Глава 9 Окружающая среда говорит с нашими генами, и иногда они прислушиваются

Считается, что человек не остров, и это правда — ну, как минимум в случае эпигенетики, потому что живые существа — это мы и наше окружение. Все, что вокруг нас, постоянно «говорит» с нами по разным причинам, но на единственном доступном языке — химических (и физических) модификаций.

Эпигенетика снова и снова оказывается в зоне взаимодействия между нашими генами и окружающей средой, превратившись в переводчика, который делает коммуникацию между этими двумя мирами возможной. Рассмотрим примеры.

Питание

Один из внешних факторов, который оказывает наибольшее влияние на нашу деятельность, — это питание. Риск развития многочисленных заболеваний, например рака или диабета, связан с нашими пищевыми привычками, так же как и различные отклонения в умственном и физическом развитии связаны с дефицитом питания.

Среди компонентов диеты, которые могут оказать наибольшее влияние на нашу эпигенетику, особое место занимают определенные питательные вещества, такие как витамин В12 и фолиевая кислота, содержащиеся во многих овощах и орехах. Они играют важную роль в эпигенетике, потому что являются «донорами» метильных групп, которые контролируют нашу ДНК. Организм людей, страдающих циррозом или имеющих проблемы с печенью, не может правильно усваивать эти питательные вещества, их геном подвержен тотальному гипометилированию, которое присоединяется к их основному заболеванию.

Но осторожно, опасен как недостаток, так и избыток. В США, например, можно купить фолаты без рецепта, их используют для лечения депрессии, что выливается в чрезмерное употребление, которое с довольно высокой вероятностью может вызвать другой тип отклонения — гиперметилирование ДНК.


Гипометилирование — это когда на участке ДНК происходит утрата метилирования.


Так что нужно принимать эти добавки с фолатами с осторожностью, исключительно по необходимости, в определенный период и при определенных обстоятельствах, например в течение беременности, и только по предписанию врача. Важно помнить, что у всех и каждого из нас геном различный, он усваивает фолаты и сопутствующие факторы по-разному ввиду генетических переменных (технически они называются полиморфизмы). Эти переменные позволяют некоторым геномам быстро прикреплять метильные группы к ДНК и белкам, в то время как в других геномах этот процесс займет больше времени, а отделение, наоборот, пройдет гораздо быстрее.

Алкоголь

Потребление алкоголя в чем-то схоже с полиморфизмами. Существуют люди с медленным метаболизмом, из-за которого эффект от алкоголя наступает быстро и длится долго, в то время как другие люди слишком быстро его усваивают, поэтому более устойчивы к его коварному воздействию. По аналогии существуют быстрые и медленные «метилировщики», что также определяет соотношение между эпигенетикой и питанием.

С другой стороны, внимание многих привлекает тот факт, что пока большинство ученых безапелляционно утверждает, что алкоголь вреден как для нашего здоровья, так и для эпигенома, другие восхваляют достоинства полифенолов вина. Что же это все означает? Что алкоголь эпигенетически вреден всем? Что он вреден в разной степени, в зависимости от человека? Или что только некоторые его компоненты могут быть полезны?


Гиперметилирование (избыточное метилирование) — это когда один участок ДНК метилируется сверх нормы.


Чтобы ответить на этот тройной вопрос, нужно обратиться не к алкоголю или любому типу алкогольных напитков вообще, а к вину в частности, так как именно в его состав входят, кроме этилового спирта, или этанола, различные полифенолы.

Что касается полифенолов (и в особенности одного из них — ресвератрола), то различные эксперименты на лабораторных животных показали, что полифенолы играют значительную роль как антиоксиданты и полиоксиданты в предупреждении раковых заболеваний. Однако хотя умеренное регулярное употребление вина считается полезным для профилактики сердечно-сосудистых заболеваний, гипертонии, диабета и некоторых типов рака, например рака молочной железы, легких, толстой кишки или простаты, в действительности эти утверждения должны быть восприняты не иначе как с осторожностью, пока не будут проведены исследования и, что важно, исследования на людях.

Что касается чрезмерного потребления алкогольных напитков: наблюдается корреляция между степенью злоупотребления и развитием различных типов рака, например рака печени, гортани или пищевода. Кроме того, алкоголь влияет на метилирование ДНК у людей, которые им злоупотребляют.

По поводу различных индивидуальных последствий злоупотребления алкоголем известно, что отвечающий за его удаление из организма фермент называется алкогольдегидрогеназа и представлен он в каждом организме в разном количестве. Поэтому удаление поступившего в организм алкоголя происходит по-разному, в зависимости от особенностей человека, что отражается на времени воздействия и, наконец, на потенциальном эпигенетическом вреде, который может быть нанесен.

Табак

Еще один фактор, который, без сомнения, может изменить наш геном, — это табак. Привычка курить, как мы все знаем, крайне вредна для здоровья во многих аспектах, и эпигенетические повреждения — один из них. Действительно, в первой главе мы рассматривали случай с однояйцевыми близнецами и влияние того, что один из них стал курильщиком, на очевидную эпигенетическую разницу.

Это происходит по той причине, что в табаке содержатся определенные компоненты, способные воздействовать на профиль метилирования наших клеток, что связано с большим риском развития многочисленных опухолей, в том числе рака легких и опухолей, локализованных в голове и шее. К ним обычно добавляют рак желчного пузыря, так как через него удаляются из организма метаболиты табака. Также нельзя забывать, что анализ клеток полости рта и дыхательных путей курильщиков, рак у которых был еще не диагностирован, показал существование эпигенетических отклонений, которые предшествуют появлению опухоли.

Однако, как бы это странно ни звучало, это хорошая новость. Как мы уже говорили, эпигеном подвижен и изменчив, так что если курильщик решит бросить, но эпигенетические изменения уже вступили в силу, есть шанс, что клетки «вспомнят» свой нормальный состав и частично вернутся к прежнему состоянию. Хотя, возможно, полностью восстановиться не получится (так как могли уже появиться более стабильные генетические повреждения), все же если мы бросаем курить, то сокращаем риск развития рака и увеличения наших эпигенетических повреждений. Это может быть применимо к другим респираторным заболеваниям, таким как хроническая обструктивная болезнь легких (ХОБЛ) или эмфизема легких. Все это доказывает, что неважно, сколько сигарет вы успели выкурить за все эти годы, в любом случае идея бросить курить просто замечательная как для вашего здоровья, так, конечно, и для тех, кто вас окружает.

Как мы уже говорили, табак воздействует на профиль метилирования и приводит к изменениям определенных аспектов нашей эпигенетики не только в метилировании ДНК, но и в модификациях гистонов и в микроРНК.

Самое интересное во всем этом то, что эпигенетика подвергается негативному влиянию не только у курильщиков, но и у их потомства: одно исследование доказало, что употребление никотина во время беременности и лактации приводило к нарушению уровня триглицеридов в крови и печени новорожденного из-за эпигенетических изменений в гистонах.

Еще одно исследование на мышах доказало, что токсичное влияние табака может эпигенетически передаваться из поколения в поколение, так что курение не только матери, но и бабушки увеличивает риск развития астмы у новорожденных.

Солнечное излучение

После того как мы поговорили об алкоголе и табаке, которые наносят очевидный вред, чему немало примеров, заметных невооруженным глазом, нужно сказать пару слов о других факторах, которые кажутся нам почти незаметными, но тоже воздействуют на наш эпигеном. Один из них — излучение, и хотя существует множество его типов (которые мы не будем описывать, чтобы не беспокоить наших коллег-физиков), нет сомнений в том, что солнечное излучение влияет на нас больше всего.

Нам всем уже надоело слышать предупреждения о вреде солнца, несущиеся из каждого приемника, даже во время рекламы. Но правда в том, что это отчасти правильно: длительное воздействие солнечных лучей может иметь множество не самых приятных последствий для нашего организма, самое очевидное из которых — ожог кожи.

Естественно, обладатели более светлой кожи подвержены большему влиянию, но в целом все мы должны избегать солнца в полуденные часы, стараться сократить время пребывания на солнце, а также помнить о необходимости использовать защитные кремы, чтобы с нами не происходило того, что происходит с бледными англосаксами, которые по возвращении с побережья Коста-Брава в Манчестер привозят с собой не только сувениры с Рамблас, но и несметное количество предраковых клеток, появление которых вызвано солнечными ожогами.

С солнечными, а точнее, ультрафиолетовыми лучами происходит то же самое, что и с табаком и алкоголем: они могут стать причиной генетических мутаций, а также воздействовать на эпигенетические структуры. Действительно, были описаны случаи отклонений в профиле метилирования ДНК, метках гистонов и микроРНК. В конечном счете эти изменения могут быть связаны с большей предрасположенностью к заболеваниям, подобным раку кожи, во главе с меланомой.

Несмотря на все это, мы не можем забывать, что находиться на солнце необходимо, чтобы наш организм производил достаточно витамина D, который так важен для наших костей. Так что рекомендуется принимать солнечные ванны, но осторожно, чтобы избежать вреда для наших геномов и нашей эпигенетики.

Рентген и радиоактивность

Хотя мы собирались особо не вдаваться в подробности, говоря об излучении, нам все-таки кажется уместным напомнить, что существует ионизирующее излучение, используемое в медицине, например в рентгенографии, которая может навредить нашей ДНК на уровне генетики и эпигенетики, поэтому не будет лишним ограничить ее использование до необходимого минимума и избегать ее, в особенности в состоянии беременности.

И в завершение еще раз вернемся к ранее высказанной идее: иногда сама история ставит эпигенетические эксперименты, подобные ядерной катастрофе в Чернобыле, которая стала причиной анормального метилирования гена — супрессора опухолей (P16INK4A) и, как следствие, развития рака щитовидной железы. Что доказывает, не оставляя никаких сомнений, что любые излучения, и особенно радиация, оказываются вовсе не безвредны, какими бы невидимыми они ни были.

Другие факторы

Наконец, мы не должны забывать, что мы, люди, сожительствуем в одной экосистеме с другими многочисленными существами, которые тоже могут изменить наш эпигеном: вирусные инфекции, например вирус Эпштейна — Барр, папилломы, гепатиты А, В и С или ВИЧ (СПИД), способны изменить распределение метилирования ДНК нашего генома, так как вирусы обладают собственными белками, которые «похищают» для своей выгоды наши эпигенетические белки (например, упомянутые нами ДНК-метилтрансферазы (DNMT) или ферменты, модифицирующие гистоны) с целью размножиться и спрятаться от нашей иммунной системы.

Вполне возможно, что в скором времени благодаря ученым, которые работают в сфере взаимодействия между микроорганизмами и эпигенетикой, мы станем свидетелями великих достижений в этой области. И этим мы обязаны относительно недавнему открытию о великой важности микрофлоры кишечника в определении нашего здоровья, а также наших болезней.

Объясним подробнее. Хотя это и кажется нам невероятным, желудочно-кишечный тракт занимает самую обширную площадь в человеческом теле и густо населен (от пятисот до тысячи!) различными видами бактерий: каждый из нас обладает набором из сотен микроорганизмов, в основном бактерий, которые населяют наш пищеварительный канал. Эти микроорганизмы выполняют множество полезных функций: от переваривания некоторых веществ до регулирования иммунной системы и производства некоторых витаминов. То есть они имеют большое значение.

На данный момент известно почти наверняка, что изменения во флоре кишечника влекут за собой важные эпигенетические изменения. Например, доказано, что многие инфекции патогенных микроорганизмов, то есть тех, что являются причиной заболеваний (например, вирус Эпштейна — Барр или гепатита В), способны вызывать эпигенетические отклонения, поэтому многие научные группы посвятили себя исследованию этого явления с целью открыть происхождение многих заболеваний и способы их предотвращения.

Флора нашего кишечника отчасти защищает нас от инфекций, что способствует снижению риска возникновения расстройств, которые могут повлиять на нашу эпигенетику и в конце концов привести к какой-нибудь болезни, поэтому исследования в ближайшие годы будут двигаться в этом направлении и, вполне возможно, эпигенетика (почему бы и нет) будет тесно со всем этим связана.

А сейчас развеем некоторые сомнения

Важность витамина В12 и фолатов для метилирования ДНК и для нашего организма в целом

Как фолиевая кислота, так и витамин В12 (или кобаламин, названный так из-за содержания кобальта) являются сопутствующими факторами (необходимыми молекулами, чтобы фермент функционировал), которые участвуют в образовании S-аденозилметионина (SAM) — молекулы, ответственной за донорство метильных групп. Следовательно, в наших интересах поддерживать баланс этих витаминов для того, чтобы наша ДНК, а также другие молекулы, такие как гистоны, правильно метилировались.

С другой стороны, было проведено множество исследований, которые установили, что люди с нехваткой фолатов более предрасположены к развитию депрессии и хуже отвечают на лечение антидепрессантами. Эти же исследования позволили доказать, что лечение фолатами способно снизить симптомы депрессии.

Какие другие питательные вещества способны влиять на наш эпигеном?

Холин и бетаин, содержащиеся в таких продуктах, как брокколи, шпинат или цветная капуста, также участвуют в формировании S-аденозилметионина — донора метильных групп.

Кроме того, в последнее время в научной литературе появляются исследования, которые доказывают, что различные вещества, содержащиеся в разных продуктах, могут повлиять на нашу эпигенетику. Например, сульфорафан — молекула, содержащаяся в брокколи, — способна регулировать эпигенетические процессы в иммунной системе, а также ингибировать аномальный рост опухолевых клеток in vitro, регулируя метилирование гена циклина D2.

Однако нельзя терять из виду идею, высказанную в начале этой главы, что как недостаток, так и избыток может вызывать отклонения в нашем организме. В этом смысле нам вовсе не нужно, чтобы наша ДНК была «чрезмерно метилирована» или «недометилирована», она должна быть метилирована надлежащим образом, в соответствии с участком генома и временем.

Некоторые данные о том, как наше питание влияет на наш эпигеном

Стало ясно, до какой степени наше питание, как и другие внешние факторы, может воздействовать не только на наше здоровье, но и на наш эпигеном. Это заставило многих ученых задуматься о соотношении эпигенетики и питания и, забежим вперед, о значимости типа питания.

То есть выходит, что генетически модифицированная пища воздействует на наш эпигеном по-другому, не так, как традиционная пища?

Вопрос с подвохом (особенно для параноиков, но мы решили рискнуть): совершенно точно, что до настоящего времени ни одно исследование не смогло убедительно доказать существование негативного влияния генетически модифицированных продуктов ни на здоровье человека в целом, ни на эпигенетику в частности.

Хорошо, мы знаем, что генетически модифицированные продукты не вредят нашему эпигеному. А если наоборот: есть ли такие продукты, которые благодаря особенностям выращивания могут принести пользу? Переформулируем вопрос: существует ли доказательство того, что органическая пища более полезна для нашего эпигенетического здоровья?

К сожалению, не существует однозначного ответа на этот вопрос, так как в настоящее время в научной литературе нет согласия по поводу потенциальной пользы потребления органической пищи для здоровья человека. И даже по поводу возможности того, что некоторые продукты могут иметь более высокий уровень содержания антиоксидантов, чем традиционные продукты. Благотворное влияние на наше здоровье увеличения потребления этих антиоксидантов тоже пока остается противоречивой гипотезой.

Загрузка...