Глава 11 Эволюционная микровселенная рака

Если и существует связь между метилированием и человеческими недугами, которая заслуживает отдельной главы в истории медицины, то это однозначно про онкологию. Дело в том, что рак также может считаться эпигенетической болезнью.

Под этим общим названием — онкозаболевания (вторая по частоте причина смерти после сердечно-сосудистых заболеваний) — объединены разнородные группы болезней, которые представляют собой проявление генетических и эпигенетических изменений, накопленных в клетках организма. Эти отклонения влекут за собой потерю механизмов контроля клеточного роста, что способствует неуправляемой пролиферации раковых клеток, их распространению в организме и проникновению в ткани.

Чтобы осознать тот беспорядок, к которому приводит неконтролируемое метилирование при раке, на короткое время мы воспользуемся метафорой, представленной более детально в первом разделе «Базового пособия»[1] (куда вы можете заглянуть в любой момент, если захотите углубиться в какой-нибудь из научных аспектов). Эта метафора представляет собой доступный д ля понимания пример: если наша последовательность ДНК была бы написанным текстом, стихотворением, песней, статьей или романом, эпигенетические модификации были бы знаками препинания и оформлением текста, например, шрифтом, строчными или прописными буквами и т. д. (параметрами, содержащими текстовую информацию, которая не передается исключительно буквами), в то время как генетика была бы этим самым алфавитом, буквами которого «записана» наша ДНК.

Хотя вся эта эпигенетическая информация и не кажется такой важной, как генетическая, поскольку все убеждены, что в книге главное — буквы, на самом деле, чтобы полностью понять смысл, одних лишь букв недостаточно: нужны знаки препинания — чтобы отметить ритм стихотворения, полужирный шрифт — чтобы отметить важное содержание, прописные буквы и отступы — чтобы подчеркнуть, что перед нами название, и отделить его от остального текста.

Разворачивая метафору: если мы представим ДНК как текст или книгу с инструкциями, а эпигенетику как знаки препинания, оформление, рамки, большие буквы, разные цвета, то можем также представить, что два аппарата, которые напечатали эту книгу, — это две группы меток (текст и другие знаки) и что действуют они независимо друг от друга. Сейчас представим на секунду, что 1 См. раздел «Что такое эпигенетика» в «Базовом пособии». печатная машинка, набирающая текст (то есть генетика), работает хорошо, а печатная машинка, ответственная за цвета, точки, отступы и рамки, наоборот, сошла с ума. Тогда произойдет неминуемое: несмотря на то что текст остался нетронутым (то есть буквы, из которых формируются слова), читать книгу будет очень сложно; даже если мы вообще найдем кого-нибудь, кто захочет попытаться, ему будет практически ничего не понятно.

Надеемся, что после такого объяснения вам стала предельно ясна разница между ролями генетики и эпигенетики в человеческом организме, которые так схожи при раковых заболеваниях.

Сейчас будем разбираться.

Сумасшествие раковой клетки

Описанная выше ситуация похожа на то, что происходит с раковыми клетками по части важности эпигенетики. На данный момент мы все еще не знаем причин, по которым аппарат метилирования дает сбой у онкопациентов. В обычных ситуациях динуклеотиды CpG 1 метилированы по всей длине генома, кроме CpG-островков, где концентрируется большая часть этих последовательностей. В раковой клетке, наоборот, начинается процесс прогрессирующего деметилирования динуклеотидов CpG, которые располагаются в участках генов, соответствующих кодирующей части. С другой стороны — и это кажется нам гораздо более существенным, — CpG-островки становятся метилированными, и это гиперметилирование CpG-островков приводит к транскрипционному сайленсингу контролируемых ими генов.

В течение последних лет был выявлен механизм, с помощью которого происходит этот феномен, но причины развития аномального гиперметилирования CpG-островков неизвестны, и на данный момент разгадать мотивы или обнаружить триггеры этого развития — одна из первоочередных задач многих лабораторий, которые сосредоточили свое внимание на изучении эпигенетики рака. Зато абсолютно точно известно, что гиперметилированию подвержены гены, которые являются основополагающими для сдерживания неконтролируемой пролиферации в клетках. Это метилирование дает возможность некоторым белкам, например МеСР2 и другим членам его семейства, проявлять активность на этих метилированных островках и путем модификации хроматина подавлять экспрессию этих генов.

Эпигенетика при раке

Метилирование CpG-островка гена — супрессора опухолей было впервые описано в 1989 году, всего несколько лет спустя после открытия первой мутации онкогена. Однако если генетические повреждения стали центром научных изысканий на тему рака и монополизировали интерес онкологов, то эпигенетические повреждения начали изучаться всего несколько лет назад.


CpG, CpG-островки — участки ДНК, в которых находится большое количество динуклеотидов CpG, то есть высокий процент цитозина (С), за которым следует гуанин (G).


К идее о том, что гиперметилирование CpG-островков генов может иметь в качестве последствия их инактивацию, вернулись в 1994 году, когда было открыто, что ген Гиппеля — Линдау претерпевает инактивацию и зависит это от метилирования.

Хотя на самом деле настоящее начало научных исследований эпигенетической инактивации при раке было положено первопроходцами из лаборатории Стивена Б. Бейлина в Университете Джона Хопкинса (в американском городе Балтиморе) и Питера Джонса в Университете Южной Калифорнии (в Лос-Анджелесе). Ученые из обеих лабораторий открыли, что метилирование CpG-островка в гене pl6INK4a — общий механизм инактивации при раке. После этого открытия использование мощных и эффективных технологий дало этим научным работам новый импульс.

Вначале существовала гипотеза, что единственным отклонением в эпигенетическом профиле было тотальное гипометилирование, открытое Эндрю Фейнбергом, также работающим в Университете Джона Хопкинса. Он писал о тотальной потере метилирования генома, которое может повлечь за собой массивную экспрессию многочисленных онкогенов.


Механизмы модификации хроматина — группа белков, которые присоединяют химические группы к хроматину или удаляют их, влияя на его функционирование.


Идея о том, что геном раковой клетки утрачивает свое содержимое в метилцитозине, в основном верна, что было подтверждено на практике. А популярность концепции деметилирования онкогенов, ведущее к их активации, наоборот, сошла на нет. Это объясняется тем, что тотальное деметилирование, которое происходит при раке, воздействует на сами гены больше, чем на CpG-островки, большая часть которых остается деметилированной в обычной клетке. Фактически большинство CpG-островков деметилировано, за исключением импринтированных генов. Открытие гиперметилирования большей части генов — супрессоров опухолей открывает дверь в новую область эпигенетических исследований.

CpG-островки

Динуклеотиды CpG в человеческом геноме были сокращены до наименьшего возможного количества по статистической причине: считается, что в процессе эволюции зародышевой линии, которая превращает метилцитозин в тимин, приняло участие спонтанное дезаминирование — химическая модификация. Однако половина промоторных зон генов содержит участки, насыщенные CpG — уже так часто упоминавшимися CpG-островками. Хотя большинство островков связано с генами, которые экспрессируются повсеместно (гены «домашнего хозяйства»), какие-то из них находятся на генах с тканеспецифичной экспрессией. Вопрос о том, как и каким именно изменениям подвергается метилирование тканеспецифичных генов, до сих пор не решен.

Нормальные CpG-островки не метилированы ни на какой стадии развития, что способствует отдельной экспрессии генов, если соответствующие транскрипционные факторы на месте и структура хроматина не препятствует процессу. В трансформированной или злокачественной клетке некоторые CpG-островки генов-супрессоров опухолей становятся гиперметилированными, и говорим мы, возможно, о феномене, который прогрессирует, в отличие от мутации, которая появляется внезапно. Возможно, окончательному формированию гиперметилирования, необходимого для транскрипционного сайленсинга, предшествуют волны необратимого гиперметилирования.

Гиперметилирование

Две очевидные теории были выдвинуты для объяснения отклоняющегося от нормы метилирования de novo. Первая гипотеза утверждает, что нарушенное метилирование в качестве точки отсчета имеет нормальные центры метилирования, окружающие CpG-островок, который в обычной клетке, как правило, не метилирован. Вторая предполагает, что первый очаг нарушенного метилирования появляется и действует как центр, из которого происходит разрастание метилирования.

Другой интересный вопрос, который нас волнует: почему некоторые островки оказываются метилированными.

Одно из возможных объяснений кроется в том, что DNMT не могут распознать правильные последовательности и метилируют островки, которые обычно ими не воспринимаются. Эти спекуляции порождают важный вопрос: почему в раковых клетках некоторые CpG-островки оказываются гиперметилированными, в то время как другие не метилируются вообще?

Механизмы клеточной селекции, то есть эволюции клеток не на уровне организмов и не на уровне видов, а внутри наших тканей, приходят на помощь, чтобы объяснить этот момент.

Эволюция и естественный отбор в опухолях

Каждая раковая опухоль обладает собственной вселенной, со своими собственными законами внутри организма, в котором она растет. Опухоль — изменчивое создание и обладает куда большей способностью к пролиферации, чем организм, который она поражает, потому что клетки опухоли решили нарушить законы, которые регулируют рост и запрещают бесконтрольное деление, нормы, которым подчиняются клетки этого организма. Скорость событий, которые происходят в опухоли, дает возможность наблюдать феномен эволюции в небольшом масштабе и в реальном времени и способствует пониманию механизмов опухолевой эволюции, что в будущем поможет нам победить этот недуг.

Эволюция, как мы уже убедились, управляет судьбой всех живых существ в любых условиях. Поэтому естественный отбор действует даже в небольшом масштабе, внутри опухоли. Опухолевая клетка во многих случаях становится жертвой неконтролируемой деятельности DNMT, что приводит к гиперметилированию CpG-островков многих генов. Это гиперметилирование предполагает транскрипционный сайленсинг гиперметилированного гена или, другими словами, гиперметилированный ген перестает экспрессироваться. На данный момент причины, по которым DNMT начинают метилировать определенные CpG-островки, неизвестны.

Однако совершенно очевидным представляется то, что гиперметилирование одних генов имеет большее воздействие, чем гиперметилирование других: влияние нарушенного метилирования ДНК различно в зависимости от генов, которые ему подвержены, так как очевидно, что когда метилированы гены, не имеющие никакого отношения к пролиферации, влияние заметить невозможно.

В этих ситуациях ткань не обогащается клетками с нарушенным метилированием, потому что метилирование в этих генах не дает никакого преимущества, так как речь идет о генах, незначительных с точки зрения пролиферации. Но некоторые гены необходимы, чтобы обязать клетки уважать законы организма. Необходимы, например, гены, которые в условиях нормального функционирования не позволяют клеткам бесконтрольно делиться. Другие гены, также очень нужные организму, отвечают за сведение до минимума риска мутации, которая может угрожать функционированию системы. Гиперметилирование всех этих генов выключает их экспрессию, и, как следствие, клетка превращается в раковую.

Например, ген BRCA1 гиперметилирован в опухолях молочной железы и яичника исключительно потому, что в этих опухолях отсутствие РНК гена BRCA1 имеет важные последствия, которые не выявляются в других тканях.

Похожее объяснение можно найти в случае с геном MLH1: эпигенетический сайленсинг этого гена бывает исключительно в опухолях толстой кишки, желудка и эндометрия, но его инактивация дает преимущество в этих тканях, мы объясним это далее. Эту дарвиновскую концепцию подтверждают классические генетические исследования. Мутации гена BRCA1 преобладают в опухолях яичников и молочной железы. В свою очередь, мутации в MLH1 происходят при колоректальном раке, раке желудка и карциноме эндометрия: существует идеальное соотношение между миром генетики и эпигенетики.

При изучении профиля метилирования опухолевой ткани оказывается, что все эти гены, важные для поддержания клетки в строю, гиперметилированы. Метилирование дало опухолевым клеткам преимущество перед неметилированными. В данном случае метилирование можно сравнить с воздействием мутаций, потому что они передаются из поколения в поколение.

Наконец, стоит напомнить, что рак — такая же болезнь, как и другие, с множеством путей развития и генных повреждений, которые необходимы, чтобы управлять развитием опухоли. Так что фенотип одной раковой клетки является следствием как минимум двух типов обстоятельств: генетических изменений (выраженных мутациями, делециями, расширениями или перемещениями участков ДНК) и эпигенетических отклонений, которые изменяют наследование состояний генной экспрессии. Последние обусловлены в основном формированием хроматина вокруг начальных точек генной транскрипции, связанных с метилированием CpG-островков, что происходит и в случае эпигенетических повреждений.

Метилотипы рака

Наличие гиперметилирования CpG-островков влияет на гены, задействованные в клеточном цикле (pl6INK4a, pl5INK4b, Rb, pl4ARF), в репарации ДНК (BRCA1, hMLHl, MGMT), в канцерогенном метаболизме (GSTP1), в межклеточном соединении (CDH1, CDH13), в апоптозе (DAPK,TMS1) и т. д.


Делеция — особый тип структурной хромосомной аномалии, который заключается в удалении участка ДНК из хромосомы.


На протяжении последних трех лет количество идентифицированных генов, гиперметилированных при раке, значительно увеличилось. Действительно, изучение эпигенетически инактивированных генов при онкозаболеваниях стало так же важно, как и изучение генов, инактивированных из-за мутаций. В результате стали появляться лаборатории, которые занимаются охотой на новые метилированные гены, так как характеристика того, что называется «метилотип» при разных типах рака, стало приоритетным объектом изучения.

В последние годы начали использовать анализ мутаций, например маркеров рака, в целях диагностики. Метилирование CpG-островков, возможно, вскоре станет очень ценным маркером. Одним из его преимуществ (по сравнению с использованием генетических маркеров, которые появляются в разных местах) является то, что гиперметилирование всегда происходит в одной конкретной зоне. Кроме того, обнаружение гиперметилирования — хороший знак как маркер аккумуляции нормальных клеток, в то время как генетическое отклонение сопровождается фоновым шумом, который усложняет его обнаружение. Три клинические процедуры выигрывают от маркеров, основанных на гиперметилировании: обнаружение, определение доброкачественности опухоли и лечение.

Анализ аберрантного метилирования CpG-островков многих генов позволил получить карты с профилями метилирования генов в различных тканях. Эти карты содержат только неметилированные гены в здоровых клетках. Появление быстрых и простых методов обнаружения гиперметилирования генов может использоваться как орудие для выявления раковых клеток в лимфатических узлах, слюне, моче и семени. Таким образом, мы получаем ДНК из этих легкодоступных образцов, а статус метилирования CpG-островков может быть использован для определения наличия раковых клеток. Возможность выявить гиперметилирование из жидкостей или плазмы онкопациентов побуждает академические организации объединиться в консорциумы для изучения и разработки новых маркеров для использования в клинических целях.

А сейчас повторим

Метилирование происходит только в контексте CpG?

Последние исследования, проведенные на уровне полных геномов, позволяют утверждать, что в определенных типах клеток, например в клетках нервной ткани, происходит метилирование не только цитозина, за которым следует гуанин (CpG), но и в других контекстах, например цитозина, за которым следует аденин. Это будет важно в момент определения, с какими именно белками объединится эта метилированная ДНК.

Почему метилирование ДНК способно подавлять гены?

Метилирование ДНК способно блокировать факторы транскрипции (объединения определенных белков), не-

обходимые для активации гена. Кроме того, метилированная ДНК может служить плацдармом для рекрутирования других белков, которые действуют как репрессоры транскрипции.

Всегда ли метилирование связано с репрессией генов?

В целом метилирование ДНК связывалось с тем, что гены выключены и подавлены. Хотя на некоторых участках оно связано с большей активностью гена.

Загрузка...