв — сложный химико-физический процесс. Возникнув от маленькой искры — небольшого кусочка плазмы, он превращает в четвертое состояние огромные массы вещества. Таким образом, роль искры-химика не так уж мала!

Искра бывает участницей процессов-взрывов, происходящих в цилиндрах автомобильных, автобусных, мотоциклетных и других двигателей внутреннего сгорания.

Автомобиль или мотоцикл движется за счет энергии сгорания паров бензина в цилиндрах двигателя. Эти пары, смешанные с воздухом, взрываясь, толкают поршни вниз и заставляют крутиться автомобильные колеса. Правда, сгорание или взрыв внутри цилиндра двигателя протекают медленнее, чем, скажем, взрыв толовой шашки, но признаки взрыва здесь налицо. В автомобильном цилиндре тоже происходит внезапное изменение состояния вещества, там тоже химическая энергия переходит в энергию движения.

Когда между электродами запальной свечи, ввернутой в головку цилиндра, проскочит искра, происходит химическое превращение бензина.

На рисунке изображена такая свеча. Она устроена просто. В середине свечи имеется металлический стержень. К верхнему его концу подходит привод высокого напряжения. А нижний конец оказывается по соседству с двумя электродами. Когда на стержень-электрод свечи подается напряжение в несколько тысяч вольт, между стержнем и каким-либо электродом проскакивает искра, которая и воспламеняет пары бензина.

Без искры автомобильный двигатель работать не станет. Это известно любому шоферу. Поэтому, когда двигатель автомобиля вдруг перестает работать, первым делом нужно убедиться, что искры проскакивают во всех цилиндрах.

Загрузка...