Глава 7


Мендель, Уотсон, Крик и геном человека

Большая часть этой главы посвящена Грегору Менделю, еще одному знаменитому ученому-любителю, чьи работы остались непрочитанными и непонятыми при его жизни, хотя, в отличие от записей Ферма, не содержали в себе никакой загадочности. Мендель сумел в скромном монастырском саду родного города Брно где, кстати, родился и Гёдель, на самых обычных растениях обнаружить важнейшие закономерности, благодаря которым живые организмы передают свои наследственные черты и тем самым сохраняют себя и свое потомство в качестве отдельного биологического вида или, если угодно, в качестве особой формы жизни.

Два взаимосвязанных открытия – обнаружение Менделем закономерностей передачи наследственности в конце XIX века и определение структуры ДНК Уотсоном и Криком в середине XX – касаются самих основ человеческого существования и заставляют задуматься о таких фундаментальных понятиях, как структура личности, свобода воли и личная ответственность. Ведь индивидуальность человека принципиально отличается от индивидуальности многих других природных объектов. Известно, например, что каждая отдельная снежинка тоже обладает собственной, неповторимой структурой, однако каждый человек представляет собой огромное скопление атомов и молекул, созданное по весьма сложным «чертежам» механизма наследственности. Помимо этого, серьезная проблема заключается в том, что эти чертежи немыслимое число раз копировались и корректировались в процессе эволюции, так что в них содержится сейчас большое число ошибок или «опечаток».

Мы признаем, что человеческая личность представляет собой некую устойчивую и постоянную сущность, но что, собственно, лежит в основе этой устойчивости и в чем заключаются смысл или предназначение этого постоянства? Еще в древнегреческих трагедиях отмечалось, что «характер – это судьба», а мы можем считать, что судьба определяется наследственностью. Естественно, что людей беспокоит не столько предрасположенность к болезням тела, сколько «ночной страх» перед безумием и душевными расстройствами. Мысль о связи нашей «сущности» с наследственной ДНК сыграла очень важную роль в развитии интенсивных исследований в генетике конца XX века.

В настоящее время считается установленным, что наши предки были когда-то бродячими охотниками и собирателями, которые примерно 10-12 тысяч лет назад перешли к оседлой жизни и земледелию сразу в нескольких подходящих местах планеты, в результате чего стали развиваться культурные навыки, методы рационального хозяйствования и т.п. Некоторые разрозненные сведения об интересе к наследованию признаков можно найти в 30-й главе библейской Книги Бытия, где рассказывается известная всем история об Иакове и Лаване (отношения между которыми можно в шутку сравнить с диалогами между автором книги и издателем), а также о пятнистых овцах и козах. Лаван, жуликоватый, подобно всем издателям, предлагает своему зятю Иакову взять всех ягнят и козлят из будущего приплода с такими признаками, оставляя себе только белых и черных животных. Иаков, готовый к риску, как и полагается писателю, соглашается, но восстанавливает справедливость, пользуясь хитрой комбинацией фольклора и примитивных методов селективного животноводства. Догадываясь, что более сильные козы и овцы дадут более сильное потомство, он показывал этим животным прутья с полосками, что и привело к рождению потомства с требуемыми признаками. Демонстрация овцам черно-белых прутьев может быть отнесена к фольклору (этот мотив иногда используется в сказках), в то время как получение сильного потомства от сильных родителей явно может быть отнесено к примитивному приему древней селекции. Более слабые овцы, которым полосок не показывали, дали менее ценное, но чисто белое потомство, которое и стало собственностью Лавана. Вся эта история свидетельствует об отсутствии серьезных биологических знаний у богов и людей в древней Мессопотамии.

По иронии судьбы, через несколько тысячелетий именно пастор, знаток Библии первым попытался объяснить ученым-коллегам те простые законы наследования признаков, которые когда-то уже заметили древние пастухи, но его никто не захотел услышать и понять. Этим человеком оказался Грегор Мендель, получивший образование сын крестьянина из Северной Моравии, который, выращивая фрукты и овощи в монастырском саду, сумел впервые методически правильно проанализировать закономерности, незамеченные многими поколениями садоводов и селекционеров.

Личная и научная судьба Менделя была очень сложной. Из-за несчастного случая его отец стал инвалидом, и семейная ферма пришла в упадок, так что образование мальчик получил лишь благодаря местному монастырю Ордена Августинцев. Несмотря на математическую одаренность и общительный характер, Менделя справедливо считали типичным неудачником: ему не удалось сдать экзамены на звание преподавателя естественных наук, карьера приходского священника не складывалась и т. д. В 1856 г. 34-летний монах начал экспериментировать с семенами нескольких сортов обычного гороха в монастырском саду, в течение нескольких лет тщательно анализируя признаки получаемых семян. Уже к 1864 г. собранный им статистический материал оказался достаточным для выработки основных положений современной генетики.

Образно говоря, Мендель сделал «следующий шаг» после очевидных всем наблюдений и заключений. Будучи сыном фермера, он понимал, что не стоит изучать наследственность плодовых деревьев, потомство которых изменяется простой прививкой других сортов. Он знал о совместимости различных сортов гороха, поэтому просто отобрал в исходный посевной материал семена с семью различными признаками и начал скрещивать их друг с другом. Например, высадив белые и серые семена, он получил в первом поколении, как и следовало ожидать на основе многовекового опыта, только гибриды с одним из признаков (серые семена), т. е. у потомства не только исчезал «белый» признак, но и отсутствовали все промежуточные формы (в урожае не было, например, светло-серых горошин). Аналогичный результат он получил для всех остальных изучаемых признаков.

Однако результаты исследования следующих поколений гороха заставляют вспомнить массу анекдотов, описывающих сценки в родильных домах, когда отец судивлением, восхищением или ужасом впервые видит своего ребенка. На бытовом уровне давно известно, что многие черты и особенности передаются через поколение. Вспомните, как влюбленным девушкам часто советуют «приглядеться» к родителям своего жениха и подумать о будущих детях. Вглядываясь в выцветшую групповую фотографию молодых парней, многие из нас вдруг угадывают в одном из них дедушку своего знакомого, потому что узнают черты лица и даже манеру улыбаться.

Именно такую передачу наследственности «через поколение» наблюдал и смог математически точно оценить Мендель для всех изученных им признаков (высокие и низкие стебли, сморщенные и гладкие семена и т. п.). Например, при скрещивании сортов гороха с высокими и низкими стеблями растения во втором поколении были только высокими, но в третьем высокими оставались лишь 3/4 образцов, а у 1/4 вновь появлялся ранее подавленный признак низкорослости. Другими словами, если наследуемые признаки неодинаковы, то в первом поколении гибридов проявляется только один (так называемый доминантный или преобладающий признак), а другой (рецессивный или подавляемый) признак остается как бы скрытым или «спрятанным». В следующем поколении признаки распределяются в пропорции 3:1 (на основе тщательных подсчетов тысяч семян сам Мендель получил пропорцию 2,98:1).

Эти наблюдения позволили ему сформулировать простой, но весьма важный и вовсе не очевидный закон передачи наследственных признаков. До этого считалось (и такая точка зрения представляется как раз естественной и понятной), что генетические признаки родителей каким-то образом смешиваются и сливаются, подобно распространенным в быту растворам разных жидкостей. В противном случае, оставалось непонятным, как два разных существа могут практически мгновенно создать новое существо с общими признаками. Великое открытие Менделя состояло не столько в том, что он обнаружил проявление скрытого признака через поколение, а в том, что он понял и осознал наличие скрытой передачи отдельного признака в единой и неизменной форме. Мендель понял, что признаки не смешиваются и не сливаются, а представляют собой некие маленькие, невидимые и неделимые образования, своеобразные «атомы» наследственности, которые мы сегодня называем генами. Образно говоря, в биологии возникла своя «атомарная» теория наследственности. Очень простые организмы, естественно, имеют очень мало генов, например вирус обладает всего лишь десятком генов (простота не означает биологической незначительности, поскольку такой вирус может убить население целых стран). Плодовая мушка дрозофила, ставшая, благодаря своей исключительной плодовистости, основным и чуть ли не центральным объектом биологических исследований всего XX века, имеет около 10 тысяч генов. Раньше биологи считали, что человек должен обладать более чем сотней тысяч генов, причем уверенность в этом была столь сильна, что многие биотехнологические фирмы и исследовательские компании даже уверяли инвесторов, клиентов и общественность в умении реально работать с сотнями тысяч генов. В 2001 г. к удивлению многих ученых, было строго показано, что каждый из нас имеет лишь около 40 тысяч генов. Количество признаков и соответствующих им факторов казалось настолько большим (Мендель предполагал некие варианты «смешения»), что и реальный механизм передачи наследственности оказался значительно более сложным.

Мендель установил, что любой наследственный признак складывается из двух разных элементов или единиц наследственности, получаемых организмом от половых клеток двух родителей. Еще важнее то, что он сумел обнаружить и доказать, что из двух элементов наследственности один всегда оказывается более сильным (доминантным), а другой -подавляемым (рецессивным), что и соответствует постоянному значению получаемого им соотношения 3:1. Выяснилось также, что это соотношение между элементами конкретной пары признаков не зависит от передачи всех остальных признаков.

Мендель был абсолютно прав и писал очень ясные и точные по содержанию статьи, которые по разным причинам оставались незамеченными и забытыми вплоть до 1900 г., когда их «обнаружили», перепроверили и очень высоко оценили маститые ученые. К сожалению, это произошло через 16 лет после смерти Менделя. Особый интерес биологов к модели Менделя был обусловлен тем, что она могла свидетельствовать как в пользу дарвиновской теории естественного отбора, так и против нее, и лишь через несколько лет стало окончательно ясно, что она в какой-то мере подтверждает и укрепляет теорию Дарвина. Об этом следует вспомнить сейчас особо, в связи с новой «вспышкой» споров о природе эволюции. Например, в 2000 г. опрос населения США продемонстрировал, что 60% респондентов считают идеи антидарвинистов (так называемых «креационистов») достойными преподавания в школах, наряду с теорией эволюции.

Возможно, столь долгие дискуссии вокруг дарвиновской теории показались бы Менделю забавными или удивительными. Остаток его жизни оказался довольно грустным и неинтересным. В 1868 г. он стал аббатом своего монастыря и с тех пор забросил научные занятия, отдавшись административным и финансовым заботам. У Менделя не было профессионального окружения коллег и единомышленников, способных понять и оценить значимость выдвигаемых им идей (в таком блестящем окружении работали Хаббл, Эйнштейн, Бор, создатели теории Большого взрыва и многие другие), так что ему пришлось разделить судьбу аутсайдеров науки, великих ученых-любителей типа Вегенера и Ферма. Вы спросите, может ли его биография и посмертная слава служить утешением или надеждой для чудаков- одиночек, которых всегда было полным-полно в истории науки? По- видимому, на этот вопрос следует дать отрицательный ответ, поскольку великие озарения этого одинокого монаха позднее все равно пришлось проверять и уточнять. Вот уже около ста лет серьезная наука реализуется в крупных лабораториях со сложным оборудованием. Современные исследования немыслимы без солидного финансового обеспечения и поддержки со стороны правительства, исследовательских центров и большого бизнеса. В наши дни доказательство и проверка даже кажущихся простыми теоретических озарений великих ученых требуют длительных усилий больших научно-технических коллективов, оснащенных дорогостоящей и высокоспециализированной аппаратурой.


***

Просматривая одну из последних книг по астрономии при подготовке предыдущих глав этой книги, я вдруг заметил, что одно важное соотношение записывается и трактуется по-разному в разных разделах книги. Заинтересовавшись этим обстоятельством, я обратился к знакомому физику, который и объяснил мне, что автор, известный специалист в своей области, действительно, объединил в единую книгу разделы, написанные несколькими его аспирантами, а позднее просто не удосужился отредактировать текст и убрать разночтения. Система использования многочисленной команды для решения сложных и масштабных задач является, в сущности, традиционной для истории науки. Здесь следует особо отметить одного из самых известных «эксплуататоров», а именно профессора Колумбийского университета Томаса Ханта Моргана, который в начале XX века сумел привлечь большую группу молодых талантливых ученых для проведения системного исследования механизма передачи наследственных признаков.

Начиная с 1907 г., возглавляемая Морганом команда изучала передачу наследственных признаков у плодовой мушки Drosophila melanogaster, ставшей в дальнейшем излюбленной живой моделью биологов из-за быстроты размножения и плодовитости. Дрозофила способна породить 200-300 особей за двухнедельный жизненный цикл, что позволяет изучить в течение года передачу признаков у 24 поколений. Еще за четыре года до этого биологи установили, что передача наследственных признаков каким-то образом связана с хромосомами, представляющими собой стержневидные структуры из белков и нуклеиновых кислот. Хромосомы обязательно объединяются попарно и расположены в ядрах всех клеток живого организма, причем пара формируется из двух отдельных хромосом (по одной от каждого родителя), каждая из которых несет в себе полный набор наследственной информации от конкретного родителя, в результате чего каждый из них передает в клетку половину своего генетического наследства.

Плодовая мушка отличается не только скоростью размножения, но и удивительной простотой генетической информации, поскольку ее клетки содержат только четыре пары хромосом. Прослеживая передачу конкретных признаков во многих поколениях, удалось быстро и убедительно доказать, что во всех случаях соотношение доминантных и рецессивных признаков прекрасно согласуется с законом 3:1 в полном соответствии с законом Менделя. Более того, биологам удалось даже полностью расшифровать записанную в хромосомах дрозофилы информацию, т. е. связать ее с конкретными характеристиками. Это сделало плодовую мушку уникальным объектом генетических исследований, так как она стала одним из немногих видов живых существ на планете, для которого точно известен полный набор генов, т. е. наследственных факторов или элементов Менделя. Образно говоря, этот набор можно назвать правилами, которые «указывают» клеткам будущей плодовой мушки способы и методы их превращения во взрослую, полноценную плодовую мушку.

В строгих и четко организованных экспериментах сотрудников Моргана были обнаружены новые, неожиданные закономерности передачи наследственных признаков. Так, например, практически в каждом опыте по непонятным причинам появлялись и дрозофилы с удивительными признаками, отсутствующими у обоих родителей, что сперва пытались объяснить (в полном соответствии с теорией эволюции по Дарвину) исчезновением наследственных особенностей, оказавшихся ненужными для борьбы за выживание в новой среде обитания. Понятно, что лабораторные условия выращивания вовсе не были похожи на привычные многим поколениям мушек леса или сады, однако некоторые из этих новых признаков были настолько странными, что ученым пришлось задуматься и о других объяснениях. В январе 1910 г. среди прочих мушек с обычным, красным цветом глаз родилась удивительная, белоглазая мушка, что позволило поставить еще один необычный эксперимент, имевший впоследствии огромное значение. У первого потомства этой белоглазой мушки оказались глаза обычного, красного цвета, однако уже в следующем поколении соотношение по цвету пришло к привычной менделевской пропорции 3:1.

С наследованием признаков (т. е. с их будущей судьбой) все оказалось в порядке, но появилась проблема их возникновения (образно говоря, их прошлого). Естественно, возникает вопрос о том, где «прятался» ген бе-логлазости плодовой мушки до его обнаружения? Напомним, что ген по определению считался постоянным, не способным к изменениям «квантом» наследственности, поэтому неудивительно, что Морган, уже тогда считавшийся отцом американской генетики, мучительно искал и не мог найти на него ответ. В наши дни термин «мутация» является настолько общеизвестным и тривиальным, что его знают даже дети (хотя бы из самых примитивных книжек и фильмов разряда фэнтази), но в начале XX века это открытие знаменовало собой огромный прорыв в познании законов наследственности и эволюции вообще. Герман Мюллер, коллега Моргана по университету, сумел сперва обнаружить, что мутация цвета глаз дрозофилы связана с химическими изменениями в генной структуре, а затем и показать, что аналогичные изменения могут быть вызваны рентгеновским излучением или даже происходить спонтанно. В результате разносторонних и тщательных экспериментов было достоверно установлено, что изменения генетической информации родителей передаются их потомкам не только у мушек, но и у всех остальных представителей животного и растительного мира. «Древо жизни» оказалось способным к изменениям, поскольку мутировали сами гены, носители исходной информации различных биологических видов, из чего с неизбежностью следовал вывод о наличии в генах каких-то внутренних структур, способных к трансформации.


***

Расшифровка принципа структуры генов стала самой важной и увлекательной задачей биологии в первой половине XX века, а по мнению некоторых ученых, решение этой задачи имеет принципиальное значение для развитии науки вообще. Питер Медавар считает, что «не стоит даже спорить с дураками, не понимающими, что открытие Уотсона и Крика является величайшим научным достижением XX века». Авторами открытия стали Френсис Крик, Джеймс Уотсон, основываясь на открытии исследовательницы Розалинды Франклин. Об их роли очень точно написал позднее Майкл Лернер: «В науке, как и в любой области интеллектуальной деятельности, всегда существуют два типа специалистов – архитекторы и строители-каменщики. Каменщики выполняют очень важную работу, но их всегда бывает достаточно много, а вот Уотсон и Крик относятся к очень редкому типу архитекторов».



Френсис Крик, Джеймс Уотсон


До сих пор в этой книге «каменщики» науки практически не упоминались, за исключением мелькнувших в тексте студентов Моргана, нескольких физиков-теоретиков и пары математиков, принимавших участие в доказательстве теоремы Ферма. Книга посвящена именно великим ученым, многие из которых, например Эйнштейн, вообще не нуждались в чьей-либо помощи. В генетике дело обстоит значительно сложнее, так как для создания великой и обобщающей теории необходимо было обработать буквально горы многостраничных отчетов и материалов, полученных разными авторами в многочисленных исследовательских центрах и институтах. Например, было установлено, что в передаче наследственной информации активно участвуют молекулы ДНК (дезоксирибонуклеиновой кислоты), входящие в состав ядер всех клеток организма, причем число этих клеток очень велико (так, организм взрослого человека состоит примерно из 100 триллионов клеток). Молекула ДНК внутри клетки свернута в настолько тугую спираль, что в растянутом состоянии ее длина составляет около 2,5 метров, и общая длина всех вытянутых в единую нить ДНК-молекул одного человека вполне сопоставима с диаметром земной орбиты! Более того, для нормальной жизни и функционирования организма (включая рост, развитие, старение и т. п.) необходимо не только огромное количество клеток, но и значительное разнообразие их типов. Жизнь человека обеспечивается совместной и согласованной работой примерно 200 типов специализированных клеток (волос, крови, кожи и т. д.), имеющих самые различные функции, формы и размеры (средний размер клеток можно оценить исходя из того, что группа в 250 клеток примерно соответствует размеру точки, напечатанной в конце этого предложения). Рассказ о клетках понадобился для того, чтобы читатель оценил сложность проблемы – все эти крошечные, но весьма разнообразные по форме и функциям сложнейшие образования содержат в себе микроколичества свернутых в клубок молекул ДНК, которые необходимо было выделить и исследовать, поскольку именно в этих молекулах содержится «секрет жизни», т. е. механизм передачи наследственной информации.

Еще одним важным достижением стало обнаружение способности генов (которые до сих пор остаются во многом загадочными объектами) регулировать производство белков внутри клеток. В 1951 году знаменитый химик Лайнус Полинг доказал, что некоторые из синтезируемых белков имеют спиральную структуру, т. е. они похожи на свернутую в клубок нить, и он же первым попробовал использовать для изучения их строения хорошо известный физикам метод рентгеноструктурного анализа.

Незаслуженно забытая сейчас Розалинда Франклин, работавшая в Кинг колледже под руководством Полинга, начала систематические исследования ДНК и в 1952 году получила первые рентгеновские дифрактограммы молекулярных нитей ДНК, выделенных из тимуса (зобной железы) телят. Изображения были слишком сложны для сколь-нибудь детального анализа и очень напоминали популярные сейчас в США ультразвуковые снимки младенца в утробе матери на ранних стадиях беременности, но явно соответствовали какой-то сложной спиральной структуре. На самой первой рентгенограмме, ставшей знаменитой и даже получившей собственное название «Экспозиция 51», можно выделить крупную расплывчатую фигуру в виде грубого креста, образованную какими-то «стержнями», расположенными на равных расстояниях друг от друга. К сожалению, все попытки Розалинды Франклин согласовать полученное изображение со спиральной моделью Полинга оказались безуспешными.

Предсказываемую Полингом структуру пыталась обнаружить также исследовательская группа в знаменитой Кавендишской лаборатории Кембриджа. В 1953 году полученная Франклин рентгенограмма ДНК попалась на глаза руководителю этой группы Джеймсу Уотсону и произвела на него совершенно потрясающее впечатление. Позднее он признавался, что испытал почти физическое напряжение от ощущения мгновенной догадки: «…увидев изображение, я от изумления раскрыл рот и даже почувствовал учащение пульса». Этот момент озарения принес Уотсону всемирную славу.

Он сумел восстановить структуру по ее проекциям, подобно тому, как дети складывают целую картинку из кусочков. На древнегреческих вазах иногда встречается сложный узор, в котором два силуэта или профиля сливаются и переходят друг в друга, и именно такой оказалась угаданная Уотсоном знаменитая «двойная спираль», которую сегодня знают даже школьники. Тот факт, что никто из специалистов не сумел «разглядеть» структуру раньше, можно объяснить как высоким профессионализмом Уотсона, так и удивительной «открытостью» его воображения и интеллекта, т. е. способностью воспринимать новые идеи и образы. Это и позволило ему угадать в рентгенограмме вид ДНК в проекции «сверху-вниз», при котором смутное изображение креста соответствует не одной спирали, а двум, но плотно и аккуратно «намотанным» друг на друга. Уотсон сумел по этому расплывчатому образу представить соответствующую пространственную конфигурацию, подобно архитектору, с которым его сравнил Медавар в приведенной выше цитате.

Дальнейшая история открытия достаточно хорошо известна. Уотсон обсудил придуманную им структуру с Френсисом Криком, а затем рассказал об открытии остальным сотрудникам Кавендишской лаборатории на традиционной субботней встрече в кембриджском пивном баре «Игл». Затем Уотсон и Крик быстро «додумали» детали структуры, изготовили демонстрационную модель из палочек и проволоки и «помчались» к Нобелевской премии. Незадолго до выхода в свет престижного журнала «Nature» с их статьей Уотсон (по скромности или из осторожности) сказал одному из близких друзей: «…если мы правы, то, похоже, что эта молекула может самовоспроизводиться». Сама статья начиналась с не очень скромной фразы о предлагаемой модели ДНК, которая «…имеет новые свойства и представляет значительный интерес для биологии».


***

Уотсон и Крик показали, что нить ДНК длиной около 2,5 метров может быть представлена в виде записи некоторого текста на «химическом языке», алфавит которого состоит из четырех букв и содержит всю генетическую информацию, относящуюся к наследуемым признакам. Речь идет даже не об аналогии, а о записи в реальной структуре, так как каждая нить двойной спирали представляет собой цепочку нуклеотидов, каждый из которых, в свою очередь, состоит из углевода дезоксирибозы, фосфата и так называемого основания. В состав ДНК входят четыре типа оснований (аденин, гуанин, тимин и цитозин), которые и соответствуют четырем буквам алфавита в предложенной выше метафоре химической записи текста. Каждая последовательность из трех таких оснований на нити ДНК отвечает за создание специфической аминокислоты, способной в дальнейшем синтезировать внутри клетки определенный тип белковых молекул (число различных белковых молекул, синтезируемых по данному принципу, очень велико и достигает нескольких тысяч). Позднее оказалось, что именно такой механизм управления синтезом белков (названный впоследствии триплетным кодом) может, действительно, считаться физико-химической основой жизни вообще. Он используется всеми живыми организмами без исключения, а разница между биологическими видами (а внутри видов и между отдельными организмами) обусловлена лишь различием в последовательности этих триплетов вдоль нити ДНК.

Синтез одного белка в клетке осуществляется посредством целой цепочки различных операций. Сперва «задание» на синтез данного белка передается с ДНК на молекулу похожего типа (рибонуклеиновая кислота, РНК), которая «копирует» с поверхности ДНК соответствующую этому белку последовательность оснований (РНК с записью называют информационной РНК или просто месседжером, т. е. посланием). Информационная РНК поступает в другую клеточную структуру, называемую рибосомой, где раскручивается подобно серпантину, передавая последовательно, триплет за триплетом, все записанные на ней данные. На основе полученной информации так называемая транспортная РНК доставляет к рибосоме конкретные аминокислоты из существующих 22 видов, они связываются в единую цепочку, образуется белковая молекула. В конце этого довольно сложного производственного цикла (ДНК -› передача информации через месседжер на рибосому -» передача информации на транспортную РНК -› доставка аминокислот -› синтез и сборка белковых молекул) внутри клетки возникает новая трехмерная белковая цепочка, содержащая иногда сотни аминокислот, «построенная» по строго заданным инструкциям и способная выполнять «исходное» задание. Синтезируемые в клетке белковые молекулы весьма разнообразны и очень сложны, так как в их число входят белки, регулирующие процессы метаболизма в клетке, ферменты, способные инициировать, т. е. «запускать» различные процессы, известные всем антитела, обеспечивающие иммунитет организма и другие важнейшие типы биологически активных молекул.

Закручивание двух нитей ДНК относительно друг друга означает, что нуклеотиды каждой из них должны быть определенным образом связаны с нуклеотидами другой, причем эта связь носит сложный, комплементарный характер, что и позволяет нитям ДНК осуществлять описанное выше копирование (дублирование, репликацию). Точность сборки и взаимной «подгонки» нитей ДНК основана на том, что химически могут связываться только строго определенные пары оснований (так называемые комплементарные пары: аденин-тимин или цитозин-гуанин). Такая избирательность связей позволяет создавать как бы зеркальные отражения целых участков структур (например, последовательности оснований аденин-гуа-нин-тимин-цитозин в сопряженной нити ДНК может соответствовать только последовательность тимин-цианин- аденин-гуанин и т. д.), так что читатель может представить себе ДНК в виде трех миллионов сложным образом взаимно-отраженных пар оснований.

Процесс репликации ДНК начинается с того, что под действием ферментов происходит разрушение химических связей между указанными комплементарными парами оснований, в результате чего сдвоенная спираль как бы «разматывается» на отдельных участках. Одновременно другие ферменты (можно лишь упомянуть, что существуют сотни разных ферментов, непрерывно вырабатываемых нашим организмом) осуществляют прямо противоположную задачу, а именно активируют образование новых комплементарных нуклеотидов и их «транспортировку» в соответствующие зеркальные положения на размотанных участках спиралей. После завершения всех операций внутри клетки возникают две совершенно одинаковые двойные спирали, каждая из которых состоит из одной нити первоначальной спирали и одной нити, построенной по принципам комплементарности, т. е. «химического» зеркального отражения.

Удвоение молекул ДНК происходит непрерывно сотнях триллионов клеток нашего организма, поскольку они непрерывно делятся, порождая новые клетки, пока в результате внешних воздействий, болезни или гибели организма не наступит распад клеток. Каждый из нас замечает в зеркале или просто по изменению размеров своей одежды общие возрастные изменения собственного тела, хотя мы, конечно, не можем видеть или чувствовать спрятанный за этим «план» работы ферментов на клеточном уровне, где также «принимаются решения», связанные с формированием типа клеток. Молекулы ДНК совершенно одинаковы во всех клетках и тканях (в крови, костях, каплях слюны и т. д.) и являются как бы индивидуальной основой нашего генотипа, выработанного бесчисленными поколениями предков, сумевших выжить и дать потомство в далеком прошлом. Естественно, возникает вопрос о том, что же заставляет клетки становиться разными, несмотря на идентичность ДНК внутри них? Ответ является одновременно очень простым и весьма загадочным – в каждом типе клеток активизируется только та часть генетической информации, которая связана с работой данного типа клеток, так что, например, в клетках крови используется только информация, относящаяся к клеткам крови, а оставшаяся большая часть ДНК оказывается инертной. Возвращаясь к аналогии с текстом и буквами, можно сказать, что огромная часть ДНК-текста остается непрочитанной и «безмолвной», заставляя вспомнить заключительную фразу из шекспировского «Гамлета» о том, что «Все остальное – молчание» (the rest is silent)'. Клетки крови как бы не замечают огромные куски генетического текста, считывая с нити ДНК только те комбинации из четырех букв, которые на «языке» записи каким-то образом связаны со словом «кровь».

Клетки человека содержат по 23 пары хромосом (т. е. всего 46 разных наборов генетической информации, по 23 от каждого из родителей), причем каждая из них включает в себя от 30 до 40 тысяч генов, которые могут, как уже упоминалось, мутировать спонтанно или под воздействием разнообразных внешних воздействий, включая радиоактивное облучение. Конечно, при таком огромном количестве генов можно было бы ожидать появления статистически обусловленных «сбоев» при многочисленных процессах деления клеток, однако практически всегда деление происходит «безошибочно» или ошибки каким-то образом компенсируются организмом.

В настоящее время достоверно известно около четырех тысяч генетически обусловленных нарушений разной тяжести (от уникальных внешних особенностей до смертельно опасных болезней), которые родители обычно непреднамеренно, но почти неизбежно передают своим потомкам. Конечно, картина таких заболеваний у человека не может быть описана простой комбинацией (или/или), которую Мендель установил при скрещивании растений гороха в монастырском саду. Например, печально известная болезнь Альцгеймера связана не с одним геном, а с целой комбинацией генов или их различных форм, в которой и записана полная «инструкция» по развитию ужасного заболевания, уничтожающего личность человека. Ряд других серьезнейших болезней (включая артрит, рассеянный склероз, рак и сердечно-сосудистые заболевания), с которыми медицина пока не может эффективно бороться, безусловно, тоже могут передаваться по наследству. В некоторых, особо тяжелых, случаях никакая врачебная помощь и забота не могут спасти человека от генетически запрограммированной болезни, безумия или смерти.

Понимание сущности и роли генетической информации значительно меняет некоторые общие представления о человеческой жизни и судьбе, так, например, почти теряет смысл весьма важная для античного мира идея о взаимосвязи духовного и физического состояния человека. Можно вспомнить, как в гомеровской «Илиаде» царь Приам, выпрашивая у грозного Ахилла труп убитого им Гектора, на мгновенье забывает о своем горе, прерывает мольбы и любуется божественной красотой и мощью греческого вождя. Для древних греков красота и молодость ассоциировались именно с божественным и вечным, а не с жизнью обычных людей, уделом которых оставались старение и смерть. Наша жизнь и судьба, возможно, не очень сильно изменились со времен античности, однако сейчас, благодаря приобретенным знаниям, наша оценка человеческой личности стала более разумной, более сложной и даже более трагичной. Нам уже известно, что жизнь складывается из процессов деления триллионов клеток, управляемых некоторыми программами или инструкциями, которые тоже, в свою очередь, могут изменяться при передаче потомству (зачастую случайно и пока почти непредсказуемо). В отличие от древних греков, мы осознаем, что внутри организма могут быть «заложены» какие-то страшные и случайные комбинации таких программ, вследствие чего (например, при той же болезни Альцгеймера) героический, величественный и грозный Ахилл может забыть не только о войне и убитом Гекторе, но и перестать воспринимать самого себя в качестве личности.


***

Необычностью структуры и характеристик обладает только один тип клеток организма человека, а именно половые клетки (яйцеклетки и сперматозоиды), которые содержат лишь по 23 хромосомы, вследствие чего только после их слияния образуется нормальная клетка с 46 хромосомами. Обычно спаренные хромосомы имеют форму латинской буквы X и лишь примерно в половине случаев от одного из родителей передается хромосома в виде буквы Y, причем сочетание Y-хромосомы с более крупной Х-хромосомой, как правило, соответствует рождению мужского потомства. Такое простое, но весьма существенное отличие кажется малозначащим на фоне немыслимого разнообразия генетических признаков, проявляющихся в клетках всех других типов. Несколько лет назад завершился основной этап исследований получившей широкую известность и популярность международной программы «Геном человека», целью которого является полная расшифровка генетической информации человека, выявление причин возникновения индивидуальных различий между людьми, а также обнаружение «ошибок» в геноме, приводящих к развитию наследственных болезней. Этот грандиозный проект включает в себя так называемое картирование генов, т. е. установление точного порядка расположения всех трех миллиардов пар оснований ДНК, содержащейся в каждой клетке человеческого организма (или, продолжая лингвистическую аналогию, прочтение всего текста, содержащего 6 миллиардов букв). К удивлению многих исследователей, уже сейчас ясно, что в передаче генетической информации активно участвуют лишь от 3 до 5% общей структуры генома. Мы можем предположить, что огромное количество пассивных, так называемых бездействующих генов («хлам» на жаргоне генетиков) возникло и накопилось в процессе эволюции, т. е. когда-то они были реально необходимы нашим далеким предкам и просто сохранились с тех пор в геноме (впрочем, и этот ответ представляется спорным и недостоверным). С другой стороны, мы уже понимаем, что все ныне живущие и уже вымершие биологические виды (включая динозавров и т. п.) возникли в результате последовательного деления какой-то одной исходной спирали, и именно этот процесс деления, продолжающийся уже 3-4 миллиарда лет, привел к тому, что в «тексте жизни» каким-то образом возникло длинное и таинственное «предложение», которое мы называем геномом человека.

Геном человека демонстрирует бессмысленность термина «раса» в его обычном, общепринятом значении: цвет кожи, расовые или национальные признаки и т. п. Строго говоря, генетически существует лишь одна-единственная и единая «человеческая раса», внутри которой лишь условно можно выделить некоторые «расовые группы» с присущими им особенностями, имеющими больше социальное, чем биологическое значение, причем передача конкретных наследственных признаков в смешанных и межрасовых браках с полной определенностью описывается правилами Менделя. Если когда-нибудь марсиане высадятся на нашей планете, они не обратят внимания на эти незначительные признаки, а, возможно, начнут классифицировать людей по другим, более очевидным и объективным признакам (например, они могут выделить «расу» высоких людей и т. д.).

Поэтому, вглядываясь в огромные и грустные глаза шимпанзе, сидящей в клетке зоопарка, стоит задуматься не о своем интеллектуальном превосходстве над нашими ближайшими биологическими родственниками, а о том, что 99,6% всех активных генов человека и шимпанзе полностью совпадают, так что все наше различие и превосходство связано лишь с 0,4% генетической информации ДНК. Именно это крошечная часть генома придает человеку способность говорить, размышлять, ощущать себя личностью и даже создавать и развивать представления о душе и индивидуальности.


***

Уотсон писал: «Раньше людям казалось, что их судьбой управляют звезды, но сейчас мы понимаем, что в гораздо большей степени ею управляют гены». Это известное высказывание содержит в себе дополнительно чрезвычайно важный и сложный вопрос, который не оставляет равнодушным ни одного человека – в какой степени жизнь человека определяется его наследственностью? Не стоит смеяться над тем, как в обыденной жизни толстяки напряженно размышляют над тем, связана ли их полнота с генетической предрасположенностью или с неумеренным потреблением чипсов и страстью к многочасовым телевизионным сериалам. Американские юристы сейчас ожесточенно обсуждают так называемую «поправку Твинки», позволяющую при судебных разбирательствах считать наследственные нарушения психики столь же серьезным и весомым аргументом, как и физическое состояние подсудимого.

С любой точки зрения, исключительно интересно узнать, до какой степени наши обыденные привычки и пристрастия определяются наследственностью (можно ли, например, выделить конкретный ген, носители которого всегда старательно укрывают чехлами мебель в доме?), а в какой – средой и окружением. Обусловлено ли наше поведение только воздействием окружения, только генетическими особенностями или… сложной комбинацией этих факторов? Мы еще не скоро получим ответы на такие вопросы и наверняка еще не раз ошибемся в своих поисках и выводах.

Какое-то время были очень модны исследования, связанные с поиском связей между специфическими генами и конкретным социальным поведением отдельных людей, что привело к созданию целой науки, получившей название генетической бихевиористики (т. е. науки о генетически обусловленном поведении), в связи с чем было опубликовано много сенсационных материалов, которые с большим жаром обсуждались на телевидении и в бульварных газетах, по обнаружению конкретных генов, ответственных за развитие алкоголизма, маниакальных психозов или шизофрении. Такие работы, конечно, привлекали внимание общественности, однако следует сразу подчеркнуть, что все они были позднее опровергнуты серьезными и систематическими исследованиями.

По-видимому, никакой однозначной связи между генами и поведением не существует. Даже возможное в будущем обнаружение в мозгу каких-либо генетически наследуемых структур не явится доказательством такой связи, поскольку такие факторы еще не будут означать биологического детерминизма в поведении человека. Теоретически не исключено, что гены могут как-то управлять поведением, однако пока это не доказано. Следует также учитывать, что ни одну генеалогическую историю поведения членов какого-либо конкретного семейства нельзя рассматривать с точки зрения простой комбинации генетических признаков по правилам Менделя, поскольку реальная история всегда развивается в окружении и включает в себя историю взаимоотношений личностей с родственниками, обществом и социальной средой. Попросту говоря, развитие пьянства и алкоголизма у представителей нескольких поколений одной семьи может прекрасно осуществляться и без участия какого-то специфического «гена алкоголизма».

Даже в тех случаях, когда речь идет о конкретной и редкой болезни, достоверно вызываемой «ошибкой» в определенном гене, правила Менделя следует применять осторожно, поскольку болезни у различных поколений развиваются в разных условиях и при меняющейся окружающей среде. Поэтому не следует расстраиваться, выслушая разглагольствования очередного эксперта по наследственным заболеваниям и их лечению, особенно если он выступает в рекламном клипе медицинской или фармацевтической компании. Читателю стоит твердо запомнить, что в развитии даже наследственных болезней участвует множество внешних факторов и одновременно несколько генов. Конкретным болезням, типа рака груди или диабета, не могут соответствовать никакие конкретные гены, хотя бы потому, что, например, для развития диабета необходимо совместное действие не менее 15 генов и т. д.

Точно так же реальное поведение человека (которое, конечно, имеет в своей основе генетические компоненты) управляется в действительности мозгом, представляющим собой исключительно сложную структуру и учитывающим множество разнообразных внешних факторов. Матт Рид-ли в известной книге «Геном. Автобиография биологического вида в 23 частях» пишет, что «… у специалистов, по мере погружения в исследования генома, исчезает всякое ощущение фатализма. Изучаемую систему характеризует скорее серая неопределенность, изменчивые причинные связи и смутная, плохо выраженная предрасположенность к некоторым действиям».

Споры о генетике и геноме как бы воскрешают на новом уровне исследований и знаний бесконечные дискуссии философов и психологов XVIII века о роли врожденных и приобретенных навыков в процессе воспитания. Одним из самых тяжелых последствий увлечения идеями наследственности стало развитие в первой половине XX века многих общественных движений и организаций, основанных на евгенике (науке об улучшении человеческой расы). Такие псевдонаучные идеи были популярны в разных странах, включая США, где в период между мировыми войнами одно время стало модным награждать на сельских празднествах и ярмарках призами целые семьи с «генетически идеальной» внешностью, подразумевая под этим голубоглазых и светловолосых людей. В те же времена некоторые американские общественные организации рекомендовали постепенно исключать из процесса размножения человеческой расы дефективных представителей низшей расы, используя методы стерилизации. В Европе такое безумное толкование менделевских принципов генетики привело к нацизму, а в США оно прекратилось лишь после Второй мировой войны, хотя отголоски расовой идеи до сих пор сохраняются в частных разговорах или в публикациях фанатически настроенных и не совсем нормальных пропагандистов.

Недавно чрезвычайно похожая по идеологии и очень ожесточенная дискуссия вспыхнула при интерпретации статистических данных по так называемому коэффициенту АйКью (1Q – Intelligence Quotient), низкие значения которого у части населения одни исследователи пытаются связать с расовыми, а другие – с социально-общественными факторами. Как в упомянутых выше экспериментах по генетической бихевиористи-ке, так и в исследованиях коэффициента IQ у больших групп населения никому не удалось обнаружить специфический ген или группу генов, однозначно регулирующих поведение человека или развитие его интеллекта. Причина этих неудач, прежде всего, связана с тем, что весьма сложные характеристики человеческой личности просто не могут передаваться столь же простым и однозначным образом, как курчавость волос или тембр голоса.

Разумеется, ученые неоднократно пытались выявить генетически обусловленные особенности поведения как у привычной дрозофилы, так и других, более сложных биологических видов. Наиболее перспективными в этом отношении выглядели собаки, поскольку человечеству удалось за многие тысячи лет вывести большое количество разных пород с явно наследуемыми и весьма специфическими особенностями поведения (например, со способностью приносить дичь, плавать и даже пасти овец). В настоящее время осуществляется международная программа «Геном собаки», цель которой состоит в выявлении генетической передачи наследуемых признаков и выявлении генетической предрасположенности (или, наоборот, генетической неспособности) к определенному типу поведения. Кстати, в генетических исследованиях мы вовсе не должны «зацикливаться» на поиске генов отрицательных свойств и характеристик (почему бы, например, нам не поискать гены доброты и святости?).

Мне хочется повторить, что даже если будет обнаружена какая-то генетическая предрасположенность к определенному типу поведения, следует помнить, что это еще не является доказательством «генетического детерминизма», так как человеческая личность в огромной степени формируется семейным и социальным окружением на самых разных уровнях, включая некий общечеловеческий. Генетическая предрасположенность может означать и означает только то, что данный человек в определенных ситуациях более склонен, например, к насилию или даже к саморазрушению, чем остальные. В соответствующих случаях следует искать методы и возможности предотвращения таких ситуаций и поступков, аналогично тому, как медицина ищет и находит эффективные методы лечения или предотвращения генетически обусловленных заболеваний. Известный специалист по молекулярной биологии Тим Талли даже предсказывает, что «исследование молекулярных основ поведения поможет нам найти новые методы внешнего воздействия на личность пациентов».

Многих людей тревожит и даже пугает сама возможность того, что научные результаты генетических исследований или просто сведения о генетической информации конкретных людей могут попасть в распоряжение государства или крупных корпораций и привести к нарушению прав человека, однако можно надеяться, что возможности воздействия на наследственную информацию или опасного применения новых знаний в этой области окажутся незначительными. С другой стороны, нельзя не вспомнить опасения общественности, высказываемые в связи с экспериментами по клонированию. Такие опасения в значительной степени тоже основаны на слепой вере в силу генетического детерминизма. Очевидно, что любой клон под воздействием различных внешних факторов очень быстро должен «распасться» и развиться в полноценное и разнородное сообщество, все члены которого будут обладать индивидуальностью.


Загрузка...