Маршрут второй

Когда догорела свеча, мы легли спать. Засыпали, надеясь, что к утру непогода утихнет. Но природа, видимо, крепко хотела нам насолить, и когда забрезжил рассвет, маленькое окошко избушки было на три четверти засыпано снегом. Помещение за ночь основательно простыло. Вылезать из теплых спальных мешков и разжигать печку не хотелось.

— Опять двадцать пять! — разочарованно произнес Олег, прислушиваясь к посвисту ветра. — Зимовка продолжается…

— Хотите я зачитаю вам потрясающий документ! — подал голос из своего угла Илья. — Цитирую по памяти: «В течение первой декады февраля малооблачная погода без осадков. Температура днем минус десять — минус двенадцать, ночью до двадцати — двадцати пяти градусов мороза».

— Это что, анекдот? — спросила Наташа.

— Отнюдь! Это выдержка из долгосрочного прогноза, который я имел честь достать в Москве перед походом. Совпадение, как видите, блистательное!

Алеша сердито засопел:

— Я еще не видел организации, которая бы столь бессовестно и столь постоянно вводила в заблуждение миллионы граждан. Неужели нельзя научиться точно предсказывать погоду. Хотя бы с помощью этих самых радиоактивных изотопов.

— Ты зря горячишься! — возразил я. — Предсказание погоды — дело исключительно сложное, и ошибки и случайности здесь неизбежны. А что касается изотопов, то здесь ты угодил в самую точку. Можно с их помощью определять погоду. Пока, к сожалению, не на завтрашний день, а ту, которая была миллионы и сотни миллионов лет назад.

— Толя, ты, часом, не угорел ночью? — участливо спросила Майка.

— Начальник говорит истину! — торжественно воскликнул Илья. — Есть такая наука — палеоклиматология! Изучение климата древности. В ней большую роль играет изотоп кислорода O18. Это его самый тяжелый изотоп. Впрочем, Анатолий, рассказывай. «Продолжим наши игры», как говорил Остап Бендер.


Изотопы и климат прошлого

— Наверное, всем известно, — заговорил я, — что многие десятки миллионов лет назад на месте, где теперь находится Московская область, плескалось море. И жили в этом море особые моллюски — белемниты, раковины которых сохранились до наших дней в виде так называемых чертовых пальцев. Но пока маленькое отступление.

В науке существует процесс, носящий название изотопного обмена. Суть его в том, что распределение изотопов одного и того же элемента между разными химическими соединениями может изменяться.

Объяснение явления просто: химические свойства изотопов элемента бесконечно близки, но не тождественны. Есть некоторые отличия, они и проявляются в изотопном обмене.

Вот пример.

В нашем распоряжении вода, но не обычная, а составленная из двух атомов водорода и одного атома так называемого «тяжелого» кислорода, то есть его изотопа с атомным весом 18. Формула такой воды запишется, как H2O18.

Будем пропускать через эту воду обычный молекулярный кислород O216. Получится система, состоящая из воды и растворенного в воде кислорода:

O216 + H2O18.

Оказывается, что в этом случае произойдет изотопный обмен: атомы О16 будут замещать атомы О18 в молекуле воды.

А вот как запишется реакция:

O216 + 2H2O18↔O218 + 2H2O16.

Расчеты показывают, что эта обратимая реакция лучше идет слева направо, или, как говорят химики, равновесие реакции сдвинуто вправо. Иными словами, О16 охотнее входит в состав воды, чем остается в виде молекулярного кислорода.

Можно подсчитать величину отношения:

1618) воды к (О1618) молекулярного кислорода.

При 25 °C оно равно 1,041, а при 100 °C составит 1,005. Эта величина называется постоянной равновесия и зависит от температуры.

Эта зависимость лежит в основе так называемого геологического термометра. Но как с помощью такого термометра определять температуру?

Есть другая реакция изотопного обмена:

CaCO316 + 3H2O18↔CaCO318 + 3H2O16.

Она подчиняется тем же закономерностям, что и предыдущая.

Теперь маленький экскурс в область геологии.

CaCO3, карбонат кальция, — это известняк, относящийся к так называемым осадочным породам. Они являются отложениями древних морей. Раковины низших организмов — также известняк. Обломки таких раковин часто попадаются при исследовании отложений. Когда-то организмы, которым принадлежали раковины, жили в морях. Они использовали в качестве «строительного материала» именно CaCO3, содержащийся в морской воде. И чем выше была температура воды, тем больше O18 входило в их состав.

Достаточно определить изотопный состав кислорода в отложениях известняка, в различных их слоях, чтобы установить температуру «рождения» и «роста» раковин. Значит, мы имеем реальную возможность судить о температурах в невообразимо далеком прошлом.

Точность метода потрясающая: плюс-минус полградуса!

Так какая же температура была в районе нынешней Московской области сто пятьдесят миллионов лет назад?

На этот вопрос отвечают белемниты.

В учебнике геологии можно прочесть: «Белемниты известны с триасового периода, достигли расцвета в юрский и меловой периоды, к началу третичного периода вымерли».

В учебнике найдется и другая справка: триасовый период закончился 180 миллионов лет назад, юрский — примерно 130, меловой — 60 миллионов; далее начался третичный.

Значит, нас должны интересовать юрские белемниты, которые особенно процветали 150 миллионов лет назад.

Применение «геологического термометра» показало, что в «юности» эти моллюски жили в более теплой воде, чем «на склоне лет», что они пережили четыре «зимы» и три «лета» и вымерли «зимой». Под «летом» и «зимой» понимаются периоды потепления и похолодания климата. «Термометр» отметил максимальные сезонные изменения температуры на протяжении периода. Они оказались равными примерно шести градусам. Средняя температура в период существования исследованного образца белемнита составляла — +17,6°.

Такая температура была 150 миллионов лет назад!

— Есть о чем задуматься прогнозистам современности! — сказал Илья. — Впрочем, ведь и в современную метеорологию проберутся радиоизотопы. Например, можно будет следить за перемещением воздушных масс, если их «пометить» специальным радиоактивным изотопом.

— Пока нам от этого не легче, — сказал Олег. — Между прочим, не пора ли вставать? Илья, который час?

— Десять минут девятого!

— А по моим без двадцати десять! — заявила Наташа.

— Кому прикажете верить?

— Стоят мои часы! — сказал Илья. — Забыл завести за вчерашними разговорами. Хорошо хоть в группе есть вторые, а то пришлось бы определять время по наитию.

— Куда как удобны электрические стенные часы! — высказался Алеша. — И заводить не надо.

— И наручные часы, которые годами не останавливаются, теперь уже не проблема, — сказал я.

— А где же источник тока? Какой-нибудь сверхаккумулятор?

— Отнюдь. — Илья начинал растапливать печку. — Источник более простой. Атомная батарейка — слышали?


Атомные батарейки

— Я об этом где-то читал, — ответил Сергей. — Насколько помню, принцип действия таков: берется пластинка с радиоактивным изотопом, к ней вплотную прижаты стержни из полупроводниковых материалов. Под действием излучения такая батарейка дает ток.

— Что-то мне не совсем понятен принцип, — сказала Наташа.

— А чего тут не понимать? — удивился Илья. — Олег просто не договорил до конца. Дело вот в чем: два соседних полупроводника образуют термопару. Знаете, что такое термопара?

— Насколько я помню, если спаять концами два различных металла и нагреть спай, то возникает электрический ток, — смущаясь, проговорила Майка.

— Вот-вот! — обрадовался Илья. — Люблю, когда филологи смыслят в технике. Далее вы, наверное, знаете, что при радиоактивном распаде выделяется тепло. Это тепло нагревает внутренние концы стержней, внешние же имеют комнатную температуру. Благодаря разнице в температуре возникает термоэлектричество. В Америке создана такая установка. Размером она не больше поллитровой кружки, весит всего пять килограммов, а дает столько же энергии, сколько мощная батарея из самых лучших современных аккумуляторов, весящая 700 килограммов. В ней применяются радиоактивные изотопы стронций 90 или полоний 210.

— Это да! — восхитился Алеша. — Взять такую батарейку в поход — и свет и тепло на все путешествие. И костра не надо!

— Остановка за малым. Знаешь, сколько стоит такая «карманная электростанция»? Десятки миллионов долларов!

— Дорогая игрушка, — пробурчал Сергей. — Какое же у нее может быть практическое применение? Видимо, превратить атомную энергию непосредственно в электрическую далеко не просто.

— Конечно, до предмета ширпотреба ей далеко. Но эти батарейки можно применять как источники электроэнергии в искусственных спутниках и космических ракетах, где крайне важен выигрыш в весе и объеме.

— Хорошо, — произнесла Наташа. — Ну, а атомная батарейка для часов?

— Тут можно использовать батарейку, работающую по другому принципу, — ответил я.

Наиболее портативная, прямо-таки микробатарейка, работает на энергии бета-распада изотопа прометия 147.

Как же устроена такая батарейка? Окись прометия, содержащая прометий 147, смешивают с самым обыкновенным фосфором. Фосфор поглощает бета-частицы, испускаемые прометием. Энергия радиоактивного излучения превращается в световую; фосфор светится. Это свечение улавливается специальными фотоэлементами, назначение которых превращать световую энергию в электрическую. Прометиевая батарейка миниатюрна. Ее диск имеет размер обычной канцелярской кнопки и толщину около одного миллиметра.

Температура и давление практически не сказываются на работе такой батарейки. Интересно, что при очень низкой температуре (около –100°) она действует даже лучше, чем при комнатной.

Прометиевая батарейка может постоянно производить электроэнергию по крайней мере в течение пяти лет.

— На атомных плитках пища, вероятно, не будет подгорать, — ухмыльнулся Сергей. — А сейчас я чувствую отчетливый запах гари. Как там, Илья, наш завтрак?

Каша действительно подгорела, что, правда, не испортило нам аппетита. Теперь дело за чаем. А это было не просто: снова растапливать снег, без конца подкладывать в печурку дрова и ждать бесконечно терпеливо, когда же, наконец, закипит мутная жидкость в ведре. Дежурному не завидовали. А им был Илья.

— Вот что, друзья, — заявил он. — Чего хотите: чаю или новую порцию изотопов?

— Чаю, — сказал Алеша.

— И того и другого, — пробасил Сергей.

— Или того или другого! — настаивал Илья. — Я думал сейчас рассказать о том, как получают изотопы. О ядерной химии. Совмещать и то и другое не смогу. Сами видите, миллион удовольствий с печкой возиться…

Просто Илье захотелось на сей раз увильнуть от дежурства.

— Не выйдет! — заявил я. — Будешь топить печку и рассказывать. А за снегом, уж так и быть, я сбегаю.

Илья метнул на меня недовольный взгляд.

— Ну, нет! Общество хочет взвалить на меня двойную работу.

— Брось, Илья, торговаться, — вмешался Олег. — Дело мы затеяли нужное, и нечего спорить по пустякам.

Илья протянул мне ведро:

— Ладно, тащи снегу! — и, усевшись около печки, начал: — Классическую химию можно назвать химией электронных оболочек. Знаете почему?


Что такое ядерная химия

Потому что при всех химических процессах происходят изменения в строении внешних электронных оболочек тех атомов, которые принимают участие в химических реакциях. При этом атомы или отдают часть своих электронов и превращаются в положительно заряженные ионы, или приобретают дополнительные электроны; тогда они становятся отрицательными ионами.

Но какой бы заряд ни имел ион данного элемента, он будет только ионом именно этого элемента. Например, в азотной кислоте ион азота имеет заряд +5, в окиси азота +2, в закиси +1, наконец, в аммиаке –3, но во всех этих случаях азот остается азотом. Он лишь выступает, как говорят химики, в разных валентных состояниях.

Следовательно, при химических процессах строение атомного ядра не меняется. Если же каким-нибудь путем удается изменить структуру ядра, то в этом случае следует говорить о ядерных реакциях. Они приводят к образованию различных радиоактивных изотопов. Такие реакции происходят и в природе. Так, образование углерода 14 из азота — ядерная реакция. Превращение радиоактивных элементов друг в друга: урана в торий, тория в радий, радия в радон и т. д. — это тоже ядерные реакции.

Как же удается человеку совершать превращения элементов?

Честь первого искусственного превращения элементов принадлежит английскому физику Эрнсту Резерфорду.

Уже в начале XX века знали о естественных превращениях элементов, например радиоактивном распаде урана, тория, актиния, полония и радона.

Но ученые не располагали средствами, чтобы как-либо повлиять на этот процесс — ускорить его или замедлить, провести мгновенно или прекратить вовсе.

Тем труднее и фантастичнее казалась поставленная задача. Вызвать искусственное превращение элементов — это значило вторгнуться в пределы ядра, нарушить его структуру, изменить заряд.

Нужно было сначала подготовиться теоретически.

При естественных радиоактивных превращениях выделяется огромная энергия. Если выразить ее величину через температуру, то получится громадная величина, миллионы градусов. Возможно, такая высокая температура способна вызвать ядерные реакции.

Но подобных сверхвысоких температур не было в руках людей. Существовали пока смутные догадки, что процессы превращения элементов происходят лишь в звездах.

А если найти такие частицы, такие «снаряды», которые, проникнув через электронную оболочку атома, смогли бы преодолеть отталкивающее действие ядра? У них, этих частиц, должна быть очень высокая кинетическая энергия.

В руках ученых были лишь положительные альфа- и отрицательные бета-частицы. Но бета-частицы отпадали: их легко оттолкнули бы электронные оболочки атома.

Оставались альфа-частицы, ядра атомов гелия.

Резерфорд и решил применить эти частицы в качестве стремительных «снарядов». Он использовал альфа-частицы изотопа полония, которые вылетают с громадной скоростью, почти 20 000 километров в секунду.

Опыт Резерфорда, несмотря на всю необычность поставленной задачи, был прост.

Его установка представляла собой небольшую камеру. Внутри располагался радиоактивный препарат, испускавший альфа-частицы. На стенке камеры помещался специальный экран, покрытый сернистым цинком. Это вещество способно светиться под действием альфа-частиц. На экране под микроскопом можно наблюдать очень характерные вспышки — сцинтилляции. Они-то и вызывались альфа-частицами.

Резерфорд наполнил свою камеру азотом и продолжал наблюдения. Снова на экране появлялись вспышки, но совсем не похожие на те, что вызываются альфа-частицами.

Значит, это были другие частицы.

Ученый провел тщательные и многочисленные опыты и установил, что эти непонятные частицы — протоны, ядра атома водорода.

Так обстояло дело на практике. Процесс нужно было объяснить теоретически.

И Резерфорд рассуждал:

Мы имеем ядро азота. Его можно обозначить, как 7N14, где цифра 7 показывает заряд ядра азота, а цифра 14 — атомный вес. Если в ядро азота попадает альфа-частица, то, по-видимому, образуется новое ядро, обозначаемое через X.

Так как альфа-частица имеет заряд, равный двум, и вес, равный четырем, то можно записать «составное» ядро символом 9X18. И если при опыте обнаруживаются протоны, они могут испускаться только этим составным ядром. В итоге получается новое ядро; обозначим его через 8Y17, потому что протон имеет заряд, равный единице, и вес, равный единице. Ядро 8Y17 не может быть ничем иным, как ядром атома кислорода 8O17.

Итак, при бомбардировке азота альфа-частицами образуется кислород. Происходит искусственное превращение элементов.

Вторым важнейшим шагом в развитии ядерной химии было открытие искусственной радиоактивности.

Это явление связано с именами супругов Ирэн и Фредерика Жолио-Кюри — представителей второго поколения Кюри.

Так же, как и Резерфорд, супруги Жолио-Кюри пытались в 1933 году провести реакцию превращения элементов. «Мишенью» они избрали металлический алюминий 13Al27. «Снарядами» служили альфа-частицы ядра гелия — 2He4, испускаемые сильно радиоактивным элементом полонием. Если реакция превращения элементов будет иметь место, то получится изотоп фосфора 15P30. Если также учесть, что алюминий во время облучения испускает нейтроны 0n1, то ядерную реакцию можно записать так:

13Al27 + 2He40n1 + 15P30.

Все, казалось бы, просто. Но неожиданно обнаруживается удивительная вещь: сама пластинка алюминия становится источником излучения. Оно не прекращается даже в отсутствие препарата полония.

Супруги Кюри тщательно исследовали характер неизвестного излучения и выяснили, что оно является потоком позитронов. Позитрон представляет собой частицу, аналогичную электрону, но имеющую положительный заряд (e+). Эта частица была открыта двумя годами раньше американцем Андерсоном в космических лучах.

Таким образом, рассуждали супруги Кюри, изотоп фосфора 15P30 оказывается радиоактивным и, испуская позитроны, превращается в стабильный изотоп кремния 14Si30. Иными словами:

15P30 – e+4Si30.

Это предположение было подтверждено химическими методами.

Так человек нашел пути к получению искусственных радиоактивных изотопов.

Таким образом, в основе ядерных реакций, процессов ядерной химии, лежат изменения атомного ядра.

Конечным продуктом ядерной реакции может быть изотоп другого элемента (или других элементов) или другой изотоп того же элемента. Кроме того, в результате реакции могут получаться вторичные элементарные частицы (например, протон, дейтрон и другие) или испускаться гамма-лучи.

Для того чтобы ядерная реакция осуществилась, требуется несколько условий. Во-первых, нужно располагать бомбардирующими частицами, своеобразными ядерными «агентами», «снарядами». Одни из них альфа-частицы — их применили в своих опытах Резерфорд и супруги Кюри.

Кроме альфа-частиц, в качестве «снарядов» используются протоны (1p1), дейтроны (ядра «тяжелого» изотопа водорода 1d2) и нейтроны 0n1). Ядерные реакции могут вызываться также действием гамма-лучей. Эти элементарные частицы не трудно получить. В качестве источника альфа-частиц служат некоторые сильно радиоактивные элементы, например полоний, радий. Нейтронным источником оказывается смесь солей радия и бериллия: альфа-частицы, испускаемые радием, выбивают нейтроны из ядер бериллия.

Тип бомбардирующих частиц имеет огромное значение для ядерных реакций. В зависимости от того, какая частица (альфа-частица, дейтрон, протон или нейтрон) выбрана в качестве «снаряда», меняется сам характер ядерной реакции и ее конечный результат.

Второе условие несколько сложнее. Реакция происходит только тогда, когда бомбардирующей частице удается столкнуться с ядром. Оно обладает положительным зарядом, а значит, и сильным электрическим полем. Поэтому положительно заряженные частицы (α, p, d) будут испытывать сильное отталкивание со стороны поля ядра. В обычных условиях лишь очень редким частицам удается «просочиться» через «оборону» атомного ядра.

Чтобы сделать ядерную реакцию интенсивной, бомбардирующим частицам надо придать большую энергию, их нужно ускорить.

Ускорить, но до какой степени?

Для измерения энергии бомбардирующих частиц используются специальные единицы — электроновольты. Электроновольтом называется энергия, которую получит частица с зарядом, равным заряду электрона, при прохождении разности потенциалов в один вольт (обозначение эв). Ядерные реакции происходят обычно при энергиях, измеряемых миллионами электроновольт, или мегаэлектроновольтами — Мэв).

Так, протон, чтобы проникнуть в ядро свинца, должен иметь энергию около 10 мегаэлектроновольт. Энергия же излучения большинства радиоактивных изотопов не достигает и одного электроновольта.

Но как ускорить заряженные частицы? Используются специальные установки, ускорители элементарных частиц.

В этих установках (их несколько типов) частицы ускоряются благодаря многократному повторному приложению магнитного поля. В циклотронах можно ускорить, например, протоны до энергии в 22 мегаэлектроновольта.

Старые типы ускорителей не давали возможности сообщать частицам энергии больше нескольких десятков мегаэлектроновольт. Современные — синхроциклотрон, синхрофазотрон — значительно совершеннее и позволяют достигать энергии в 10 000 мегаэлектроновольт. Такой мощный ускоритель работает, например, в Объединенном институте ядерных исследований в Дубне.

Создание ускорителей позволило провести и изучить большое количество различных ядерных реакций.

— Горим! — Спрыгнув с нар, Олег с остервенением начал топтать свой ватник, пристроенный возле печки для просушки и не желавший высыхать уже вторые сутки. Только сейчас мы почувствовали, что в избушке пахнет гарью.

— Олежка, дорогой! — улыбнулась Наташа. — Будет ли у нас хоть раз такой поход, когда у тебя ничего не сгорит и не утонет? То мы пьем кофе с твоими носками, то вытаскиваем твои тапочки из болота, а теперь в твоем ватнике будет безобразная дыра…

— Рассказывай таким растяпам о ядерной химии! — Илья не любил, если его внезапно перебивали.

— Сам-то ты хорош! — уныло произнес Олег. — Может, тебе напомнить историю, как некий опытный турист повел новичков в однодневный поход и вечером вышел точнехонько к тому месту, откуда ушел утром. Тема похода была, кажется, «Ориентировка на местности».

Это было темное пятно в туристской биографии Ильи. Слегка смутившись, он счел нужным продолжить свое сообщение.

— Многие трудности, связанные с применением в качестве «снарядов» заряженных частиц, исчезают, если в этой роли выступают нейтроны. Они не имеют заряда, и поэтому положительное поле ядра не представляет для них препятствия. Ядерные реакции могут идти с нейтронами очень низкой энергии (менее одного электроновольта). Эти нейтроны носят название тепловых, потому что их энергия близка к энергии теплового движения молекул. Ускоренные нейтроны подразделяются в зависимости от их энергии на медленные и быстрые.

Все известные ядерные реакции можно поделить на две группы. Одни реакции происходят под действием частиц или гамма-лучей невысокой энергии (до 50 мегаэлектроновольт). Другие требуют высокой энергии (более 50 мегаэлектроновольт).

Ядерные реакции также можно описать уравнением. Например, уравнение ядерной реакции Резерфорда будет выглядеть так:

7N14 + 2He41p1 + 8O17.

Однако более принята сокращенная запись: N14(α, p)O17. Например, выражение Na23(d, p)Na24 описывает ядерную реакцию изотопа Na23 с дейтроном, в результате которой образуется Na24 — другой изотоп натрия — и выделяется протон. Другой пример Fe54(d, n)Co55 — пример еще одной реакции с дейтроном, вторичной частицей, в которой является медленный нейтрон.

С помощью реакций под действием медленных нейтронов получены многие радиоактивные изотопы, широко применяющиеся в науке и промышленности: так, по реакциям нейтрон — протон (n, p) и нейтрон — альфа-частица (n, α) удается получить изотопы углерода C14, серы S35, фосфора P32, железа Fe59 и другие. Радиоизотопы очень многих химических элементов стали доступны человеку именно благодаря реакциям с медленными нейтронами.

Но стоит перейти к тяжелым элементам — торию, урану и трансурановым элементам, как ядерная реакция приобретает иной характер. Ядро тяжелых элементов раскалывается на два осколка, которые могут быть равными или разными по величине. Среди этих осколков обнаруживают изотопы элементов середины периодической системы — иттрия, стронция, циркония, церия, бария, лантана и цезия, а также многих других. Например, при делении урана медленными нейтронами образуются изотопы химических элементов от цинка (порядковый номер 30) до гадолиния (порядковый номер 64). На практике такая ядерная реакция осуществляется в ядерном реакторе.

А если энергия бомбардирующих частиц превышает 50 мегаэлектроновольт, если она достигает значений в сотни и тысячи мегаэлектроновольт? Как в классической химии при очень высоких температурах и давлениях становятся возможными многие процессы, не происходящие в нормальных условиях, так и в ядерной химии высоких энергий наблюдаются весьма своеобразные явления.

Взаимодействие частиц высоких энергий с атомными ядрами приводит их к расщеплению. Этот процесс не надо путать с обычным делением на два осколка. При расщеплении ядер из них вылетает большое количество ядерных частиц и образуются разнообразные новые ядра.

Например, если облучать элемент гафний протонами с энергией 660 мегаэлектроновольт, то образуется много изотопов предыдущих элементов, вплоть до изотопа церия, отстоящего от гафния на 14 порядковых номеров.

Если такими же протонами бомбардировать уран, то получаются изотопы 16 химических элементов, при более высоких энергиях — большие количества.

— Вот вкратце я и рассказал, как получают радиоактивные изотопы.

— По-моему, кое-что нужно добавить! — вступил я в беседу. — Илья упомянул о ядерных реакциях в природе. Их только совсем недавно начали по-настоящему изучать. Они весьма разнообразны. Распад естественных радиоактивных элементов — примеры ядерных реакций в земной коре. При этом могут испускаться различные частицы, которые, в свою очередь, вступают в ядерные реакции с разными элементами. Наконец, космические лучи! Ведь составляющие их частицы обладают огромной энергией…

— Но здесь есть и другая сторона, — перебил меня Илья. — Ведь изучая ядерные реакции в земной коре, изучая процессы, протекающие в звездах, человек тем самым выясняет пути, которые привели к образованию химических элементов. Одним словом, приближается к решению проблемы происхождения элементов. На этот счет существует немало гипотез, и многие из них сводятся к тому, что химические элементы последовательно образуются на разных стадиях развития звезд. Раньше можно было лишь строить теоретические догадки, а сейчас ученые практически исследуют различные ядерные реакции.

— Но ведь это крайне сложно. И очень интересно! — воскликнула Майка.

— Разумеется. Что следует выяснить? Какие ядерные реакции с наибольшей вероятностью приводят к образованию того или иного изотопа. Известно, что химические элементы содержатся во вселенной в различных количествах. Более того, изотопы одного и того же элемента имеют различную распространенность. Можно построить кривую распространенности всех изотопов. Пока существующие теории происхождения элементов объясняют лишь отдельные участки кривой. А надо объяснить весь ее ход! Вот, друзья филологи, где чудесная тема для научной фантастики. Да что фантастики! Возьмите, например, тот же уран и как следует напишите его биографию. Целая поэма получится… Ей-богу, хорошая мысль! Мечта о превращении элементов! Она владела человеком с глубокой древности. В средние века алхимики пытались превратить в золото неблагородные металлы. А теперь получить один элемент из другого не составляет труда… Напишите об этом. Честное слово, если у вас когда-нибудь возникнет такое желание, я поверю, что наши беседы в этой заброшенной избушке не пропали даром.

— А сейчас не веришь? — укоризненно спросила Наташа.

Но монолог Ильи не так-то просто было прервать.

— Посудите сами, человек искусственно получил десять элементов тяжелее урана, трансурановых элементов, которых фактически нет в земной коре. Более того, многие из них играют роль отнюдь не меньшую, чем большинство обычных, классических элементов. Ладно уж! Чай готов. Считайте, что я справился с двойной нагрузкой: обеспечил пищу духовную и телесную…

Темнело рано. К половине четвертого вечные сумерки в нашей избушке незаметно сменялись темнотой, и лишь чуть светлым пятном выделялось маленькое оконце, от которого то и дело приходилось отгребать снег.

Правда, на какое-то время стихла пурга, и мы все выскочили из помещения, пристально вглядываясь, искали просвета в облаках, но тщетно. Густой серой пеленой были окутаны горы. Эта пелена, казалось, ползла вниз. Снова завыл ветер, и рассудительный Сергей сказал, что, по его мнению, завтра придется позаботиться о дровах, так как их осталось совсем мало.

— В атомный век зависеть от самой обычной печки! — возмутился Алеша. — Строить кибернетические машины и думать о каких-то поленьях!

Он был явно не в духе. Наши рассказы на время увлекли его, но потом он заскучал:

— Удивительно вы черствый народ, химики-физики! Всё атомы да изотопы. Хоть бы кто из вас о стихах заговорил. Ваши споры, может, и интересно слушать, только романтика где? Трогают ум, но не волнуют сердца.

Чувствуя, что Илья готовит нелицеприятный ответ, я вмешался:

— По-моему, в науке не меньше поэзии, чем где-либо! Я не буду с тобой спорить, что важней: физика или лирика. Плох физик, которого не трогает поэзия, но, прости меня, Алексей, тебе следовало хотя бы немного заинтересоваться естественными науками. Так, для общего образования.

— А то уж ты слишком однобок! — взорвался Илья. — Витаешь в эмпиреях…

Майка прекратила спор. Она сказала, обратившись к Алеше:

— Если тебе не интересно, не слушай!

В таком положении Алексей всегда пасовал. И на сей раз он махнул рукой и обиженно уселся на нары.

— Свечку будем зажигать? — спросил Сергей.

— Будем, будем! — ответил Илья. — Кое-что придется изображать… Доска есть! — он подтянул кусок фанеры. — Грифель тоже есть! — отгреб горсть угольков. — Итак, если мне не изменяет память, мы остановились на искусственном получении элементов…

— Да! — подтвердила Наташа. — На трансурановых элементах…

— Нет, погоди! О них позже. Есть четыре очень своеобразных элемента в середине периодической системы. Прошу внимания!

К 1869 году, году открытия периодического закона, наука знала 63 химических элемента.

За пятьдесят с небольшим лет после этой даты было открыто еще двадцать пять. К концу 1925 года «здание» таблицы элементов почти заполнилось; в нем осталось лишь четыре незанятых «квартиры», жильцы которых никак не хотели получить ордер на въезд.

Это были элементы с порядковыми номерами 43, 61, 85 и 87.

Ученые разных стран предпринимали множество попыток обнаружить неизвестные элементы в природе. Но шли годы, объявленные открытия не подтверждались, и четыре клетки периодической таблицы продолжали пустовать.

Куда же делись неуловимые элементы? Цифры 43, 61, 85, 87 приобретали ореол таинственности.

Хорошо, рассуждали ученые, элементы № 85 и № 87 находятся в конце периодической системы. Самые тяжелые элементы неустойчивы. Примером тому сильная радиоактивность урана, протактиния, тория, радия, радона. Логично допустить, что № 85 и № 87 имели малые периоды полураспада и за время существования Земли успели нацело распасться, превратиться в соседние элементы периодической таблицы. С такими доводами легко можно было согласиться.

Ну, а как быть с № 43 и № 61? Они расположены в середине системы, весьма далеко от ее неустойчивого конца. Почему же их до сих пор не удалось обнаружить в природе? Теоретические объяснения здесь заходили в тупик.

— Позвольте, — говорили одни исследователи, — ведь нельзя забывать, что среди элементов середины периодической системы встречаются и радиоактивные. К ним относятся калий, рубидий, индий, лантан, самарий, лютеций, рений. Нельзя ли считать, что сорок третий и шестьдесят первый элементы когда-то существовали в природе, но, будучи сильно радиоактивными, давно исчезли с Земли?

— Ваши предположения несостоятельны! — возражали им другие. — У перечисленных элементов неустойчивыми являются лишь отдельные изотопы. Наряду с ними существует много стабильных изотопов. Обратите также внимание на их периоды полураспада: они настолько велики, что зачастую бывает трудно обнаружить сам факт естественной радиоактивности. В самом деле, у индия 115 он равен 6·1014 лет, а у калия 40 — 1,32·109 лет.

Рассудить этот спор удалось физикам-теоретикам, когда были открыты так называемые изобары.

Слово «изотопы» в переводе с греческого означает «одинаковоместные», «занимающие одно место». Слово же «изобары» переводится как «одинаковотяжелые».

Короче говоря, изобарами называют два изотопа, имеющие одинаковое массовое число, но разные заряды ядер. Так, калий 40 и аргон 40 представляют пару изобаров. Теперь известно, что в природе их насчитывается много.

Используя это явление, физики-теоретики установили очень важную закономерность. Оказалось, что если два изотопа соседних элементов являются изобарами, изотоп элемента с нечетным зарядом ядра оказывается неустойчивым. Исключения очень редки. Так, в паре аргон 40 — калий 40 обладающий нечетным зарядом ядра изотоп калия радиоактивен.

Применим эту закономерность к элементам № 43 и № 61.

Из периодической системы видно, что № 43 расположен между молибденом и рутением. Эти элементы имеют четный заряд ядра и образуют много устойчивых изотопов с массовыми числами 94–102. Ясно, что ни один из изотопов элемента № 43, возможные массовые числа которых должны находиться в указанном интервале, не будет устойчивым. Также объясняется и отсутствие стабильных изотопов у элемента № 61, расположенного между неодимом (№ 60) и самарием (№ 62).

Таким образом, картина прояснилась. Сорок третий и шестьдесят первый элементы, безусловно, многие миллионы лет назад существовали в природе, но, имея сравнительно короткие периоды полураспада, не сумели «дожить» до нашего времени. Они разделили судьбу неустойчивого восемьдесят пятого и восемьдесят седьмого элементов.

Только благодаря ядерным реакциям могут быть получены эти элементы.

В 1937 году ученые обнаружили, что при бомбардировке неодима дейтронами (ядрами тяжелого водорода) образуются различные изотопы элемента № 61.

А девять лет спустя он был выделен химическими методами из осколков деления урана в ядерном реакторе. Его изотоп с массовым числом 147 имел период полураспада около 3,7 года.

Американские ученые Маринский и Гленденин, авторы открытия, дали элементу название «прометий» (символ Pm) в честь героя древнегреческой мифологии Прометея. Прометей, рассказывает легенда, похитил с неба огонь и передал его людям. За это боги жестоко покарали смельчака: они приковали его к скале и каждый день посылали стервятника терзать прикованного.

Авторы открытия писали: «Это название не только символизирует драматический путь получения нового элемента в заметных количествах в результате овладения людьми энергией ядерного деления, но и предостерегает людей о грозящей опасности наказания стервятником войны».

Это высказывание в равной мере можно применить ко всем искусственно полученным новым элементам.

Элемент № 43 был синтезирован в 1937 году итальянскими физиками Сегре и Перье, которые мишень из молибдена бомбардировали дейтронами.

Известно много других путей синтеза изотопов элемента № 43: облучение ниобия альфа-частицами, рутения — нейтронами и так далее. Однако основным источником получения элемента № 43, так же как № 61, оказывается его образование в ядерных реакторах. Оба они выделяются из осколков деления урана.

В знак того, что № 43 был первым искусственно полученным новым элементом, он получил название «технеций» (Tc) — от греческого слова «техникос» — «искусственный».

Восемьдесят пятый и восемьдесят седьмой элементы также были получены с помощью ядерных реакций.

Восемьдесят пятый родился в 1940 году, когда Сегре с сотрудниками облучали висмут ускоренными альфа-частицами. Так как полученные изотопы нового элемента оказались весьма короткоживущими, он получил название «астатина» (At) — от греческого слова, обозначающего «неустойчивый».

Последний из «таинственной четверки», восемьдесят седьмой элемент, удалось-таки обнаружить в природе. Его назвали францием.

— Между прочим, — добавил я, — в очень малых концентрациях в природных материалах был обнаружен астатин. Как и франций, он продукт последовательного радиоактивного распада урана и тория. В ходе естественных превращений этих элементов образуется много радиоактивных изотопов, пока, наконец, не возникнут стабильные изотопы свинца. Стало быть, астатин и франций являются членами радиоактивных семейств. Таких семейств ранее было известно три: урана 235, урана 238 и тория 232. Теперь к ним прибавилось еще одно: нептуния 237 — первого трансуранового элемента.

— А есть ли надежда, что прометий и технеций также будут найдены в земной коре? — спросила Наташа.

— Что касается прометия, то безусловно, — ответил Илья. — Доказано, что в ничтожных количествах он должен присутствовать в минералах. Теперь дело за химиками, надо суметь его выделить. С технецием дело сложнее. А знаете, что интересно? Технеций обнаружен в спектрах атмосферы Солнца и некоторых звезд.

— Я где-то читал, — прервал его Олег, — что гелий тоже сперва нашли на Солнце, а потом уже на Земле…

— Аналогия не совсем удачна, — сказал я. — Ведь гелий непрерывно образуется на Земле при альфа-распаде урана, тория и других радиоактивных элементов. Земной же технеций давно распался. Однако то, что он обнаружен на некоторых звездах, интересно с другой стороны. Видимо, в них все время протекает процесс образования химических элементов… Собственно, об этом уже говорил Илья.

Вдруг издалека донесся глухой шум. Он нарастал, и уже не слышно было воя пурги. Мы замолчали, прислушиваясь к непонятному грохоту. Стало тревожно на душе, как перед неясной опасностью.

— Лавина! — закричал Сергей и рывком распахнул дверь.

Снежная крупа посыпалась на пол. Лавина в горах!

Мы выскочили из избушки. Эта лавина была не страшна нам. Видимо, она сошла с крутого склона пика справа от перевала. А наше «зимовье» находилось на левой стороне.

— До нас не дойдет, — успокоил всех Олег, но все-таки мы стояли на ветру, вглядываясь в ночную мглу. Те, кому довелось не раз побывать в горах, знают, что такое снежная лавина.

Шум вскоре затих, растворившись в завывании ветра.

— Не приведи бог оказаться под таким склоном! — в сердцах сказал Алеша. — Вот вам пример одной из стихий, которую еще не укротил человек.

— Укротит! — уверенно заявил Илья. — Укротить реакцию деления урана было труднее. Сделать управляемой цепную реакцию. Та же лавина, и куда страшнее. Вспомнить только Хиросиму и Нагасаки!

— Наверное, — размечталась вдруг Наташа, — человек с помощью атомной энергии когда-нибудь в корне изменит климат Земли.

— Безусловно! Но, пока он еще не изменил, айда в избу! Опасность миновала, нечего попусту мерзнуть!

Уютно потрескивала печка. Обжитой казалась маленькая избушка, словно поселились мы в ней давно-давно, а не каких-то три дня назад.

— Послушай, Анатолий! — обратилась ко мне Майка. — Как по-твоему, кого из ученых нужно считать главным… то есть, представь себе, что когда-нибудь поставят памятник тем людям, кто сумел овладеть атомной энергией. Чье имя первым будет высечено на нем?

Я пожал плечами. Их было много — преданных и беззаветных тружеников, следопытов атомных дорог.

— Я бы поставил на первое место Ферми, великого итальянского физика Энрико Ферми! — не вытерпел Илья.

— Это его книжка «Атомы у нас дома»? — спросил Алеша.

Мы с Ильей посмотрели друг на друга и дружно расхохотались.

— Ты, как всегда, — пальцем в небо! — давился от смеха Илья. — Это книга вдовы ученого, Лауры Ферми. Почитай, между прочим, интересно…

На сей раз Алеша действительно чувствовал себя смущенно. Но Илья уже говорил серьезно:

— Ферми первым облучал уран нейтронами. Впоследствии он доказал, что при делении урана всегда образуется два-три свободных нейтрона. Следовательно, наметился путь к осуществлению цепной реакции. Наконец, он принимал основное участие в создании первого ядерного реактора. Его биография — это биография ученого и борца. Не желая работать на итальянских фашистов, он в 1938 году эмигрировал из Италии в США. Ему нужно было бы поставить отдельный памятник.

Илья замолчал. Свечка уже сгорела до половины.


Трансурановые элементы

— Ну что? — поинтересовался я. — Будем продолжать? Я расскажу, ребята, о трансурановых элементах. В конце тридцатых годов таблица Менделеева заканчивалась на уране. Почему так? И вообще могут ли быть элементы тяжелее урана?

Вопрос имеет долгую историю.

Уран, девяносто второй элемент, был рожден трижды.

Еще в 1789 году немецкий химик Мартин Клапрот провозгласил открытие нового элемента и дал ему название «уран» в честь одноименной планеты солнечной системы. Спустя 52 года француз Пелиго доказал, что за уран ошибочно приняли его окисел, и выделил элемент в металлическом состоянии. Третьим «крестным отцом» урана стал Д. И. Менделеев, который изменил неправильный атомный вес элемента и поместил его в VI группу периодической системы, а не в III, куда уран должен был бы попасть соответственно прежнему атомному весу.

Так уран оказался последним (и самым тяжелым) элементом периодической таблицы. Тогда и возник вопрос: есть ли элементы тяжелее урана?

Многие ученые пытались на него ответить. Периодическая система подсказывала путь к поискам в природе заурановых элементов. Первый из них должен располагаться в VII группе, и его, видимо, следовало искать в марганцевых рудах. Второй мог быть обнаружен среди благородных металлов VIII группы. Сам Менделеев писал о возможности существования по крайней мере пяти заурановых элементов.

Открытие радиоактивных превращений элементов конца периодической системы, казалось, дало ответ на вопрос о существовании элементов с бóльшим атомным весом, чем у урана. Безусловно, рассуждали ученые, когда-то в земле существовали элементы тяжелее урана. Однако, будучи радиоактивными, они практически нацело распались на протяжении предшествующих геологических эпох. А если и сохранились в земной коре, то в столь ничтожных концентрациях, что никакие современные химические и физические методы не могут выделить их и отличить от других элементов. Тем не менее поиски следов трансурановых элементов в природе, хотя и безуспешно, продолжались.

Окончательно решила проблему трансурановых элементов ядерная физика. Большую роль сыграло открытие английским ученым Чедвиком нейтрона. Это случилось в 1932 году — дата, которая навсегда будет запечатлена в истории радиоактивных изотопов.

Располагая нейтроном, ученые повели яростный штурм атомного ядра. Среди всех химических элементов не оказалось, пожалуй, ни одного, который не подвергся бы нейтронной бомбардировке. Не избежал этой участи и уран.

И вот в 1934 году Энрико Ферми сообщил о поразительных результатах. Он бомбардировал уран медленными нейтронами. Продукты, полученные в результате этого эксперимента, были изучены химическими методами. Выяснилось, что среди них нет ни одного, похожего по своим химическим свойствам на элементы между свинцом (порядковый номер 82) и ураном. Вывод напрашивался сам собой: продукты бомбардировки суть трансурановые элементы.

Но первые обнадеживающие результаты нуждались еще в проверке и новых доказательствах. Десятки ученых разных стран включились в эту работу. Среди них были француз Жолио-Кюри и серб Савич, немцы Хан, Мейтнер, Штрассманн и другие — словом, все звезды ядерной физики занялись проверкой результатов Ферми.

Новые открытия не заставили себя ждать. Изучая продукты бомбардировки урана, ученые обнаружили интересный факт. Некоторые радиоактивные изотопы возникали не в момент нейтронной бомбардировки, а позднее. Следовательно, здесь происходил радиоактивный распад, в результате которого образуется новое вещество. Предположим, что ядро изотопа урана U238 присоединило к себе нейтрон, то есть произошла ядерная реакция:

92U238 + 0n192U239.

Получился изотоп урана U239. Этот изотоп также радиоактивен и, выбрасывая бета-частицу, превращается в изотоп элемента 93, поскольку при бета-распаде заряд ядра увеличивается на единицу.

Такое объяснение казалось весьма логичным. Ученые составили даже последовательную цепь образования трансурановых элементов вплоть до элемента № 97.

На основании периодической системы можно было предположить, что трансурановые элементы являются химическими аналогами соответствующих элементов шестого периода менделеевской таблицы: 93 — аналогом рения, 94 — аналогом осмия и так далее.

Оставалось химически выделить и изучить эти элементы, и периодическая система расширила бы свои рамки. Однако выделение оказалось отнюдь не простой задачей и привело к таким неожиданностям, которые как будто перечеркивали результаты предыдущих опытов.

В 1938 году Фредерик Жолио-Кюри и Савич пытались извлечь из продуктов бомбардировки урана трансурановые элементы, но… (известное скептическое «но», которое столько раз ставило под сомнение даже самые выдающиеся открытия человечества и так часто знаменовало начало нового, высшего этапа исследований!), но они обнаружили элемент, который по свойствам очень напомнил редкоземельные. А годом позже Хан и Штрассманн определили в облученном уране барий и лантан — элементы середины периодической системы.

Это казалось бессмыслицей: искали элементы тяжелее урана, а нашли куда более легкие, отстоящие от урана очень далеко. Как объяснить подобное явление? Неужели нужно признать выводы Ферми и других целиком и полностью ошибочными?

Откуда взяться в облученном уране лантану и барию? Ведь для опытов брался чистейший уран. Значит, они образовались в процессе бомбардировки. Вероятнее всего, нейтрон, попадая в ядро урана, как бы раскалывает его на две приблизительно равные части, на два «осколка», каковыми и являются лантан и барий.

Так рассуждали Мейтнер и Фриш, впервые предположившие возможность деления урана. Это явление легло в основу последующих блестящих открытий, приведших к овладению энергией атома.

Как настоящий докладчик, я попросил воды. Наташа, тихо ступая по расшатанным половицам, зачерпнула из ведра кружку мутной жижи. Я сделал глоток и поморщился. Илья последовал моему примеру.

— Упрек вчерашним дежурным — плохо ведро вымыли. Не разберешь, вода или нет… Идея! — хохотнул он. — Вот, Толя, чудесный прием популяризации! Ты можешь сравнить положение в ядерной физике после первых работ по получению трансуранов с подобной мутной водицей, где что-то непонятное плавает.

— Ты вульгаризатор! — рассердилась Майка. — Очень уж ты непоэтичный человек, Илья.

— Ну, будет, — махнул я рукой. — Пошли дальше.

Итак, при бомбардировке урана медленными нейтронами никакие трансурановые элементы не образуются, а все «загадочные» продукты — осколки деления, элементы середины периодической системы.

Но можно ли считать окончательным этот вывод.

Первое веское «нет» сказали советские ученые. Академик В. Г. Хлопин и его сотрудники привели несколько весьма убедительных доказательств в пользу того, что наряду с осколками деления должны получаться (правда, в весьма небольших количествах) трансурановые элементы.

Значит, все заключается в совершенствовании методов выделения продуктов бомбардировки. Химия ядерная ставила перед химией классической, химией электронных оболочек, интересную и трудную задачу: выделить следы новых элементов и изучить их химические и физические свойства.

И вот, наконец, наступил момент, когда можно было с уверенностью заявить об открытии первого трансуранового элемента. Эта честь принадлежит американским ученым Макмиллану и Эйбельсону.

Ход их рассуждений таков: когда нейтроны попадают в ядра урана, образуются осколки, которые благодаря значительной кинетической энергии разлетаются из исходных ядер на относительно большие расстояния. Но часть ядер урана, поглотивших нейтроны, не делится и в отличие от осколков как бы остается на месте. Если отделить осколочные ядра от неразделившихся, среди последних можно с большой вероятностью обнаружить изотопы трансурановых элементов.

Действительно, в 1940 году Макмиллану и Эйбельсону удалось подтвердить образование изотопа элемента 93 среди неразделившихся ядер урана.

Вот она, эта ядерная реакция. Она послужила началом блестящих исследований, приведших в итоге к получению десятков радиоактивных изотопов трансурановых элементов:

92U238 + 0n192U239.

Получается радиоизотоп урана с периодом полураспада 23 минуты. Он и превращается в ядро элемента с зарядом 93: 92U239 – β→93U239.

Элемент 93 получил название «нептуний» (символ Np) в честь планеты Нептун, расположенной в солнечной системе за Ураном. В том же году был синтезирован следующий трансурановый элемент, плутоний (Pu).

Роль бомбардирующих частиц в данном случае играли дейтроны, мишенью служил уран 238. Авторами открытия явилась группа американских ученых, возглавляемая будущим нобелевским лауреатом Гленном Сиборгом.

Год спустя был получен другой изотоп плутония — Pu239, который вскоре приковал к себе внимание не одних только физиков-теоретиков. Оказалось, что плутоний 239 способен делиться, подобно урану, под действием медленных нейтронов, с выделением огромного количества энергии. В руках человечества оказалась перспектива использования нового ядерного горючего наряду с ураном. Так как в те суровые военные годы в США интенсивно разрабатывалась проблема атомной бомбы, то на решение задачи получения плутония в значительных количествах были брошены большие силы и средства. В Чикаго уже в 1942 году вступил в действие ядерный реактор. В нем уран 238 облучали нейтронами. В результате последующей цепочки радиоактивных превращений образовался Pu239.

К этому времени свойства плутония и нептуния были изучены уже очень хорошо. Эта задача была бы непосильной для старой химии, привыкшей оперировать с относительно большими количествами вещества.

Но нужно пояснить, что следует понимать под «большими количествами».

Перенесемся к началу XX века, ко времени открытия первых радиоактивных элементов. Как много сил и труда вложили супруги Кюри, чтобы из тонн руды получить препарат радия весом в 0,1 грамма и, работая с этим мизерным количеством, изучить его свойства! Для тех времен это было действительно случаем беспрецедентным, настоящим подвигом ума, таланта и воли. Но дайте такое количество какого-нибудь трансуранового элемента современному химику и попросите его изучить свойства элемента. Не сомневайтесь, химик придет в восторг. Еще бы! Держать в руках целую десятую часть грамма вещества, да ведь это же громадное количество! С ним можно быстро и просто определить любые свойства. Видите, как меняются времена! Пионерам изучения нептуния и плутония пришлось работать с такими количествами препаратов, перед которыми оказались бы бессильными фантастическое трудолюбие и неистощимая энергия супругов Кюри!

Знаете ли вы, что такое микрограмм? Это одна миллионная часть грамма, или 10–6 грамма, — величина, в сто тысяч раз меньшая, чем одна десятая грамма.

Вот краткая справка: первое чистое соединение плутония весило 2,77 микрограмма, а нептуния — чуть больше, 10 микрограммов.

Изволь с таким количеством изучать свойства первых трансурановых элементов!

Но химики решили и эту задачу. Была разработана и сконструирована специальная ультрамикрохимическая аппаратура.

Вместо обычных пробирок применили так называемые микроконусы — буквально микроскопические пробирки, по форме напоминавшие конус. Были сконструированы весы, на которых оказалось возможным взвешивать почти невесомые количества — до 10–9 грамма.

Так были исследованы свойства нептуния и плутония, причем плутоний получил настолько детальную характеристику, что на основании этих данных удалось спроектировать большой завод для получения элемента.

В наши дни свойства первых трансурановых элементов изучены так хорошо, как свойства немногих из встречающихся в природе элементов.

К 1957 году было получено 15 радиоизотопов плутония и 11 нептуния. Эти успехи возродили прежние попытки обнаружить трансурановые элементы в природе. Различные урановые руды исследовались на содержание в них нептуния и плутония.

Ученым удалось показать, что первые трансурановые элементы действительно встречаются в природе в исключительно малых концентрациях. Так, отношение плутония к урану составляет 1:1014, а нептуния к урану 1:1012. Интересно, что периоды полураспада природных изотопов нептуния и плутония невелики по сравнению со временем существования Земли. Вероятно, эти изотопы постоянно образуются из урана путем захвата последним нейтронов.

В конце 1944 года группа Сиборга заявила об открытии очередных трансурановых элементов — № 95 и № 96. Первый получил имя «америций» (Am) в честь Америки. Кюрием (Cm), в честь Пьера и Марии Кюри, был назван девяносто шестой элемент.

Спустя несколько лет список трансурановых элементов пополнился двумя новыми членами. На сей раз в качестве бомбардирующих частиц выступали не нейтроны, а ядра атомов гелия — альфа-частицы. Эти «снаряды» ускорялись до высоких скоростей в мощном циклотроне. «Мишенями» служили два изотопа трансурановых элементов америция и кюрия — Am241 и Cm242. Вновь полученные элементы № 97 и № 98 были названы «берклием» (Bk) и «калифорнием» (Cf) в честь их «места рождения» — города Беркли и штата Калифорния.

Таким образом, к началу второй половины XX столетия периодическая система Д. И. Менделеева расширила свои рамки на целых шесть новых элементов тяжелее урана.

Очередные трансурановые элементы № 99 и № 100 имели несколько своеобразную историю получения.

В ноябре 1952 года США проводили испытания водородной бомбы на одном из атоллов Тихого океана. Исследовали продукты распада вследствие термоядерного взрыва. Отбирали пробы атмосферных осадков на соседних атоллах. На бумажных фильтрах были собраны частицы, содержащиеся в облаке взрыва.

Первые анализы показали, что в исследуемых материалах содержатся тяжелые изотопы плутония и других трансурановых элементов, вплоть до калифорния.

Ученые насторожились: быть может, в продуктах взрыва есть и следующие трансурановые элементы?

На атоллах вблизи места взрыва отобрали несколько десятков килограммов коралловых отложений. В секретных информациях этот материал носил условное название «Paydrit», что означает «дорогостоящая грязь».

И материал оправдал свое название. В нем действительно обнаружили новые трансурановые элементы с порядковыми номерами 99 и 100.

Несколько позже эти элементы были получены в лаборатории. Процесс их синтеза тоже несколько необычен. «Мишенью» служил уран. Бомбардирующими «снарядами» — ионы азота и кислорода, которые разгонялись до больших энергий на ускорителях. Столь тяжелые «снаряды» также могут применяться в синтезе новых элементов.

Элементы были названы соответственно «эйнштейнием» и «фермием».

В результате тщательных и тончайших экспериментов был синтезирован элемент № 101. Ученые дали ему имя «менделеевий» (Md) в честь великого русского химика Дмитрия Ивановича Менделеева, создателя периодической системы.

Только семнадцать атомов менделеевия удалось получить в результате этих опытов!

Недавно появились сообщения о синтезе сто второго элемента. Окончательно он получил название «нобелий».

— Есть ли предел синтеза новых элементов? — спросил Олег.

— И не так уж он далек! — ответил Илья. — Существует процесс, который называется спонтанным, или самопроизвольным делением ядра. Этот процесс впервые обнаружили в 1940 году советские ученые Флеров и Петржак у ядер урана. При спонтанном делении ядро самопроизвольно раскалывается на две части. Когда были получены трансурановые элементы, выяснилось, что для многих их изотопов характерно спонтанное деление. И чем выше заряд ядра, тем больше вероятность процесса, тем короче период его полураспада: ведь самопроизвольное деление в конечном итоге — один из видов радиоактивного распада. Ученые подсчитали, что для элементов с зарядом ядра 108–110 эта величина составит миллионную долю секунды. Они будут гибнуть, едва лишь появившись на свет.

…Кончался очередной день нашего «зимовья». Клонило ко сну. Я закрывал глаза, и тотчас приглушенней становились голоса ребят.

Обрывки мыслей проносились в голове. И мне становилось радостно за друзей, за тех, с кем пришлось отшагать по свету многие сотни верст, за тех, кто не терялся перед трудностями, а побеждал их. Разве наши необычные в такой обстановке разговоры, в удаленной избушке, где-то за тридевять земель от залитой светом Москвы, не говорили о том, что у нас еще очень молодые души и больше всего на свете мы любим мечтать? И мне захотелось сочинить стихи, хотя ни разу в жизни ничего путного не вышло из-под моего пера. Наташа словно прочла мои мысли.

— Давайте споем что-нибудь тихо-тихо, — услышал я ее голос. Алеша кашлянул в углу.

— Подождите минутку. Вот мы говорили, что надо поставить памятник тем, кто победил атом. Какой памятник? Простой монумент, глыбу мрамора? Мне думается, надо что-нибудь величественное. Вот, например, памятник Ферми. Вы послушайте, я написал кое-что.

Оплывшая свечка еле светила дрожащим огоньком. Бегали по стенам серые тени, царапали стекло маленькие сухие снежинки. Алешка читал стихи:

Италия! Где небеса лазурные,

Воспетые десятками поэтов,

Где море, то спокойное, то бурное,

На горизонте дымкою одетое…

Италия! Где волны говорливые —

На гребнях пена — к серым скалам ластятся,

Где встали в ряд

Хребтов цепочки длинные,

Мне необычный памятник представился.

Над пропастью, над кручами бездонными,

Рывком могучим разогнув свой стан

И скинув прочь оковы многотонные,

В раздумье стал разбуженный Уран.

Молчание, раскаты грома дальнего,

Зарницами сверкающая даль…

Что людям даст он: счастье иль страдание?

Что принесет им: радость иль печаль?

…Ночью пурга кончилась.

С рассвета небо стало светлеть. Еще цеплялись за островерхие гребни хребтов тучи, но ветер упорно гнал их, и иногда в просвете белесой мглы отчетливо вырисовывался Аламинский перевал.

Если к завтрашнему дню выглянет солнце, мы сделаем попытку взять этот перевал. Путь будет очень нелегким: слишком глубок снег, и каждый шаг придется делать с величайшей осторожностью. Обильный снегопад в горах чреват лавинами. Одна из них уже сошла накануне.

Если солнца не будет, мы повернем назад. Сквозь тайгу, по прочному льду Аламы, через бурелом и овраги. Перевал останется в мечтах до будущего года. Мы вернемся сюда, и маленькая избушка напомнит о нескольких днях неожиданного «зимовья», и засверкает огонь в охотничьей печурке, разбрасывая звездочки угольков через неплотно закрытую дверку, и Илья скажет:

— Помните «Атомы у нас дома»? Алеша, я надеюсь, ты прочел эту книгу?

А Наташа споет простую песенку о том, как в затерянной среди тайги и гор старой охотничьей избушке поселились изотопы. Всеведущие невидимые помощники не давали скучать людям, обреченным на вынужденную бездеятельность. На фоне яркого синего неба будет блестеть под солнцем снег на Аламинском перевале. Снова разгорится очередной спор — и так до полуночи, пока я своей «начальнической» волей не прикажу прекратить разговоры.

Загрузка...