Маршрут третий

С утра заготовляем дрова, валим в снег неказистые сухие лиственницы и волочим их по склону к избушке. Здесь Олег с Алешей разделывают стволы на поленья.

Изотопы, кажется, прочно обосновались в избушке, потому что даже Алеша спросил, едва проснувшись, о чем мы с Ильей будем сегодня «докладывать». Олег вполне серьезно заявил:

— Вернусь в Москву, пороюсь в книгах. Как часто мы не обращаем внимания на множество любопытных вещей!

Олег был человек основательный: если начинал дело, то доводил его до конца. Илья даже сострил:

— На будущий год в роли рассказчика придется тебе выступать…

В печку до отказа заложены свежие сухие дрова. Мы заготовили их столько, что хватит еще на несколько дней. А уйдем завтра, останутся другим. Старинный таежный обычай: уходя из избушки, заготовь топливо для других.

И немногочисленная, но любознательная аудитория снова ждет, когда мы продолжим знакомить ее с изотопами.

Илья изложил свою программу:

— Хватит всяких теорий! Нажмем на практику. Одним словом, изотопы в жизни. В науке, в промышленности, в сельском хозяйстве.

Кстати, друзья мои, пока вы знаете только два искусственных радиоактивных изотопа: стронций 90 и прометий 147, те, что применяются в атомных батарейках. Все остальные, о которых шла речь, — это изотопы природные. Я не говорю, конечно, о новых элементах, они ведь тоже получены искусственно. Теперь мы с Анатолием будем рассказывать главным образом о радиоизотопах искусственных. Кто из нас начнет? Ты, Толя?


Изотопы в руках химиков

— Что ж. Пусть изотопы и химия. Так вот, представьте себе, — я задумался, с чего бы начать. — Ну хотя бы… Возьмите обычную поваренную соль, — я вытащил щепоть из мешочка с солью. — Вы видите, какая она белая и чистая. Высший сорт! Ты, кажется, покупала ее, Майка? Но посетите соляные промыслы, и вы убедитесь, какой она имеет неприглядный вид: мокрые серые куски. Пройдет много операций очистки, прежде чем соль станет белой.

Вы думаете, что в моей горсти чистая NaCl? Химик берет щепотку соли, производит анализ и обнаруживает в ней громадное, на его взгляд, количество примесей магния, кальция, калия, железа, брома, йода, серы и так далее. Правда, вам покажется, что химик преувеличивает: подумаешь, какие-то десятые доли процента посторонних веществ!

Однако именно эти десятые доли нередко оказывают влияние на ход различных процессов. Поэтому химики предпочитают иметь дело с возможно более чистыми веществами. Разработано много чувствительнейших аналитических методов, которые позволяют установить присутствие в нужном материале тысячных и даже десятитысячных долей примесей.

Но иногда и такой точности бывает недостаточно. Новая техника требует от промышленности сверхчистых материалов.

Особенно необходима чистота материала для полупроводниковой техники. Ничтожнейшие загрязнения могут сделать полупроводник непригодным для употребления. Так, для германиевых полупроводников достаточно одной миллионной доли процента примесей, чтобы металл пришлось забраковать.

Классические методы аналитической химии фактически не дают возможности определять столь малые следы посторонних материалов.

Новая техника вызвала к жизни особые методы анализа. Одним из них является радиоактивационный анализ.

Уже по названию можно догадаться, что и здесь не обошлось без участия радиоактивных изотопов.

Вот вкратце принцип метода.

Исследуемый образец облучают элементарными частицами. Чаще всего используют медленные нейтроны, но можно применять также дейтроны, протоны, альфа-частицы и гамма-лучи. В результате ядерных реакций образуются радиоактивные изотопы элементов-примесей или изотопы соседних с ними элементов. Как известно, каждый радиоактивный изотоп обладает двумя характерными лишь для него величинами: периодом полураспада и энергией излучения. Измеряя их величины, можно установить, какие именно элементы примеси и в каком количестве есть в исследуемом материале.

Радиоактивационный анализ позволяет определить 57 элементов периодической системы при содержании их в количествах менее одной миллионной доли процента, 10–6 процента.

Вот один из примеров радиоактивационного анализа.

Допустим, нужно исследовать образец металлического висмута, который находит применение в технике полупроводников.

Предположим, что в исследуемом металле содержатся ничтожнейшие примеси меди, сурьмы и мышьяка.

Сначала приготовим специальные эталоны сравнения. Весьма малые количества меди, сурьмы и мышьяка введем в растворы солей известной концентрации и упарим эти растворы досуха. Сравнивая впоследствии активности нашего образца с активностями эталона, мы сможем сделать вывод о количестве примесей в металлическом висмуте.

Затем образец и эталоны облучим в ядерном реакторе.

Благодаря ядерным реакциям образуются радиоактивные изотопы мышьяка (As76, период полураспада 26 часов), меди (Cu64, период полураспада 13 часов) и сурьмы (Sb122, период полураспада 3 дня).

Полученные образцы и эталоны подвергают особой химической обработке. В результате достигается разделение и очистка определяемых элементов-примесей.

Теперь задача состоит в том, чтобы измерить активности выделенных радиоизотопов и сравнить с активностью эталонов.

Оказывается, что в образце металлического висмута содержалось 2·10–7 процентов меди, 1,3·10–6 процентов сурьмы и около 10–7 процентов мышьяка.

Радиоактивационный анализ позволяет контролировать содержание примесей в тех материалах, которые используются в конструкциях ядерных реакторов. Например, очень важно бывает установить, есть ли примеси редкоземельных элементов в висмуте, свинце, графите. В этом случае процесс упрощается, потому что многие редкоземельные элементы обладают весьма большой способностью поглощать нейтроны. Так, редкоземельные элементы европий и гольмий можно определить в количестве 10–11 грамма на 1 грамм материала.

Своеобразным рекордом радиоактивационного анализа является определение примеси теллура в количестве 10–20 грамма (!).

Радиоактивационный анализ — это, если хотите, один из самых ярких примеров использования радиоизотопов в химии. Есть и множество других. В химии стал незаменимым метод меченых атомов.

В чем его суть? Если к какому-нибудь химическому элементу добавить буквально следы его радиоактивного изотопа, то нетрудно проследить поведение этого элемента, например, установить, в какие реакции он вступает. Достаточно лишь время от времени отбирать пробы, в которых содержится соединение интересующего нас элемента, и с помощью счетного устройства следить за содержанием радиоактивного изотопа.

Долгое время считалось, что висмут образует соединение с водородом, так называемый гидрид, причем он при нормальных условиях существует в газообразном состоянии. Обычные аналитические методы оказывались недостаточно чувствительными для доказательства. Поступили следующим образом. На магниевую фольгу нанесли ничтожное количество тория С, который является изотопом висмута и, следовательно, обладает одинаковыми с ним химическими свойствами. Фольгу растворили в соляной кислоте; как известно, при этом процессе выделяется водород. Ученые рассуждали так: если торий С образует гидрид, то в водороде можно будет наблюдать активность. Действительно, с помощью счетчика удалось доказать, что в газообразной фазе находится изотоп висмута. Таким путем ученые получили сведения о способах получения гидрида висмута и его стабильности.

— Прошу слова в порядке ведения собрания! — Илья взлохматил шевелюру. — Прости, Толя, что вмешиваюсь в недоступную моему хилому интеллекту область неорганической химии. Знаете, гидриды, то есть соединения водорода с металлами, — это очень сложная часть неорганики. Только сейчас в ней кое-что начинает проясняться. А несколько десятилетий назад она была такой же неизученной, как, например… ну, скажем, как Кольский полуостров для туристов начала пятидесятых годов…

— Шел бы ты, Илья, с такой «популяризацией» куда-нибудь подальше! — набросился на него Сережа. — За кого ты нас считаешь?

— Он хочет показать, что все знает, — затараторила Майка. — И кокетничает при этом.

— Илья, конечно, прав: гидриды — запутанная и сложная область, — сказал я. — Многие из них имеют очень необычную формулу. Например, гидрид церия — CeH2,75. Здесь мы сталкиваемся с понятием дробной валентности. А состав некоторых гидридов вообще нельзя выразить формулой. Не поймешь: то ли химическое соединение, то ли просто раствор водорода в металле. Но мы отвлеклись от основной темы.

Как известно, абсолютно нерастворимых солей в природе не существует. Есть соли очень малорастворимые, считающиеся в обиходе нерастворимыми. Примером такого вещества является самый обычный мел CaCO3.

С помощью радиоизотопа Ca45 можно с большой точностью определить растворимость мела в воде.

Для этого определяют активность одного миллиграмма CaCO3, содержащего Ca45. Затем порошок мела взбалтывают с водой в течение определенного времени. Таким путем получают насыщенный при данной температуре раствор CaCO3 в воде. Раствор отделяют от нерастворившегося мела, отбирают некоторое количество его (несколько миллилитров) и упаривают. Активность сухого остатка определяют с помощью счетчика. Если мы разделим теперь эту величину на активность одного миллиграмма CaCO3, то отсюда найдем количество мела в сухом остатке. Далее просто рассчитать содержание мела в 100 граммах раствора.

Очень часто какое-либо химическое соединение получают путем так называемых обменных реакций. Если дан раствор ляписа — AgNO3, осадить из него серебро в виде хлорида можно, добавив соляной кислоты:

AgNO3 + HCl→HNO3 + AgCl.

Иногда в подобных процессах важно знать: весь ли осаждаемый металл выпадает в осадок. Тут опять на помощь приходят радиоактивные изотопы. Так, изотоп олова Sn113 позволил доказать, что при действии красной кровяной соли K3[Fe(CN)6] на растворы солей олова все олово выпадает в осадок. После удаления осадка в растворе не было обнаружено радиоактивности.

Многие химические реакции представляют собой сложные явления. Если определение конечных продуктов реакции часто не трудно, то механизм реакций удается точно выяснить далеко не всегда.

Например, процессы коррозии — ржавления металлов. Ученые и инженеры давно заняты разработкой эффективных методов борьбы с этим страшным бичом металлических конструкций и изделий.

Коррозия начинается с того, что металл покрывается пленкой окиси. Дальше процесс окисления может идти двумя путями: или кислород проникает через пленку к не окисленным еще слоям металла, или, наоборот, атомы металла выходят через пленку наружу.

Какой из этих двух процессов происходит в действительности, позволил выяснить радиоизотоп меди Cu64.

Медную пластинку покрыли тонким слоем меди, которая содержит радиоизотоп Cu64, и окислили при высокой температуре до CuO. Ученые рассуждали так: если окисление происходит путем проникновения атомов меди наружу через окисную пленку, то наружный слой окиси меди должен быть нерадиоактивным. В противном случае Cu64 останется на поверхности.

Опыт показал, что наружный слой нерадиоактивен.

Мы найдем немало примеров и в органической химии.

Вот процесс получения синтетического топлива (смеси углеводородов) из воды и окиси углерода. В странах, бедных нефтью, производство синтетического топлива имеет первостепенное значение.

Схема процесса очень проста: над нагретыми железными стружками пропускают смесь окиси углерода и водорода.

Предположили, что железо восстанавливает окись углерода до свободного углерода, который образует с железом карбид. На второй стадии реакции углерод карбида соединяется с водородом, давая углеводороды.

Но, быть может, железо не принимает участия в реакции, а только ускоряет ее?

Ответ был найден благодаря С14. «Меченую» окись углерода С14O пропустили над железом. Оказалось, что на поверхности металла действительно образуется радиоактивный карбид. Однако в углеводородах активности почти не наблюдалось. Следовательно, заключили ученые, происходит прямое взаимодействие окиси углерода и водорода на поверхности железа, которое играет роль катализатора. Карбид — лишь побочный продукт.

Или еще более жизненный пример.

Два известных в обиходе вещества — уксусная кислота CH3СООН и этиловый спирт С2Н5OH. Требуется выяснить, где — в молекуле спирта или в молекуле кислоты — углерод сильнее связан с кислородом. Формулируя вопрос по-другому, говорим: нужно разобраться в механизме следующей реакции:

CH3COOC2Н5 + HOH→CH3СООН + С2Н5OH.

На языке химии эта реакция носит название реакции омыления, или гидролиза, также хорошо известного уксусно-этилового эфира.

Куда переходит кислород из молекулы воды: в кислоту или в спирт? Если в спирт, то, значит, именно с ним кислород связан прочнее.

Для этого нужно «пометить» кислород воды!

К сожалению, радиоактивный изотоп кислорода О15 не подходит: у него слишком мал период полураспада (около 2 минут), и, прежде чем исследование будет проведено до конца, он распадется практически весь.

На сей раз выручает «тяжелый» кислород, О18. Им-то и «метят» воду.

Изучение продуктов гидролиза эфира показывает, что О18 концентрируется в спирте.

Можно взять, наконец, полимеры. Среди них выделяется своими качествами полистирол. В изучении процесса полимеризации стирола большую роль сыграли радиоизотопы. Дело в том, что многие реакции полимеризации для своего успешного протекания нуждаются в специальных «возбудителях» — своеобразных катализаторах. Стирол хорошо полимеризуется в присутствии персульфата аммония. Если к персульфату добавить радиоактивную серу S32, то удается определить длину цепи молекулы полимера. На основе же этих данных легче подобрать наилучшие условия для осуществления процесса.

— Как видите, примеров немало! — продолжал я. — Со временем одним из основных методов исследования в химии станет применение радиоактивных изотопов. Я рассказал об их использовании в качестве меченых атомов. Однако есть и другая область, где используется действие излучений радиоактивных изотопов на вещества, на протекание различных химических реакций… Этой областью занимается новая наука. Сейчас я расскажу немного о ней.


Радиационная химия

Лишь очень немногие реакции могут протекать в обычных условиях, то есть при обычной температуре воздуха и атмосферном давлении.

В большинстве же случаев дело обстоит по-иному. Мало привести реагирующие вещества в соприкосновение. Нужны и другие условия. Мы можем тщательно растереть в фарфоровой чашечке железный порошок с серой, но никакой реакции не произойдет. Стоит, однако, погреть чашечку на газовой горелке, как мы окажемся свидетелями бурного процесса.

Следовательно, высокая температура ускоряет химические реакции. Аналогичным образом действует повышение давления. Наконец, во многих химических процессах применяются так называемые катализаторы. Это различные вещества (чаще всего специально приготовленные металлы, окислы или соли), которые способствуют быстрому течению реакций. Сами же они при этом остаются неизменными.

Очень часто химики используют сочетание всех трех факторов. Например, исключительно важная в экономическом отношении реакция синтеза аммиака из азота и водорода требует температуры до 550° и давления до 1000 атмосфер. Катализатором в процессе служит смесь железа с его окислом и некоторыми другими добавками.

Иногда бывает так, что никакие давления, температуры и катализаторы не могут заставить реакцию идти в темноте. В то же время на свету эта реакция происходит даже при обычных условиях. Такие реакции называются фотохимическими. Простейший пример — выделение серебра из эмульсии фотографической пластинки.

Физика объясняет, что свет возбуждает атомы элементов. Возбужденные атомы весьма активны и легче взаимодействуют между собой.

Световые лучи, расскажет далее физика, суть электромагнитные колебания, обладающие определенной частотой и длиной волны. Наибольшее химическое действие оказывают фиолетовые и ультрафиолетовые лучи с малой длиной волн.

Чем меньше длина волны, тем «жестче» лучи, тем больше у них энергии. Тем сильнее их химическое действие.

Но есть лучи более коротких длин, чем у лучей солнечного спектра.

Это рентгеновские лучи.

Это радиоактивные излучения.

Что радиоактивные излучения могут вызывать химические превращения, было известно давно. Об этом знал еще Беккерель.

Поставив все три типа радиоактивных излучений в один ряд, мы допустили некоторую вольность. Электромагнитными колебаниями являются гамма-лучи; альфа- и бета-лучи — это поток заряженных частиц, но они обладают столь же сильным химическим действием.

Изучение действия радиоактивных излучений на вещество позволило в последнее десятилетие сформироваться новой науке, развитие которой приведет к величайшим достижениям. Это — радиационная химия.

Чаще всего она имеет дело с гамма-излучением, поскольку проникающая способность альфа- и бета-лучей невелика. А для радиационно-химических процессов необходимо, чтобы реакция протекала по всей массе вещества.

В настоящее время сконструированы специальные радиационно-химические установки различной мощности, в которых используются главным образом радиоактивные кобальт Со60 и цезий Cs137.

Как известно, азотная кислота — одно из основных веществ современной химической промышленности. Удобрения, лаки, краски, важные полупродукты, искусственные ткани — все это «дело рук» азотной кислоты. Хотя процессы получения окислов азота (из которых дальше готовят азотную кислоту) разработаны давно, но они требуют значительных затрат и очень сложного и дорогого оборудования.

Совсем недавно радиационно-химические исследования показали, что с помощью гамма-излучения из атмосферного азота можно получить его окислы в обычных условиях. Более того, облучение водных растворов щелочей, насыщенных азотом, показало, что азот в этих условиях может быть окислен непосредственно до азотной кислоты.

Пока это первые шаги. Выходы реакций еще очень малы, а затраты велики. И говорить о производственных масштабах рано. Но то, что недоступно сейчас, станет вполне осуществимым и приемлемым через несколько лет.

Значительно более ощутимы успехи радиационной химии в органической химии.

Прежде всего радиационный крекинг.

Крекингом называется процесс расщепления нефти — обогащения ее простыми, легкими углеводородами, играющими главную роль в составе бензиновых фракций. Получение так называемых ненасыщенных углеводородов — сырья для многих органических продуктов — также задача крекинга.

Нужно пояснить, что такое насыщенные и ненасыщенные углеводороды. Углерод в подавляющем большинстве своих соединений четырехвалентен. Так, с водородом он образует газ метан CH4 — самый легкий из насыщенных углеводородов, к которым принадлежат также этан С2Н6, пропан С3Н8 и так далее. Углерод с углеродом соединен только одной связью; затрачивая одну валентность, остальные связи идут на соединение с атомами водорода. Но известно соединение С2Н4 — этилен, представитель ненасыщенных соединений. В нем каждый атом углерода использует две валентности на соединение с двумя атомами водорода, а две другие — с соседним атомом углерода. Следовательно, у углеродов этилена как бы остаются «резервные», ненасыщенные валентности.

Обычный крекинг проводят при высокой температуре и в присутствии катализатора.

Радиационный крекинг не нуждается в нагреве и применении катализаторов. Сильное гамма-облучение образцов нефти в короткий срок способствует расщеплению тяжелых углеводородов (содержащих длинные цепочки углерода), обогащает бензиновые фракции нефти. Одновременно получается широкий ассортимент ненасыщенных углеводородов.

Однако в других условиях облучение может вызвать и обратный процесс: получение сложных углеводородов из простых — из метана и этана (наиболее легких углеводородов) под действием радиации образуются более сложные вещества. Кроме того, при облучении углеводороды окисляются. В результате образуются столь ценные органические продукты, как альдегиды и кетоны, а в отдельных случаях и органические кислоты.

А радиационное получение фенола из бензола? Или анилина — основы красителей — из смеси жидкого аммиака и бензола? Или радиационная полимеризация этилена, радиационная вулканизация каучука?

Вот что наделало применение гамма-излучения в химии!

Но еще одно соображение: вовсе не обязательно конструировать специальные установки. Вы помните, что ядерный реактор оказался прекрасной «фабрикой» изотопов? Сложнейшие и многообразные ядерные реакции, которые протекают в реакторе в процессе деления урана, сопровождаются и интенсивным гамма-излучением. Технически несложно выделить поток гамма-лучей из комплекса излучений и использовать его для различных целей.

— Можно мне? — поднял руку Олег, когда я кончил. — Мне пришла на память одна история. Тоже связанная с изотопами.

— Скажите, пожалуйста! — перебил Илья. — Однако похоже, зря я считал вас полными профанами!

— Нет, все-таки мы профаны, — признался Олег. — Просто мне кое-что неясно, а я хотел бы понять.

— А что за история?

— Ее я услышал в Баку несколько лет назад. Суть вот в чем.

Некий русский эмигрант, бывший капиталист, совершил поездку в Советский Союз в качестве туриста. Он объездил много городов и в том числе Баку, где до революции владел плохоньким нефтяным промыслом. И каково же было его удивление, когда он увидел, что на участке, который в старые времена считался мало перспективным, вовсю добывается нефть. Несколько скважин, на которых он сорок лет назад сам поставил крест, давали отличную, первосортную нефть.

— Теперь я не сомневаюсь: Советы все могут! — молвил он. В тоне его сквозила откровенная зависть. Но поскольку он был деловым человеком, то спросил:

— Как же вам удалось ввести в строй старые, заброшенные скважины?

— Нам помогли радиоактивные изотопы, — ответили ему.


Изотопы в геологическом походе

— Значит, радиоизотопы помогают и геологам в разведке полезных ископаемых? — Алеша протер очки.

— Конечно! — подтвердил Илья. — Еще как помогают! Например, в поисках нефти.

Можно ли судить о том, есть ли здесь залежи нефти, не углубляясь, так сказать, в землю? Да, можно. Давно известно, что углеводороды, входящие в состав нефтей, а особенно легчайший из них — метан CH4, могут проникать от залежей нефти сквозь толщу пород к поверхности. Если обнаружен метан, то неподалеку обязательно располагается нефтяное месторождение. Необходимо лишь уточнить, нефтяного ли он происхождения. Ведь этот углеводород может образовываться и в почве в результате многих процессов, например гниения растений.

Как же распознать происхождение метана? Как, по-твоему, Маечка? Теперь ты должна догадаться.

Майка несколько смущена. Неудобно ударить лицом в грязь. Но ее сообразительность на высоте.

— С помощью углерода четырнадцать! — выпаливает она.

— Правильно! А конкретнее?

Майка задумывается.

— Если углерод метана радиоактивен, то газ явно не нефтяного происхождения. Ведь нефть образовалась многие миллионы лет тому назад, и ее углерод давно уже потерял радиоактивность! — вмешиваюсь я. — Ты так предполагала?

— Именно так! — соглашается Майка. — Я только не сумела это высказать.

— Вы делаете определенные успехи, мисс Гуманитарий, — констатирует Илья и продолжает: — На карту нанесены контуры предполагаемого месторождения. Теперь геологи углубляются в земную кору. Наступает время буровых скважин.

Проходя через толщу пород, бур встречает на своем пути различные слои — глину и сланцы, известняки и песок, — прежде чем достигнет горизонтов, насыщенных нефтью. Порой попадаются на пути бура и водоносные слои.

Как, по-вашему, можно определить, в какой последовательности расположены слои, через которые проходил бур? Разумеется, если время от времени отбирать на поверхность пробы. Но ведь такие исследования трудоемки и отнимают немало времени.

Но можно обойтись и без отбора проб.

Различные материалы по-разному взаимодействуют с нейтронами: одни из них сильнее отражают нейтроны, другие меньше. Породы, в состав которых входят соединения, содержащие много водорода, лучше рассеивают нейтроны, потому что водород обладает способностью замедлять быстрые нейтроны.

В скважину вслед за буром опускают нехитрое приспособление. Оно состоит из нейтронного источника, например, смеси соли радия с металлическим бериллием (альфа-частицы радия выбивают из ядер бериллия нейтроны), счетчика отраженных нейтронов, ионизационной камеры и свинцовой защиты.

Нейтроны, испускаемые источником, частично вступают в ядерные реакции с элементами пород, причем образуются радиоактивные изотопы, а частично рассеиваются. Рассеянные нейтроны обнаруживаются счетчиком, а излучения образовавшихся радиоизотопов влияют на величину тока в ионизационной камере.

По показаниям этих двух приборов и судят о том, какие слои проходит бур.

Поскольку в глине, сланцах, известняке, песке содержится разное количество водорода, то эти породы можно различать друг от друга. Слои, в которых содержится много воды или нефти (а нефть является смесью углеводородов), очень хорошо рассеивают нейтроны и определяются весьма отчетливо.

Этот метод разведки на нефть получил название нейтронного каротажа.

Он может быть видоизменен. В этом случае регистрируются не нейтроны, а гамма-лучи, испускаемые после захвата нейтронов ядрами химических элементов, входящих в состав породы.

Гамма-лучи, возникающие в результате распада радиоактивных изотопов, несут различную энергию. По ее величине устанавливают, каким именно радиоизотопам принадлежат гамма-лучи. Следовательно, есть интересная возможность: с помощью нейтронного каротажа вести разведку других полезных ископаемых. Так, нейтронные источники уже используют для поисков марганца, кобальта, ртути, вольфрама, бора, кадмия — всех тех элементов, ядра которых хорошо захватывают медленные нейтроны.

— А как же ввели в действие старые, заброшенные скважины? — спросила Майка.

— Очень просто. Произвели каротаж нижележащих слоев и убедились, что богатые нефтеносные слои располагаются глубже уровня, до которого были пробурены прежние скважины.

— Солнце! — перебила вдруг Наташа. — Смотрите, солнышко!

Светлым-светлым стал четырехугольник окна. Не сговариваясь, мы выскочили наружу.

Облака разошлись. На сером фоне появились жизнерадостные островки голубого неба, словно проталины среди осевшего ноздреватого снега в вешнем лесу. Мы зачарованно смотрели на них, будто видели что-то совсем необычное. Режущей глаза белизной сверкал Аламинский перевал, и только соседние, ушедшие в поднебесья пики, молчаливые, как стражи у ворот в неведомую страну, еще прятали свои белые шапки в облаках.

— Ура! — закричал Алеша. — Даешь Аламинский перевал!

— Как здорово! — зазвенел голос Наташи. — Мне уж начинало казаться, что на свете нет ничего, кроме пурги, воя ветра и этой удручающей белесой мглы. Вы только посмотрите, до чего же все красиво!

Деревья утопали в снегу, строгие и неподвижные. Ворчала подо льдом порожистая Алама, и вода ее в полыньях казалась изумрудной.

— Да! — Алеша поправил очки. — В такие минуты нельзя без стихов.

Это сон, а не явь,

Это сказка — не быль,

Это просто блестящую снежную пыль

Вдруг порывистый ветер швырнул нам в глаза.

Облака над землей проплывали клубясь.

Голубая проталина, словно слеза,

Повисала на веке свинцовом небес…

Лес шумел,

В том лесу было много чудес…

— И еще было семь туристов и тьма-тьмущая изотопов! — добавила Майка.

Олег покосился на нее: «Не мешай, мол!» — но Алеша не хотел надолго настраиваться на лирический лад.

— А может, соберемся, и сейчас через перевал? Пока погодка разгуливается? А, начальник?

— К сожалению, ничего не выйдет. Подъем нужно начинать с рассвета, иначе придется ночевать на перевале. С горами приходится быть осторожным.

— Ты прав, конечно, — с легкой грустью согласился Алеша. — Но ведь потеряем полдня.

— Почему потеряем? — возмутился Сергей. — Кажется, за эти дни мы совсем не скучали. И ничего не потеряли, а, по-моему, наоборот. А вот сфотографировать избушку сейчас надо. Освещение чудесное! Ну-ка, стройтесь, участники семинара по изотопам!

…Солнце село не в тучи. Кажется, это хороший признак. Утром снова будет хорошая погода. И пока мы варили обед, вниманием завладел Илья.

— Итак, еще одна экскурсия. На этот раз к металлургам!


Изотопы варят сталь

Нам часто приходится слышать и читать, что в разных местах страны задувают новые доменные печи. Ввод в действие домны — это большое событие, событие государственного масштаба.

Доменная печь беспрерывно работает в течение пяти-шести, а то и более лет. После этого ее останавливают и производят капитальный ремонт. Во время ремонта прежде всего сменяется вся огнеупорная кладка, или, как говорят металлурги, футеровка доменной печи.

Роль футеровки в домне исключительно велика. Ее качеством определяется продолжительность непрерывной работы печи. Особенно важно качество огнеупорной кладки горна и заплечиков — наиболее ответственных частей домны. Здесь клокочут расплавленный чугун и шлаки. Они-то и действуют на огнеупоры, постепенно разъедая их. И когда футеровочный материал оказывается недостаточно хорошим, процесс разъедания идет быстрее.

Если не обнаружить вовремя разрушения кладки заплечиков и горна, не остановить печь на ремонт, то не миновать катастрофы. Поэтому нужно следить внимательно и постоянно за процессом разъедания, чтобы успеть предупредить опасность.

Многие ученые работали над проблемой контроля за разрушением огнеупоров в ходе работы домны. Известно несколько методов, но все они технически весьма сложны.

Сейчас эту проблему можно считать решенной.

В этом заслуга радиоактивного изотопа кобальта 60. Он обладает весьма мощным гамма-излучением, настолько мощным, что и полуметровая кирпичная кладка не является препятствием. Лучи свободно проникают через нее.

При постройке или капитальном ремонте доменной печи в огнеупорную кладку замуровывают на разных глубинах специальные ампулы, содержащие образцы кобальта 60. Излучение образцов легко обнаружить, если поднести специальные счетчики к определенным, заранее отмеченным участкам на наружной стороне печи. Каждый такой участок соответствует определенной ампуле с образцом.

Как я уже сказал, расплавленные шлаки постепенно разрушают огнеупоры. Поэтому образцы, расположенные близко к внутренней поверхности кладки, попадают в расплав и растворяются в нем. Таким образом, на отмеченных снаружи участках, соответствующих этим образцам, счетчик не уловит гамма-излучения.

Наблюдая последовательное растворение образцов, можно контролировать процесс разъедания огнеупорной кладки и вовремя остановить печь для ремонта.

Работа доменной печи — это целый сложный комплекс одновременно протекающих процессов. Чтобы получать качественные плавки, нужно учитывать ход каждого из них. Например, для получения чугуна с определенными качествами очень важно знать, как движутся шихтовые материалы и газовые потоки. Изучение этих процессов позволяет увеличивать производительность печи.

И здесь помогают радиоактивные изотопы. Их вводят в руду, кокс и флюсы — во все составляющие элементы шихты, а для исследования движения газов в печи через фурмы вдувают радиоактивный радон.

Другой пример. Это уже из области выплавки стали.

Почему при выплавке стали в электрических печах происходит загрязнение ее кальцием, каков источник этого загрязнения?

Радиоизотоп кальций 45 дает четкий ответ: источником загрязнения может быть шлак или материал футеровки ковша.

Откуда попадает сера при выплавке стали в мартеновских печах?

Ясность вносит радиоактивная сера 35. Оказывается, не только из шихты, как можно было бы полагать. Основной источник загрязнений — сера топливных газов.

Если известны источники загрязнений, мы можем соответствующим образом их устранять. А это гарантирует нам сталь более высокого качества.

Радиоизотопы отлично помогают не только и чугунолитейном и сталеплавильном производствах, они выручают и в получении других металлов.

Например, при выплавке сплава ценнейшего металла вольфрама с железом, так называемого ферровольфрама, часть дорогого вольфрама теряется. Куда теряется, долгое время не могли объяснить достаточно определенно. С помощью радиоактивного вольфрама 185 изучили его распределение между металлом, шлаком и газами.

Оказалось, что основные потери вольфрама происходят в результате уноса его газами.

Одной из предварительных стадий получения многих металлов в свободном состоянии является восстановление их окислов углем. Несмотря на кажущуюся простоту, эти процессы часто бывают капризными. Выход ценного металла получается неполным, то есть металл выделяется в количестве, меньшем, чем это можно рассчитывать по уравнению реакции. Чтобы провести восстановление с наибольшей пользой, нужно тщательно изучить условия реакции.

С помощью радиоуглерода C14 можно определить температуру, при которой начинается восстановление окислов.

Если в нашем распоряжении есть, допустим, трехокись молибдена MoO3, то в результате реакции восстановления ее углем получаются металлический молибден и окись углерода. Нетрудно понять, что она появляется лишь после того, как восстановление началось. Значит, если уголь «пометить» радиоуглеродом, то обнаружение радиоактивности в отходящих газах сигнализирует о начале процесса. Таким путем нашли, что трехокись молибдена вступает в реакцию с углем при 425°, окись меди — при 460°, окись никеля — при 500°.

Эти данные позволили повысить эффективность производственных процессов.

Теперь снова обратимся к сталям. Как известно, современные заводы выплавляют стали самых разнообразных марок. Они различаются по тем элементам, которые входят в их состав. Для каждой марки существуют определенные обозначения.

Но представим себе, что на инструментальном заводе потребовался металл какой-нибудь определенной марки. Как обнаружить нужный материал среди десятков стальных заготовок?

Можно подвергнуть их образцы обычному химическому анализу и, рассчитав количество входящих в сталь элементов, сделать вывод о принадлежности ее к данной марке. Однако этот путь весьма трудоемкий и продолжительный. Даже самому искусному химику-специалисту требуется несколько часов, чтобы проанализировать один образец.

Радиоактивные изотопы позволяют произвести определение марки за несколько секунд.

Для этого в процессе плавки к ней добавляют небольшое количество радиоактивного изотопа, лучше всего излучающего гамма-лучи. Поскольку различные радиоактивные изотопы обладают разной энергией распада, они могут быть и по величине этой энергии отличны друг от друга.

Затем простым измерением энергии гамма-излучения точно определяется, к какой марке относится наша сталь.

Со временем разовьется новая область науки — радиационная металлургия. Известно, что малые добавки многих редких элементов значительно улучшают качества сталей. Но ведь эти элементы можно не вводить предварительно в чугун, а синтезировать из других искусственно прямо в стали. Для этого достаточно подвергнуть расплавленный металл интенсивному нейтронному облучению.

Илья замолк, и было неясно, кончил ли он или станет продолжать, но на его лице уже появилась ехидная улыбка.

— Хотите вопрос на сообразительность? Можно ли с помощью радиоактивных изотопов определять износ режущего инструмента? Пока обед не готов, думайте!

— Я бы хотела подумать о другом, — робко произнесла Майка. — На сколько дней у нас осталось продуктов? Кажется, физической работы никакой, а едим мы многовато.

— Зато какая умственная работа! Нам — популярно объяснять, вам — понимать! И потом, разве ты забыла, какую кучу дров сегодня заготовили. Хватит на несколько солидных дискуссий, — удовлетворенно подытожил Илья.

— Все это мелочи, — отмахнулся Олег. — Знаешь, Илья, я, кажется, нашел ответ. Нужно ввести в резец какой-нибудь радиоактивный изотоп, а затем время от времени измерять активность стружки.

— А как ввести изотоп?

— По-моему, облучить резец нейтронами. Тогда в нем образуются радиоактивные изотопы, — предположила Наташа.

— Разумно! — восхитился Илья. — Из твоих молодцов, начальник, выйдет толк.


Изотопы в ОТК

— Могу привести еще один пример, — вмешался я. — Контроль за износом двигателя. Здесь участвует радиоактивное железо Fe59. Перед окончательной сборкой верхнее поршневое кольцо двигателя облучают медленными нейтронами в реакторе. Благодаря ядерной реакции в кольце образуется радиоактивный изотоп железа Fe59. При работе двигателя кольцо постепенно изнашивается, истирается. Частички металла попадают в слой масла на стенках цилиндра и смываются в картер. Пробы масла время от времени отбирают из картера и измеряют их активность, обусловленную присутствием железа 59.

Таким путем можно весьма точно определить износ кольца в миллиграммах в час.

Этот способ позволяет следить и за износом подшипников.

А что вы слышали о гамма-дефектоскопии? Ничего?

Тогда продолжаю. Вот пример. С конвейера сходит деталь. По всем своим внешним показателям она удовлетворяет требованиям технического контроля. На ней ставится заводская марка, и деталь получает путевку в жизнь.

Деталь становится частью сложной машины. Машина работает четко, безукоризненно — и вдруг авария. На долгое время ценный станок выведен из строя.

Расследование показывает, что причина аварии заключается именно в этой детали. В ней были внутренние дефекты, не замеченные ранее. Теперь они дорого обошлись производству.

Значит, оценивая готовую деталь, нужно требовать не только ее соответствия стандарту, но и заглянуть внутрь, выяснить, нет ли в ней предательских трещин или раковин.

Таким всевидящим глазом могут быть рентгеновские лучи.

Метод исследования металлических деталей с помощью рентгеновских лучей, или рентгеноскопия, уже давно применяется в промышленности. Но у этого метода есть существенные недостатки. Он требует громоздких и дорогостоящих аппаратов, высокого напряжения тока. Энергия рентгеновского излучения нередко оказывается недостаточной для просвечивания изделий большой толщины. Кроме того, массивные аппараты часто не дают возможности «просмотреть» ответственные участки котлов, трубопроводов и различных других сложных конструкций.

Поэтому сейчас рентгеноскопия вытесняется более удобным методом гамма-дефектоскопии. Как показывает само название, это метод обнаружения внутренних дефектов в различных изделиях с помощью гамма-излучения радиоактивных изотопов.

Когда гамма-лучи проходят через вещество, они ослабляются. Величина ослабления (или величина поглощения) зависит от разных причин: от толщины облучаемого материала, от зарядов ядер и процентного содержания элементов, входящих в его состав. В общем поглощение пропорционально удельному весу вещества. Кстати, на этом основано определение удельных весов с помощью радиоактивных изотопов.

Как же осуществляется гамма-дефектоскопия на практике?

Прежде всего подбирается подходящий источник излучения. Чем толще контролируемые детали, тем большая энергия гамма-излучения требуется. Выбор радиоактивных изотопов с различными энергиями гамма-лучей достаточно велик: кобальт 60, цезий 137, церий 144, европий 155, тулий 170.

Источник излучения, а он портативен, помещается с одной стороны детали; с другой стороны располагается детектор — устройство, которое фиксирует проникающие сквозь материал лучи. Таким устройством может служить ионизационная камера или специальная фотопленка. Если применяется фотопленка, то метод носит название гамма-радиографии.

Когда в детали нет внутренних дефектов, гамма-излучение ослабляется равномерно по всей поверхности. Но стоит на пути гамма-лучей оказаться какому-нибудь дефекту, как величина поглощения резко меняется. Ионизационная камера сигнализирует об этом скачком ионизационного тока. Участки фотопленки, расположенные против дефектов, оказываются более темными, чем соседние.

Свободная от недостатков рентгеноскопического метода, гамма-дефектоскопия нашла широкое применение в самых различных областях — от строительства трубопроводов до археологии.

Она незаменима при контроле качества сварных стыков газопровода высокого давления. В Советском Союзе на всех трассах строящихся газопроводов применяется гамма-дефектоскопия.

Она помогла археологам «прочитать» на бронзовой прокладке ассирийского шлема IX века до нашей эры письмена и символические знаки, которые нельзя было обнаружить никакими другими способами.

Но применение гамма-излучения в промышленности ограничивается не одним лишь отысканием дефектов в деталях и изделиях. Гамма-лучи используются в автоматизации многих производственных процессов.

Взять хотя бы автоматическое измерение толщины.


Изотопы в автоматах

Степень поглощения гамма-излучения зависит от толщины предмета. Интенсивность исходного гамма-излучения от источника нам известна. Если мы будем знать величину излучения, прошедшего через слой вещества, нетрудно определить и толщину слоя.

Для этого строят так называемую эталонную кривую поглощения. Через куски материала известной толщины пропускают гамма-излучение и определяют степень его поглощения. Таким образом находят, что лист железа толщиной, например, 2 миллиметра поглощает столько-то процентов излучения; при толщине 3 миллиметра соответственно больше и так далее. Найденные результаты наносят на график: на горизонтальной оси откладывают толщину материала в миллиметрах, на вертикальной — степень поглощения гамма-излучения. По полученным точкам строят кривую.

По ней можно определить неизвестную толщину материала, если найти степень поглощения в нем гамма-лучей.

Скажем, такой случай из практики.

В обработке металла большую роль играет процесс прокатки. Чтобы изменить толщину обрабатываемого металла, нужно увеличить или уменьшить величину давления на валки прокатного стана. Обычно устанавливают определенную толщину проката. С помощью гамма-излучения этот процесс можно автоматизировать.

По одну сторону стального листа помещается источник излучения, по другую — счетчик или ионизационная камера. Если толщина проката вдруг оказывается ниже нормы, степень поглощения уменьшается, ток в ионизационной камере усиливается; это изменение тока передается на специальное устройство, которое уменьшает давление на валки.

Автоматическая регулировка толщины с помощью радиоактивных изотопов применяется в бумажной промышленности — для измерения толщины бумаги в бумагоделательных машинах. Текстильщики таким способом регулируют толщину тканей. Наконец, в резиновой и химической промышленности толщиномеры обслуживают важные процессы.

В производствах, особенно химических, часто требуется измерять уровень жидкости. Но как определить уровень жидкости в закрытом резервуаре? Эта задача далеко не всегда оказывается простой. Ведь химики имеют на производстве дело с громоздкими и сложными аппаратами, с процессами, для протекания которых требуются строгие условия. Особенно трудно приходится в тех случаях, когда резервуар заполнен легко воспламеняющейся или ядовитой жидкостью.

Помогают решить задачу уровнемеры.

На поверхности жидкости в специальном поплавке помещается гамма-излучатель. В верхней части резервуара располагается счетчик, который регистрирует излучение. Чем выше уровень, тем больший ток будет возникать в регистрирующем устройстве. Этот ток приводит в действие специальный мотор, который через вентиль может регулировать приток и отток жидкости и тем самым удерживать уровень жидкости в определенном положении.

…Илья приоткрыл дверь избушки.

— Ну как там, небо чистое?

— Пока ни облачка!

— Погодите, впереди еще длинная ночь! — скептически заметил Олег. — В горах погода изменчива.

— А мне все-таки верится, что завтра мы возьмем Аламинский перевал, — возразила Наташа. — Должно же нам когда-нибудь повезти.

— Рюкзаки наши много полегчали, — заметил Олег. — Правда, снег слишком глубок. Ничего, народ у нас здоровый.

— Почему туристы так редко болеют в походах? — удивилась Майка. — Кажется, в городе у человека сто недугов, а в путешествии…

— Сейчас ты скажешь: природа лучший лекарь! — перебил ее Илья. — А по-моему, не это главное. Самосознание, сознание того, что в походе болеть нельзя: это плохо и для тебя и для твоих спутников. Вот в чем причина! И ни в коем случае не хандрить, если схватишь простуду.

— Так зачем же ты столь тщательно подбирал в Москве аптечку? — засмеялся Сергей. — Сказал бы прямо: не сметь заболевать, лекарств не будет…

— Почему же? — стала защищать Илью Наташа. — Лекарства — один из центральных пунктов теории Ильи. Тоже самосознание: если я вдруг захвораю, то на этот случай найдется кое-что в аптечке.

Все дружно расхохотались.

— Послушайте, мы опять отвлеклись, — пробасил Олег. — Вернемся к изотопам. Раз уж вспомнили о медицине…

— …то нужно рассказать, какую роль в ней играют радиоактивные изотопы! — закончила за него Наташа.

Илья состроил кислую мину:

— Увольте! У меня скоро отнимется язык!

— Хватит, Илья, ломаться! — отрезала Майка. — Сегодня кончается наше зимовье. Вдохновись тем, что завтра будем по ту сторону перевала.


Смерть против смерти

— Ладно, — Илья хрустнул пальцами. — Начну с детективной истории. Это произошло в одном заграничном городе. Случай сам по себе банальный: нашли труп человека, отравившегося мышьяком. Это был веселый, жизнерадостный мужчина, в расцвете сил. Мысль о самоубийстве у лиц, знавших его, отпала сама собой.

Значит, умышленное отравление? Заподозрили соседа. Тот категорически отрицал предъявленное обвинение, говорил, что в день, когда обнаружили труп, не был дома, но свидетелей в свою защиту представить не мог. Судебно-медицинский эксперт считал, что отравление произошло накануне вечером. Дело запутывалось.

— Но причем здесь радиоактивные изотопы? — спросил Алеша.

— Постой, не перебивай! — возмутился Олег.

— Нужно было определить, когда в организм попал мышьяк.

Известно, что мышьяк откладывается в волосах. Известно также, что у здорового человека волосы растут со скоростью 0,5 миллиметра в сутки. Наконец, известно, что рост волос продолжается еще 2–2,5 суток после смерти.

Следовательно, время попадания мышьяка в организм можно рассчитать по расстоянию места скопления мышьяка от корня волос.

Но как определить это место? Ни химический, ни спектральный анализы не могли бы дать результатов более или менее точных.

Тогда возникла оригинальная мысль.

Волос облучили нейтронами: к счастью, была возможность — в городе действовал ядерный реактор.

В результате стабильные изотопы мышьяка превратились в радиоактивные. Потом облученный волос перемещали вдоль узкого отверстия специально сконструированного счетного приспособления.

Таким путем установили, в какой части волоса сконцентрирован мышьяк.

Данные неопровержимо доказали, что мышьяк принят в середине дня, а не накануне вечером. Отравление, как выяснилось, было результатом нелепой случайности.

Так радиоактивные изотопы мышьяка пришли на помощь судебной медицине. Они позволили раскрыть причину трагической гибели человека.

А сумеют ли радиоактивные изотопы бороться со смертью, побеждать смерть, лечить болезни, которые, казалось бы, неизлечимы? Может ли радиоактивное излучение превратиться из врага человеческого организма в его друга?

Как опасно для человека излучение, известно каждому. Вспомним трагедию Хиросимы и Нагасаки, искалечившую жизнь сотням тысяч людей; вспомним страшный пепел Бикини, принесший ужасные страдания японским рыбакам, случайно оказавшимся близ района испытаний водородной бомбы. Не так грозен термоядерный взрыв, как его последствия — радиоактивное заражение местности на громадных площадях. И затем — не разгаданная до конца лучевая болезнь, медленная, страшная гибель…

— Вот наглядный пример, — сказал я. — Ученые подсчитали, что при взрыве водородной бомбы среднего калибра образуется очень большое количество нейтронов, которое способно превратить в радиоактивный углерод 14 сто килограммов атмосферного азота. Уже одного этого достаточно, чтобы наглядно показать вред ядерных испытаний.

— А к каким предосторожностям приходится прибегать тем, кто работает с радиоактивными изотопами, сколько существует различных видов защиты, — продолжал Илья. — Человек выпустил на свободу столь могучую силу, справиться с которой не всегда просто.

О том, что лучи радиоактивных веществ могут оказывать на организм человека как вредное, так и полезное действие, ученые знали еще в начале XX века. Несколько дней носил в жилетном кармане пакетик с солью урана Анри Беккерель, и на груди у него образовалась долго не заживавшая язва. Выступая перед Стокгольмской академией наук 6 июня 1905 года, Пьер Кюри говорил о том, что действие радия на раковые клетки дало положительные результаты. Медицинские журналы того времени неоднократно заявляли о благотворном влиянии новых лучей на некоторые злокачественные опухоли: их рост приостанавливался, а то и прекращался вовсе. А в построенном в Париже Институте радия была создана специальная лаборатория биологических исследований и радиотерапии.

Так что же, радиоактивное излучение — враг или друг для организма человека?

Все зависит от дозы, от количества излучения, поглощенного облучаемым объектом или частью его. Доза измеряется специальными величинами — рентгенами.

Различают облучение кратковременное и долговременное.

При кратковременном облучении безопасной для человеческого организма считается доза меньше 50 рентген. Абсолютно смертельная доза — 600 рентген.

Значит, малые дозы облучения безвредны для человека. Если соблюдать необходимые предосторожности при использовании радиоактивных изотопов в медицине, то они могут творить чудеса.

— Нужно разграничивать две вещи, — снова перебил я Илью. — Если радиоактивные изотопы вводятся внутрь человеческого организма, то они должны обладать очень малым периодом полураспада; наоборот, для целей облучения, например опухолей, применяются долгоживущие изотопы.

— Один вопрос! — вмешался Олег. — А чем, собственно, опасно излучение для организма? Какой вред оно наносит?

— Видишь ли, пока наука отвечает лишь приблизительно. Во-первых, излучение может привести к изменению структур молекул различных органических соединений, участвующих в жизнедеятельности организма. Во-вторых… Как известно, в организме человека очень много воды. Под действием излучения вода может превращаться в водород и перекись водорода — химически очень активные продукты. В итоге наступает тяжелое нарушение обмена веществ.

— Ясно! — сказал Олег. — А какие же чудеса могут вершить изотопы в медицине?

— Хотя бы лечение рака. Эта проблема уже давно остро волнует человечество. Исследования показали, что здоровые и пораженные ткани отличаются разной чувствительностью к облучению. Кроме того, радиоактивные изотопы особенно хорошо накапливаются и задерживаются в быстрорастущих тканях.

Лечение раковых опухолей с помощью радиоактивных изотопов проводилось и раньше. Источниками излучения служили естественные радиоактивные элементы. В основном они были пригодны для облучения наружных опухолей. Иногда применяли так называемые радиевые иглы, которые зашивали на некоторое время во внутреннюю опухоль. Порой радиоактивное вмешательство помогало: больной выздоравливал. Но здесь был один весьма существенный минус. Ведь радий чрезвычайно дорог. Значит, нужно искать вещества более дешевые, но обладающие такой же активностью, как и радий. Таким изотопом является радиоактивный кобальт 60.

В настоящее время его применяют наиболее широко. Однако этот изотоп-«прима» считается также одним из самых опасных для организма человека, поскольку обладает большим периодом полураспада (≈5,3 года) и очень жестким гамма-излучением. Обращаться с ним следует очень осторожно.

С помощью кобальта 60 лечат злокачественные опухоли. При этом используют два метода: внутритканевый и облучение на расстоянии.

Для облучения опухолей на расстоянии применяют специальную установку «ГУТ—Со-400», так называемую «кобальтовую пушку». Название расшифровывают так: «Гамма-установка терапевтическая», «Со-400» означает, что «пушка» заряжена таким количеством кобальта, действие которого эквивалентно 400 граммам радия. Бывают установки с меньшим радиевым эквивалентом (20, 40 граммов); они более удобны для массового употребления.

Благодаря «кобальтовой пушке» появилась возможность лечения раковых опухолей, ранее обрекавших человека на смерть, — рака легкого, рака пищевода, саркомы костей.

Внутритканевый метод гораздо проще. Он заключается в использовании кобальтовых игл, которые изготовляют из специальной кобальто-никелевой проволоки, облученной нейтронами.

Кобальтовые иглы применяют главным образом для лечения наружных опухолей. В одном медицинском журнале описывается случай эффективного излечения рака губы. Вокруг опухоли и под нее ввели двадцать игл на 8 дней. Уже через 5 дней размеры опухоли стали уменьшаться, а через месяц она исчезла.

В борьбе с раковыми опухолями применяются и другие радиоактивные изотопы. Так, в качестве радиоактивного заряда «пушки» употребляют цезий 137. Используются также изотопы иттрия, стронция и церия. Это продукты деления урана в ядерных реакторах, «осколочные» продукты. После соответствующей обработки «осколков» упомянутые изотопы осаждают на тончайших частицах стеклянной пыли. Пыль высушивают, расплавляют в электрической печи и из расплава приготовляют маленькие бусинки. Этими радиоактивными бусинками обкладывают наружную опухоль или зашивают их в пораженную раком ткань внутренних органов.

Наконец, применяются так называемые коллоидные растворы радиоактивных изотопов золота, фосфора и марганца. Опухоль пропитывается растворами, содержащими эти изотопы, и постепенно разрушается.

Радиотерапия рака — область весьма перспективная. В ней еще очень много неясного, но уже достигнутые успехи воодушевляют.

Самое главное — захватить опухоль в начале развития. Запущенные, разросшиеся опухоли мало поддаются лечению даже могущественными радиоизлучениями…

— Слушайте, приоткройте дверь! — воскликнула Майка. — Накурили — не продохнешь. Хотя бы радиоактивные изотопы помогли в борьбе с курением!

— И здесь все-таки главное — самосознание, — засмеялся Илья. — У меня его-то, например, и не хватает! А между прочим, радиоизотопы весьма отчетливо показали вред курения. Знаете как вырастили небольшое количество табачных листьев в атмосфере углекислого газа, содержащего углерод 14. Изотоп, естественно, усваивался листьями. Из них впоследствии сделали сигареты и дали их выкурить нескольким людям. Так удалось показать, в каких частях организма особенно сильно концентрируется никотин. Словом, для курильщиков результаты неутешительные!

— Ты говорил о гамма-лучевой терапии, — перебил я Илью. — Однако есть другая интересная область — нейтронотерапия, когда облучение ведется потоком нейтронов. У нее свои преимущества: нейтроны меньше, чем гамма-лучи, поражают кожу, обладают большей проникающей способностью и сильнее воздействуют биологически.

Вот история, которая недавно привлекла внимание медиков.

В одной из зарубежных клиник умирала молодая женщина. Положение было безнадежным. Огромная опухоль мозга не поддавалась излечению. Нож искуснейшего хирурга, сокрушительный поток гамма-лучей — все оказалось бесполезным.

…Консилиум длился недолго. Врачам оставалось лишь расписаться в своем бессилии в борьбе со смертью. И вдруг один из них предложил:

— А если больной впрыснуть бор и облучить опухоль нейтронами? Ведь в нашем городе есть ядерный реактор.

— Что вы, коллега! — обрушились на него все. — Человека под интенсивный поток нейтронов. Это же верная гибель!

— Да, но терять нечего!

Терять нечего… Игла шприца вводит больной раствор соли бора. Один укол, второй, третий… Почему бора? Дело в том, что опыты на животных показали: бор особенно интенсивно оседает в тканях опухоли и сохраняется в них очень долго.

Блистающее чистотой здание ядерного реактора. Больную помещают в свинцовый ящик, чтобы обезвредить действие гамма-излучения. На место опухоли направляют интенсивный поток нейтронов. Они пронизывают клетки опухоли, сталкиваются с атомами бора. Ядерная реакция B(n, α)Li: бор превращается в литий, и образуются альфа-частицы. Необычная операция продолжается полчаса.

А через неделю лечащий врач пишет в истории болезни: «Состояние больной значительно улучшилось. Аппетит хороший. Больная улыбается. Снова начала разговаривать…»

Так смерть победила смерть.

— Есть еще один могущественный изотоп — радиоактивный фосфор, — опять перехватил инициативу Илья. — С его помощью удается успешно бороться с белокровием.

Белокровие — это опаснейшая болезнь. Злокачественная опухоль костного мозга вызывает катастрофическое размножение лейкоцитов — белых кровяных шариков. Применявшиеся до сих пор средства лечения были неэффективными.

Теперь больному вводят в кровь радиоактивный фосфор. Этот изотоп хорошо накапливается в костной ткани и, испуская бета-частицы, разрушает клетки опухоли. К сожалению, радиоактивный фосфор в большинстве случаев лишь приостанавливает процесс, а не ликвидирует его вовсе.

Но позволительно спросить: разве радиоактивные изотопы можно применять лишь для лечения, только тогда, когда характер заболевания или, например, расположение раковой опухоли установлены?

Конечно, нет. Радиоизотопы — отличные диагносты.

Ученые давно установили, что для нормального функционирования щитовидной железы необходим йод. Введенный в организм йод концентрируется именно в этой железе.

…В онкологический институт доставлен больной, у которого подозревается рак щитовидной железы. Как установить местоположение опухоли? Больному впрыскивают небольшую дозу радиоактивного йода 131, безопасную для здоровья. Изотоп оседает в опухоли железы. С помощью счетного устройства можно определить контуры опухоли.

Аналогичным образом определяются положение и размеры опухолей мозга. Для этого используются специальные красители, содержащие «метку» радиоактивного изотопа. Краситель накапливается в опухоли. Так можно определить ее положение, не прибегая к хирургическому вмешательству.

Такой радиоактивный изотоп, как натрий 24, позволяет исследовать скорость кругооборота крови. Для этого в вену вводится физиологический раствор, содержащий радиоизотоп. Подобные исследования весьма полезны для диагностики заболевания легких и сердечно-сосудистой системы.

Пожалуй, трудно отыскать человека, которому хотя бы раз не пришлось побывать в рентгеновском кабинете. И даже искушенного пациента, по специальности имеющего дело с приборами и машинами, всегда поражали сложность и громоздкость рентгеновской аппаратуры. Кроме того, обязателен источник тока. А если такового нет?

…На столе стоит небольшой ящик. На его передней стенке маленькое плексигласовое окошечко, на задней — выход толстой стальной трубки, от которой тянется приспособление, напоминающее спусковой тросик фотоаппарата.

С помощью этого ящика можно производить такие же снимки, как на рентгеновской установке. Но «просвечивающим элементом» здесь служат гамма-лучи, испускаемые радиоактивным изотопом редкоземельного элемента тулия. Препарат, содержащий этот изотоп, расположен внутри стальной трубки. Стоит нажать спусковой тросик, как препарат перемещается к плексигласовому окошечку. Можно производить снимок. И не нужно никакого источника тока.

Словом, гамма-дефектоскопия применительно к человеку!

Конечно, полученные таким путем «тулиевые» снимки не отличаются столь высоким качеством, как рентгеновские. Кроме того, необходимо большое время экспозиции.

Но ведь это начало. Применение тулиевых установок сулит много полезного для медицинской рентгенодиагностики, или, точнее, гамма-диагностики.

Ни тока высокого напряжения, ни высококвалифицированного персонала, ни специального помещения — ничего этого не требует маленький аппарат с радиоактивным тулием.

А весит он всего-навсего… три килограмма. Да и то в основном за счет защитного кожуха.

— Можно ли сказать, что со временем радиоактивные изотопы сумеют излечивать все болезни? — спросил Алеша. — Мне почему-то кажется, что сумеют.

— Опять ты в своем амплуа? — не отказал себе в удовольствии заметить Илья. — Между прочим, некоторые считали, что радиоактивные вещества — панацея от всех зол, пока не узнали, какой они могут принести вред. Некий аптекарь, чтобы излечиться от желудочного заболевания, проглотил ампулку с солью радия. Вскоре на его могиле плакала безутешная вдова! Видишь ли, Алеша, дело состоит в разумном сочетании самых разнообразных методов, в том числе и радиотерапии… Одна она, конечно, не сможет лечить все болезни!..

Майка посмотрела на часы:

— Уже семь. Будем ложиться спать?

— Похоже на то, — ответил Илья. — Тем более, что повестка дня в основном исчерпана.

— Нет, еще осталось кое-что! — заметил я. — Не думаю, что надолго займу ваше внимание. Вот представь себе, Наташа, такую картину: ты — завхоз туристской группы. Проблема еды в походе — сама знаешь! Кстати, потом объявишь, что у нас осталось из съестного… Допустим, через несколько лет мы снова пойдем в поход и вместо консервов ты будешь предлагать на ужин великолепные бифштексы, ростбифы, отбивные или свежую докторскую колбасу, которую так обожает Илья. Устраивает тебя такая перспектива?

— Ну, разумеется! Во всяком случае, не будете жаловаться на однообразие меню… Ты хочешь рассказать о каких-нибудь миниатюрных холодильниках?

— Нет, зачем. Я имею в виду радиационную стерилизацию продуктов питания. Чем вызвана их порча? Деятельностью вредных микробов, червей и насекомых. Излучение губит их. Сама же радиационная стерилизация осуществляется просто. Берут, например, бифштекс, помещают в герметическую упаковку и облучают гамма-лучами или потоком электронов. Организмы, вызывающие порчу и гниение, погибают. Это помогает значительно удлинить срок хранения продуктов.

— Однако есть здесь свое «но», — не удержался Илья. — Для стерилизации нужны большие дозы облучения, при действии которых из веществ продукта возникают новые химические соединения. Они могут придать ему неприятные вкус и запах. Как устранить эти явления, не снижая эффективности облучения над таким вопросом и работают сейчас ученые.


Радиоизотопы в сельском хозяйстве

— Дай уж мне закончить! — я посмотрел на своего напарника с укоризной. — Последняя лекция. Применение радиоизотопов в сельском хозяйстве. Здесь нужно различать два направления: радиоизотопы как меченые атомы для различных исследований и влияние излучений на рост и развитие растений. Известно, какую громадную роль в повышении урожайности самых разнообразных сельскохозяйственных культур играют удобрения. Однако изучить механизм действия удобрений, выяснить влияние отдельных химических элементов на рост и развитие растений — нелегкая задача.

Удобрения содержат столь необходимые для жизни растений элементы, как фосфор, азот, калий и другие.

Если ввести в удобрение незначительное количество какого-нибудь радиоактивного изотопа, например радиофосфора, то мы получим простой способ проследить, как усваивается фосфор растением. И сможем расшифровать, наконец, механизм перехода фосфора из удобрения в растение.

Для этого стоит лишь высушить растение и внимательно исследовать его с помощью счетчиков заряженных частиц. Взяв растения на разных стадиях развития и исследовав на содержание радиофосфора различные их части, можно прийти к интересным выводам.

Прежде всего, зная общее содержание фосфора в растении и его активность, можно найти количество фосфора, усвоенное из удобрения.

Установили интересный факт: раньше чем растение начинает усваивать фосфор, он подвергается в почве многочисленным превращениям. Следовательно, растение получает фосфор не прямо из удобрения, а после ряда превращений из почвы.

Радиоактивный фосфор помог узнать, что зерновые культуры потребляют фосфор в основном на ранних стадиях развития. Прослеживая дальше распределение фосфора в растениях, ученые выяснили, что элемент в значительных количествах накапливается в дозревающих зернах злаков.

Ранее иногда казалось удивительным, почему при возделывании различных культур фосфорные удобрения не только не оказывают благотворного действия, но в иных случаях даже снижают урожайность. Радиоактивные изотопы помогли найти объяснение. Многие растения отличаются избирательностью по отношению к фосфорным удобрениям. Это значит, что усвоение фосфора у них зависит от вида фосфорного соединения. Иными словами, такие растения способны усваивать фосфор только из определенных удобрений.

— Дополняю! — опять не дал мне договорить Илья. — С помощью меченых атомов удалось установить, как лучше внести удобрение. Например, суперфосфат — важнейшее фосфорное удобрение — усваивается лучше в виде маленьких гранул, чем больших, — так открыли возможность значительной экономии ценного удобрения.

— С помощью изотопов можно исследовать использование растениями азотных удобрений, — мне уже надоело одергивать Илью. — Правда, радиоактивные изотопы азота для этого непригодны, так как они имеют очень небольшие периоды полураспада, неудобные для проведения экспериментов. Выручает стабильный изотоп азот 15.

Он позволил ответить на два практически важных вопроса.

За счет чего растение удовлетворяет потребность в азоте? Откуда берет его в большем количестве: из удобрения или из воздуха, или же использует азот почвы?

Азот 15 помогает установить, что у бобовых растений поглощение азота воздуха уменьшается с увеличением количества азотного удобрения.

А когда выгоднее вносить в почву азотные удобрения? Изотоп азот 15 отвечает: под овес нужно вносить возможно раньше, так как при этом азот усваивается с наибольшей полнотой.

Как показали исследования последних десятилетий, для правильного развития растений нужны не только фосфор, азот и калий — основные элементы питания. Не менее важную, а в отдельных случаях просто необходимую роль играют микроэлементы.

Что мы называем микроэлементами? Это элементы, которые поступают в организм в весьма малых, едва уловимых количествах. К ним относятся многие химические элементы.

Пока трудно говорить, какие из них являются важнейшими, ведь широкое изучение действия микроэлементов только начинается. Кроме того, растения отличаются определенной избирательностью по отношению к тем или иным микроэлементам.

Можно назвать только наиболее изученные. Это медь, цинк, марганец, молибден, кобальт, бор.

Они содержатся в почве в очень малых количествах — до сотых и тысячных долей процента. Но если их нет, заболевает растение. С другой стороны, добавка в почву небольших количеств микроэлементов может значительно повысить урожай.

Бор резко поднимает урожайность клевера и различных овощных культур.

Зерновые культуры дают на торфяных почвах прекрасный урожай, если в почву введено немного меди.

Марганец оказывает влияние на рост клубней сахарной свеклы.

Молибден и кобальт способствуют лучшему произрастанию кормовых культур и трав.

Это качественная сторона влияния микроэлементов. Она более или менее проясняется. Иное дело знание механизма влияния микроэлементов. Здесь пока много непонятного. Изучение же с помощью обычного химического анализа наталкивается на большие трудности хотя бы потому, что микроэлемент попадает в растения в ничтожных количествах.

Вот тут-то и могут сказать свое слово радиоактивные изотопы.

Так, кобальт 60 позволил изучить механизм поступления кобальта в кормовые травы. Марганец 54 рассказал о своей роли в урожайности и устойчивости злаков и позволил разработать практические рекомендации.

У растений, и особенно культурных, много врагов. Это не только резкие колебания температуры, заморозки и засухи, болезни и сорняки. Громадный урон урожаю нередко наносят всевозможные вредители и прежде всего насекомые. Подсчитано, что потери от вредителей на земле очень велики. Если эти потери ликвидировать, дополнительно можно прокормить 200 миллионов человек.

С вредителями ведут успешную борьбу, применяя различные яды и химические препараты. Однако чтобы достичь полного успеха, весьма важно знать образ жизни насекомых.

Эта на первый взгляд очень трудная задача может оказаться довольно простой.

Насекомых нужно «пометить».

«Радиоактивные» насекомые не сумеют скрыть своего присутствия.

Используя обычные счетчики заряженных частиц, можно, например, точно определить скорость распространения вредных насекомых.

В одном из подмосковных колхозов провели опыт с зерновой совкой — опасным вредителем хлебов. Выяснилось, что бабочки этого насекомого способны перемещаться на расстояние до 5 километров в сутки.

Между прочим, методом «меченых» насекомых можно изучать распространение мух, переносчиков инфекции, и комаров. Полученные результаты помогают лучше бороться с паразитами.

— Что касается борьбы с сорняками химическими методами, то и в этой области радиоизотопы привели к интереснейшим результатам, — снова перебил меня Илья. — Оказалось, что широколистные растения-сорняки поглощают разбрызганные ядохимикаты полностью за два часа. В то же время трава и узколистные растения поглощают небольшую их часть. Это позволяет селективно использовать химические яды для борьбы с сорняками.

— Наконец, применение радиоактивных изотопов получило широкое распространение и в животноводстве, — сказал я. — Продуктивность сельскохозяйственных животных непосредственно зависит от качества и количества пищи и того, как она усваивается. Иными словами, от интенсивности обмена веществ в организме.

Как известно, корма состоят из белков, жиров, углеводов и минеральных солей.

Если составные элементы пищи «пометить» радиоактивными изотопами, можно проследить за скоростью их всасывания из пищеварительного тракта, за путями превращения в организме.

В качестве «меток» используются различные изотопы. Так, «меченые» белки получают из растений, выращенных на азотистых удобрениях, содержащих азот 15. Углеводы извлекают из растений, у которых фотосинтез проходил в атмосфере, содержащей углерод 14.

Минеральные соли «метят» радиоизотопами кальция, железа, фосфора, серы и других элементов.

Наконец, можно получить также «меченые» витамины, которые в ничтожных количествах содержатся в пище, и изучить механизм их действия.

Исследования с радиоактивными изотопами позволяют дать ответ на многие вопросы, связанные с обменом веществ в организме животного. А это, в свою очередь, способствует разработке практических мер для значительного увеличения продуктивности животноводства.

Радиоизотопы помогают также выяснить роль микроэлементов для жизнедеятельности животных, бороться с различными заболеваниями.

— Ученые нашли, — вмешался опять Илья, — что облучение семян перед посевом гамма-лучами действует весьма благотворно.

Оказалось, что такие семена приобретают повышенную всхожесть. Внезапные заморозки становятся не столь опасными для молодых зеленых проростков. И, наконец, налицо определенное повышение урожайности.

Или другой пример. Как влияет облучение семян перед посевом на урожайность? Провели опыты с семенами редиса и моркови, подействовав на них малыми дозами гамма-лучей.

Прорастание семян значительно ускорилось, урожайность редиса выросла на 11 процентов, а содержание каротина в моркови возросло на 25 процентов!

…Печка гудела вовсю. Алеша задул свечу. Стало тихо.

И, засыпая, я слышал шепот Майки:

— Все-таки очень здорово, что ребята рассказывали о радиоактивных изотопах. Я узнала так много интересного. Может, и прав Илья: гуманитарий должен хоть немного разбираться в точных науках…

Эти слова адресовались Алеше, но мне было очень радостно услышать их. Эх, взять бы еще завтра Аламинский перевал!

…Погода в горах изменчива. Она нередко разрушает планы и надежды. К сожалению, это случилось и с нами. Утром снова откуда-то набежали тучи, и хотя снег не падал, но белая пелена закутала перевал.

Приходилось возвращаться назад. Перед выходом еще раз взглянули мы на неказистую избушку, столько дней служившую нам уютным домом.

— Жаль! — с грустью произнес Илья. — Прогорело наше путешествие. Так ничего и не достигли. Не узнали ничего нового. Лучше бы уж выбрали другой маршрут.

— А я так не думаю, — ответил ему звонкий голос Наташи. — И нисколько не раскаиваюсь. Ведь мы же совершили путешествие…

— Какое это путешествие! — уныло буркнул Илья. — Пять дней до избушки, да пять дней отсиживания… Не смеши!

— Как ты не понимаешь! Я говорю о другом путешествии. Мы прошли большой маршрут, не выходя из этой избушки. Настоящее путешествие в страну радиоактивных изотопов!

— А если сокращенно — в страну РАИ! — Олег рывком вскинул рюкзак.

— Страна РАИ… — задумчиво повторил он. — Пусть…

Илья улыбнулся: он не умел долго хандрить.

— В таком случае я хочу надеяться, что мы с Толей оказались сносными проводниками… Как ты думаешь, начальник?

Загрузка...