Электротехник, самоучка физик-экспериментатор, лектор; преподаватель курса физики и математики в Академии художеств и во 2-м Кадетском корпусе, заслуженный профессор и заведующий кафедрой физики Императорской медико-хирургической академии, академик Петербургской АН и Медико-хирургической академии, почетный член Эрлангенского физико-математического общества и ряда других ученых обществ; создатель и руководитель физического кабинета; действительный статский советник, Василий Владимирович Петров (1761–1834) является одним из первых русских исследователей в области электротехники и практического применения электричества. Первым в мире наблюдал дуговой разряд и открыл электросварку.
В XVIII–XIX вв. Россия напоминала прихожую, сквозь которую научные открытия проходили в горницу Европы не задерживаясь. Стоило русским ученым вдруг заявить о своем приоритете, Европа каждый раз недоумевала так, точно эти открытия не к ней зашли через переднюю, а от нее вышли в свет. Открытие В.В. Петровым электросварки прекрасно иллюстрирует сей казус. «Трагедия изоляции от мировой науки работ Ломоносова, Петрова и других наших ученых-одиночек и состояла только в том, что они не могли включиться в коллективную работу ученых за границей, так как они не имели возможности путешествовать за границу. Это и есть ответ на вопрос – о причине отсутствия влияния их работ на мировую науку… Работы ученого, происходящие вне коллектива, обычно остаются незамеченными» (П.Л. Капица). Время, а еще больше старания министра просвещения С.С. Уварова, питавшего к Василию Владимировичу за его независимость суждений личную неприязнь, убрали из памяти потомков имя и дела Петрова (не сохранился даже портрет ученого, и была заброшена его могила). Во всяком случае, русские физики, а тем более европейские во второй половине XIX в. не имели никакого представления о великих трудах электротехника. В 1886 г. на глаза одному студенту случайно попалась работа Петрова «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (180), о которой тот поведал научной общественности. Русскому ученому был возвращен приоритет открытия электросварки, принадлежавший английскому физику Г. Дэви, который, кстати, вовсе и не претендовал на первенство. Англичанин, хорошо наслышанный об экспериментах Петрова, в 1808 г. лишь повторил их.
В.В. Петров. Гравюра XIX в.
Что же это были за опыты? Если коротко, уникальные и преждевременные. Наука и экспериментальная база еще не были готовы к ним. Посему исследователь действовал больше по наитию, но ведомый своим гением.
«Отец русской электротехники», как любят называть сейчас Петрова историки науки, прекрасный педагог, в стенах Медико-хирургической академии, где он заведовал кафедрой, оборудовал лучший в России (да и, быть может, в мире) физический кабинет, оснастил его приобретенными у графа Д.П. Бутурлина, а также в Лондоне физическими приборами, и по 14 часов в день с упоением занимался физическими и химическими опытами.
Эксперименты давали физику ответ на многие вопросы теории, почерпнутые им в том числе и из книг и журнальных статей европейских ученых, после чего он демонстрировал их студентам на занятиях. Собственно, это «хобби» и привело ученого к его открытиям. Одним из постоянных увлечений Петрова было электричество. Заинтересовавшись открытиями Л. Гальвани и А. Вольта, особенно вольтовым столбом – гальванической батареей, сооруженной Вольта в 1800 г., представлявшей собой прибор из нескольких десятков чашек, заполненных соленой водой и объединенных металлическими дугами из меди и цинка, Петров решил сконструировать такую же. Что и сделал, но воистину в российских масштабах – увеличил число элементов батареи сразу на два порядка!
Соединив последовательно 2100 пар медных и цинковых кружков, которые изолировались друг от друга бумажными кружками, смоченными электролитом – водным раствором нашатыря, физик собрал огромную гальваническую батарею, электродвижущая сила которой достигала 1700 вольт, и получил на ней мощный источник электрического тока.
Если эти тысячи элементов выстроить в столб, как их собирал Вольта, они достигли бы длины 12 метров, и с ними вряд ли можно было бы проводить какие-либо опыты. Однако ученый сумел уложить все эти «кружочки» в достаточно компактный трехметровый ящик, явивший собою воистину инженерное чудо. (Через 150 лет в Московском энергетическом институте была воссоздана 1/20 часть гальванической батареи, на которой повторили эксперимент, давший точные характеристики аппарата Петрова. – Я.А. Шнейберг. )
Проводя на батарее разнообразные эксперименты, Петров прикрепил к ее полюсам две проволоки с прикрученными кусочками древесного угля, соединил электроды, потом развел их – и получил ослепительную вспышку белого пламени. Это и была электрическая дуга, названная позднее «вольтовой».
Многократно повторив опыты, ученый издал в 1803 г. великолепную во всех смыслах книгу «Известие о гальвани-вольтовских опытах», не нашедшую, к сожалению, должного сочувствия к ней в Министерстве просвещения и в научных кругах. В этом труде, написанном «наипаче для пользы тех читателей, которые… живут в отдаленных от обеих столиц местах и которые не имели случая приобрести нужные понятия в сих предметах», ученый описал свою уникальную батарею и обстоятельно изложил исследования свойств электрической дуги. Петров убедительно показал, что действие дуги основано на химических процессах, происходящих между металлами и электролитом, а также предложил использовать электрическую дугу для освещения, плавления и варки металлов, восстановления металлов из их окислов.
На этой и других установках академик изучал электропроводность и физико-химические свойства разных веществ – древесного угля, льда, фосфора, серы; исследовал электрические явления в различных газовых средах; впервые произвел опыты электролиза (разложения посредством электрического тока) жидкостей – воды, алкоголя, растительных масел, окислов металлов (ртути, свинца, олова); вел изучение «действия Гальвани-Вольтовской жидкости на тела живых, особливо животных», а также свечение фосфоров животного и минерального царства (люминесценцию); впервые применил изоляцию сургучом проволочного проводника и параллельное соединение электрических цепей; первым в мире исследовал электрические явления с наэлектризованными телами в разреженном пространстве (электрический разряд в вакууме, статическое электричество, электризация тел); за 25 лет до Г.С. Ома установил зависимость силы постоянного тока от площади поперечного сечения проводника, чем «предвосхитил закон Ома»; ввел в электротехнику термин «сопротивление»…
Надо сказать, что многие труды Петрова стали не только фактом истории, но и по сию пору представляют научный интерес. Академик С.И. Вавилов, например, относил работы Петрова по люминесценции чуть ли не к последнему слову науки. Президент АН вообще отвел Василию Владимировичу не оспариваемое никем место: «В истории русской физики до половины XIX в. В.В. Петров не только хронологически, но и по своему значению непосредственно следует за М.В. Ломоносовым».
Физик, геофизик, геодезист, электротехник, географ, путешественник, педагог; профессор Морского кадетского корпуса, Михайловской артиллерийской академии, Главного педагогического института, Михайловского артиллерийского училища; профессор, заведующий кафедрой физики и физической географии, декан физико-математического факультета, ректор Санкт-Петербургского университета; академик императорской Санкт-Петербургской АН, член ряда зарубежных АН и научных обществ Европы; основатель научной школы физиков; один из учредителей Русского географического общества; создатель учебников физики для средних школ; тайный советник, Эмилий Христианович Ленц, настоящее имя Генрих Фридрих Эмиль Ленц (1804–1865), является автором фундаментальных законов электродинамики. Ленц установил факт обратимости магнитоэлектрической машины и электродвигателя, совместно с академиком Б.С. Якоби разработал методы расчета электромагнитов.
Помимо главного закона сохранения и превращения в каждом разделе физики есть еще несколько основных законов. Скажем, в механике это закон Архимеда, закон всемирного тяготения, законы Ньютона и т. д. В электричестве и магнетизме – законы Ома, Кулона и др. Среди них два принадлежат Э.Х. Ленцу: закон его имени (его часто называют правилом) и закон Джоуля – Ленца, открытый в начале 1840-х гг. экспериментальным путем независимо друг от друга обоими учеными. Ленц получил и интерпретировал результаты раньше Дж. Джоуля, и благодаря более совершенному методу они у него были точнее, но английский физик опередил русского с публикацией. Тут уж ничего не поделаешь – такова планида у русских ученых! Есть у Ленца и два «довесочка»: в законе электромагнитной индукции Фарадея по закону Ленца определяется знак электродвижущей силы (ЭДС); а еще Эмилий Христианович первым обратил внимание на закон Ома и всячески содействовал его признанию.
Э.Х. Ленц
После открытия датским ученым Х.К. Эрстедом в 1820 г. электромагнетизма (электродинамики), ученые разных стран – А. Ампер, М. Фарадей, Д.К. Максвелл, Г. Герц и др. – добились в новой области науки впечатляющих достижений. Однако из-за отсутствия точных приборов, а также методов измерения электрических и магнитных величин в формулах и теориях зачастую не было и однозначных трактовок. В частности, отсутствовала количественная характеристика электромагнитной индукции (явления возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него), не было правила (исключая несколько мнемонических), определяющего направление индуктированных токов, и др. Большую часть этих сложных физических проблем разрешил один из лучших экспериментаторов своего времени Э.Х. Ленц.
В 1833 г. ученый представил Петербургской АН доклад «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией», в котором указал на различное толкование Фарадеем индуцируемых токов в случае вольта-электрической и в случае магнитоэлектрической индукции и объявил, что в обоих случаях действует один и тот же индукционный процесс, подчиняющийся общему правилу: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении».
Теоретические выкладки подкреплялись блестящими экспериментами, показывающими, что индукционный ток всегда противодействует изменению, порождающему его. С тех пор правило Ленца, предписывая направление движения индукционного тока, действует в электромагнитной индукции, как правила уличного движения на городских улицах.
Выводя свое правило, Ленц впервые обосновал и справедливость закона сохранения и превращения энергии при взаимных превращениях механической и электромагнитной энергии. Перемещая магнит или проводник с током вблизи замкнутого проводника, ученый показал, что механическая энергия этого перемещения превращается в электромагнитную энергию тока индукции. «Работа перемещения первого проводника превращается в электрическую энергию во втором проводнике», – заметил физик. Закон сохранения и превращения энергии в его современном виде был открыт лишь через восемь лет после доклада Ленца немецким физиком Р. Майером.
Работы Ленца в этом направлении позволили ему впервые сформулировать в 1833 г. фундаментальный принцип обратимости электрических машин. Экспериментально доказав обратимость генераторного и двигательного режимов электрических машин, физик совершил настоящий переворот в развитии электротехники.
Не менее значительны исследования Ленцем теплового действия электрического тока. В 1832 г. ученый впервые обратил внимание на изменение проводимости нагреваемых металлических проводников. Сконструировав прибор для измерения количества тепла, выделяемого при прохождении тока в платиновой проволоке, ученый провел большую серию опытов, позволивших ему сформулировать в 1843 г. новый закон, дающий количественную оценку теплового действия электрического тока: «Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока». Как уже было сказано, Джоуль, проводя аналогичные эксперименты, выполнил гораздо меньше измерений и пользовался менее точным прибором. Научное сообщество не стало мелочиться и отдало приоритет в открытии закона обоим ученым.
Закон Джоуля – Ленца определяет количество тепла Q , выделяющегося в проводнике при прохождении через него электрического тока: Q пропорционально сопротивлению R проводника, квадрату силы тока I в цепи и времени прохождения тока t:
Q = aI2Rt,
где а – коэффициент пропорциональности, зависящий от выбранных единиц измерения.
Сфера применения закона обширна. На нем основан расчет всех электрических цепей и электронных схем, электроосветительных установок, нагревательных и отопительных электроприборов.
Согласно закону, для уменьшения тепловых потерь в линиях электропередач повышают передаваемое напряжение, что снижает силу тока, а значит, и нагрев провода. Чтобы проводник чрезмерно не разогревался и не стал источником пожара, ввели нормы расчета сечений проводов.
На принципе разогрева проводника при увеличении его электрического сопротивления устроены все электронагревательные приборы, нагревательные элементы которых изготавливают из специальных тугоплавких сплавов с высоким удельным сопротивлением (нихром, константан) и по возможности большой длины и малого сечения провода.
Для защиты электрических цепей от протекания токов высокой силы используют электрические (плавкие) одноразовые предохранители относительно малого сечения из легкоплавкого сплава. При перегрузке в сети и при коротком замыкании тока эти проводники расплавляются и размыкают цепь, предохраняя ее от перегрева и возгорания.
Физик, философ, педагог, лектор, пропагандист, популяризатор науки, общественный деятель; профессор Новороссийского и Московского университетов, Московского технического училища; почетный доктор Глазговского университета; основатель (совместно с П.Н. Лебедевым) Физического института при Московском университете; президент Московского общества испытателей природы, председатель Московского педагогического общества, товарищ председателя Общества содействия успехам опытных наук и практических применений им. Х.С. Леденцова; издатель и главный редактор журнала «Научное слово», Николай Алексеевич Умов (1846–1915) является автором учения о движении энергии в телах, базового понятия в новейшей физике – потока энергии, т. н. вектора Умова. Умов – первооткрыватель классической формулы общего уравнения движения энергии.
Человечество с каждым годом все больше нуждается в энергии – механической, тепловой, химической, электрической, ядерной. Все эти формы энергии, трансформируясь друг в друга, дают совокупность энергетических процессов, без которых не обойтись ни обывателям, ни ученым. Последних всегда интересовал вопрос – каким образом происходит эта трансформация и как повысить ее КПД? Схематично это выглядит так. В замкнутый объем через поверхность поступает первичная энергия, а затем выходит преобразованная (разумеется, в рамках закона сохранения энергии). Плотность потока энергии (Su) при этом ограничена физическими свойствами среды, через которую она течет. Этот термин – плотность потока энергии – ввел в начале 1870-х гг. русский физик Н.А. Умов, опубликовавший несколько работ о движении энергии, в которых развил представления о плотности энергии в данной точке среды, скорости и направлении движения энергии, о локализации потока энергии в пространстве.
Н.А. Умов
Ученый составил дифференциальные уравнения движения энергии в твердых телах постоянной упругости и в жидких телах, интегрируя которые и применяя к распространению волн в упругой среде, пришел к заключению, что энергия целиком переносится волной от одной точки к другой. «Количество энергии, проходящей через элемент поверхности тела в единицу времени, равно силе давления или натяжения, действующей на этот элемент, умноженной на скорость движения элемента» – этот вывод называется теоремой Умова. Уравнение непрерывности в свободном пространстве для движущихся упругих сред и вязких жидкостей имеет вид:
где Su = wv; w – плотность энергии; v – скорость движения среды.
После защиты ученым в 1874 г. докторской диссертации «Уравнения движения энергии в телах» Su принято называть в нашей стране вектором Умова.
В 1884 г. английский физик Д. Пойнтинг, независимо от Умова и ничего не зная о трудах русского ученого, получил подобное выражение для частного случая – электромагнитного поля (поперечных электромагнитных волн). На Западе без особых рефлексий вектор Умова переименовали в вектор Пойнтинга ( Sp ):
Sp = [E × H];
E и H – напряженности электрического и магнитного полей.
Сам Умов, кстати, отмечал, что его выводы применимы и в электромагнитных полях.
Необходимо различать принципиальную разницу между этими понятиями – Su и Sp . Вектор Пойнтинга можно рассматривать только применительно к электромагнитным полям, тогда как вектор Умова применим ко всем силовым полям без исключения, поскольку сами уравнения движения энергии получены Умовым для движения любого вида энергии, происходящего в любой среде, то есть носят самый общий характер.
Не прибегая к выкладкам, заметим еще, что вектор Умова Su описывает конвективный перенос энергии из одной точки пространства в другую, в частности полем движущегося заряда; а вектор Пойнтинга связан лишь с переносом энергии электромагнитными волнами.
Труды Умова своей математической сложностью представляли «крепкий орешек» для российских и зарубежных коллег Николая Алексеевича. Утверждали даже, что они «лишены какого бы то ни было научного смысла и представляют собой… простой набор математических формул». Раскусили их не сразу, но, раскусив, буквально растащили на цитаты, при этом не всегда озвучивая автора.
Так было и в других случаях. Когда Умов показал свою блестящую работу «О стационарном движении электричества на проводящих поверхностях произвольного вида» немецкому физику Г. Кирхгофу, тот тут же умыкнул главные положения этого исследования и опубликовал их под своим именем (не забыв, правда, упомянуть и русского ученого). Фактически то же самое произошло и со знаменитой формулой E = mc2 , которую русский физик получил лет за тридцать до А. Эйнштейна – опять же как общий случай для волновых процессов в упругих средах. (Умов вывел соотношение между энергией волновых полей и их инерцией: dE = c2dm ).
Но вернемся к вектору и к области его применения. Надо сказать, что область эта – широчайшая, как в науке, как и в технике. Без вектора Умова не обойтись при освоении нового вида энергии (скажем, термоядерной), при разработке сложного и дорогостоящего технического устройства (ТОКОМАК).
35 лет назад, в преддверии глобального мирового энергетического кризиса из-за исчерпания природных энергетических ресурсов, П.Л. Капица в одном из своих докладов, посвященных энергетической проблеме, обосновывая свои положения в выборе того или иного вида энергии, оперировал только вектором Умова. Рассматривая альтернативные способы получения энергии, академик подчеркивал удобство вектора Умова для изучения процессов преобразования энергии. При этом Капица привел примеры, как с помощью этого вектора определяют предельную мощность мотора или турбины; мощность трансмиссии ременной передачи; предельную мощность, передаваемую лентой в генераторе типа Ван-де-Граафа; предельную мощность в газовых, химических элементах, в солнечных батареях, геотермальных источниках; как находят предельную высоту, на которой может летать турбореактивный самолет, и т. д.
К сказанному Капицей можно добавить, что вектор Умова применяют для проектирования электромагнитных излучателей и направляющих систем в радиоэлектронной аппаратуре, для расчета энергетических характеристик антенн, в частности, сопротивления излучения выпускных самолетных антенн. Вектор необходим при определении оптимальной аэродинамической конструкции летательного аппарата в поле скоростей. В процессах и аппаратах химических технологий его используют для составления детерминированных и идеальных математических моделей. В электротехнике с его помощью определяют внутреннее активное и реактивное сопротивление проводника и т. д. и т. п.
«Представления Умова о движении и распределении энергии в средах, о ее потоке, скорости и направлении являются общепризнанными в современной физике. Они прочно завоевали себе место в таких ее разделах, как теория поля, электродинамика, оптика, акустика, гидродинамика… Именно Умов изложил очень ценную идею об универсальности всех силовых взаимодействий в природе» (профессор А.Л. Шаляпин).
Писатель Андрей Белый оставил яркие воспоминания о своем преподавателе – Н.А. Умове, в котором адекватно своему учителю употребил много редких, но метких слов: «Огромная область физика была им высечена перед нами, как художественное произведение, единообразное по стилю… Он вводил нас в суть вопроса, как жрец, сперва протомив подготовкою; взвивал занавесь, и мы видели не историю становления вопроса, а некую драму-мистерию; так, пленив нас вопросом, он углублялся уже в детализацию и раскрытие чисто математических формул».
Электротехник, военный инженер, конструктор, изобретатель, предприниматель; действительный член Французского физического общества, заместитель председателя Электротехнического отдела императорского Русского технического общества (РТО); начальник службы телеграфа Московско-Курской железной дороги, директор мастерской физических приборов (Москва), руководитель технического отдела французской «Генеральной компании электричества с патентами Яблочкова» (Париж), глава акционерного товарищества «Яблочков-изобретатель и К°»; кавалер именной медали РТО и французского ордена Почетного легиона, Павел Николаевич Яблочков (1847–1894) известен многими научными работами и изобретениями в области электротехники – электромагнитов, сепараторов для разделения катодного и анодного пространства, первого генератора и первого трансформатора переменного тока, системы «дробления» электрического света, химических источников тока. Всемирную славу получил Яблочков за свою дуговую лампу – «свечу Яблочкова».
Как освещались полтора века назад улицы наших городов? Хотя бы Москвы. О деревнях не будем. Накануне нашествия «двунадесяти языков» улицы Белокаменной с сентября по май освещали 7000 масляных фонарей на деревянных столбах. Фонари были в версте друг от друга, конопляное масло (а были времена, и спирт) воровали, так что слово «освещали» мало отражало суть этого физического явления. В 1862 г. масло сменил керосин. Десятилинейные девятисвечевые керосиновые фонари освещали центр древней столицы, а пятилинейные – бросали жидкий свет на окраинах. Через 3 года появились 3000 газовых английских фонарей. Для «большой деревни» этого было явно недостаточно, поэтому вопрос об освещении улиц во второй половине XIX в. стоял довольно остро. Кстати, не только в Москве, но и во всем мире, прежде всего в европейских столицах, где фонарей было больше, но тех же – английских.
Ипподром в Париже, освещённый «свечами Яблочкова». Гравюра XIX в.
В 1872 г. русский электротехник А.Н. Лодыгин подал заявку на изобретение электрической лампы накаливания, в которой нитью накала служил угольный стержень, помещенный в вакуумированный сосуд, а в 1874 г. получил патент за номером 1619. Тогда же состоялись демонстрации по освещению улиц и помещений в ряде мест Петербурга. Вызвав общественный резонанс, лампы накаливания тем не менее не нашли спроса из-за несовершенства конструкции. Но они подготовили почву для изобретения П.Н. Яблочковым (в мастерских которого Лодыгин какое-то время работал) электрической свечи, а позднее и для работ американца Т.А. Эдисона (патент 1880 г.), с благодарностью позаимствовавшего принцип действия изобретения предшественника и добавившего к нему свою придумку – угольную нить из бамбука, существенно увеличившую срок службы лампы.
12 декабря 1876 г. впервые вспыхнул свет «свечи Яблочкова» (французский патент № 112024, 1876). К этому дню ученый шел несколько лет.
Будучи членом кружка электриков-изобретателей и любителей электротехники при Московском политехническом музее, Яблочков узнал об опытах Лодыгина по освещению улиц и помещений лампами накаливания и загорелся идеей найти дуговой лампе Фуко с ручным регулированием длины дуги новую область практического применения. Дуговые лампы от электрических отличаются тем, что в них под действием электрического разряда светится газ между электродами, а в лампах накаливания свет излучает нагретая нить.
Установив впервые в истории железнодорожного транспорта на паровозе прожектор с такой дуговой лампой, Яблочков был разочарован хотя и эффектным освещением пути следования, но чрезвычайно неэффективным ручным регулированием и решил усовершенствовать лампу Фуко, имевшую горизонтальное расположение угольных электродов.
Как-то занимаясь опытами по электролизу растворов поваренной соли, Яблочков обратил внимание на вспышку между двумя случайно коснувшимися друг друга угольными пластинками-электродами, после чего остановился на варианте дуговой лампы без регулятора межэлектродного расстояния.
Поставив электроды вертикально, изобретатель разделил их слоем изолятора – фарфоровой вставкой, а зажигание производил сведением электродов до соприкосновения (с последующим разведением). Во время работы лампы электроды сгорали и испарялись, но нужное расстояние между ними поддерживалось автоматически.
Это простейшее (но и гениальное) устройство, в котором ученый добился главного – саморегулирования свечения, тут же получило название «свеча Яблочкова». Местом первой демонстрации нового источника света стал Лондон. В столицах Европы, Америки, Азии «русский свет» осветил универсальные магазины и театры, площади и улицы, а во дворцах персидского шаха и короля Камбоджи не могли нарадоваться яркости голубого и оранжевого (в зависимости от состава вещества в прокладке между углями) «северного света». В России впервые электрическое освещение по системе Яблочкова было проведено в 1878 г. в казармах Кронштадта и в Большом театре Петербурга.
Пресса изливала восторг и вещала о новой эре в развитии электротехники. Во Французской академии и в других крупнейших научных обществах Европы изобретению русского ученого был посвящен ряд докладов. На электротехнической выставке 1881 г. в Париже изобретения Яблочкова, признанные вне конкурса, получили высшую награду. Словом, мир получил свет, а Яблочков – мировое признание.
Надо отметить, что Яблочков не только изобрел свечу, но и обеспечил ей скорейшее внедрение. Оснастил осветительные установки генераторами переменного тока; рассчитал и предложил цепи из произвольного числа свечей; добился увеличения их долговечности (из-за быстрого сгорания электродов первых свеч хватало на 1,5 часа); разработал системы распределения тока при посредстве индукционных приборов – предшественников современных трансформаторов.
Товарищество «Яблочков-изобретатель и К°» какое-то время процветало, но поскольку Павлу Николаевичу за непрестанными расчетами и опытами некогда было самому заниматься делами фирмы, ими занимались проходимцы, которые оставили изобретателя ни с чем.
Через несколько лет яркие, но неэкономичные дуговые лампы заменились лампами накаливания, но не ушли, а заняли свою достойную нишу среди прочих источников света.
Позднее вольтову дугу стали заключать в лишенную кислорода атмосферу, чем повысили непрерывность горения до 200 часов. Сейчас вместо вакуума применяют инертные газы. Широкое применение нашли источники особо яркого (белого) света – ртутные и ксеноновые дуговые газоразрядные лампы. Для получения желтого и оранжевого цветов применяют натриевые лампы соответственно низкого и высокого давления, пользующиеся славой самых эффективных источников света.
Собственно же дуговая угольная лампа Яблочкова в ее первозданном виде получила широчайшее распространение в XX в. в прожекторостроении, кинопроекционной аппаратуре, в мощных облучательных установках, находящих большое применение. Так, например, в оптических печах исследуют физико-химические свойства материалов при высоких температурах, изучают влияние интенсивных лучистых потоков на материалы и организмы, осуществляют плавку в особо чистых условиях, сварку и пайку тугоплавких материалов, выращивают монокристаллы, занимаются рафинированием цветных металлов и т. д.
Свеча Яблочкова повлияла на многие работы в области электрического освещения, в частности инициировала возникновение научной фотометрии.
«Свеча Яблочкова дала электротехнике такой же сильный толчок на пути разнообразнейших практических применений электричества, какой паровая машина Уатта дала применениям пара в промышленности» (академик Н.П. Петров).
Помимо своего главного изобретения Павел Николаевич предложил еще электрическую лампочку другого типа – каолиновую, свечение которой происходило от огнеупорных тел, накаляемых электрическим током. Этот принцип спустя четверть века был использован в лампе Нернста.
Ученый создал еще несколько электрических машин и химических источников тока, принесших славу России в области электротехники; получил ряд патентов на магнитоэлектрическую машину переменного тока без вращательного движения; на магнитодинамоэлектрическую машину, на машину переменного тока с вращающимся индуктором, полюсы которого были расположены на винтовой линии; на электродвигатель-генератор, могущий работать на переменном и на постоянном токе, и т. д. В Санкт-Петербурге Яблочков основал электромеханический завод, учредил первый русский электротехнический журнал «Электричество» (1880).
Т.А. Эдисон прожил свою жизнь в богатстве, в свете славы и «ламп Эдисона», а П.Н. Яблочков умер в бедности, редко вспоминаемый кем, 31 марта 1894 г. в Саратове, улицы которого освещали тогда в лучшем случае газовыми английскими фонарями, хотя в концертном зале на Немецкой улице и в гостинице «Россия» уже горели электрические фонари по 550 свечей каждый.
Физик, электротехник, инженер, конструктор, изобретатель; народник; заводской слесарь, молотобоец, сотрудник строительного управления Петербургской железной дороги, заведующий подстанциями городского трамвая в Петербурге, преподаватель Петербургского электротехнического института; основатель первых ламповых производств во Франции и заводов по электрохимическому получению вольфрама, хрома, титана в США; создатель компании «Русское товарищество электрического освещения Лодыгин и К°»; действительный член Русского технического общества; участник многих международных выставок; лауреат Ломоносовской премии Петербургской АН; кавалер ордена Станислава 3-й степени; почетный инженер-электрик Электротехнического института императора Александра III (ЭТИ), Александр Николаевич Лодыгин (1847–1923) изобрел лампу накаливания. Лодыгин известен также как основатель промышленной электротермии, разработчик электрических печей сопротивления и индукционных для плавки металлов, меленита, стекла, закалки и отжига стальных изделий, получения фосфора, кремния.
А.Н. Лодыгин для России – то же самое, что Т. Эдисон для Америки. Речь идет не о количестве патентов, а о значении инженерного и научного вклада в престиж страны.
Лампа накаливания Лодыгина – изобретение ранга теплового двигателя Ползунова или самолета Можайского, названия которых остались навеки связанными с именами создателей. Увы, всякое великое научно-техническое достижение – искус для других изобретателей. Эдисон, позаимствовавший принцип лампы накаливания у Лодыгина, даже предъявил иск автору этой идеи, но суд отклонил заявление американца, сославшись на первенство русского изобретателя. Приоритет изобретения лампы накаливания оспаривался многими лицами, но ни один «патентный процесс» ими выигран не был, так как главные составляющие лампы накаливания – стеклянная колба с откачанным воздухом и угольная, а позднее вольфрамовая нить, на поиск которой Александр Николаевич потратил 27 лет жизни, были запатентованными изобретениями Лодыгина.
И все же Эдисону надо отдать должное – благодаря вложенной им в модернизацию лампы огромной сумме денег, многочисленным экспериментам, нескольким новшествам, налаживанию по всему миру ее промышленного производства, рекламной кампании лампу Лодыгина стали называть лампочкой Эдисона. Это, правда, не изменило сути дела. Ведь ее в свое время называли «лампой Козлова», «лампой Конна» (владельцы акций «Товарищества электрического освещения А.Н. Лодыгин и К°») – именами дельцов, но отнюдь не изобретателей, а в советское и вовсе «лампочкой Ильича».
Будем считать все это научно-техническим казусом, тем более что все-таки Лодыгин первым изобрел лампу накаливания, первым запатентовал ее в России и за рубежом и первым осветил учреждения и городские улицы – за 6 лет до аналогичных работ Эдисона.
Кстати, историки науки обратили внимание на тот факт, что природа будто нарочно произвела на свет трех человек в один год: в 1847-м – Яблочкова, Лодыгина и Эдисона – с тем, чтобы они могли на равных посоревноваться друг с другом.
А.Н. Лодыгин
В молодости Лодыгина бросало в разные, причем самые новые, мало изученные области техники. В конце 1860-х гг. Александр одновременно занялся созданием летательного аппарата вертикального взлета – электролета (геликоптера, вертолета) и водолазного аппарата. Летательный аппарат, отвергнутый российским военным министерством, настолько заинтересовал французов, воевавших тогда с Пруссией, что они вызвали Лодыгина к себе. Увы, пруссаки победили, а мир, быть может, лишился великого изобретения. 40 лет спустя инженер вернулся к идее электролета, но и тогда она оказалась преждевременной и была использована много позднее. Проект автономного водолазного скафандра с применением газовой смеси, состоящей из водорода и кислорода, вырабатываемого из воды путем электролиза, предложенный изобретателем в 1871 г., фактически явился прообразом акваланга.
Но именно работы по электрооборудованию электролета для ночного освещения привели Лодыгина к созданию его главного детища. Начав свои опыты с исследования электрической дуги, инженер обратил внимание на то, что раскаленные концы угольных стержней светят ярче дуги, и тут же стал подыскивать материалы, которые при пропускании тока светились бы не только ярко, но и как можно дольше не перегорали. Остановился изобретатель на двух тонких стержнях из ретортного угля, помещаемых в стеклянный баллон, из которого насосом был откачан воздух. Первые лампочки светились желтоватым светом полчаса, новые модификации – один час, полтора, потом все дольше и дольше…
Впервые лампочку накаливания Лодыгин продемонстрировал для военных на полигоне Волково Поле в Петербурге в 1870 г.
В 1871–1872 гг. изобретатель провел несколько публичных показов электрического освещения лампами накаливания, запитанными от батарей либо от магнитоэлектрических машин переменного тока – в Технологическом институте и Адмиралтействе, в Галерной гавани и на Одесской улице Северной столицы. Этими акциями инженер показал не только самые широкие возможности использования нового освещения, но и возможность «дробить свет», то есть включать большое число источников света в цепь одного генератора электрического тока – эта задача считалась едва ли не самой трудновыполнимой в то время.
Еще два лодыгинских изобретения остались в лампе накаливания – это закрученная в форме спирали нить накаливания и наполнение лампочек инертным газом.
Тогда же Лодыгин подал заявку в Департамент торговли и мануфактур на «Способ и аппараты дешевого электрического освещения», которая болталась по канцеляриям министерства больше двух лет.
В 1874 г. Александр Николаевич получил патент на свою лампу (привилегия № 1619 от 11 июля 1874 г.), после чего запатентовал изобретение в Австро-Венгрии, Испании, Португалии, Италии, Бельгии, Франции, Великобритании, Швеции, Саксонии, Индии и Австралии. В том же году Петербургская АН присвоила Лодыгину ежегодную Ломоносовскую премию.
До ума изобретатель довел свою лампочку после того, как перепробовал в качестве угольных стержней множество материалов. В 1893–1894 гг. Лодыгин получил американские патенты на лампы накаливания с нитью из вольфрама, молибдена и тантала и продемонстрировал новые источники света на Парижской выставке.
Относительная дешевизна ламп, простота их включения, компактность, отсутствие инерционности, малая зависимость параметров от температуры окружающей среды, достаточно высокая надежность и устойчивость к внешним механическим воздействиям и пр. обеспечили им зеленую улицу. И хотя сегодня изобретены другие, более совершенные и долговечные излучатели, лампы накаливания по-прежнему производят в громадных количествах, и они остаются одними из основных источников света.
А.Н. Лодыгина называли «русским Прометеем», «отцом электротермии», «кающимся дворянином». «Последнее определение говорит о глубокой внутренней порядочности и совестливости… Это же подтверждает и участие Лодыгина в народническом движении. Принято считать, что одним из двигателей его научных изысканий было стремление заменить лучины и керосиновые светильники на электрическое освещение в каждом русском доме и избе».
Физик, историк и популяризатор науки, философ, лектор, общественный деятель; профессор Московского университета; участник международных научных конгрессов; организатор первой в России учебно-исследовательской физической лаборатории при Московском университете; основатель и глава первой научной школы физиков; председатель физического отделения Общества любителей естествознания, кавалер золотой медали общества; директор физического отдела при Политехническом музее; член 8 русских и иностранных ученых обществ, почетный член Императорского университета Святого Владимира, Александр Григорьевич Столетов (1839–1896) является одним из основоположников русской физики. Наиболее важные работы были выполнены Столетовым в области фотоэффекта.
А.Г. Столетов заложил основы русской физики своими трудами и научной школой, воспитавшей десятки выдающихся ученых: П.Н. Лебедева, Н.Е. Жуковского, С.А. Чаплыгина, А.П. Соколова, Б.В. Станкевича. Н.Н. Шиллера, В.С. Щегляева, П.A. Зилова и др.
Из фундаментальных исследований Столетова в области оптики, электромагнетизма и молекулярной физики выделим фотоэффект, работами по которому ученый вписал славную страницу в развитие отечественной физики. Изучению этого явления Столетов посвятил два года жизни (1888–1890). Эти исследования называли тогда актино-электрическими.
К этому времени русский физик был известен своими экспериментальными работами по электростатике и электромагнетизму. Изучая магнитные свойства железа, Столетов нашел зависимость магнитной восприимчивости железа от величины намагничивающего поля (докторская диссертация «Исследования функции намагничивания мягкого железа»). Определяя свойства ферромагнетиков, ученый получил кривую магнитной проницаемости, названную его именем. Исследователь предложил два классических метода магнитных измерений веществ – метод тороида с замкнутой магнитной цепью и баллистическое измерение намагниченности. О своих исследованиях по определению коэффициентов пропорциональности между электростатическими и электромагнитными единицами Столетов доложил на I Всемирном конгрессе электриков в Париже (1881), чем способствовал утверждению электромагнитной теории света. На этом конгрессе по предложению русского ученого была утверждена единица электрического сопротивления – Ом, а также эталон сопротивления, то есть был сделан первый шаг к созданию системы единиц электрических измерений. Предложенные Столетовым теория намагничивания и методы испытаний магнитных свойств железа стали импульсом для развития электротехники в мире.
Памятник А.Г. Столетову у физфака МГУ. Скульптор С.И. Селиханов
Внешний фотоэффект – явление испускания электронов веществом под действием света открыл немецкий физик Г. Герц в 1887 г. Облучая один из двух металлических шаров разрядника для излучения электромагнитных волн ультрафиолетовыми лучами, Герц зафиксировал усиление электрического разряда между шарами.
В это же самое время изучением данного явления занимались независимо друг от друга сразу несколько ученых. Немецкий физик В. Гальвакс наблюдал, как заряжается положительно облученная ультрафиолетовым светом металлическая пластинка, итальянский исследователь А. Риги установил возможность фотоэффекта в металлах и в диэлектриках. Русский ученый А.Г. Столетов впервые провел всесторонние экспериментальные исследования и определил природу и основные закономерности этого явления, предложил количественные методы исследования фотоэффекта и фотоэлектрического контроля интенсивности света.
В своих опытах Столетов хотел выяснить, какое количество фотоэлектронов (он называл их зарядами) вырывается с поверхности вещества, от чего зависит их число и чему равна их кинетическая энергия. Ученый помещал в вакуумированный стеклянный баллон сетчатый конденсатор (металлическую сетку – анод и плоский цинковый диск – катод). Катод, подсоединенный к отрицательному полюсу батареи, облучался ультрафиолетовым излучением от вольтовой дуги через специальное кварцевое окошко. На электроды подавалось напряжение, изменяемое потенциометром.
Под действием света катод испускал отрицательно заряженные частицы (ими оказались электроны), вследствие чего в электрической цепи возникал электрический ток, измеряемый гальванометром. В результате тщательных экспериментов Столетов установил, что при малых напряжениях до анода долетает лишь часть вырванных светом отрицательных частиц, а при увеличении напряжения (и при неизменной интенсивности излучения) сила тока растет. Физик определил также, что при определенной разности потенциалов фототок достигает своего максимума и дальше не растет – выходит на насыщение. Затем ученый установил фактическую безынерционность фотоэффекта, то есть одновременность освещения металла и выхода из него электронов с незначительным запаздыванием фототока в 10–9 с. Изготовив первый фотоэлемент, Столетов обнаружил понижение его чувствительности со временем – т. н. фотоэлектрическое утомление; установил, что фототок возрастал при зачистке поверхности катода и повышении его температуры.
После серии тщательных экспериментов Столетов вывел первый закон фотоэффекта, заключающийся в пропорциональности силы фототока (в том числе фототока насыщения) из металла от интенсивности освещения. Физиком были сформулированы еще два закона фотоэффекта: об уменьшении максимальной скорости электронов с ростом длины волны света и о «красной границе фотоэффекта» – критической длине волны, индивидуальной для каждого металла, с превышением которой фотоэффект прекращается.
Полученные Столетовым зависимости нельзя было объяснить с классических позиций. Позднее английским физиком Дж. Томпсоном и немецким Ф. Ленардом было доказано, что при фотоэффекте свет выбивает из вещества электроны (1899), а двумя другими немецкими физиками была объяснена квантовая (фотонная) природа света (М. Планк, 1900) и создана теория фотоэффекта (А. Эйнштейн, 1905).
Закономерности, открытые Столетовым, легли в основу современной теории электрического разряда в газах, разработанную Дж. Таунсендом. Английский физик ввел в мировую научную литературу термин «эффект Столетова».
Фотоэффект нашел широчайшее применение в технике. Вакуумная установка русского ученого стала прототипом электронной лампы. На явлении фотоэффекта основано действие фотоэлементов, используемых для механизации и автоматизации технологических и контрольных процессов; для освещения улиц; в робототехнике; в рентгеновских аппаратах; в фотометрии для измерения силы света, яркости и освещенности; в кино и телевидении для воспроизведения звука (фонограмм); в фототелеграфах и фототелефонах. Фотоэлементы применяют в турникетах метро, в источниках тока в часах и микрокалькуляторах, в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях, в динамомашинах, в ЭВМ.
«В своих публичных выступлениях Столетов непременно рассказывал о достижениях науки, об использовании ее в практических целях. “Было время, когда физика только что складывалась… С тех пор наука росла быстро и стала творить чудеса: не ограничиваясь расширением умственного горизонта, она подарила человеку на первых же порах и паровоз, и телеграф, и гальванопластику, и фотографию». Добавим к этому: фотоэффект и фотоэлементы.
Основатель первой русской научной школы физиков, член-корреспондент Российской АН, почетный член Британского Королевского института, профессор Московского университета, Петр Николаевич Лебедев (1866–1912) в историю естествознания вошел как непревзойденный экспериментатор, решивший ряд труднейших проблем современной физики. Главным трудом ученого, количественно подтвердившим электромагнитную теорию света Дж. К. Максвелла и заложившим фундамент успешного решения многих физических проблем XX в., стало открытое и измеренное им давление света на твердые тела (1900) и газы (1908).
Небезызвестный в кругу физиков Остап Бендер в житейской суете постоянно ощущал на себе давление атмосферного столба. А вот давления света этот тонкий лирик не замечал, хотя оно в ту пору было хорошо известно не только в научных, но и в литературных кругах. Впрочем, ничего странного в том не было, так как по сравнению с атмосферным световое давление солнечных лучей на земной поверхности в миллиарды раз меньше. Первым же это давление обнаружил русский физик Петр Николаевич Лебедев на своих сверхминиатюрных установках, которым позавидовал бы сам левша.
П.Н. Лебедев. Гравюра XIX в.
К своему открытию Лебедев пришел в молодые годы в Страсбурге, где он занимался двумя научными проблемами. Одна из них стала диссертацией – «Об измерении диэлектрических постоянных паров и о теории диэлектриков Моссотти-Клаузиуса», за которую ученый получил степень доктора философии (1891), а вторая – разработка теории кометных хвостов – оказалась непосредственно связанной с делом всей его жизни – измерением давления света.
Отклонения от Солнца кометных хвостов интересовали еще Кеплера и Ньютона. Позднее ученые объясняли это явление тепловыми и другими процессами, но о давлении света не шло речи до середины XIX в., пока английский физик Дж. К. Максвелл в своей электромагнитной теории света не указал на его величину, столь микроскопическую, что подтвердить ее в опыте не было никакой технической возможности. Разнообразные эксперименты физиков на протяжении десятилетий заканчивались ничем, и только в 1888 г. немецкий ученый Г. Герц доказал, что электромагнитные колебания материальны и распространяются в пространстве без каких-либо проводов со скоростью света.
Принадлежа к числу сторонников теории электромагнетизма, Лебедев в небольшой заметке «Об отталкивательной силе лучеиспускающих тел» (1891) причину отклонения кометных хвостов объяснил тем, что «отталкивательная сила светового давления» превосходит ньютоновское притяжение. Мало кто из естествоиспытателей предполагал тогда, что эта работа станет этапной не только для автора статьи, но и для астрофизики и физики в целом. Лебедев же, убежденный, что он сделал «очень важное открытие в теории движения светил», поставил себе задачу – определить величину давления света на тела.
Приняв после защиты диссертации приглашение профессора А.Г. Столетова, Лебедев поступил лаборантом на кафедру физики Московского университета и за 10 лет сделал удивительную научную карьеру.
С большим трудом устроив собственную лабораторию, ученый провел сложнейшие эксперименты, которые историки науки любят сравнивать со «световой вертушкой Крукса». Под стеклянный колпак английский физик помещал крохотный пропеллер, и когда рядом включали лампу, пропеллер под воздействием света начинал безостановочно вращаться – якобы из-за теплового воздействия световых лучей на его лопасти. Этой «забавой» занимались многие физики, предварительно откачивая воздух из-под колпака, но каждый раз его остаточное давление значительно превышало силу светового давления. Лебедев для экспериментов сам конструировал установки и приборы. Надо сказать, что Петр Николаевич был кудесником по части их миниатюризации. Так, например, взяв для исследования преломления электромагнитных волн за образец 600-килограммовую призму Герца, Лебедев изготовил эбонитовую призму весом всего 2 г!
В чем же состояли трудности экспериментов? Для определения светового давления на тело Лебедев создал крутильные весы – систему платиновых сверхтонких и сверхлегких дисков на закручивающемся подвесе. Точности измерений препятствовали помехи. Не объясняя физики процессов, укажем лишь, что надо было избавиться от конвекционных потоков газа под колпаком и от неодинакового нагрева двух сторон дисков при падении на них света, вследствие чего возникал дополнительный крутящий момент. Петр Николаевич с этими препятствиями справился блестяще. В качестве примера взять хотя бы его остроумное решение по созданию в стеклянном баллоне, где размещались крутильные весы, нужного разрежения воздуха. В баллоне Лебедев помещал каплю ртути и слегка подогревал ее. Ртутные пары вытесняли воздух, откачиваемый насосом. А после этого температура в баллоне понижалась, и остаточное давление достигало величин на два порядка меньших, чем в установках других экспериментаторов.
На рубеже XIX–XX вв. развитие физики требовало нового взгляда на ее основы. В преддверии мировых потрясений естествознанию нужен был мощный рывок. И многие ученые надеялись получить его, развивая электромагнитную теорию Максвелла. Интерес к этой проблеме был настолько велик, что когда Лебедев сделал доклад о своих экспериментах на Первом Международном конгрессе физиков в Париже (1900) и опубликовал в немецком журнале «Анналы физики» (1901) работу «Опытное исследование светового давления», как стал тут же знаменит – даже в салонах, где его открытие со знанием дела обсуждали дамы света.
Господа же ученые считали полученный Лебедевым результат «одним из важнейших достижений физики за последние годы», а самого физика – самым «искусным экспериментатором» того времени. Законодатель науки У. Томсон (лорд Кельвин) – ярый противник Максвелла – «вынужден был сдаться перед опытами» Лебедева и признать электромагнитную теорию света. Из открытия русского физика следовало, что электромагнитные волны обладают массой (m) и механическим импульсом (p), а электромагнитное поле наравне с формой вещества является формой материи и его энергия (Е) выражается формулой:
E = pv = mv·v,
где v – скорость света.
Лебедеву без защиты магистерской диссертации (редчайший случай в университетской практике!) присудили степень доктора наук, премию АН и избрали членом-корреспондентом АН. В 1901 г. новоиспеченному профессору дали кафедру в Московском университете.
Продолжив свои изыскания по световому давлению на газы, которое было во много раз меньше, чем на твердые тела (в связи с чем и сложность эксперимента возросла на порядок), Лебедев успешно разрешил трудности теоретического и экспериментального характера и о полученных результатах впервые сообщил в «Анналах физики» в 1910 г.
Новые опыты Лебедева были встречены мировой физической общественностью с восторгом. Британский Королевский институт избрал Лебедева своим почетным членом. В 1912 г. Лебедев был назван кандидатом на Нобелевскую премию, но, увы, повторилась история с Д.И. Менделеевым. Петр Николаевич скоропостижно скончался в возрасте 46 лет – во многом из-за серьезной драмы в его карьере ученого.
В 1911 г. Лебедев вместе с ректором и рядом других профессоров оставил Московский университет в знак протеста против действий министра просвещения Л.А. Кассо, направленных на ограничение автономии университета. На частные пожертвования в наемном помещении была организована физическая лаборатория, куда и перешел Лебедев со своими 30 учениками, многие из которых – П.П. Лазарев, С.И. Вавилов, В.К. Аркадьев, Т.П. Кравец и др. – стали всемирно известными учеными, а сама лаборатория – прообразом коллективной научной работы XX в.
Продолжать свои уникальные эксперименты на новом месте Лебедеву было очень сложно. Институт Нобеля в Стокгольме дважды приглашал физика на должность директора лаборатории, но он остался верен своим ученикам.
Все это привело к трагическому концу. Всей России стали известны слова физиолога И.П. Павлова: «Когда же Россия научится беречь своих выдающихся сынов – истинную опору Отечества?»
Опыты Лебедева открыли столбовую дорогу физикам, давшим миру квантовую и гравитационную теории, физику элементарных частиц и Вселенной. Главное уравнение теории относительности воспроизводило формулу русского ученого с той лишь разницей, что скорость света была обозначена не буквой v , а c: E = mc2 .
В середине XX в. были созданы атомная и водородная бомбы, в которых использовано именно давление света, но уже чудовищной величины. Пришла новая эпоха, поставившая перед физикой не только задачи созидания, а больше – разрушения.
У Лебедева не много работ, посвященных другим аспектам физики, но все они вошли в историю науки. Так, в 1895 г. он создал тончайшую установку для генерирования и приема электромагнитного излучения с длиной волны 6 и 4 мм, исследовал на ней отражение, преломление, поляризацию, интерференцию этих волн и другие явления. Ученый глубоко интересовался проблемами астрофизики, активно работал в Международном союзе по исследованию Солнца, написал ряд статей о кажущейся дисперсии межзвездной среды. В последние годы жизни его внимание привлекла проблема ультразвука. Исследовал физик также роль вращения Земли в возникновении земного магнетизма. Принцип термоэлемента в вакууме, выдвинутый Лебедевым, ныне нашел широкое применение в военной технике.
Физик, пропагандист и организатор науки, общественный деятель; почетный доктор 11 ведущих университетов мира; профессор-исследователь Лондонского Королевского общества, профессор МГУ; один из организаторов МФТИ, профессор и завкафедрой физики и техники низких температур МФТИ; академик, член Президиума АН СССР, член совета Тринити-колледжа, Лондонского Королевского и 30 других зарубежных академий наук и научных обществ; заместитель директора Кавендишской лаборатории по магнитным исследованиям, руководитель лаборатории им. Монда Королевского общества, директор Институт физических проблем в Москве; главный редактор «Журнала экспериментальной и теоретической физики»; член Советского комитета Пагуошского движения за мир и разоружение; лауреат Премии им. Дж. Максвелла, двух Сталинских премий, Нобелевской премии по физике; кавалер 6 орденов Ленина, ордена Трудового Красного Знамени, Большой золотой медали им. М.В. Ломоносова, золотых медалей М. Фарадея, Б. Франклина, Н. Бора, Э. Резерфорда, Х. Камерлинг-Оннеса и др. наград; дважды Герой Социалистического Труда, Петр Леонидович Капица (1894–1984) является крупнейшим физиком-экспериментатором, внесшим значительный вклад в развитие физики магнитных явлений, квантовой физики конденсированного состояния, электроники и физики плазмы. Имя Капицы неразрывно связано с развитием физики и техники низких температур и открытием сверхтекучести гелия.
Главным отличительным свойством Капицы, «собравшего» за жизнь много больше других советских ученых всевозможных международных наград и почетных званий, было завидное сочетание в нем ученого и инженера. Он стал одним из первых деятелей науки, усиленно внедрявшим все свои достижения в народное хозяйство. В данном случае слово «внедрявшего» не совсем верно отражает суть – все открытия и изобретения ученого сами ложились в русло научно-технического прогресса, ставшего основой мощи СССР.
П.Л. Капица и Н.Н. Семенов. Художник Б.М. Кустодиев
Исследования Капицы условно можно разделить на две большие, равные по их научному вкладу области: физику низких температур, которой ученый занимался в 1920–1945 гг., и физику высокотемпературной плазмы и управляемого термоядерного синтеза, ставших предметом его изучения в послевоенный период. Ограничимся рассказом о научных достижениях Капицы в физике низких температур.
В 1921 г. ученый был командирован в Англию, где он работал в Кембриджском университете у Э. Резерфорда, а заодно занимался приобретением оборудования для научных учреждений России. В Кембридже Капица занялся экспериментальными исследованиями в области физики низких температур, создал метод получения сверхсильных магнитных полей, в 6–7 раз превосходивших все прежние, соответствующую технику. Благодаря короткому импульсу разряда (0,01 с) оборудование не перегревалось и не разрушалось.
Для достижения необходимого диапазона низких температур требовалось большое количество сжиженных газов. С этой целью ученый разработал несколько принципиально новых холодильных машин (например, в 1932 г. ожижитель водорода), самой знаменитой из которых стала установка для адиабатического охлаждения гелия при температуре около 4,3 °К, с небывало высокой производительностью – 2 л жидкого гелия в час (1934). Капице удалось решить сложнейшие технические задачи, связанные не только с производительностью, но и с заменой предварительного охлаждения гелия жидким водородом на охлаждение его в специальном расширительном детандере, с проблемой замерзания смазки движущихся частей при низких температурах – для этого физик использовал сам жидкий гелий. Все изготовляемые ныне ожижители гелия создаются по модели Капицы.
В СССР Капица продолжил свои исследования с жидким гелием, для чего советское правительство закупило у Резерфорда все необходимое оборудование. Спроектировав несколько установок для сжижения еще и других газов, ученый в 1938 г. создал эффективную турбину, на которой обнаружил необычайное уменьшение вязкости и одновременное увеличение теплопроводности жидкого гелия (гелия-2) при охлаждении до температуры ниже критической – 2,17 °К.
Результаты своих исследований Капица опубликовал в британском журнале «Нейче»; новое явление назвал сверхтекучестью. «При переходе тепла от твердого тела к жидкому гелию на границе раздела возникает скачок температуры, получивший название скачка Капицы; величина этого скачка очень резко растет с понижением температуры». Это фундаментальное открытие положило начало развитию нового направления в физике – квантовой физике конденсированного состояния, для чего пришлось ввести новые квантовые представления – т. н. элементарные возбуждения, или квазичастицы.
В 1939 г. ученый построил установку низкого давления для промышленного получения кислорода из воздуха. В ней Капица использовал принципиально новый метод сжижения воздуха с помощью цикла низкого давления, осуществляемого в высокоэффективном радиальном турбодетандере с КПД 80–85 % (сегодня 86–92 %).
С начала 1940-х гг. во всем мире крупные установки разделения воздуха для получения кислорода, азота и инертных газов использовали предложенный русским физиком цикл низкого давления. Надо ли говорить что-либо еще о вкладе ученого в развитие нашей (да и не только нашей) промышленности, если половину получаемого кислорода (а это не менее 100 млрд кубометров в год!) используется в черной и цветной металлургии, не говоря о химической, пищевой промышленности, в медицине, ракетной технике и т. д.
Во время Великой Отечественной войны Капица внедрял в промышленное производство разработанные им кислородные установки. В 1943 г. ученый запустил в Институте физических проблем опытный завод. Тогда же он был назначен начальником Главного управления кислородной промышленности при СНК СССР (Главкислород).
За эту работу и за открытие сверхтекучести гелия физику были присуждены две Сталинские премии I степени. В 1978 г. Капица стал лауреатом Нобелевской премии по физике за «фундаментальные изобретения и открытия в области физики низких температур» (совместно с А.А. Пензиасом и Р.В. Вильсоном).
«Петр Леонидович принадлежит к числу самых ярких людей, оказавших влияние на глубинное развитие советской физики. Это влияние нашло отражение не только в полученных научных результатах, но и в создании духа объективного познания истины. Жаль, что такие люди появляются редко» (Академик Ю.А. Осипьян).
Физики, доктора физико-математических наук, профессора, академики АН СССР, руководители научных коллективов, лауреаты Сталинских (Государственных) премий, кавалеры высших наград страны, в том числе орденов Ленина и Трудового Красного Знамени, Сергей Иванович Вавилов (1891–1951) и Павел Алексеевич Черенков (1904–1990) являются авторами открытия эффекта Вавилова – Черенкова (1934), а Игорь Евгеньевич Тамм (1895–1971) и Илья Михайлович Франк (1908–1990) – авторами теории, описавшей данный эффект (1937). За открытие и объяснение этого явления все четверо ученых были удостоены в 1946 г. Сталинской премии I степени, а в 1958 г. П.А. Черенков, И.Е. Тамм и И.М. Франк получили Нобелевскую премию по физике.
Эффект Вавилова – Черенкова был обнаружен случайно, хотя открытие оказалось закономерным развитием работ академика С.И. Вавилова по исследованию свечения и природы света, в частности люминесценции, ставшей темой кандидатской диссертации аспиранта Вавилова – П.А. Черенкова.
П.А. Черенков
Занимаясь исследованиями люминесценции растворов ураниловых солей при облучении их гамма-квантами от радиоактивного радиевого источника, аспирант обратил внимание на голубоватое свечение стеклянного стаканчика с серной кислотой. Заменив кислоту другими прозрачными жидкостями, ученый столкнулся с необъяснимым эффектом – самые разные жидкости светились с равной интенсивностью, что указывало на что угодно, только не на люминесценцию. Это непрошеное свечение весьма отвлекало аспиранта от главного предмета его исследований. Черенков удалял примеси – скрытые источники флуоресценции, уменьшал яркость флуоресценции нагреванием и добавлением йодистого калия, нитрата серебра, но голубое свечение оставалось неизменным. К тому же физик обнаружил, что свечение поляризовано параллельно, а не перпендикулярно направлению падающих гамма-лучей, как должно было быть при флуоресценции.
Аспирант продемонстрировал обнаруженный им эффект своему руководителю. Вавилов – крупнейший в мире специалист по люминесценции заинтересовался этим явлением. Было известно, что оно уже отмечалось другими физиками, в частности Марией и Пьером Кюри, посчитавшими свечение проявлением люминесценции.
Убедившись, что яркость свечения действительно практически не зависит от химического состава жидкости (двойного дистиллята или раствора), и что по измеренным Черенковым характеристикам оно не имеет никакого отношения к люминесценции, Вавилов предположил, что свет излучают быстрые электроны, образующиеся в растворе под действием гамма-лучей. При этом излучение возникает практически мгновенно с началом движения и исчезает сразу же после прохождения электрона. Дав первое теоретическое объяснение открытого его учеником эффекта, академик инициировал продолжение работ в этом направлении.
Надо сказать, что в то время (начало 1930-х гг.) самым надежным оптическим прибором, фиксировавшим все нюансы свечения, был человеческий глаз. Да и вообще все физические опыты за неимением адекватной приборной базы были предельно просты. «В большей части экспериментов применялся разработанный Вавиловым с учениками метод использования человеческого глаза для количественных измерений световых потоков по порогу зрения» (Б.Б. Говорков).
По воспоминаниям Е.П. Черенковой, дочери Павла Алексеевича, отец часами сидел в подвале, привыкая к темноте и приучая свои глаза к отлову фотонов, после чего приступал к экспериментам. Говорят, Черенков умудрялся замечать даже одну частицу света!
Результаты наблюдений Черенков изложил в статье, опубликованной в 1934 г. в «Докладах Академии наук», – «Видимое свечение чистых жидкостей под действием γ-радиации», там же была помещена и теоретическая работа С.И. Вавилова – «О возможных причинах синего γ-свечения жидкостей». Через некоторое время черенковскую статью поместили в журнале «The Physical Review» (США).
Как директор ФИАНа (Физического института им. П.Н. Лебедева АН СССР), Вавилов предложил своим сотрудникам И.М. Франку и И.Е. Тамму заняться теоретическими аспектами «таинственного излучения» и порекомендовал им соответствующую литературу.
За несколько лет экспериментов Черенков накопил достаточно результатов, чтобы их можно было заключить в русло некоей теории. Франк и Тамм на основе классической электродинамики создали теорию излучения, главным пунктом которой было предположение, что быстрые электроны летят равномерно и прямолинейно со скоростью, превышающей скорость света в данной среде, и при этом испускают электромагнитные волны. (Как известно, в воде или в стекле скорость света существенно уменьшается из-за столкновения фотонов с атомами вещества.) Теория базировалась на т. н. эффекте Комптона, когда при гамма-облучении из атомов среды вылетают электроны, поглотившие гамма-кванты.
Все установленные Черенковым свойства излучения: его универсальность, спектр, поляризация, устремленность в узком конусе с осью в направлении траектории гамма-лучей – описывались соответствующими формулами и определениями, учитывающими дисперсию, то есть зависимость показателя преломления среды от частоты испускаемого света.
Теория была количественно подтверждена экспериментами Черенкова (продолжавшимися до 1944 г.) и ряда зарубежных ученых. Эффект свечения был обнаружен и при взаимодействии с веществом других заряженных частиц: мезонов, протонов и др. Статья Тамма и Франка в «Докладах Академии наук» «Когерентное излучение быстрого электрона в среде» (1937) поставила точку в объяснении эффекта Вавилова – Черенкова.
Интерпретаторы этого эффекта, свойственного не только жидкостям, но и твердым телам, любят сравнивать его с «оптическим эквивалентом ударной волны, которую вызывает в атмосфере сверхзвуковой самолет, преодолевая звуковой барьер», либо с волной, возникающей при движении лодки со скоростью, превышающей скорость распространения волн в воде.
Воспринятое маститыми коллегами физиков поначалу с недоверием и даже с издевками (у Черенкова, например, интересовались, а не пробовал ли он изучать свечение в шляпе, и вообще подозревали в спиритизме), открытие в конце концов обрело мировое признание, причем абсолютное, если считать присуждение Нобелевской премии (1958) таковым.
Кстати, за 6 лет до этого, в 1952 г., кандидатуру Черенкова на присуждение ему Нобелевской премии предлагал профессор Л. Розенфельд (Англия), который не смог тогда представить тексты работ советского физика.
Дальнейшее развитие теория излучения Вавилова – Черенкова получила в работах Тамма и Франка, В.Л. Гинзбурга (разработка квантовой теории этого излучения), Б.М. Болотовского, В.П. Зрелова, Г.А. Аскарьяна и других отечественных, а также зарубежных ученых.
«Выяснилась… связь между этим явлением и другими проблемами, как, например, связь с физикой плазмы, астрофизикой, проблемой генерирования радиоволн и проблемой ускорения частиц». (Черенков П.А., Тамм И.Е., Франк И.М. Нобелевские лекции. М., 1960.)
Какое-то время новому излучению придавали только фундаментальное значение, хотя Черенков и предложил измерять с его помощью скорость частиц высоких энергий по порогу излучения. Поскольку излучение расходится конусом вокруг траектории движения частицы, Павел Алексеевич предлагал определять угол при вершине конуса, который зависит от скорости частицы и от фазовой скорости света, а затем по величине этого угла рассчитывать скорость частицы.
В дальнейшем это привело к созданию серии счетчиков (детекторов), названных именем первооткрывателя (существует даже такой термин «черенкатор»), для измерения скорости единичных высокоскоростных частиц в ускорителях, в космических лучах, для контроля работы ядерных реакторов и т. п. При этом счетчики Черенкова позволяют выделять частицы с высокими скоростями и различать две частицы, поступающие почти одновременно, определять их массу и энергию. Этот детектор использовался при открытии антипротона, антинейтрона и других элементарных частиц.
По мнению специалистов, благодаря этим счетчикам элементарных частиц имя Черенкова «стало едва ли не самым часто упоминаемым в работах по экспериментальной физике».
«Очень интересно отношение к своим открытиям самого Черенкова. Во время одного из заседаний… конференции, где в каждом докладе звучало его имя: черенковские счетчики, черенковские спектрометры, излучение Вавилова – Черенкова и т. д., Павел Алексеевич наклонился ко мне и тихо сказал на ухо: “Борис Борисович, вы знаете, мне все время кажется, что все это относится не ко мне. Что где-то, когда-то жил другой Черенков, вот о нем все и говорят”» (Б.Б. Говорков).
Физик, один из лучших учеников П.Н. Лебедева, государственный и общественный деятель, историк и популяризатор науки, переводчик научной литературы (ученый в совершенстве владел пятью языками), публицист, книголюб-коллекционер, организатор и первый директор Физического института им. П.Н. Лебедева, научный руководитель Государственного оптического института, уполномоченный Государственного Комитета Обороны – чрезвычайного высшего государственного органа в годы Великой Отечественной войны, первый председатель общества «Знание», главный редактор журналов «Природа» и «Наука и жизнь», а также Большой советской энциклопедии, депутат Верховного Совета РСФСР и СССР нескольких созывов; лауреат четырех Сталинских премий СССР, академик АН СССР, президент АН СССР, Сергей Иванович Вавилов (1891–1951) является одним из основателей российской научной школы физической оптики, основоположником исследований люминесценции, микрооптики и нелинейной оптики, автором эффекта Вавилова – Черенкова, создателем отечественной оптико-механической промышленности.
Инициатор знаменитых популярных серий «Классики науки», «Биографии», «Мемуары», Вавилов и сам написал немало произведений по философии и истории естествознания, из которых мировую известность получили его книга «Глаз и Солнце», которой зачитывались несколько поколений детей и взрослых, включая самых маститых ученых, и научная биография «Исаак Ньютон». В Англии на празднествах в честь 300-летия со дня рождения Ньютона (1946), отложенных на три года из-за войны, чуть ли не центральной темой торжеств стал доклад Вавилова «Атомизм И. Ньютона». Это неудивительно, так как Сергей Иванович с младых лет был поклонником творчества английского физика и одним из лучших его знатоков. Удивительно другое – как Вавилову при его немыслимой занятости хватало времени и сил еще и на популяризацию науки! А ведь благодаря ей (этой популяризации) десятки тысяч молодых людей устремились тогда в физику. С такой же энергией ученый занимался не только «физикой», но и «лирикой». В Пушкинских Горах (Псковская обл.), например, он содействовал восстановлению Музея-заповедника А.С. Пушкина. О загруженности Вавилова самыми разными делами, причем самого высокого уровня, можно судить хотя бы по преамбуле этого очерка. Но и в ней сказано далеко не все. Возьмем одно только его президентство в АН СССР. Представьте хотя бы на минуту то время, когда Вавилов возглавлял академию: 1945–1951 гг. После четырех лет войны страна разрушена; надо поднимать хозяйство, организовывать науку, готовить научные кадры. Во многом заслугой именно президента академии стало учреждение в союзных республиках ее филиалов и академических институтов. Одновременно восстанавливались уничтоженные во время войны обсерватории и лаборатории, реорганизовывались уцелевшие. Под жестким контролем Л.П. Берии осуществлялись предписанные И.В. Сталиным грандиозные фундаментальные исследования, позволившие СССР вскоре занять ведущие мировые позиции в ядерной энергетике, ракетостроении и космонавтике, самолетостроении, обороне страны. Изучались вопросы внутреннего строения вещества, проблемы элементарных частиц, строения ядер химических атомов и молекул, кристаллов и жидкостей, физики атомного ядра и космических лучей. Обосновывая первый послевоенный пятилетний план научно-исследовательских работ академии на 1946–1950 гг., Вавилов указал, что именно «здесь узел интереснейших теоретических проблем и, вероятно, главная основа будущей техники». Надо ли говорить, насколько прозорливым оказался ученый.
С.И. Вавилов
И еще один штрих. В этой круговерти Вавилов как президент АН оказывал материальную помощь всем нуждавшимся в ней. Кандидатуры у него были расписаны по личным поступлениям – академическому, депутатскому и др.
Без натяжки можно сказать, что работал ученый круглосуточно. Днями – на службе, а ночами писал свои труды, вычитывал и правил рукописи учеников… Если ему и выпадало время на отдых, он его даром не терял. Так, например, в 1950 г. в отпуске на даче Сергей Иванович написал книгу «Микроструктура света». (О ней будет сказано особо.)
Но обратимся к научным достижениям академика – прежде всего в оптике. Первым стало изучение Вавиловым явления люминесценция – нетеплового свечения вещества, происходящего после поглощения им энергии возбуждения. Свечение было известно еще с XVIII в., но каноническое определение ему дал Вавилов в 1948 г.: «Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10–10 секунд и больше».
До этого физик более 20 лет исследовал свечение и природу света вообще, сделал несколько открытий, что вывело его в число самых признанных авторитетов по вопросам флюоресценции и фосфоресценции в мире. С одинаковым рвением занимался ученый как теоретическими вопросами превращения световой энергии, так и техническим воплощением своих открытий, причем наиболее экономичным образом.
Описав сложнейший механизм передачи энергии между частицами вещества и создав теорию процессов свечения, Вавилов в 1938–1941 гг. разработал технологию производства ламп с люминесцирующими составами, ламп т. н. дневного, или холодного, света, намного превосходящих по своим экономическим и светотехническим показателям обычные лампы накаливания. «За разработку люминесцентных ламп» в 1951 г. коллективу ученых, которым руководил Вавилов, была присуждена Сталинская премия СССР.
Люминесцентный анализ Вавилова нашел широкое применение в промышленности и сельском хозяйстве, в медицине и криминалистике, в быту. Люминесценция и ее продукты везде – в электронных приборах, осциллографах, телевизорах, локаторах, лазерах, дефектоскопах, даже на дорожных знаках. Она позволяет исследовать спектр энергетического состояния вещества, пространственную структуру молекул, процессы миграции энергии…
Открытое в 1934 г. аспирантом Вавилова П.А. Черенковым слабое голубое свечение растворов урановых солей под воздействием гамма-излучения получило мировое признание. Изучив это новое оптическое явление, Вавилов пришел к выводу, что оно представляет собою особый, нелюминесцентный, вид свечения, обусловленный движением в веществе быстрых электронов со скоростью, превышающей скорость света в данной среде. Теоретическое объяснение явления было дано И.Е. Таммом и И.М. Франком в 1937 г. Научное открытие получило название «эффект Вавилова – Черенкова». В 1946 г. за эту работу Вавилову, Черенкову, Тамму и Франку вручили Сталинскую премию СССР I степени. В 1958 г. за открытие и объяснение этого явления Черенков, Франк и Тамм были удостоены Нобелевской премии. В Нобелевской лекции Тамм подчеркнул «определяющую роль покойного С.И. Вавилова в открытии этого излучения».
«Черенковское» свечение ныне широко используется в физике высоких энергий для регистрации релятивистских частиц и определения их скоростей, для контроля работы ядерных реакторов и т. п.
Обобщив результаты своих многолетних работ в различных областях физической оптики, Вавилов в книге «Микроструктура света» дал решение наиболее общих и принципиальных вопросов оптики, а также заложил основы нового направления в оптике, названного им микрооптикой. В монографии с единой микрооптической точки зрения автор рассмотрел квантовые свойства света, природу элементарных излучателей, взаимодействия излучающих и поглощающих молекул на расстояниях, сравнимых с длиной световой волны и пр.
«Основная идея “Микроструктуры света” заключается в том, что привычные представления оптики, характеризующей источники света и световые потоки их энергией, спектром и состоянием поляризации, оказываются недостаточными при переходе к исчезающе малым мощностям световых потоков, при рассмотрении элементарных излучающих систем и развития процесса излучения во времени. Своеобразные явления, наблюдаемые при этом, образуют специфическую область оптики элементарных процессов – “микрооптику”» (П.П. Феофилов).
За эту монографию и за книгу «Глаз и Солнце» в 1952 г. Вавилов был удостоен (посмертно) Сталинской премии I степени.
Микрооптика, в ее конкретном приложении, нашла широчайшее применение в оптической связи и оптической звуко– и видеозаписи, волоконно-оптических сетях, в кабельном телевидении, в медицинских оптических инструментах для микрохирургии, терапии, диагностики, 3D-технологиях и т. д. Ее перспективы безграничны.
В этой же монографии Вавилов дал определение нелинейной оптики – как раздела оптики, охватывающего исследования распространения мощных световых пучков в твердых телах, жидкостях и газах и их взаимодействия с веществом. Еще в 1920-х гг. Вавилов в своих экспериментах впервые столкнулся с нелинейными оптическими эффектами. Он описал это явление и предсказал его применение в технике. В 1961 г., через 10 лет после смерти ученого, принципы нелинейной оптики пригодились в лазерах. Сегодня нелинейная оптика используется при обработке информации, а также в оптических нейтронно-сетевых компьютерах, предназначенных для решения нерегулярных задач, распознавания образов, моделирования интеллекта. Без нее не обойдутся компьютеры новых поколений.
Математики, физики; профессора университетов; академики АН СССР (РАН), члены иностранных академий, научных обществ и университетов; лауреаты отечественных и международных премий, в том числе Сталинских, Государственных, Ленинских, Нобелевских; обладатели золотых медалей; кавалеры высших наград нашей и зарубежных стран; заведующие кафедрами, директора институтов; авторы фундаментальных трудов по физике, механике и математике, Петр Леонидович Капица (1894–1984), Лев Давидович Ландау (1908–1968), Николай Николаевич Боголюбов (1909–1992), Виталий Лазаревич Гинзбург (1916–2009), Алексей Алексеевич Абрикосов (род. 1928), Лев Петрович Горьков (род. 1929) являются создателями теории сверхпроводимости и теории сверхтекучести.
О важности исследований в области сверхпроводимости и сверхтекучести говорит тот факт, что 100 лет разработок в этом направлении принесли ученым шести стран семь Нобелевских премий. Нидерландский физик Х. Камерлинг-Оннес стал лауреатом в 1913 г.; американские – Дж. Бардин, Л.Н. Купер и Дж. Р. Шриффер в 1972 г., английский – Б.Д. Джозефсон в 1973 г., немецкий – Г. Беднорц и швейцарский – К.А. Мюллер в 1987 г. Три Нобелевские премии получили наши ученые: Л.Д. Ландау в 1962 г. – «за пионерские теории конденсированной материи, в особенности жидкого гелия»; П.Л. Капица в 1978 г. – «за фундаментальные изобретения и открытия в области физики низких температур»; А.А. Абрикосов и В.Л. Гинзбург в 2003 г. – «за пионерский вклад в теорию сверхпроводников и сверхтекучих жидкостей».
В.Л. Гинсбург
По обычным для Нобелевского комитета интригам Н.Н. Боголюбов и Л.П. Горьков не были удостоены премии. От этого, правда, ценность трудов советских физиков не умалилась ни на йоту, тем паче что именно они придали т. н. микроскопической теории сверхпроводимости-сверхтекучести на современном этапе ее развития совершенный вид. Вопрос еще не закрыт, работы ведутся во всем мире и от ученых ожидают массу новых открытий. В частности, физики заняты созданием теории высокотемпературной сверхпроводимости (ВТСП), конечной целью которой станет получение сверхпроводников с нулевым сопротивлением току при комнатной температуре.
Что же такое сверхпроводимость и сверхтекучесть? Откроем энциклопедии и учебники для вузов.
Сверхпроводимость – физическое явление, наблюдаемое у сверхпроводников при охлаждении их ниже критической температуры, когда электрическое сопротивление постоянному току становится равным нулю и происходит выталкивание магнитного поля из объема образца.
Это явление было открыто в 1911 г. Х. Каммерлинг-Оннесом при экспериментах на ртути, а позднее учеными разных стран на белом олове, свинце, теллуре, титане, ниобии и др. Их стали называть СП I рода.
В 1950 г. А.А. Абрикосов ввел понятие СП II рода (сплав ниобий-титан, интерметаллид ниобий-олово). В них ток протекает не по тонкому поверхностному слою, как в СП I рода, а во всем объеме. Этот класс сверхпроводников нашел в дальнейшем широкое техническое применение.
В 1938 г. П.Л Капицей было открыто явление сверхтекучести гелия Не II, когда при понижении температуры до абсолютного нуля вещество переходит в состояние квантовой жидкости и способно протекать через узкие щели и капилляры без трения (жидкий гелий поднимается по стенке вверх).
Далее теория сверхпроводимости и сверхтекучести формировались совместно, дополняя друг друга.
Развив гидродинамику квантовой жидкости, Л.Д. Ландау в 1941 г. дал объяснение сверхтекучести Не II. В.Л. Гинзбургом и Л.Д. Ландау была создана обобщенная феноменологическая (макроскопическая) теория сверхпроводимости (пси-теория СП), основанная на представлении сверхпроводящего конденсата с помощью волновой функции.
В середине 1950-х гг. независимо друг от друга микроскопическую теорию сверхпроводимости создали Дж. Бардин, Л. Купер, Дж. Шиффер и Н.Н. Боголюбов. По оценкам ученых, подход русского ученого был не только более точным, но и гораздо более «красивым и убедительным» (Л.Д. Ландау). Боголюбов, в частности, установил фундаментальный факт, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа. Тем не менее теория получила название БКШ – по начальным буквам фамилий американских авторов.
К БКШ и к теории Гинзбурга – Ландау «приложил руку» академик Л.П. Горьков, разработав микроскопическое описание теории сверхпроводимости на основе математического аппарата функции Грина.
Между макроскопическим и микроскопическим подходами существенная разница. Согласно определению Боголюбова, «задачей макроскопической теории является получение уравнений типа классических уравнений математической физики, которые отображали бы всю совокупность экспериментальных фактов, относящихся к изучаемым макроскопическим объектам… В микроскопической теории ставится более глубокая задача, заключающаяся в том, чтобы понять внутренний механизм явления, исходя из законов квантовой механики. При этом, в частности, надлежит получить также те связи между динамическими величинами, из которых вытекают уравнения макроскопической теории».
Применив к теории Гинзбурга – Ландау микроскопическое описание и заменив волновую функцию фазоволновой, А.А. Абрикосов придал теории сверхпроводимости более общий вид, что позволило применять ее для описания сверхтекучих жидкостей.
Сегодня появление сверхпроводимости объясняется образованием т. н. куперовских пар – системы частиц в электронном газе, обладающей свойствами двух электронов с противоположенными спинами. Энергия электрона, переносящего заряд, при этом уменьшается на порядки, и электрон перестает взаимодействовать с другими частицами в веществе.
С 1950 г. стали заниматься высокотемпературной сверхпроводимостью (ВТСП) в неметаллических системах. В СССР теорию ВТСП разрабатывал академик В.Л. Гинзбург. Интерес к этой теории был вызван возможностью использования хладагентов с более высокой температурой кипения, чем у жидкого гелия. С открытием в 1986 г. нового класса СП с более высокими критическими температурами (керамические материалы) к этим работам было приковано внимание не только научного, но и бизнес-сообщества, поскольку применение жидкого азота на несколько порядков удешевляло любую конструкцию, использующую СП, и обещало резко сократить потери в современных воздушных линиях электропередач и на преобразования тока, достигавшие четверти передаваемой энергии.
Сегодня сверхпроводимость нашла широчайшее применение в магнитных системах различного назначения и в электрических машинах (турбогенераторах, электродвигателях, жестких и гибких кабелях, коммутационных устройствах, магнитных сепараторах и т. п.).
Многожильные СП и сверхпроводящие катушки используются для пузырьковых водородных камер, крупных ускорителей элементарных частиц, всевозможных устройств измерения температур и давлений, расходов и уровней. Широкое применение сверхпроводящие магниты нашли в медицине (ЯМР-томографы). Создаются изделия на основе ВТСП, применяемые в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигналов. Строятся уникальные электромагнитные системы. Так, например, в 1986 г. в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля. Помимо прочих выигрышей, применение сверхпроводимости позволяет в несколько раз уменьшать массу и габариты машин (тех же турбогенераторов) при сохранении мощности.
Разрабатываются электронакопительные системы на сверхпроводящих магнитах для регулирования пиковых нагрузок в больших электросетях, что позволяет обеспечить безопасность электроснабжения отдельных предприятий и города.
За рубежом ведутся разработки опытных образцов железной дороги со сверхпроводящей металлокерамической магнитной подвеской, охлаждаемой жидким азотом. В Японии в 2005 г. был испытан поезд, использующий ВТСП-магниты. Поезд развил скорость более 500 км/ч.
Для создания магнитных полей в большом андронном коллайдере используются электромагнитные катушки со сверхпроводниковой обмоткой…
Практическое применение сверхтекучести при комнатных температурах – дело отдаленной перспективы, хотя уже появились работы, обещающие успех и в этом направлении. Во всяком случае, ожидания специалистов радужны. Они уверяют, что это позволит передавать электричество без потерь; создать масло, которое сделает двигатели «вечными» (неизнашиваемыми); струей жидкости, как лазером, резать сталь и т. п.
В 1964 г. два русских профессора – А.М. Прохоров, Н.Г. Басов и американский профессор Ч. Таунс стали лауреатами Нобелевской премии по физике – «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера – лазера». Директор Института общей физики АН СССР, академик-секретарь отделения общей физики и астрономии АН СССР (РАН), создатель школы физиков, Александр Михайлович Прохоров (1916–2002) занимался исследованиями в области радиофизики, физики ускорителей, радиоспектроскопии, квантовой электроники и ее приложений, линейной оптики. Директор Физического института АН СССР, член президиума АН СССР (РАН) Николай Геннадьевич Басов (1922–2001) известен фундаментальными работами в области генераторов и усилителей, а также использования лазерной техники в термоядерном синтезе. Прохоров и Басов – почетные члены многих зарубежных академий, лауреаты Ленинской и Государственной премий, пятикратные кавалеры орденов Ленина и других отечественных и зарубежных наград, дважды Герои Социалистического Труда.
Многие выпускники школ, успешно сдавшие ЕГЭ, при поступлении в вузы на вопрос «Кто изобрел лазеры?» отвечают: «Лазер». Про мазеры после этого у них не спрашивают. А ведь квантовый генератор – из разряда изобретений, что и космическая ракета или радио.
Н.Г. Басов, Ч. Таунс и А.М. Прохоров
Между тремя шедеврами русской культуры: Шуховской башней, романом «Гиперболоид инженера Гарина» и «мазером – лазером» прослеживается прямая связь. Гиперболоид В.Г. Шухова (башня на Шаболовке) настолько потряс воображение А.Н. Толстого, что герой его романа назвал свое изобретение также «гиперболоидом». А за ним и весь читающий народ дал квантовому генератору такое же имя – «гиперболоид Гарина». Да и научное сообщество было с ним солидарно: «Игольчатые пучки атомных радиостанций представляют собой своеобразную реализацию идей “гиперболоида инженера Гарина”» (академик Л.А. Арцимович).
Мазер – это квантовый генератор, излучающий когерентные (согласованные) радиоволны, аббревиатура фразы «microwave amplification by stimulated emission of radiation» («усиление микроволн с помощью вынужденного излучения»), предложенной в 1954 г. американцем Ч. Таунсом. Лазер соответственно – «light amplification by stimulated emission of radiation», означающей «усиление света в результате вынужденного излучения».
В основе работы лазера лежит принцип индуцированного излучения, изучением которого в начале XX в. занимался А. Эйнштейн. Высказав гипотезу о том, что энергия света состоит из квантов, которые испускаются атомами и атомными системами при их переходах из одного энергетического состояния в другое, ученый показал, что можно согласовать вспышки излучения отдельных атомов, воздействуя на них внешним электромагнитным излучением, которое может сопровождаться при этом ослепительно яркой вспышкой монохроматического (то есть одной длины волны) света.
В 1920 г. немецкий физик О. Штерн ввел в экспериментальную физику метод молекулярных пучков. Тогда же были разработаны теоретические представления о процессах излучения и поглощения света.
В 1939 г. советский ученый В.А. Фабрикант развил понятие вынужденного излучения, чем заложил фундамент для создания лазера. Во время Второй мировой войны в связи с проблемами радиолокации развилась техника сверхвысоких радиочастот. Объединение научных идей с широким использованием волн сверхвысокочастотного диапазона привело к построению теории излучения и поглощения света, созданию первого лазера и к основанию квантовой электроники как новой физической науки.
В середине 1950-х гг. профессор А.М. Прохоров и его ученик Н.Г. Басов приступили к исследованию молекулярного генератора на пучках аммиака. Ученым впервые удалось создать квантовый генератор, работающий на энергетических переходах в радиодиапазоне в молекулярных пучках. Им стал аммиачный мазер. К мазеру «в довесок» была создана и теория усилителя радиоизлучения. Так родилась квантовая электроника.
Впоследствии были созданы и другие молекулярные генераторы, например мазер на пучке молекул водорода. После завершения работ по мазерам возник вопрос о создании лазеров оптического диапазона. Следующим важным шагом в развитии квантовой электроники стал предложенный в 1955 г. Басовым и Прохоровым метод трех уровней, позволивший использовать для этой цели оптическую накачку. На этой основе в 1957–1958 гг. Г.Э. Сковилом и др. были созданы квантовые усилители на парамагнитных кристаллах (на рубине), работавшие в радиодиапазоне, первый т. н. твердотельный лазер. Затем были созданы газовые лазеры на смеси изотопов гелия и неона, на углекислом газе, аргоновые, кадмиевые, эксимерные, полупроводниковые, инжекционные, на молекулах органических красителей и т. д.
Под накачкой понимают пропускание через лазер энергии извне. Смысл лазерного луча в том, что этот свет обладает некоей согласованностью (когерентностью), позволяющей энергию «сжать в точку» (т. н. талию луча) несравненно сильнее, нежели в луче от обычного источника света. Кроме того, лазер может излучать свет гораздо более короткими импульсами, чем обычные источники света. В лазерном луче при этом достигается колоссальная плотность энергии, соизмеримая с взрывом авиационной бомбы. Давление света, сконцентрированного на малой площадке, достигает миллиона атмосфер. Лазерным лучом можно разрезать металлический лист из самого твердого и тугоплавкого металла.
В 1964 г Прохорову, Басову и Ч. Таунсу, занимавшемуся этой же проблемой независимо от советских ученых, была присуждена Нобелевская премия по физике. Вскоре после этого астрономы обнаружили, что некоторые из далеких галактик работают как исполинские мазеры, то есть в лабораторных условиях Земли были воссозданы условия для генераций, которые возникают в огромных газовых облаках размером в миллиарды километров, где источником накачки служит космическое излучение.
О применении квантовой электроники, и, в частности, лазеров, можно говорить долго.
Радиоастрономия; космическая связь (исследование поверхности Луны, навигационное оборудование на ИСЗ, космических кораблях и пр.); медицина (хирургия, офтальмология и др.); технология (сварка, резка и т. д.); метрология (квантовые стандарты частоты и времени, лазерные дальномеры, системы дистанционного химического анализа, лазерной локации); измерительная техника (оптическая локации, сверхточные измерения расстояний, линейных и угловых скоростей, ускорений и т. д.).
Создание и управление высокотемпературной плазмой; лазерная спектроскопия, фотохимия, фитобиология, лазерная очистка, лазерное разделение изотопов; создание систем оптической связи и обработки информации.
Осуществление идеи голографии и голографических приборов; лазерные методы контроля состояния атмосферы, качества изделий; системы лазерной связи (наземные, подводные, космические).
Очистка зданий от поверхностных загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов.
Для осуществления управляемой термоядерной реакции…
Лазеры с каждым днем все более востребованы в науке и народном хозяйстве России, так же как все более актуальными становятся слова академика А.М. Прохорова, сказанные им в одном из последних своих интервью:
«– Как вы думаете, недавняя Нобелевская премия Ж.И. Алферову поможет изменить ситуацию с наукой в стране?
– Нет.
– Почему?
– Не знаю. Странные какие-то статьи появляются, что не надо быть сверхдержавой. А какой надо быть державой? Развивающейся страной, что ли, быть? Или как Люксембург? Здесь полное непонимание наверху. Ну, во-первых, о том, как заниматься наукой, в основном говорят люди, которые никогда не занимались практической наукой и не сделали ничего существенного. Некоторые выступают, что надо более узко подходить, только прикладными вопросами заниматься. Но как человек может, занимаясь только прикладными вещами, развивать в дальнейшем науку и технологии, новые направления?»
Физик, инженер, лектор, педагог, общественный и государственный деятель; профессор ЛЭТИ, ЛПИ, ректор СПбГЭТУ; академик, председатель президиума Санкт-Петербургского научного центра РАН, вице-президент АН СССР (РАН); член 30 национальных АН, научных сообществ; почетный доктор и профессор 40 отечественных и зарубежных научно-образовательных учреждений; глава научной школы; директор Физико-технического института им. А.Ф. Иоффе; научный руководитель инновационного центра в Сколкове; главный редактор журнала «Письма в Журнал технической физики»; кавалер орденов Октябрьской Революции, Ленина, «Знак Почета», Трудового Красного Знамени, «Зa заслуги перед Отечеством» четырех степеней, а также многих других орденов и медалей СССР, России и других государств; лауреат Ленинской премии, Нобелевской премии по физике за 2000 г. (вместе с Г. Крёмером), премии Балантайна Института Франклина (США) и других премий; народный депутат СССР, депутат ГД ФС РФ, Жорес Иванович Алфёров (род. 1930) является основоположником нового направления – физики гетероструктур, оптоэлектроники и электроники на их основе.
Здесь перечислена лишь часть забот и наград академика, но нас интересует в первую очередь главное научное достижение Ж.И. Алфёрова, за которое он был удостоен благодарности человечества и самых почетных премий, в том числе Нобелевской по физике (2000) – «за развитие полупроводниковых гетероструктур для высокоскоростной и оптоэлектроники». Гетероструктурой в физике полупроводников называют выращенную на основном материале (подложке) слоистую структуру из различных полупроводников, отличающихся физико-энергетическими характеристиками материалов: шириной запрещенных зон, положением потолка валентной зоны и дна зоны проводимости. В месте контакта двух различных полупроводников формируется т. н. гетеропереход с повышенной концентрацией носителей, который, собственно, и используется затем в электронике.
Ж.И. Алфёров
Полупроводниковые гетероструктуры, полученные Алфёровым и его сотрудниками в результате фундаментальных исследований в области полупроводников, чрезвычайно интересные с научной точки зрения, нашли широчайшее применение в современной технике. По одним только своим габаритам они не идут ни в какое сравнение с традиционными радиосхемами. Слои полупроводников, имеющие толщину в несколько атомов, представляют собой крохотные кристаллики, рядом с которыми резисторы, конденсаторы, лампы выглядят мастодонтами. Скажем, размеры активного элемента полупроводникового лазера колеблются в диапазоне от 50 мкм до 1 мм.
Эти структуры идут для изготовления электронных устройств – лазерных диодов, на которых основана работа современных компьютеров, Интернета, сотовой связи, лазерных компакт-дисков, устройств, декодирующих товарные ярлыки, лазерных указок, спутниковых антенн, систем космической связи. На основе гетероструктур работают мощные светодиоды, используемые в светофорах, лампах тормозного освещения в автомобилях, дисплеях. Появление гетерогенных структур привело к созданию производства солнечных батарей – основы будущей солнечной энергетики, которая, по мнению Алфёрова, «к концу XXI столетия, если не раньше, в значительной степени заменит атомные и тепловые электростанции».
Надо сказать, что это открытие первыми поспешили использовать зарубежные инженеры и предприниматели, но это не вина его авторов, а наша с вами беда.
Какова же история открытия?
В 1960-х гг. в мире возникла идея совершенствования полупроводниковой техники за счет гетеропереходов, которая какое-то время не поддавалась реализации. Многочисленные попытки создания всевозможных приборов, работающих на этом принципе, заканчивались ничем только из-за того, что для результативного гетероперехода надо было найти идеальную гетеропару – это было сделать не легче, чем создать идеальную семью.
Доказав, что в гетероструктурах можно эффективно управлять световыми и электронными потоками, и применив в своих исследованиях специальную методику, позволявшую варьировать ширину запрещенной зоны, показатель преломления, величину электронного сродства, эффективную массу носителей тока и другие параметры полупроводника, Алфёров в результате многочисленных экспериментов, ежедневно длящихся у него до часа ночи, смог подобрать идеальную гетеропару: арсенид алюминия и арсенид галлия (AIAs/GaAs), а затем GaAs/AIGaAs, отличавшуюся большей стойкостью к окислению на воздухе. Эти гетеропары вскоре обрели в мире электроники мировую известность.
На основе полученных гетеропар были созданы гетероструктуры, отвечавшие требованиям идеальной модели, и в 1969 г. сконструирован первый в мире полупроводниковый гетеролазер. Область применения лазеров поначалу была весьма ограниченной, поскольку они могли работать только при низких температурах, иногда не выше 20о К.
В 1970 г. на смену AIGaAs-системе Алфёровым и его сотрудниками были предложены соединения InGaAsP, позволившие создать более совершенные лазеры, нашедшие широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.
В 1970-х гг. ученый разработал первые в мире технологии радиационно-стойких солнечных элементов на основе AIGaAs/GaAs-гетероструктур и организовал крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них была установлена в 1986 г. на космической станции «Мир» и эффективно проработала на орбите весь положенный ей срок эксплуатации.
В 1993 г. в лаборатории Алфёрова были сконструированы полупроводниковые лазеры на основе структур с квантовыми точками – «искусственными атомами».
В 1995 г. ученый продемонстрировал инжекционный гетеролазер с использованием квантовых точек на подложках GaAs, работающий в непрерывном режиме при комнатной температуре, что резко повысило возможность его применения и тут же развязало руки создателям быстродействующих элементов электронной техники.
У такого лазера не оказалось конкурентов – он практически безынерционен, его КПД превышает в несколько раз КПД прочих лазеров, а длину волны можно изменять на любую другую.
Исследования Алфёрова позволили кардинально улучшить параметры большинства полупроводниковых приборов, создать для оптической и квантовой электроники широчайшие возможности ее совершенствования и заложить основы принципиально новой электроники на основе гетероструктур – т. н. «зонной инженерии».
Предположения ученого, высказанные им 15 лет назад, что «в XXI веке на основе квантовых точек будут созданы уникальные по свойствам лазеры и транзисторы, появятся совершенно новые приборы и, наверное, возникнет то, что сегодня предсказать невозможно», сбылись.
Следующим шагом в развитии гетероструктур стало применение новых способов обработки информации, когда, смоделировав процесс, можно стало создавать структуры, состоящие из цепочек атомов, имеющих уже не микро-, а наноразмеры (нанометр – одна миллиардная доля метра), и на смену микроэлектронике получить нанотехнологии.
В многочисленных интервью и публикациях Ж.И. Алфёрова, весьма озабоченного состоянием науки и образования в современной России, можно найти много жестких и поучительных высказываний.
«Если развалится образование, остановится наука, то прекратится и… “воспроизводство гениев”. Наступит всеобщее мозговое затмение».
«Всегда полезно брать уроки у истории… Когда в 1921 году Рождественский, Иоффе и Крылов поехали в первую после Гражданской войны загранкомандировку закупать научное оборудование, а денег на это у государства не было, они обратились к Ленину и Луначарскому. И им выделили средства из золотого запаса. В Физико-технический институт поступили тогда 42 ящика с приборами, и по оснащению он стал одним из первых в мире. Чем не исторический урок для нынешнего российского руководства?»