Уже в древности люди хотели получить ответы на такие важные вопросы, как «что такое наша Земля?», «каковы ее размеры?», «каково ее место во Вселенной?» и т. д. Но поиски ответов оказались долгими и трудными.
«Первые ответы на вопрос „как устроен окружающий мир?“ древние люди составляли на основе своих непосредственных впечатлений, — пишет в своей книге А.И.Климишин, — так, не ощущая никаких движений Земли, люди, естественно, предположили, что она неподвижна. Наблюдая, как Солнце, Луна, весь небосвод вращаются вокруг Земли, они восприняли это как непреложный факт. У них не было оснований сомневаться в том, что Земля плоская. И, наконец, таким логичным казалось предположение, что она расположена в центре мира…
В Древнем Вавилоне сформировалось представление, будто Земля имеет вид выпуклого круглого острова, плавающего в мировом океане. На земную поверхность будто бы опирается небо — твердый каменный свод, к которому прикреплены звезды и планеты и по которому совершает свою ежедневную прогулку Солнце. Примечательно, что у древних шумеров слово „на“ обозначало и „небо“ и „камень“. Позже основные элементы этой вавилонской модели мира встречаются и у древних евреев; ее, в частности, придерживались и авторы Библии. Например, в книге Иова говорится, будто бы „Бог… распростер небеса твердые, как литое зеркало“ (Иов, 37, 18).» Вероятно, в Древней Греции впервые попытались научно объяснить эти явления, разгадать истинную причину их появления. Так выдающийся мыслитель Гераклит Эфесский (около 544–470 гг. до нашей эры) высказал предположение о непрерывном развитии мира. Согласно Демокриту (около 460–370 гг. до нашей эры), Вселенная состоит из бесконечного множества миров, образующихся вследствие столкновения атомов, причем одни миры рождаются, другие находятся в состоянии расцвета, третьи разрушаются. Демокрит предполагал, что Млечный Путь является скоплением большого числа звезд.
У Пифагора встречается мысль о том, что Земля имеет форму шара и что она висит в пространстве без какой бы то ни было поддержки. Аристотель (384–322 гг. до нашей эры) в своем труде «О небе» уже приводит величину земной окружности, из чего следует, что радиус Земли в современной мере равен примерно 10 000 километрам.
Аристотель писал, что планета состоит из земли, воды, воздуха и огня, тогда как небесные тела состоят из иной, неуничтожимой формы материи — эфира. Ученый утверждал, что упомянутые четыре «стихии» располагаются друг над другом в виде концентрических сфер. Каждый элемент, сместившись со своего «естественного» места, стремится снова занять его. Поэтому, мол, в природе и наблюдаются движения тяжелых элементов вниз (к «центру Вселенной»), а легких — вверх, где они переходят в состояние покоя. Аристотель и его последователи выступали против уже существовавших в то время представлений о возможном вращении Земли вокруг своей оси и ее движении в пространстве. Они выдвинули казавшиеся в то время неопровержимыми доказательства: если бы Земля вращалась вокруг своей оси, то возникал бы встречный ветер, который сдувал бы все с ее поверхности в сторону запада, а движение Земли неминуемо было бы обнаружено по изменению на протяжении года углового расстояния между произвольно взятой на небе парой звезд.
Сейчас известно: земная атмосфера в равной мере принимает участие в суточном вращении Земли, расстояния же до звезд оказались настолько велики, что у Аристотеля не было никаких шансов определить подобное изменение.
Сохранилась до наших дней работа Аристарха Самосского (около 320–230 гг. до нашей эры). Ему удалось измерить угловое расстояние Луны от Солнца в первой четверти. Он также сделал попытку определить размеры и расстояния до Луны и Солнца. По Аристарху, расстояние от Земли до Луны — 19 радиусов Земли, а до Солнца еще в 19 раз больше. По-видимому, имея в виду большие по сравнению с Землей размеры Солнца, Аристарх и высказал предположение, «что неподвижные звезды и Солнце не меняют своего места в пространстве, что Земля движется по окружности вокруг Солнца», как об этом сообщал позже и Архимед.
Во II веке до нашей эры величайший античный астроном Гиппарх определил размеры Луны с исключительной точностью. По Гиппарху, радиус Луны равен 0,27 земных радиусов, что мало отличается от принятого ныне. Расстояние до Луны этот выдающийся астроном определил в 59 радиусов Земли (истинное среднее значение — 60,3). Однако расстояние до Солнца со времени Птолемея и вплоть до XVII века принималось равным 1120, т. е. примерно в 20 раз меньше истинного.
Первые попытки построить модель мира, в которой объяснялись бы прямые и попятные движения планет, были сделаны Евдоксом Книдским (около 408–353 гг. до нашей эры) и Аристотелем. Но шедевром античной астрономии стал труд выдающегося александрийского ученого Клавдия Птолемея (II век нашей эры) «Альмагест», в котором была построена новая теория планетных движений.
В то время все остальные науки о природе были еще только в зачаточном состоянии. Астрономы же, благодаря Птолемею, уже имели метод, позволявший с достаточной для того времени точностью рассчитать положение планет на небе на любое число лет вперед!
В геоцентрической модели мира Птолемея одна планета движется с угловой скоростью по малой окружности — эпициклу, центр которого, т. е другая «средняя планета», обращается с угловой скоростью по деференту вокруг Земли. Из-за сложения обоих движений планета в пространстве описывает петлеобразную кривую — гипоциклоиду, что в проекции на небесную сферу при вполне определенных значениях угловых скоростей, а также величинах отношений радиуса эпицикла к радиусу деферента для каждой из планет полностью объясняло ее движение на небе. Эти значения Птолемей определил с большой точностью.
В связи с особенностями движения планеты Меркурий и Венера были названы нижними. Марс, Юпитер и Сатурн — верхними планетами. В системе мира Птолемея центры эпициклов нижних планет всегда расположены на прямой, соединяющей Землю с Солнцем, а каждая из верхних планет находится на эпицикле строго в том же направлении, в котором относительно Земли находится Солнце, иначе говоря, радиусы-векторы эпициклов Марса, Юпитера и Сатурна всегда параллельны между собой. Видно также, что верхняя планета, занимая на небе положение, противоположное Солнцу (противостояние планеты), находится в ближайшем к Земле положении — в перигее (от греческого «пери» — вблизи). В момент же соединения планеты с Солнцем, когда направления на оба светила совпадают, планета находится в апогее — в наиболее удаленной от Земли точке (от греческого «апо» — вдали).
Как замечает А.И. Климишин, «возникает вопрос: если система Птолемея ошибочна, поскольку она основывалась на ложном представлении о неподвижной Земле как центре мироздания, то почему расчеты, проведенные на ее основе, дают правильные результаты? Ведь именно поэтому она использовалась астрономами почти 1400 лет. Ответ на поставленный вопрос очевиден: это система кинематическая. Птолемей не объяснял (да и не мог объяснить), почему движение планеты именно такое, каким он его описывал. Но каждое движение относительно. И, как это ни парадоксально звучит, Птолемей описал и смоделировал движение каждой из планет совершенно правильно — так, как его действительно видит наблюдатель с Земли. Эпицикл верхней планеты и есть отображение движения Земли вокруг Солнца (в случае нижней планеты это ее деферент)».
Но «…с помощью данных Птолемея было трудно согласовать между собой сведения о положениях той или другой планеты, разделенных промежутком времени в несколько сотен лет. Поэтому его система все больше усложнялась, в нее вводили множество дополнительных эпициклов, что сделало ее исключительно громоздкой. Явно противоречила наблюдениям построенная Птолемеем теория движения Луны. В итоге перегруженная эпициклами модель Птолемея рухнула. Произошла революция во взглядах на мир и место Земли во Вселенной…»
Планеты благодаря своим внешне сложным движениям сыграли решающую роль в астрономии и вообще в построении фундамента механики и физики. Еще древнегреческие астрономы поставили вопрос, не являются ли наблюдаемые сложные перемещения по небу лишь отражением более регулярных движений планет в пространстве. С этого времени начинается теоретическое построение схем планетной системы, или же, как мы говорили выше, кинематики планетных движений в пространстве.
Один из первых коперниканцев, немецкий математик и астроном Эразм Рейнгольд (1511–1553) составил в 1551 году, основываясь на гелиоцентрической системе Коперника, таблицы движения планет, названные им «Прусские таблицы». Эти таблицы оказались более точными, чем все предыдущие, основанные на старых схемах, и это очень способствовало укреплению идеи гелиоцентризма, с огромным трудом пробивающей себе путь сквозь устоявшиеся веками и привычные для тех времен взгляды, а также преодолевающей реакционное идеологическое давление церкви.
Тем не менее вскоре астрономы обнаружили расхождение и этих таблиц с данными наблюдений движения небесных тел.
Для передовых ученых было ясно, что учение Коперника правильно, но надо было глубже исследовать и выяснить законы движения планет. Эту задачу решил великий немецкий ученый Кеплер.
Иоганн Кеплер (1571–1630) появился на свет в маленьком городке Вейле близ Штутгарта. Кеплер родился в бедной семье, и поэтому ему с большим трудом удалось окончить школу и поступить в 1589 году в Тюбингенский университет. Здесь он с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убежденным сторонником теории Коперника.
В отличие от Местлина, Кеплер не скрывал своих взглядов и убеждений. Открытая пропаганда учения Коперника очень скоро навлекла на него ненависть местных богословов. Еще до окончания университета, в 1594 году, Иоганна посылают преподавать математику в протестантское училище города Граца, столицы австрийской провинции Штирии.
Уже в 1596 году он издает «Космографическую тайну», где, принимая вывод Коперника о центральном положении Солнца в планетной системе, пытается найти связь между расстояниями планетных орбит и радиусами сфер, в которые в определенном порядке вписаны и вокруг которых описаны правильные многогранники. Несмотря на то, что этот труд Кеплера оставался еще образцом схоластического, квазинаучного мудрствования, он принес автору известность. Знаменитый датский астроном-наблюдатель Тихо Браге (1546–1601), скептически отнесшийся к самой схеме, отдал должное самостоятельности мышления молодого ученого, знанию им астрономии, искусству и настойчивости в вычислениях и выразил желание встретиться с ним. Состоявшаяся позже встреча имела исключительное значение для дальнейшего развития астрономии.
В 1600 году приехавший в Прагу Браге предложил Иоганну работу в качестве своего помощника для наблюдений неба и астрономических вычислений. Незадолго перед этим Браге был вынужден оставить свою родину Данию и выстроенную им там обсерваторию, где он в течение четверти века вел астрономические наблюдения. Эта обсерватория была снабжена лучшими измерительными инструментами, а сам Браге был искуснейшим наблюдателем. Ученый с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал свое объяснение устройства мира: планеты он признавал спутниками Солнца, а Солнце, Луну и звезды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной.
Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.
Отправным пунктом для Кеплера служило сравнение теории и наблюдений. Дело в том, что к концу XVI века Прусские таблицы, составленные, как уже говорилось выше, стали предсказывать движение планет очень неточно Наблюденные и вычисленные по этим таблицам положения планет отличались на 4–5 градусов, что было недопустимо в астрономической практике. Отсюда вытекало, что планетная теория Коперника нуждается в исправлении и дополнении.
В начале Кеплер пошел по пути уточнения и усложнения схемы Коперника. Конечно, он был глубоко убежден в истинности принципа гелиоцентризма и стал подбирать новые комбинации окружностей (эпициклов, эксцентров). Ему удалось подобрать, в конце концов, такую комбинацию, что его схема давала ошибку по сравнению с наблюдениями до 8 минут. Но Кеплер был уверен, что Тихо Браге в своих наблюдениях не мог допускать таких ошибок.
Поэтому Кеплер заключил, что «виновата» теория, поскольку она не согласуется с астрономической практикой. Он отбросил полностью схему, основанную на эпициклах и эксцентрах, и стал искать другие схемы.
Кеплер пришел к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путем вычислений он доказал, что планеты движутся не по кругам, а по эллипсам — замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решен быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, мы придем к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путем суммирования бесконечно большого числа «актуализированных» бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.
Первый закон Кеплера предполагает, что Солнце находится не в центре эллипса, а в особой точке, называемой фокусом. Из этого следует, что расстояние планеты от Солнца не всегда одинаковое. Так как эллипс — плоская фигура, то первый закон подразумевает, что каждая планета движется, оставаясь все время в одной и той же плоскости.
Второй закон звучит так: радиус-вектор планеты (т. е. отрезок, соединяющий Солнце и планету) описывает равные площади в равные промежутки времени. Этот закон часто называют законом площадей. Второй закон указывает, прежде всего, на изменение скорости движения планеты по ее орбите: чем ближе планета подходит к Солнцу, тем быстрее она движется. Но этот закон дает на самом деле больше. Он целиком определяет движение планеты по ее эллиптической орбите.
Оба закона Кеплера стали достоянием науки с 1609 года, когда была опубликована его знаменитая «Новая астрономия» — изложение основ новой небесной механики. Однако выход этого замечательного произведения не сразу привлек к себе должное внимание: даже великий Галилей, по-видимому, до конца дней своих так и не воспринял законов Кеплера.
Кеплер интуитивно чувствовал, что существуют закономерности, связывающие всю планетную систему в целом. И он ищет эти закономерности в течение десяти лет, прошедших после публикации «Новой астрономии». Богатейшая фантазия и огромное усердие привели Кеплера к его так называемому третьему закону, который, как и первые два, играет важнейшую роль в астрономии. Кеплер издает «Гармонию мира», где он формулирует третий закон планетных движений. Ученый установил строгую зависимость между временем обращения планет и их расстоянием от Солнца. Оказалось, что квадраты периодов обращения любых двух планет вокруг солнца относятся между собой как кубы их средних расстояний от Солнца. Это — третий закон Кеплера.
«Третий закон Кеплера играет ключевую роль при определении масс планет и спутников, — пишут в своей книге Е.А. Гребенников и Ю.А. Рябов. — Действительно, периоды обращения планет вокруг Солнца и их гелиоцентрические расстояния определяются с помощью специальных математических методов обработки наблюдений, а массы планет непосредственно из наблюдений невозможно получить. В нашем распоряжении нет грандиозных космических весов, на одну чашу которых мы положили бы Солнце, а на другую — планеты. Третий закон Кеплера и компенсирует отсутствие таких космических весов, так как с его помощью мы легко можем определить массы небесных тел, образующих единую систему».
Законы Кеплера замечательны и тем, что они, если можно так выразиться, более точны, чем сама действительность. Они представляют собой точные математические законы движения для идеализированной «Солнечной системы», в которой планеты — материальные точки бесконечно малой массы по сравнению с «Солнцем». В действительности же планеты имеют ощутимую массу, так что в фактическом их движении имеются отклонения от законов Кеплера. Такая ситуация имеет место быть в случае многих известных сейчас физических законов. Сегодня можно сказать, что законы Кеплера точно описывают движение планеты в рамках задачи двух тел, а наша Солнечная система является многопланетной системой, поэтому для нее эти законы являются лишь приближенными. Парадоксальным является к тому же тот факт, что именно для Марса, наблюдения которого и привели к их открытию, законы Кеплера выполняются менее точно.
Работы Кеплера над созданием небесной механики сыграли важнейшую роль в утверждении и развитии учения Коперника. Им была подготовлена почва и для последующих исследований, в частности для открытия Ньютоном закона всемирного тяготения. Законы Кеплера и сейчас сохраняют свое значение: научившись учитывать взаимодействие небесных тел, ученые их используют не только для расчета движений естественных небесных тел, но, что особенно важно, и искусственных, таких, как космические корабли, свидетелями появления и совершенствования которых является наше поколение.
Итальянский ученый Галилео Галилей является одним из гигантов науки. В историю науки он вошел как мученик, его жизнь и смерть — вечный укор его мучителям. Но и, конечно, остались его открытия. Одно из самых замечательных — открытие спутников Юпитера.
Галилео Галилей (1564–1642) родился в городе Пизе в знатной, но обедневшей семье. До одиннадцати лет Галилей жил в Пизе и учился в обычной школе, а затем вместе с семьей переехал во Флоренцию. Здесь он продолжил образование в монастыре бенедиктинцев, где изучал грамматику, арифметику, риторику и другие предметы.
В семнадцать лет Галилей поступил в Пизанский университет и стал готовиться к профессии врача. Одновременно из любознательности он читал труды по математике и механике, в частности Евклида и Архимеда. Последнего позже Галилей всегда называл своим учителем.
Из-за стесненного материального положения юноше пришлось бросить Пизанский университет и вернуться во Флоренцию. Дома Галилей самостоятельно занялся углубленным изучением математики и физики, которые его очень заинтересовали. В 1586 году он написал свою первую научную работу «Маленькие гидростатические весы», которая принесла ему некоторую известность и позволила познакомиться с несколькими учеными. По протекции одного из них — автора «Учебника механики» Гвидо Убальдо дель Монте, Галилей в 1589 году получил кафедру математики в Пизанском университете. В двадцать пять лет он стал профессором там, где учился, так и не завершив свое образование.
Галилей преподавал студентам математику и астрономию, которую рассказывал, естественно, по Птолемею. В работе «О движении» (1590 год) Галилей подверг критике аристотелевское учение о падении тел.
К этому же периоду относится установление Галилеем изохронности малых колебаний маятника — независимости периода его колебаний от амплитуды.
Критика Галилеем физических представлений Аристотеля восстановила против него многочисленных сторонников древнегреческого ученого. Молодому профессору стало очень неуютно в Пизе, и он принял приглашение занять кафедру математики в известном Падуанском университете.
Падуанский период, продолжавшийся 18 лет, был самым плодотворным и спокойным в жизни ученого. Здесь он обрел семью, связав свою судьбу с одинокой девушкой Мариной Гамба.
Галилей много работал, обдумывая будущие сочинения. Хотя с университетской кафедры он доносит до слушателей освященные церковью идеи перипатетиков о мироздании и даже доказывает «справедливость» геоцентризма, но одновременно он страстно ищет и находит новые подтверждения справедливости великого учения Коперника.
Узнав в конце 1608 года об изобретении за границей подзорной трубы, ученый увлеченно работает над собственной конструкцией, используя сочетание двояковыпуклой и двояковогнутой линз. Терпеливо создавая один за другим приборы со все большим увеличением, он, наконец, построил «прибор до такой степени превосходный, что при его помощи предметы казались почти в 1000 раз больше и более чем в 30 раз ближе, чем при наблюдении простым глазом», — вспоминает о своем изобретении в книге «Пробирщик» Галилей.
При помощи подзорной трубы ученым было обнаружено множество новых звезд, не видимых невооруженным взглядом, было доказано, что Млечный Путь состоит из большого скопления мельчайших звезд. Телескоп помог открыть на Луне существование гор и впадин, и, наконец, Галилей увидел на небе воочию прообраз системы Коперника — четырех спутников Юпитера, обращающихся вокруг него, как и Луна вокруг Земли. Знаменитое это открытие было сделано при помощи трубы с 30-кратным увеличением. Вот как Галилей рассказывает об этом открытии:
«7 января 1610 года, в первом часу ночи, наблюдая небесные светила, я, между прочим, направил на Юпитер мою трубу и, благодаря ее совершенству, увидел недалеко от планеты три маленьких блестящих звездочки, которых прежде не замечал вследствие слабого увеличения бывшей в то время у меня трубы. Эти светлые точки были приняты мною за неподвижные звезды, они обратили на себя мое внимание только потому, что все три находились на совершенно прямой линии, параллельной эклиптике, и были несколько ярче звезд одинаковой с ними величины. Расположение их относительно Юпитера быдо следующее: две находились на восточной стороне планеты, третья же на западной. Крайняя восточная звездочка и западная казались немного большими третьей. Я тогда не определял точным образом их взаимных расстояний, ибо, как сказано, они были сочтены мною за неподвижные звезды.
Через восемь дней ведомый не знаю какою судьбою, я опять направил трубу на Юпитер и увидел, что расположение звездочек значительно изменилось: именно все три помещались на западе от планеты и ближе одна к другой, чем в предшествовавшее наблюдение. Они по-прежнему стояли на прямой линии, но уже были разделены между собою равными промежутками. Хотя я был далек от мысли приписать это собственному движению звездочек, но тем не менее сомневался, чтобы такое изменение в их положении могло произойти от перемещения Юпитера, за несколько дней находившего на западе от двух звездочек. С величайшим нетерпением ожидал я следующей ночи, чтобы рассеять свои сомнения, но был обманут в своих ожиданиях, небо в эту ночь было со всех сторон покрыто облаками».
Галилей описывает далее новое расположение звездочек и дальнейшие над ними наблюдения; число звездочек оказалось равным четырем.
«Вследствие всего этого я уже без малейшего колебания решил, что существуют четыре светила, вращающиеся около Юпитера, подобно тому как Венера или Меркурий вращаются вокруг Солнца. Ныне имеем очевидный аргумент, чтобы рассеять сомнения тех, кои, склоняясь допустить, что планеты обращаются вокруг Солнца, смущаются, однако, каким образом Луна несется вокруг Земли и в то же время вместе с нею совершает годичный круг около Солнца… Мы знаем теперь, что есть планеты, обращающиеся одна около другой и в то же время вместе несущиеся вокруг Солнца; мы знаем, что и около Юпитера движутся и не одна, но четыре луны, следующие за ним во все продолжение его двенадцатилетнего обращения около Солнца».
В этом замечательном рассказе живо чувствуются переживания Галилея, сделавшего небывалое открытие. Галилей уже неоднократно смотрел на небо, смотрел и на Юпитера, уже сделал ряд замечательных открытий, но он не успокаивается. Он снова и снова совершенствует трубу и снова направляет на Юпитер. Он видит новые звездочки. Он еще не думает, что это луны Юпитера, но точно фиксирует их сравнительную величину и расположение. Это не было мимолетным наблюдением, он настолько хорошо зафиксировал расположение, что через 8 дней сразу замечает изменение его. Он еще не верит в свое открытие, но, охваченный творческим порывом, уже чувствует, что имеет дело с новым фактом: это не результат простого перемещения Юпитера. Начинаются тщательные наблюдения и изучение нового факта. Сопоставляя результаты отдельных наблюдений, теоретически обобщая их, Галилей приходит к смелому выводу: это спутники Юпитера. Он сразу оценивает значимость этого открытия для системы Коперника. Ведь он сам, руководясь системой Коперника, сумел не только не пройти мимо группы звездочек, одной из многих новых групп, открытых им, но и получить совершенно новый астрономический результат. Понятен восторг Галилея, понятно и то, что он сообщению о своих новых астрономических открытиях, вышедшему в 1610 году, придал величавое заглавие. «Звездный вестник».
Этой книгой Галилей начинает свою борьбу за легализацию и пропаганду системы Коперника.
Позже Галилей обнаружил феномен Сатурна (хотя и не понял, в чем дело) и открыл фазы Венеры.
Наблюдая, как солнечные пятна перемещаются по солнечной поверхности, он установил, что Солнце тоже вращается вокруг своей оси. На основании наблюдений Галилей сделал вывод, что вращение вокруг оси свойственно всем небесным телам.
Наблюдая звездное небо, он убедился, что число звезд гораздо больше, чем можно увидеть простым глазом. Так Галилей подтвердил мысль Джордано Бруно о том, что просторы Вселенной бесконечны и неисчерпаемы. После этого Галилей сделал вывод о том, что гелиоцентрическая система мира, предложенная Коперником, является единственно верной.
Представления людей о Солнечной системе претерпели существенные изменения за время, прошедшее с момента открытия телескопа и до конца XVIII столетия. Одно лишь оставалось неизменным: число планет в Солнечной системе, равное шести. Сатурн считался самой далекой от Солнца планетой, и мало кто допускал, что за орбитой Сатурна блуждает в мировом пространстве по гелиоцентрической орбите еще одна планета.
Эту планету открыл немецкий астроном Вильгельм Гершель. В своей долгой жизни Гершель сделал множество других замечательных открытий, относящихся как к Солнечной системе, так и к звездной вселенной. Например, он доказал, что Млечный Путь представляет собой «неизмеримый звездный слой», т. е. имеет звездную природу. Ему принадлежат уникальные наблюдения двойных звезд и фундаментальные исследования формы и структуры Галактики. Этому ученому принадлежит также открытие периодического увеличения и уменьшения белых шапок у марсианских полюсов и многих других разнообразных явлений, происходящих на Солнце, планетах и спутниках.
Но среди многочисленных его открытий, бесспорно, одно из первых мест занимает открытие Урана, и его вполне было бы достаточно, чтобы имя Гершеля навечно осталось в истории естествознания.
Фридрих Вильгельм Гершель (1738–1822) родился в Ганновере в семье гобоиста ганноверской гвардии Исаака Гершеля и Анны Ильзы Морицен. Протестанты Гершели были выходцами из Моравии, которую покинули, вероятно, из религиозных соображений. Атмосферу родительского дома можно назвать интеллектуальной. «Биографическая записка», дневник и письма Вильгельма, воспоминания его младшей сестры Каролины вводят нас в дом и мир интересов Гершеля и показывают тот воистину титанический труд и увлеченность, создавшие выдающегося наблюдателя и исследователя. Он получил обширное, но несистематическое образование. Занятия по математике, астрономии, философии выявили его способности к точным наукам. Но, кроме этого, Вильгельм обладал большими музыкальными способностями и в четырнадцать лет стал музыкантом в полковом оркестре. В 1757 году, после четырех лет военной службы, он уехал в Англию, куда несколько ранее переселился брат его Яков, капельмейстер ганноверского полка.
Не имея ни гроша в кармане, Вильгельм, переименованный в Англии в Вильяма, занялся в Лондоне перепиской нот. В 1766 году он переселился в Бат, где скоро достиг большой известности как исполнитель, дирижер и музыкальный педагог Но такая жизнь не могла его полностью удовлетворить. Интерес Гершеля к естествознанию и философии, постоянное самостоятельное образование привели его к увлечению астрономией. «Как жаль, что музыка не в сотню раз труднее науки, я люблю деятельность и мне необходимо занятие», — писал он брату.
В 1772 году в Бат приехала младшая сестра Вильяма Каролина Лукреция. В 1773 году Гершель приобрел ряд трудов по оптике и астрономии. «Полная система оптики» Смита и «Астрономия» Фергюсона стали его настольными книгами. В том же году он впервые взглянул на небо в небольшой телескоп с фокусным расстоянием около 75 сантиметров, но наблюдения со столь малым увеличением не удовлетворили исследователя. Поскольку средств на покупку более светосильного телескопа не было, он решил сделать его сам. Купив необходимые инструменты и заготовки, он самостоятельно отлил и отшлифовал зеркало для своего первого телескопа. Переборов большие трудности, Гершель в том же 1773 году изготовил рефлектор с фокусным расстоянием более 1,5 метра. Шлифовку зеркал Гершель производил вручную (машину для этой цели он создал только через пятнадцать лет), часто работая по 10, 12 и даже 16 часов подряд, так как остановка процесса шлифовки ухудшала качество зеркала. Работа оказалась не только тяжелой, но и опасной, однажды при изготовлении заготовки для зеркала взорвалась плавильная печь.
Сестра Каролина и брат Александр были верными и терпеливыми помощниками Вильяма в этой нелегкой работе. Трудолюбие и энтузиазм дали превосходные результаты. Зеркала, изготовленные Гершелем из сплава меди и олова, были прекрасного качества и давали совершенно круглые изображения звезд.
Как пишет известный американский астроном Ч. Уитни: «С 1773 по 1782 года Гершели были заняты тем, что превращались из профессиональных музыкантов в профессиональных астрономов».
В 1775 году Гершель начал свой первый «обзор неба». В это время он еще продолжал зарабатывать себе на жизнь музыкальной деятельностью, но истинной его страстью стали астрономические наблюдения. В перерывах между уроками музыки он занимался изготовлением зеркал для телескопов, вечерами давал концерты, а ночи проводил за наблюдением звезд. Для этой цели Гершель предложил оригинальный новый способ «звездных черпков», т. е. подсчета количества звезд на определенных площадках неба.
13 марта 1781 года, во время наблюдений, Гершель заметил нечто необычное: «Между 10 и 11 вечера, когда я изучал слабые звезды в соседстве с Н Близнецов, я заметил одну, которая выглядела большей, чем остальные. Удивленный ее необычным размером, я сравнил ее с Н Близнецов и небольшой звездой в квадрате между созвездиями Возничего и Близнецов и обнаружил, что она значительно больше любой из них. Я заподозрил, что это — комета». Объект имел ярко выраженный диск и смещался вдоль эклиптики. Сообщив другим астрономам об открытии «кометы», Гершель продолжал ее наблюдать.
Наблюдения, сделанные 15 марта, показали, что светящийся кружочек действительно обладает собственным движением относительно звезд. Из этого факта Гершель заключил, что им открыта новая комета, хотя не наблюдался ни хвост, ни туманная оболочка, присущие кометам, не очень удаленным от Солнца. Об этом открытии Гершель сообщил в Гринвичскую обсерваторию, и круг наблюдателей небесного странника значительно расширился. К лету 1781 года количество наблюдений стало достаточным, чтобы можно было вычислить параметры орбиты. Эти сложные и громоздкие вычисления выполнил петербургский академик Андрей Иванович Лексель (1740–1784), который нашел, что блуждающая звездочка Гершеля движется вокруг Солнца по почти круговой орбите на расстоянии в 19 раз большем расстояния Солнце — Земля. Лексель также определил период обращения вокруг Солнца, оказавшийся равным приблизительно 84 годам. Из этих вычислений однозначно вытекало, что Вильям Гершель открыл не комету, а новую, неизвестную до тех пор планету, так как уже тогда было известно, что орбиты большинства комет — это вытянутые эллипсы с большими эксцентриситетами или даже гиперболы.
Гершель предложил назвать новую планету звездой Георга в честь английского короля Георга III, но это название не получило распространения По предложению немецкого астронома Иоганна Боле (1747–1826) ей было присвоено наименование Уран, взятое из древнеримской мифологии и означавшее имя самого древнего из богов. Уран отстоял от Солнца почти на 3 миллиарда километров и превышал объем Земли более чем в 60 раз.
Это уникальное открытие занимает особое место в естествознании в целом и в астрономии в частности. Открытие Гершеля сделало несостоятельными старые, традиционные взгляды на размеры и структуру Солнечной системы и отодвинуло ее границы далеко за орбиту Сатурна. Солнечная система увеличилась в линейных размерах в два раза, и теперь ее граница проходила по орбите Урана на расстоянии 19,2 а. е. от Солнца.
В дальнейшем Гершель постепенно увеличивал диаметры зеркал. Его вершиной стал построенный в 1789 году телескоп — гигант по тому времени, с трубой длиной 12 метров и зеркалом диаметром 122 сантиметра. Этот телескоп оставался непревзойденным до 1845 года, когда ирландский астроном В. Парсонс построил еще больший телескоп — длиной почти 18 метров с зеркалом диаметром 183 сантиметра.
При помощи новейшего телескопа Гершель открыл два спутника Урана и два спутника Сатурна. Таким образом, с именем Гершеля связано открытие сразу нескольких небесных тел в солнечной системе.
Факт, что Земля имеет свою историю, был признан уже в незапамятные времена: космогонии индусов, египтян, евреев, греков рисуют более или менее грандиозные картины прошлой жизни нашей планеты. Уже в них в сказочной форме содержатся две основные теории, две антитезы, развивавшиеся затем в течение многих веков, пока одна из них не одержала победы над своею соперницей.
Основная идея индийской космогонии — чередование периодов разрушения, уничтожавших земную оболочку и ее население, с периодами покоя и созидания — высказанная еще в гимнах Веды, повторяется в сочинениях Кювье, Эли де Бомона, д'Орбиньи и других. Впрочем, эта идея не только «переживала»; она развивалась и разрасталась по мере накопления геологических знаний. Теории, господствовавшие при выступлении Лайеля на ученое поприще, представляют только вариации на эту древнюю тему.
Но и противоположная идея — идея медленного развития — тоже стара. Овидий излагает в своих «Метаморфозах» воззрения Пифагора, заимствованные последним, в свою очередь у индийских мудрецов, — воззрения, согласно которым ничто не исчезает и не создается в мире вообще и на Земле в частности, но все изменяется и превращается в непрерывном процессе развития.
История геологии — это история попыток облечь эти идеи в научную форму, то есть связать их с реальными явлениями вместо вымышленных.
Гениальный Леонардо де Винчи не признавал катаклизмов, выдвигающих и разрушающих материки, вздымающих горы, истребляющих флору и фауну в мгновение ока. Медленная, но неустанная деятельность воды, атмосферы, ветра приводит, в конце концов, к преобразованию земной поверхности. «Берега растут, подвигаясь в море, рифы и мысы разрушаются, внутренние моря высыхают и превращаются в реки». Горные породы с остатками растений и животных отложились когда-то в воде, деятельность которой, по мнению Леонардо, нужно считать главнейшим геологическим фактором. Он отвергает потоп, будто бы перенесший раковины на вершины гор в то время, когда море покрывало их на десять локтей, «как утверждает тот, кто его мерил», и смеется над «другой сектой невежд», по мнению которых эти раковины образовались действием звезд. В его воззрениях вполне научно сформулирован принцип униформизма, с помощью которого значительно позднее было сооружено здание современной геологии.
Но эти воззрения не имели, да и не могли иметь никакого влияния на современников Леонардо.
Весь этот длинный, охватывающий почти три века (XVI–XVIII), период можно назвать подготовительным периодом геологии. Было доказано: материалы, из которых состоит земная кора, не перемешаны в беспорядке, а расположены более или менее однородными слоями или пластами; окаменелости постоянно сопровождают известные пласты; пласты эти различаются по древности и могут быть классифицированы сообразно своему возрасту.
От этих истин перешли, наконец, и к общим геологическим теориям. В восемнадцатом столетии появляются целых две: нептуническая и вулканическая, или теории Вернера и Геттона.
Вернер, основываясь исключительно на минералогических признаках, дал общую классификацию горных пород, разделив их на первичные, переходные и вторичные. За исключением первичных, все остальные породы — не исключая гранитов и базальтов — отложились одна за другой из первобытного океана, хаотической жидкости — «тепайиит» — содержавшей в растворе всю будущую толщу земной коры. Отложились, конечно, в виде горизонтальных пластов, но с течением времени были взбудоражены, исковерканы, изломаны, приподняты, переворочены вследствие различных причин — главным образом, провалов в подземные пустоты, образовавшиеся между различными слоями еще во время их отложения из первичной хаотической жидкости. Таким образом земная поверхность приняла современную конфигурацию с ее неровностями, морями и материками, горами и долинами.
Теория Вернера представляет собой первую попытку облечь в научную форму древнюю идею катастрофизма. Она проводит резкую грань между прошлым и настоящим нашей планеты.
В свою очередь и униформизм нашел защитника в лице шотландца Геттона, теория которого была названа плутонической, или вулканической, так как признавала подземный огонь одним из важнейших геологических деятелей.
Не из первичной хаотической жидкости и не сразу отложились породы, составляющие современную земную кору, — учил Геттон, — они представляют итог многочисленных последовательных процессов. Были материки, которые разрушались действием вод; продукты этого разрушения отлагались на дне океанов; снова вздымались в виде материков действием подземного огня и снова разрушались и размывались… Современные толщи слоистых пород — от самых древних до новейших — вовсе не первичный осадок: все это производные, позднейшие образования, результаты многократных вспучиваний и разрушений земной коры. Силы, действовавшие при этом, продолжают и ныне действовать, разницы между прошлым и настоящим нет; в истории мира неизвестно начала, не видно конца; настоящее — только момент в бесконечном и однородном процессе развития вселенной.
В числе участников образования земной коры огромную роль играли, по мнению Геттона, вулканические силы. Он доказал огненное происхождение гранита и высказал мысль, что многие из осадочных водных пород изменились впоследствии под влиянием жара (так называемые метаморфические породы). Это — два важных приобретения, которыми наука обязана шотландскому ученому.
Как общая теория, его учение немногим превосходило верне-ровское, — даром что исходило из совершенно противоположного принципа. Основная идея Геттона — единство прежних и нынешних сил природы — совершенно справедлива, но, высказанная в такой общей форме, она не объясняла происходящих в реальности явлений.
Теории Геттона и Вернера возбудили ожесточенную, продолжительную и бесплодную войну нептунистов с вулканистами, окончившуюся к общему удовольствию после того, как самые упорные бойцы обоих лагерей должны были согласиться, что земная кора прошла, так сказать, и огонь, и воду, и что она состоит из огненных (гранит, базальт и др.), водных (песчаники, известняки и пр.) и метаморфических (кристаллические сланцы) пород.
Все сильнее и сильнее сказывалась потребность в общей теории, которая связала бы накапливавшиеся материалы универсальной схемой, давая в то же время ответ на частные, конкретные, определенные вопросы, возникавшие при ближайшем ознакомлении с фактами. Такую теории создал английский ученый Лайель.
Чарлз Лайель (1797–1875) родился в графстве Форфар, в Шотландии, в отцовском имении Киннорди.
На четвертом году жизни Лайель выучился читать, а на восьмом поступил в школу доктора Дэвиса в городе Рингвуд. На девятом году его перевели в школу доктора Радклиффа в Солсбери — модную школу, где сыновья местных влиятельных людей обучались латыни. Проучившись два года в школе Радклиффа, Лайель был переведен в школу доктора Бэли в Мидгерсте. Это училище резко отличалось от предыдущих — оно не имело такого семейного, домашнего характера.
Расставшись с училищем, Лайель поступил в Оксфордский университет. Мало-помалу геология заняла господствующее место в его занятиях. Он стал предпринимать целые путешествия с геологической целью. Так, в 1817 году он посетил остров Стаффа, где осматривал Фингалову пещеру, прославленную среди эстетов песнями Оссиана, среди геологов — замечательными базальтовыми столбами, весьма любопытным геологическим явлением. В следующем году он ездил с отцом, матерью и двумя сестрами во Францию, Швейцарию и Италию.
Пять-шесть лет после окончания курса в Оксфорде Лайель беспрестанно совершал поездки по Англии и материку, имея возможность проверить и закрепить собственным наблюдением сведения, почерпнутые из книг. Много почерпнул Лайель в личном общении с наиболее выдающимися геологами Европы. Наконец, осмотр коллекций и музеев служил хорошим дополнением к материалу, почерпнутому в книгах, в поле и в беседах с учеными.
В 1822 году Лайель предпринял поездку в Винчелзи — местность, весьма интересную в геологическом отношении, так как здесь он мог наблюдать обширное пространство суши, сравнительно недавно освободившейся из-под моря.
В 1823 году он предпринял экскурсию в Суссекс и на остров Уайт, где изучил отношения некоторых слоев, остававшиеся до тех пор неясными. Следующий год Лайель посвящает геологическим экскурсиям по Англии.
Довольно скоро в одном из журналов появилась его статья, в которой он излагает свое кредо, основную идею своих дальнейших работ.
Но Лайель еще не оценил всех трудностей предстоявшей ему работы Он думал, что его роль будет ограничена, главным образом, ролью компилятора. Он решил написать учебник геологии, обыкновенный компилятивный учебник, краткий свод накопившихся в науке материалов, разумеется, иначе освещенных, чем у предыдущих исследователей. Оказалось, однако, что написать компиляцию невозможно, а можно и должно сделать нечто большее.
В 1828 году он предпринял со своим приятелем Мурчисоном продолжительную геологическую экскурсию во Францию, Италию и Сицилию.
Главной целью этой экспедиции было ближайшее ознакомление с осадками третичной эпохи. По имеющейся теории между третичной и современной эпохой был пробел, перерыв. «Ход событий изменился», старый мир погиб, уничтоженный какой-нибудь катастрофой, и воздвигся новый.
Прежние экскурсии Лайеля заставили его усомниться в справедливости этих заключений; теперь же он решился проверить свои сомнения, изучив третичные осадки на всем протяжении от Франции до Сицилии.
Исследования его совершенно уничтожили прежние воззрения. Сравнивая третичные окаменелости с современными, он сделал вывод, что они представляют одно неразрывное целое: третичные осадки, климат, население незаметно переходят в современные. Ничто не говорит в пользу громадных общих катастроф, разрывающих цепь явлений; напротив, все свидетельствует о медленном непрерывном и однородном процессе развития.
Понятно, какое громадное значение имели эти выводы для теории униформизма. Катастрофисты теряли свою главную опору: существование резкого перерыва между настоящим и прошлым.
Первый том «Основных начал геологии» Лайеля вышел в свет в 1830 году, второй — в 1832-м, третий — в 1833-м.
Трудно определить в нескольких словах значение этой книги. Оно не укладывается в краткую формулу, не выражается в ярких открытиях. Вся его книга в целом представляет открытие. В книге Лайеля деятельность современных сил природы впервые явилась в своем настоящем свете. Он показал, что, во-первых, работа этих «слабых» агентов приводит в действительности к колоссальным результатам, продолжаясь в течение неопределенного времени, и, во-вторых, что она действительно продолжается в течение неопределенного времени, незаметно сливаясь с прошлым.
Изучению современных сил посвящены первый и второй тома «Основных начал».
Теория метаморфизма, зародыш которой мы находим у Геттона, была разработана Лайелем и приведена в связь с его общей системой. Среди горных пород, составляющих земную кору, видную роль играют толщи кристаллических сланцев, обнаруживающих признаки огненной (кристаллическое слоение) и водяной (слоистость) работ. Согласно теории Лайеля, «возраст каждой метаморфической формации бывает двоякий: сначала мы должны сообразить период, когда она появилась как водяной осадок в виде ила, песка, мергеля или известняка, а потом — определить время, когда она получила кристаллическое строение. Сообразно с этим определением один и тот же пласт может быть весьма древний относительно времени своего осаждения и новый относительно того периода, в который он получил метаморфический характер». И в этом случае нет надобности приписывать прежде действовавшим силам особую энергию не в пример нынешней спокойной эпохе. Осадочные породы издревле и теперь менялись и меняются под влиянием плутонических агентов одинаковой напряженности. Но древние отложения дольше подвергались влиянию этих агентов, оттого и изменились сильнее. На первый взгляд эти сильные изменения кажутся результатом столь же сильных причин; однако детальное изучение обнаруживает в них только итог большого числа действий, таких же, как нынешние.
Наконец, не менее полно и основательно исследовал Лайель вопрос о роли органических агентов в истории земной коры. Он уничтожил прежнее мнение о перерывах в истории органического мира — об уничтожении и возникновении целых фаун и флор, — доказав (для третичной эпохи), что при более тщательном исследовании мы открываем и здесь постепенность развития, гармонирующую с постепенным преобразованием неорганической среды.
Система Лайеля положила начало геологии как строгой индуктивной науке. Метод его был воспринят в силу своей внутренней необходимости. Физическая геология, поставленная им на твердую почву, продолжала развиваться с поразительной быстротой. Чем глубже и тщательнее исследовали современные явления, тем ярче освещалась история земной коры, что, конечно, подстегивало исследователей. Во Франции, в Германии старые теории еще держались более или менее искусственно влиянием академических ученых, но наряду с ними развивалось и новое направление. В 50-60-х годах теория униформизма завоевала господство повсюду.
Геология ушла далеко со времени первого издания «Основных начал». Но можно сказать одно: наука устремилась по пути, проложенному Лайелем.
После открытия Гершелем Урана во многих обсерваториях мира начались тщательные наблюдения за движением новой планеты. Используя законы Ньютона и учитывая притяжение открытых к тому времени планет, астрономы уточнили орбиту Урана и уже к середине первой половины XIX века окончательно убедились в том, что видимая орбита новой планеты и результаты расчетов с каждым годом наблюдений… все больше расходятся.
Наиболее проницательные ученые высказали смелое предположение, что на движение Урана оказывает сильное влияние расположенная за ним и еще неизвестная науке довольно большая планета.
Урбен Леверье во Франции и Джон Адаме в Англии сумели математически точно определить положение и размеры неизвестной планеты, «возмущающей» орбиту Урана.
Если следовать хронологии фактически, то сначала следует изложить историю исследований английского астронома Джона Адамса.
Джон Кауч Адаме (1819–1892) родился в семье фермера в городке Лидкот (графство Корнуолл). Еще в детстве он проявил исключительные для его возраста математические способности, и в 1831 году родители послали его учиться в частную школу в Девонпорте, известную высоким уровнем преподавания. Все свободное время он проводил там, в институте механики, и здесь он впервые приобщился к научной литературе. В 1835 году он сам наблюдает комету Галлея, а в 1837 году — лунное затмение, после чего публикует свою первую небольшую заметку. Осенью 1839 года он блестяще выдерживает экзамен в колледж Сент Джона при Кембриджском университете и начинает там учебу.
Астрономия увлекает Адамса все более и более. В 1841 году он знакомится с публикацией директора Гринвичской обсерватории Эри 1832 года, в которой была изложена теория Бувара для Урана, рассказано о ее трудностях при совместном учете «старых» и «новых» наблюдений, о ее расхождениях с наблюдениями после 1820 года. Это определило научный путь Адамса на многие годы.
В том же 1841 году Адаме начинает изучать астрономию в качестве обычных студенческих курсов, в частности, теорию движения Луны и планет. Затем в течение всего 1842 года он готовится к знаменитому для Кембриджа ежегодному математическому конкурсу, который являлся официальным экзаменом на степень бакалавра по математическим наукам.
После конкурса Адаме приобретает степень бакалавра. Как первый призер он становится членом научного совета колледжа. Но проблема Урана волнует его больше всего. К этому времени у него окончательно укрепилось мнение, что неправильности в движении Урана вызваны неизвестной более далекой планетой.
Как видно из записей в дневниках Адамса, его окончательно убедила в этом научно-популярная книга Мэри Соммервиль «Связь между физическими науками». В начале лета 1843 года Адаме уезжает на время летних каникул к себе домой в Лидкот, где приступает наконец к исследованиям Урана. В октябре этого года он уже получает первые результаты.
Он продолжает работать над этой проблемой дальше. При этом он получает еще более точные с математической точки зрения решения проблемы. Всего, начиная с лета 1843 года до сентября 1845 года, Адаме получил шесть решений, каждое из которых он считал точнее предыдущего.
Хотя Адаме становился очень решительным и смелым в своих научных планах и исследованиях, но в, обыденной жизни он был невероятно скромным и робким. Так, первые пять решений проблемы о неизвестной планете, не увидев свет и никому не став в то время известными, перешли впоследствии лишь на полки архива Кембриджского колледжа Сент Джона, где и хранятся как огромная ценность до сих пор. Только шестое решение, правильнее сказать, только резюме результатов, которые выглядели наиболее полными и точными, Адаме решился показать в частном порядке осенью 1845 года Эри и Джеймсу Чэллису, профессору астрономии, директору Кембриджской обсерватории, кого он считал наибольшими авторитетами в астрономии Более или менее подробно об этом решении и о последнем, седьмом решении, полученном в 1846 году, рассказано в единственной статье, которая была представлена Адамсом в качестве доклада на заседании английского Королевского астрономического общества лишь в ноябре 1846 года (уже после фактического открытия Нептуна). По этой статье и по очень кратким высказываниям в литературе можно судить о содержании первых исследований Адамса.
Адаме пишет краткую записку, в которой объясняет, что завершено решение труднейшей задачи, беспокоившей весь астрономический мир почти пятнадцать лет. Но Эри отнесся к записке Адамса явно отрицательно. Он не пошел навстречу Адамсу ни словом, ни делом. Итак, с сентября 1845 года до июля 1846 года результаты, полученные Адамсом, не имели никакого практического эффекта. В печати о них не появилось ни слова.
Над той же задачей, что и Адаме, в то же время работал и французский астроном Леверье, ничего не зная об исследованиях английского ученого.
Урбен Жан Жозеф Леверье — один из крупнейших французских астрономов XIX века. Достаточно сказать, что и во второй половине двадцатого века французский Астрономический ежегодник предпочитал публиковать координаты Меркурия, Венеры, Земли и Марса, т. е. четырех планет из девяти, вычисляемые на основании теории и конкретных формул Леверье! Но наибольшую и всемирную славу принесло Леверье открытие Нептуна.
Урбен Леверье (1811–1877) родился в городке Сен-Ло в Нормандии. Отец — скромный служащий. Уже в школе Леверье проявил способности к науке, и родители, связывающие со своим сыном честолюбивые надежды, посылают его в 1828 году в колледж города Каена на два года для повышения знаний по математике. В 1830 году Леверье окончил колледж.
Через год он успешно выдерживает конкурс в Политехническую школу. Окончив после трех лет занятий школу с отличием, Леверье получил возможность самостоятельного выбора работы. Он стал химиком в одном из государственных учреждений.
В астрономию привел Леверье случай. В 1837 году его знания в астрономии были еще довольно слабые. Но карьера ученого благодаря его огромному таланту оказалась быстрой и блестящей. Уже в 1839 году, после двух лет очень интенсивной работы, он представил в Парижскую Академию наук доклад «О вековых возмущениях (изменениях) планетных орбит», который был в скором времени опубликован. В 1840 году Леверье публикует еще более точные результаты по этой проблеме.
В последующие три года он работает над теорией движения Меркурия. С конца 1843 года до лета 1845 года Леверье провел очень интересные исследования некоторых короткопериодических комет, и тут же опубликовал результаты, которые также вошли в золотой фонд небесной механики.
Неудивительно, что летом 1845 года Франсуа Араго, директор Парижской обсерватории и глава французской астрономии того времени, предлагает Леверье заняться актуальнейшей тогда проблемой открытия неизвестной планеты, возмущающей Уран.
Леверье сразу приступает к этой проблеме. История его исследований сравнительно короткая и успешная.
В ноябре 1845 года он представляет в Академию наук и тут же публикует первую статью, посвященную Урану. Он заново строит всю теорию движения Урана с учетом возмущений от известных планет, перекрывая и уточняя все, что было сделано Буваром. Его работа и характер самого изложения отличались тщательностью, учетом тончайших деталей, четкостью.
Всю зиму 1845 года и весну 1846 года Леверье усиленно продолжает исследования и 1 июня представляет в Академию наук вторую статью по данной проблеме. Она состоит из двух частей. В первой части Леверье заново проводит сравнение всех существующих наблюдений Урана и вычислений по своей точной теории движения Урана.
Во второй части Леверье переходит уже к гипотезе о существовании неизвестной планеты. Прежде всего, он кратко и четко анализирует другие гипотезы относительно причин неправильного поведения Урана, не соглашаясь с ними.
Далее Леверье ставит задачу, близкую по содержанию к той, которую рассматривал Адаме: определить элементы орбиты неизвестной возмущающей планеты, а также поправки к элементам первоначальной орбиты Урана так, чтобы в конце концов теория движения Урана с учетом влияния этой неизвестной планеты отвечала наблюдениям.
В этой статье он дает предварительное решение задачи. Весь анализ выглядит в целом очень солидно и не оставляет сомнения в истинности результатов. Во Франции статья Леверье была встречена с восторгом и оценена как аналитический триумф.
Однако французские астрономы, к которым Леверье обратился дрежде всего, не собирались организовывать поиски новой планеты. Он срочно ищет возможности «внедрения своей работы в практику наблюдений».
Леверье не стал обращаться к маститым астрономам и директорам обсерваторий. Он обратился к молодому немецкому астроному Иоганну Готфриду Галле, ассистенту Берлинской обсерватории.
Леверье отсылает 18 сентября письмо к Галле, в котором пишет: «…Я хотел бы найти настойчивого наблюдателя, который согласился бы уделить некоторое время наблюдениям в той области неба, где может находиться неизвестная планета. Я пришел к своему выводу на основании теории движения Урана…»
Галле получил это письмо 23 сентября. Его реакция была немедленной и положительной. В ту же ночь он сел за телескоп — 23-сантиметровый рефрактор Берлинской обсерватории.
Галле стал помогать Д'Аррест, которому пришла счастливая идея. Он предложил использовать звездную карту неба и тут же в ходе наблюдений сравнивать положения наблюдаемых и зафиксированных на карте небесных светил. Неизвестной планеты на карте быть не должно, поэтому планетой окажется та звезда, которая не отмечена на карте.
Правда, требовалась подробная и точная звездная карта, без которой подобный способ поиска планеты привел бы только к недоразумениям. Такой карты данного участка неба не было ни у английских, ни у французских астрономов. Но она оказалась в Берлинской обсерватории. Это была карта звездного атласа Берлинской академии наук, составленная Карлом Бремикером (1804–1877), напечатанная в конце 1845 года, но еще не разосланная на другие обсерватории.
Взяв карту, Галле и д'Аррест продолжили наблюдение. Галле называл по очереди звезды, а д'Аррест отмечал их на карте. Вскоре, а именно почти ровно в полночь, Галле назвал звезду примерно 8-й величины, которую д'Аррест на карте не нашел. Ее положение отличалось от того, которое было вычислено по данным Леверье, но незначительно. Следовательно, это и была так долго разыскиваемая планета. С начала наблюдений и до замечательного открытия в эту знаменательную ночь 23 сентября 1846 года прошло лишь несколько часов.
В следующую ночь удалось подтвердить открытие. Все соответствовало данным Леверье: положение, яркость, собственное движение.
Утром 25 сентября Галле пишет Леверье письмо, подтверждая факт открытия планеты: «Планета, положение которой Вы указали, действительно существует. В тот же день, когда я получил Ваше письмо, я обнаружил звезду 8-й величины, не указанную на превосходной карте (составленной доктором Бремикером) из звездного атласа, опубликованного Берлинской академией наук. Наблюдения в следующую ночь подтвердили, что это — искомая планета».
Таковы обстоятельства официального и всеми признанного открытия восьмой планеты Солнечной системы.
Метод, с помощью которого было предсказано существование Нептуна, покорил воображение ученых. За движением Нептуна стали тщательно следить и вскоре обнаружили столь значительные различия между наблюдаемой и теоретической орбитами нового светила, что это могло быть объяснено только существованием еще одной планеты, расположенной за Нептуном!
18 февраля 1930 года молодой астроном Клайд Томбо из Ловелловской обсерватории в Америке, наконец, обнаружил (на расстоянии, почти в три раза превышающем радиус орбиты Нептуна) новую планету Солнечной системы, получившую название Плутон. Томбо тем самым подтвердил расчеты известных астрономов-теоретиков Персиваля Ловелла и Вильяма Пикеринга.
Поистине, как сказал знаменитый французский оптик и астроном Франсуа Араго, «…умственные глаза могут заменять сильные телескопы…»
В наше время полет космического корабля считается обыденным явлением. И даже порою странным кажется, что еще сто лет назад люди только могли мечтать о таких полетах.
«В XVII веке появился рассказ французского писателя Сирано де Бержерака о полете на Луну, — пишет И.А. Минасян. — Герой этого рассказа добрался до Луны в железной повозке, над которой он все время подбрасывал сильный магнит. Притягиваясь к нему, повозка все выше поднималась над Землей, пока не достигла Луны. Известный английский писатель Герберт Уэллс описал фантастическое путешествие на Луну в снаряде, корпус которого был сделан из материала, не подверженного силе тяготения.
Разные предлагались средства для осуществления космического полета, но ни один ученый, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть могучую силу земного притяжения и унестись в межпланетное пространство. Великая честь открыть людям дорогу к звездам выпала на долю нашего соотечественника Константина Эдуардовича Циолковского.
Скромный калужский учитель сумел рассмотреть во всем известной пороховой ракете прообраз могучих космических кораблей будущего. Его идеи до сих пор служат и еще долго будут служить основой создания ракет и освоения человеком околосолнечного пространства.
Почти две тысячи лет прошло с тех пор, как изобретатели пороха — древние китайцы — построили первые ракеты, но только Циолковский показал, что единственный летательный аппарат, способный проникнуть за атмосферу и даже навсегда покинуть Землю, — это ракета. Он не только обосновал общие принципы, но и произвел подробные практические расчеты, в результате которых замечательный ученый и пришел к выводу о необходимости создания ракетных поездов, или, как мы теперь говорим, многоступенчатых ракет, а также о необходимости создания искусственных спутников Земли».
Константин Эдуардович Циолковский (1857–1935) родился в селе Ижевском Рязанской губернии в семье лесничего. В десятилетнем возрасте Костя заболел скарлатиной и потерял слух. Мальчик не смог учиться в школе и вынужден был заниматься самостоятельно.
Вот как вспоминал о годах юности сам ученый:
«Я разбирал с любопытством и пониманием несколько отцовских книг по естественным и математическим наукам (отец некоторое время был преподавателем этих наук в таксаторских классах) И вот меня увлекает астролябия, измерение расстояния до недоступных предметов, снятие планов, определение высот. Я устраиваю высотометр. С помощью астролябии, не выходя из дома, я определяю расстояние до пожарной каланчи. Нахожу 400 аршин. Иду и поверяю. Оказывается — верно. Так я поверил теоретическому знанию…»
Когда Константину исполнилось шестнадцать лет, отец отправил его в Москву к своему знакомому Н Федорову, работавшему библиотекарем Румянцевского музея. Под его руководством Циолковский много занимался и осенью 1879 года сдал экзамен на звание учителя народных училищ. После рождества 1880 года Циолковский получил известие о назначении на должность учителя арифметики и геометрии в Боровское уездное училище…
В Боровске Циолковский проработал несколько лет и в 1892 году был переведен в Калугу. В этом городе и прошла вся его дальнейшая жизнь. Здесь он преподавал физику и математику в гимназии и епархиальном училище, а все свободное время посвящал научной работе. Не имея средств на покупку приборов и материалов, он все модели и приспособления для опытов делал собственными руками.
Круг интересов Циолковского был очень широк. Однако из-за отсутствия систематического образования он часто приходил к результатам, уже известным в науке. Например, так произошло с его первой научной работой, посвященной проблемам газовой динамики.
Но за вторую опубликованную работу — «Механика животного организма» — Циолковский был избран действительным членом Русского физико-химического общества. Эта работа заслужила положительные отзывы крупнейших ученых того времени — Менделеева и Столетова.
Столетов познакомил Циолковского со своим учеником Николаем Жуковским, после чего Циолковский стал заниматься механикой управляемого полета. Ученый построил на чердаке своего дома примитивную аэродинамическую трубу, на которой производил опыты с деревянными моделями.
Накопленный им материал был положен в основу проекта управляемого аэростата. Так Циолковский назвал дирижабль, поскольку само это слово в то время еще не придумали. Циолковский не только первым предложил идею цельнометаллического дирижабля, но и построил его работающую модель. При этом ученый создал и оригинальный прибор для автоматического управления полетом дирижабля, а также оригинальную схему регулирования его подъемной силы.
Однако чиновники из Русского технического общества отвергли проект Циолковского из-за того, что одновременно с ним с аналогичным предложением выступил австрийский изобретатель Шварц. Тем не менее Циолковскому удалось опубликовать описание своего проекта в журнале «Научное обозрение» и таким образом закрепить за собой приоритет на это изобретение.
После дирижабля Циолковский перешел к исследованию аэродинамики самолета. Он детально исследовал влияние формы крыла на величину подъемной силы и вывел соотношение между сопротивлением воздуха и необходимой мощностью двигателя самолета. Эти работы были использованы Жуковским при создании теории расчета крыла.
В дальнейшем интересы Циолковского переключились на исследования космического пространства. В 1903 году он опубликовал книгу «Исследования мировых пространств реактивными приборами», где впервые доказал, что единственным аппаратом, способным совершить космический полет, является ракета. Правда, Циолковскому не хватало математических знаний, и он не смог дать детальные расчеты ее конструкции. Однако ученый выдвинул целый ряд важных и интересных идей.
Те первые работы ученого прошли почти незамеченными. Учение о реактивном звездолете только тогда было замечено, когда начало печататься вторично, в 1911–1912 годах, в известном распространенном и богато издающемся столичном журнале «Вестник воздухоплавания». Тогда многие ученые и инженеры за границей заявили о своем приоритете. Но благодаря ранним работам Циолковского его приоритет был доказан.
В этой статье и последовавших ее продолжениях (1911 и 1914 годах) он заложил основы теории ракет и жидкостного ракетного двигателя. Им впервые была решена задача посадки космического аппарата на поверхность планет, лишенных атмосферы.
В 1926–1929 годы Циолковский решает практический вопрос: сколько нужно взять топлива в ракету, чтобы получить скорость отрыва и покинуть Землю.
И.А. Минасян: «Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Эта максимально достижимая скорость в первую очередь зависит, конечно, от скорости истечения газов из сопла ракеты. А скорость газов в свою очередь зависит, прежде всего, от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость.
Значит, для ракеты нужно подбирать самое калорийное топливо, которое при сгорании дает наибольшее количество теплоты.
Но максимальная скорость ракеты зависит не только от скорости истечения газов из сопла. Из формулы следует, что она зависит также от начальной и конечной массы ракеты, т. е. от того, какая часть ее веса приходится на горючее и какая — на бесполезные (с точки зрения скорости полета) конструкции: корпус, механизмы управления, рули и даже самую камеру сгорания и сопло.
Эта формула Циолковского является фундаментом, на котором зиждется весь расчет современных ракет Отношение общей, стартовой массы летательного аппарата к его весу в конце работы двигателя (т. е. по существу к весу пустой ракеты) в честь великого ученого названо числом Циолковского.
Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьет тем большую скорость, чем больше скорость истечения газов и чем больше отношение начальной массы ракеты к ее конечной массе, т. е. чем больше число Циолковского. Установив, что предел скорости ракеты зависит от качества топлива и отношения полезной и „бесполезной“ массы, Циолковский исследовал теплотворные возможности пороховых топлив. Его вычисления показали, что эти топлива не смогут обеспечить нужной температуры горения, а значит, и скорости истечения, необходимых для преодоления земного притяжения. Кроме того, рыхлый порох занимает большой объем, приходится увеличивать корпус и, следовательно, конечную массу ракеты».
Расчет показывает: для того чтобы жидкостная ракета с людьми развила скорость отрыва и отправилась в межпланетный полет, нужно взять топлива в сто раз больше, чем весит корпус ракеты, двигатель, механизмы, приборы и пассажиры, вместе взятые. Снова очень серьезное препятствие.
Ученый нашел оригинальный выход — ракетный поезд, многоступенчатый межпланетный корабль. Он состоит из многих ракет, соединенных между собой. В передней ракете, кроме топлива, находятся пассажиры и снаряжение. Ракеты работают поочередно, разгоняя весь поезд. Когда топливо в одной ракете выгорит, она сбрасывается, при этом удаляются опустошенные баки, и весь поезд становится легче. Затем начинает работать вторая ракета и т. д. Передняя ракета, как по эстафете, получает скорость, набранную всеми предыдущими ракетами.
Может показаться, что выгоднее сделать как можно больше ступеней ракеты. Однако расчеты убедительно доказывают, что это не так: максимальная скорость заметно увеличивается до трех-четырех ступеней, а дальше почти не растет. Скорость ракеты после шести ступеней практически остается постоянной.
Любопытно, что, не имея практически никаких приборов, Циолковский рассчитал, что оптимальной высотой для полета вокруг Земли является промежуток от трехсот до восьмисот километров над Землей. Именно на этих высотах и происходят современные космические полеты.
На много лет опередив своих современников, великий ученый с помощью точного языка математики впервые показал пути овладения человеком космическим пространством и указал реальные пути, по которым должна пойти техника межпланетных сообщений.
Узнав о работах Циолковского, немецкий ученый Герман Оберт написал ему: «Зная Ваши превосходные работы, я обошелся бы без многих напрасных трудов и сегодня продвинулся бы гораздо дальше».
Еще в 1911 году Константин Эдуардович произнес вещие слова: «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство».
Сегодня все мы свидетели того, как сбывается это великое предвидение.
После открытия Колумбом Америки на географических картах стали уточняться изображения американского побережья.
«Если взглянуть повнимательней на глобус или на любую карту мира, можно заметить одну особенность очертаний многих береговых линий, — пишет Борис Силкин. — Южная Америка и Африка, если их „сдвинуть“ вплотную, довольно аккуратно „вложатся“ друг в друга, как детали мозаичной картинки. Гренландия выглядит так, будто она только что вырвалась из „объятий“, с одной стороны — Северной Америки, а с другой — Северной Европы… Длинный рукав Антарктического полуострова в Западном полушарии смыкается с крайним югом Южной Америки, и так далее: множеству выступов по одну сторону моря соответствуют впадины в очертаниях суши по другую сторону.
Эти „географические странности“ люди отметили еще в те времена, когда они только учились составлять карты. Об этом размышляли знаменитый английский философ Фрэнсис Бэкон (1561–1626), французский мыслитель Франсуа Пласэ и многие другие.
Еще в 1596 году в Амстердаме вышел в свет ученый трактат фламандского картографа Абрахама Ортелия (1527–1598) „Географическая сокровищница“. Ортелий совершил два замечательных „прорыва“ в познании мира, на столетия предваривших господствующую ныне теорию дрейфа континентов. Он не только отметил „совместимость“ береговых линий Старого и Нового Света (включая и Европу), но и попытался реально представить, как шло раздвижение континентов».
Антонио Снидер в середине девятнадцатого столетия узнал о полном сходстве ископаемых растений каменноугольного периода палеозойской эры, найденных в Европе и Северной Америке. Снидер стал искать причину. Он решил, что ископаемые деревья росли в одном большом лесу, разделившемся когда-то на части. Одна половина оказалась в Европе, а другая — в Америке!
Снидер сближает на карте материки так, чтобы берега соединились, и он получил единый континент. В 1858 году его сочинение «Мироздание и его разоблаченные тайны» было опубликовано в Париже. Но современникам его идея показалась неправдоподобной, и о ней забыли.
Та же судьба постигла гипотезы еще нескольких европейских и американских ученых. Все они предполагали, что континенты наших дней — всего лишь обломки более крупных «суперконтинентов» далекого прошлого, удалившиеся друг от друга на тысячи километров.
Наконец, в 1910–1912 годах немецкий исследователь Вегенер не только вновь выдвинул эту гипотезу, но и подкрепил ее разнообразными геологическими и геофизическими данными.
Альфред Лотар Вегенер (1880–1930) родился в семье берлинского священника. Сначала Альфред избрал профессию астронома. Он получил образование в Гейдельбергском, Инсбрукском и Берлинском университетах.
Еще в годы учебы он пишет работу о движении планет. Ее высоко оценили специалисты.
«Но он со студенческих лет мечтал заняться исследованием острова Гренландия и наукой о погоде — метеорологией, в то время делавшей практически первые шаги, — отмечает Б. Силкин. — И не только мечтал, но и готовился к этому.
Все свободное время Вегенер посвящал дальним лыжным походам, занятиям конькобежным спортом, а также изготовлению и запуску… воздушных шаров и змеев, считая, что именно эти „игрушки“ станут первыми средствами доставки измерительных приборов в относительно высокие слои атмосферы, где „делается“ погода. Вместе со своим братом Куртом в 1906 году он поставил рекорд длительности беспрерывного пребывания в воздухе на воздушном шаре — 52 часа.
„Воздушные“ и спортивные достижения Альфреда Вегенера не остались незамеченными, и вскоре он был включен в качестве метеоролога в состав датской полярной экспедиции, направлявшейся в манившую его Гренландию. Потом — преподавание метеорологии в Марбургском университете. Там он написал интересную работу о том, как ведет себя тепловая энергия в атмосфере. А в 1912 году — новая экспедиция в Гренландию. Собранные данные по метеорологии и гляциологии (науке о льде и снеге) заполнили множество томов».
Первая мировая война прервала научную работу. Вегенер становится младшим офицером германской армии. После окончания войны он становится директором Отдела метеорологических исследований Морской обсерватории в Гамбурге. В 1924 году ученый переезжает в Австрию, где получает кафедру метеорологии и геофизики в Грацском университете.
В 1929 году началась уже третья экспедиция Вегенера в Гренландию. Там он и погиб в 1930 году.
В некрологах, посвященных ученому, отмечались его заслуги в области физики атмосферы. О нем говорили, как о крупном полярном исследователе, отличном организаторе науки и преподавателе. Но об открытии Вегенера, прославившем его, не было сказано ни слова.
Трудно сказать, как немецкий ученый пришел к убеждению, что континенты способны «разъезжать» по поверхности Земли. Весьма вероятно, что, как и его предшественников, натолкнули на эту мысль характерные очертания материков нашей планеты.
Естественно, Вегенеру приходилось преодолевать огромные трудности, так как он не располагал большей частью тех фактов и знаний, которые известны в настоящее время. Тем не менее ему удалось заложить прочный фундамент современных представлений о строении и развитии Земли, включая основы теории дрейфа континентов, перемещения полюсов и подчиняющихся этим движениям перемен климата.
В наши дни гипотеза Вегенера хорошо известна, как гипотеза плавающих («дрейфующих») континентов. Единый суперконтинент палеозойской эры, позже расколовшийся и распавшийся, Вегенер назвал «Пангея», что означает «единая земля».
В январе 1912 года Вегенер представил свою гипотезу на заседании Германской геологической ассоциации во Франкфурте-на-Майне.
Гипотеза опровергала существующие в то время представления. Она стала предметом острых споров в научном мире.
Противники ученого считали, что материки движутся только в вертикальном направлении. Таким образом при поднятии земной коры образуется суша, при опускании — моря и океаны. Вегенер же убежденно говорил о горизонтальном движении континентов — они «разъезжаются», «дрейфуют». В результате этого образуются океаны. Увы, гипотеза Вегенера была большинством отвергнута. На несколько десятилетий геологи и геофизики о гипотезе забыли.
Справедливости ради надо сказать, что и в самом деле в ней имелись слабые места, на которые не замедлили указать специалисты.
Одно из слабых мест гипотезы Вегенера — это затруднение в объяснении «механизма» приводящего в движение континенты.
В тридцатые—сороковые годы такое объяснение дал шотландский геолог Артур Холмс (1890–1965). Он предположил, что силой, движущей континенты, могли бы стать потоки вещества, существующие в мантии и приводимые в движение разностью температур. При этом теплые потоки поднимаются вверх, а холодные опускаются вниз.
Движущийся базальтовый слой он уподобил «бесконечной транспортировочной ленте», передвигающей континенты. Понадобилось еще полвека, чтобы к концу шестидесятых годов двадцатого столетия представления о крупных перемещениях земной коры превратились из гипотезы в развернутую теорию, в учение о тектонике плит.
Сегодня гипотеза Вегенера является общепризнанной и развивается в соответствии с уровнем современной науки.
«В 1744 году швейцарский астроном де Шезо и независимо от него в 1826 году Ольберс сформулировали следующий парадокс, — пишет в своей книге Т. Редже, — который привел к кризису тогдашних наивных космологических моделей. Представим себе, что пространство вокруг Земли бесконечно, вечно и неизменно и что оно равномерно заполнено звездами, причем их плотность в среднем постоянна. С помощью несложных вычислений Шезо и Ольберс показали, что полное количество света, посылаемое на Землю звездами, должно быть бесконечным, из-за чего ночное небо будет не черным, а, мягко говоря, залито светом. Чтобы избавиться от своего парадокса, они предположили существование в космосе обширных блуждающих непрозрачных туманностей, заслоняющих наиболее отдаленные звезды. На самом деле так выйти из положения нельзя: поглощав свет от звезд, туманности поневоле нагревались бы и сами излучали свет так же, как и звезды.
Итак, если справедлив космологический принцип, то мы не можем принять идею Аристотеля о вечной и неизменяющейся Вселенной. Здесь, как и в случае относительности, природа, похоже, предпочитает в своем развитии симметрию, а не мнимое Аристотелево совершенство».
Однако самый серьезный удар незыблемости Вселенной был нанесен не теорией эволюции звезд, а результатами измерений скоростей удаления галактик, полученными великим американским астрономом Эдвином Хабблом.
Хаббл (1889–1953) родился в небольшом городке Маршфилд в штате Миссури в семье страхового агента Джона Пауэла Хаббла и его супруги Виржинии Ли Джеймс. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп.
В 1906 году Эдвин окончил школу. Шестнадцатилетним юношей Хаббл поступил в Чикагский университет, входивший тогда в первую десятку лучших учебных заведений США. Там работал астроном Ф.Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.
После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию.
Летом 1913 года Эдвин возвратился на родину, но юристом так и не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где на Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии. Его работа представляла собой статистическое исследование слабых спиральных туманностей в нескольких участках неба и особенной оригинальностью не отличалась. Но уже тогда Хаббл разделял мнение о том, что «спирали — это звездные системы на расстояниях, часто измеряемых миллионами световых лет».
В это время в астрономии приближалось большое событие — обсерватория Маунт-Вилсон, которую возглавлял замечательный организатор науки Д.Э. Хейл, готовилась к вводу в строй крупнейшего телескопа — стодюймового рефлектора (250-сантиметрового — Прим. авт.). Приглашение работать в обсерватории среди других получил и Хаббл. Однако весной 1917 года, когда он заканчивал свою диссертацию, США вступили в Первую мировую войну. Молодой ученый отклонил приглашение и записался добровольцем в армию. В составе Американского экспедиционного корпуса майор Хаббл попал в Европу осенью 1918 года, незадолго до окончания войны, и в боевых действиях принять участие не успел. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы принять приглашение Хейла.
На обсерватории Хаббл начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути.
В хрестоматии «Книга первоисточников по астрономии и астрофизике, 1900–1975» К. Ланга и О. Гингерича (США), где воспроизведены самые выдающиеся исследования за три четверти двадцатого столетия, помещены три работы Хаббла, и первая из них — работа по классификации внегалактических туманностей. Две другие относятся к установлению природы этих туманностей и открытию закона красного смещения.
В 1923 году Хаббл приступил к наблюдениям туманности в созвездии Андромеды на шестидесяти и стодюймовых рефлекторах. Ученый сделал вывод, что большая Туманность Андромеды действительно другая звездная система. Такие же результаты Хаббл получил и для туманности МОС 6822 и туманности в Треугольнике.
Хотя об открытии Хаббла вскоре стало известно ряду астрономов, официальное сообщение последовало лишь 1 января 1925 года, когда на съезде Американского астрономического общества Г. Рессел зачитал доклад Хаббла. Известный астроном Д. Стеббинс писал, что доклад Хаббла «во сто крат расширил объем материального мира и с определенностью решил долгий спор о природе спиралей, доказав, что это гигантские совокупности звезд, почти сравнимые по размерам с нашей собственной Галактикой». Теперь Вселенная предстала перед астрономами пространством, заполненным звездными островами — галактиками.
Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и еще более выдающееся достижение — открытие закона красного смещения.
Спектральные исследования спиральных и эллиптических «туманностей» были начаты в 1912 году на основе таких соображений1 если они действительно расположены за пределами нашей Галактики, то они не участвуют в ее вращении и поэтому их лучевые скорости будут свидетельствовать о движении Солнца. Ожидалось, что эти скорости будут порядка 200–300 километров в секунду, т. е. будут соответствовать скорости движения Солнца вокруг центра Галактики.
Между тем, за несколькими исключениями, лучевые скорости галактик оказались гораздо больше: они измерялись тысячами и десятками тысяч километров в секунду.
В середине января 1929 года в «Труды» Национальной академии наук США Хаббл представил небольшую заметку под названием «О связи между расстоянием и лучевой скоростью внегалактических туманностей». В то время Хаббл уже имел возможность сопоставить скорость движения галактики с расстоянием до нее для 36 объектов. Оказалось, что эти две величины связаны условием прямой пропорциональности: скорость равна расстоянию, умноженному на постоянную Хаббла.
Это выражение получило название закона Хаббла. Численное значение постоянной Хаббла ученый в 1929 году определил в 500 км/(с х Мпк). Однако он ошибся в установлении расстояний до галактик. После многократных исправлений и уточнений этих расстояний численное значение постоянной Хаббла сейчас принимается равным 50 км/(с х Мпк).
На обсерватории Маунт-Вилсон началось определение лучевых скоростей все более удаленных галактик. К 1936 году М. Хьюмасон публикует данные для ста туманностей. Рекордную скорость в 42 000 километров в секунду удалось зарегистрировать у члена далекого скопления галактик в Большой Медведице. Но это уже было пределом возможностей стодюймового телескопа. Нужны были более мощные инструменты.
«Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы, — считает Т.Редже. — Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 метр. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 метров. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 метров, будет 100 м/ мин, если учесть, что расстояние между ними увеличится от 100 до 200 метров. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: „галактики-солдаты“ по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями.
Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.
Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас в мнении, что как закон, так и сам принцип действительно справедливы.
Другим примером интуитивного образа может служить взрыв бомбы; в этом случае, чем быстрее летит осколок, тем дальше он улетит. Спустя мгновение после самого взрыва мы видим, что осколки распределены в соответствии с законом Хаббла, т е. их скорости пропорциональны расстояниям до них. Здесь, однако, нарушается космологический принцип, поскольку если мы отойдем достаточно далеко от места взрыва, то никаких осколков не увидим. Этим образом подсказан самый знаменитый в современной космологии термин „большой взрыв“. Согласно этим представлениям, около 20 млрд. лет тому назад все вещество Вселенной было собрано в одной точке, из которой началось стремительное расширение Вселенной до современных размеров».
Закон Хаббла практически сразу же был признан в науке. Значение открытия Хаббла высоко оценил Эйнштейн. В январе 1931 года он писал: «Новые наблюдения Хаббла и Хьюмасона относительно красного смещения… делают вероятным предположение, что общая структура Вселенной не стационарная».
Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной. В настоящее время закон Хаббла используется для определения расстояний до далеких галактик и квазаров.
История «открытия» мира галактик весьма поучительна. Больше двухсот лет назад Гершель построил первую модель Галактики, преуменьшив ее размеры в пятнадцать раз. Изучая многочисленные туманности, разнообразие форм которых он первый и обнаружил, Гершель пришел к выводу, что некоторые из них являются далекими звездными системами «типа нашей звездной системы». Он писал: «Я не считаю необходимым повторять, что небеса состоят из участков, у которых солнца собраны в системы». И еще: «…эти туманности также могут быть названы млечными путями — с малой буквы в отличие от нашей системы».
Однако, в конце концов, сам Гершель занял в отношении природы туманностей другую позицию. И это было не случайностью. Ведь ему удалось доказать, что большинство открытых и наблюдавшихся им туманностей состоят не из звезд, а из газа. Он пришел к весьма пессимистическому выводу: «Все, что за пределами нашей собственной системы, покрыто мраком неизвестности».
Английский астроном Агнесса Кларк писала в книге «Система звезд» в 1890 году: «Можно с уверенностью сказать, что ни один компетентный ученый, располагающий всеми имеющимися доказательствами, не станет придерживаться мнения, что хотя бы одна туманность является звездной системой, сравнимой по размерам с Млечным Путем. Практически установлено, что все объекты, наблюдаемые на небе (как звезды, так и туманности), принадлежат к одному огромному агрегату»…
Причина такой точки зрения была в том, что долгое время астрономы не умели определять расстояния до этих звездных систем. Так, из проведенных в 1907 году измерений будто бы следовало, что расстояние до «Туманности Андромеды» не превышает 19 световых лет. Четыре года спустя астрономы пришли к выводу, что это расстояние составляет около 1600 световых лет. И в том, и в другом случае создавалось впечатление, что упомянутая туманность и в самом деле находится в нашей Галактике.
В двадцатые годы прошлого века между астрономами Шепли и Куртисом разгорелся ожесточенный спор о природе Галактики и других объектов, видимых с помощью телескопов. В числе этих объектов находится знаменитая туманность Андромеды (М31), которая видна невооруженным глазом всего лишь как звезда четвертой величины, но разворачивается в величественную спираль, если разглядывать ее в большой телескоп. К этому времени в некоторых из этих туманностей были зарегистрированы вспышки новых звезд. Кертис предположил, что в максимуме блеска упомянутые звезды излучают столько же энергии, что и новые звезды нашей Галактики. Так, он установил, что расстояние до Туманности Андромеды равно 500 000 световых лет. Это и дало Кертису основание утверждать, что спиральные туманности — это далекие звездные вселенные, подобные Млечному Пути. С таким выводом Шепли не соглашался, и его рассуждения также были вполне логичными.
Согласно Шепли, вся Вселенная состоит из одной нашей Галактики, а спиральные туманности типа М31 представляют собой более мелкие объекты, рассыпанные внутри этой Галктики, как изюм в куличе.
Предположим, говорил он, что Туманность Андромеды имеет такие же размеры, как и наша Галактика (300 000 световых лет по его оценке). Тогда, зная ее угловые размеры, находим, что расстояние до данной туманности составляет 10 миллионов световых лет! Но тогда непонятно, почему наблюдавшиеся в Туманности Андромеды новые звезды имеют большую яркость, чем в нашей Галактике. Если же яркость новых в этой «туманности» и в нашей Галактике одинакова, то отсюда следует, что Туманность Андромеды в 20 раз меньше нашей Галактики.
Куртис, напротив, считал, что М31 представляет собой самостоятельную галактику-остров, не уступающую в достоинстве нашей Галактике и отдаленную от нее на несколько сотен тысяч световых лет. Создание больших телескопов и прогресс астрофизики привели к признанию правоты Куртиса. Измерения, проделанные Шепли, оказались ошибочными. Он очень сильно недооценил расстояние до М31. Куртис, впрочем, также ошибался: теперь известно, что расстояние до М31 — более двух миллионов световых лет.
Природу спиральных туманностей окончательно удалось установить Эдвину Хабблу, который в конце 1923 года обнаружил в Туманности Андромеды первую, а вскоре еще несколько цефеид. Оценив их видимые величины и периоды, Хаббл нашел, что расстояние до этой «туманности» составляет 900 000 световых лет. Так окончательно была установлена принадлежность спиральных «туманностей» к миру звездных систем типа нашей Галактики.
Если же говорить о расстояниях до этих объектов, то их еще предстояло уточнять и пересматривать. Так, на самом деле расстояние до галактики М 31 в Андромеде равно 2,3 миллиона световых лет.
Мир галактик оказался удивительно огромным. Но еще большее удивление вызывает многообразие его форм.
Первую и довольно удачную классификацию галактик по их внешнему виду предпринял уже Хаббл в 1925 году. Он предложил относить галактики к одному из следующих трех типов: 1) эллиптические (обозначаемые буквой Е), 2) спиральные (S) и 3) неправильные (1 г).
К эллиптическим были отнесены те галактики, которые имеют вид правильных кругов или эллипсов и яркость которых плавно уменьшается от центра к периферии. Эту группу подразделяют на восемь подтипов от ЕО до Е7 по мере увеличения видимого сжатия галактики. Линзовидные галактики SO похожи на сильно сплюснутые эллиптические системы, однако имеют четко выделенное центральное звездообразное ядро.
Спиральные галактики, в зависимости от степени развития спиралей, подразделяются на подклассы Sa, Sb и Sc. У галактик типа Sa основной составной частью является ядро, тогда как спирали выражены еще слабо. Переход к последующему подклассу — констатация факта все большего развития спиралей и уменьшения видимых размеров ядра.
Параллельно нормальным спиральным галактикам существуют еще так называемые пересеченные спиральные системы (SB). У галактик этого типа очень яркое центральное ядро пересекается по диаметру поперечной полосой. Из концов этой перемычки и начинаются спиральные ветви, причем в зависимости от степени развития спиралей эти галактики делятся на подтипы SBa, SBb и SBc.
К неправильным галактикам (Ir) отнесены объекты, у которых отсутствует четко выраженное ядро и не обнаружена вращательная симметрия. Их типичными представителями являются Магеллановы Облака.
«Я использовал ее 30 лет, — писал впоследствии известный астроном Вальтер Бааде, — и хотя упорно искал объекты, которые нельзя было бы действительно уложить в хаббловскую систему, их число оказалось столь ничтожным, что я могу пересчитать их по пальцам». Классификация Хаббла продолжает служить науке, и все последующие модификации существа ее не затронули.
Некоторое время полагали, что эта классификация имеет эволюционный смысл, т. е. что галактики «передвигаются» вдоль «камертонной диаграммы» Хаббла, последовательно меняя свою форму. Сейчас этот взгляд считается ошибочным.
Среди нескольких тысяч ярчайших галактик насчитывается 17 процентов эллиптических, 80 процентов спиральных и около 3 процентов неправильных.
В 1957 году советский астроном Б.А. Воронцов-Вельяминов открыл существование «взаимодействующих галактик» — галактик, связанных «перемычками», «хвостами», а также «гамма-форм», т. е. галактик, у которых одна спираль «закручивается», тогда как другая «раскручивается». Позже были открыты компактные галактики, размеры которых составляют всего около 3000 световых лет, и изолированные в пространстве звездные системы с поперечником всего 200 световых лет. По своему внешнему виду они практически не отличаются от звезд нашей Галактики.
Новый общий каталог (НОС) содержит перечень около десяти тысяч галактик вместе с их важнейшими характеристиками (светимость, форма, отдаленность и т. д.) — и это лишь малая толика из десяти миллиардов галактик, в принципе различимых с Земли. Сказочный гигант, способный охватить взглядом сотню-другую миллионов световых лет, разглядывая Вселенную, увидел бы, что она заполнена космическим туманом, капельками которого являются галактики. Временами встречаются скопления, состоящие из тысяч галактик, собранных вместе. Одно такое гигантское скопление находится в созвездии Девы.
Автор нового учения — Владимир Иванович Вернадский в своих «Очерках геохимии» отмечает, что идеи о значении жизни как совокупно действующего явления, влияющего на ход планетарных процессов, появляются уже в трудах естествоиспытателей XVII века, в частности у X. Гюйгенса. К разработке подобных идей были причастны Ж.Л. де Бюф-фон, Ф. Вик д'Азир и Ж. Ламарк. Так, в «Гидрогеологии» Ламарка содержится попытка естественнонаучного описания жизни в качестве планетарного явления. Далее Вернадский выделяет теорию нептунистов: «Теснейшим образом связанная с водой жизнь имела свое почетное место в созидании окружающей нас природы. Жизнь для нептунистов была огромной силой, а не случайным явлением в истории планеты».
Предтечей естественно-научного подхода в описании биосферы по праву может считаться и А. Гумбольдт — один из крупнейших естествоиспытателей XIX века. И в своих ранних работах, и в позднем синтетическом произведении «Космос» он обобщил понимание того, что «…живое вещество есть неразрывная и закономерная часть поверхности планеты, неотделимая от ее химической среды».
Хорошо рисовавший и наделенный могучим воображением австрийский геолог Э. Зюсс мысленно увидел нашу планету из космоса, выделив особые сферы: гидросферу (природные воды), литосферу — земную кору, биосферу. В его понимании биосфера — это лик Земли, земные ландшафты. Значение этого термина в работах Зюсса скорее метафорическое. Глубокой научной разработки здесь оно не получило.
Пожалуй, наиболее логично охарактеризовал геосферы английский океанолог Дж. Меррей в начале нашего века:
«В настоящее время естествоиспытатели обозначают термином „биосфера“ тот покров из живого вещества, который одевает земной шар всюду, где соприкасаются и смешиваются между собой атмосфера, гидросфера и литосфера. На суше живые существа не поднимаются над ее поверхностью слишком высоко и не проникают очень глубоко внутрь ее. В океане дело обстоит иначе. Жизнь существует всюду, во всей массе океанических вод — от экватора до полюсов и от поверхности до самого дна…»
Мысли Меррея стали исходной точкой для русского ученого Вернадского, началом учения о том, что живое вещество и среда жизни составляют единое целое — биосферу.
Владимир Иванович Вернадский (1863–1945) родился в Петербурге в семье профессора экономики и истории И.В. Вернадского. Дом его отца, видного экономиста и историка Петербургского университета, был одним из тех мест, где собирались корифеи отечественной науки.
С третьего класса Владимир учился в Петербургской классической гимназии — одной из лучших в России. Затем он поступил на физико-математический факультет Петербургского университета. В годы студенчества на Вернадского большое влияние оказал преподаватель минералогии В.В. Докучаев. Докучаев и предложил своему ученику заниматься минералогией и кристаллографией. Уже через несколько лет появились первые работы Владимира о грязевых вулканах, о нефти, а затем и философские статьи.
В 1885 году Владимир окончил университет и был оставлен в нем для ведения научной работы. Затем Вернадский уезжает на два года в заграничную командировку (Италия, Германия, Франция, Англия, Швейцария). Он работает в химических и кристаллографических лабораториях, совершает геологические экспедиции, знакомится с новейшей научной и философской литературой.
Вернувшись в Россию, Вернадский становится приват-доцентом кафедры минералогии Московского университета. Отлично защитив магистерскую диссертацию, начинает чтение лекций. В 1897 году приходит черед защиты докторской диссертации («Явления скольжения кристаллического вещества»). Вскоре Вернадского пригласили в Московский университет заведовать кафедрой минералогии и кристаллографии. Здесь на протяжении многих лет Владимир Иванович читал лекции и провел немало из прославивших его научных исследований.
В 1906 году Вернадского избирают членом Государственного Совета от Московского университета. Два года спустя он становится экстраординарным академиком.
С 1906 по 1918 год выходят в свет отдельные части его фундаментального труда «Опыт описательной минералогии».
Вернадский подошел к минералогии с совершенно новой точки зрения: он выдвинул идею эволюции всех минералов и тем самым поставил перед минералогией новые задачи, значительно шире и глубже прежних. Главная цель минералогии, по Вернадскому, — изучение истории минералов в земной коре.
Одним из первых профессоров университета Вернадский начал работать на открывшихся в Москве Высших женских курсах. Однако в 1911 году его деятельность в стенах университета прервалась: вместе с крупнейшими учеными того времени профессор минералогии ушел из Московского университета, протестуя против полицейского режима, который пытался ввести в российских учебных заведениях министр просвещения Кассо. Он переезжает в Петербург.
Здесь Вернадский стал директором Геологического и минералогического музея Академии наук. По инициативе и под председательством Владимира Ивановича в 1915 году создается Комиссия по изучению естественных производительных сил России при Академии наук (КЕПС).
Владимир Иванович, избранный в 1916 году председателем ученого совета при министерстве земледелия, продолжал научные исследования, публикуя статьи по минералогии, геохимии, полезным ископаемым, по истории естествознания, организации науки, метеоритике.
В 1917 году здоровье Вернадского ухудшилось. У него обнаружили туберкулез. Летом он уехал на Украину. Бурные события Гражданской войны застали его в Киеве. Здесь он активно участвует в создании Украинской академии наук и избирается ее президентом.
Но главной для Вернадского оставалась научно-теоретическая работа. В годы пребывания в Киеве, Полтаве, Староселье (на биологической станции), Харькове, затем в Ростове, Новороссийске, Ялте, Симферополе он разрабатывал основы учения о геохимической деятельности живого вещества.
Вернадский в 1919 году публикует статью «О задачах геохимического изучения Азовского моря». Глубокое изучение геохимии моря помогло ему в создании учения о биосфере.
В этой статье ученый пока ни разу не упомянул термина «биосфера», как бы не придавая ему большого значения. Но уже в следующей статье положение меняется. Она называется «О никеле и кобальте в биосфере».
Так или иначе, но в 1921 году Вернадский перешел от геохимического анализа живого вещества к познанию среды жизни, которая включает живое вещество и неживое (косное), находящиеся во взаимодействии.
В 1922 году Вернадский закончил сочинение «Живое вещество». Владимир Иванович хорошо понимал, что с этой теоретической работой открывается новая область знания на стыке биологических и геологических наук.
До этой работы существовала непреодолимая пропасть между науками биологическими, изучающими живые организмы, и науками геологическими, занятыми познанием Земли, горных пород и минералов, рельефа и геологических структур.
Вернадский здесь впервые показал, что жизнь — планетарное явление. Совокупность организмов — живое вещество — часть планеты Земля и может рассматриваться как геологический объект. Живое вещество — особая геохимическая сила, активно участвующая во всех процессах, протекающих в области жизни — биосфере.
«Всякий, кто когда-нибудь пытался с открытыми глазами и со свободным умом и сердцем побыть наедине, вне искусственной обстановки города или усадьбы, среди природы — хотя бы той резко измененной человеком, которая окружает наши города и селения, — ярко и ясно чувствовал эту неразрывную связь свою с остальным животным и растительным миром. В тишине ночи, когда замирают созданные человеком особые рамки внешней среды, среди степи или океана, на высоте гор это чувство, на века ему присущее, охватывает человека нераздельно. Особенно оно сильно в сгущениях живого вещества — на берегу моря или океана, в лесу, на великой реке или среди хотя бы мелкого далекого от поселений пруда или озера…»
Вернадский делает вывод, очень важный для науки о Земле и о жизни: «Организм нераздельно связан с земной корой и должен изучаться в тесной связи с ее изучением. Автономный организм вне связи с земной корой реально в природе не существует».
В.П. Казначеев пишет: «В.И. Вернадский в отличие от предшественников наполнил понятие „биосфера“ глубоким, систематически обоснованным научным содержанием. Во-первых, в биогеохимическом аспекте это оболочка Земли, в пределах которой распространена жизнь. Совокупность живых организмов составляет основу биосферы — живое вещество. Биосфера есть планетарно-космическое естественное явление, ее живое вещество есть новая геологическая сила в эволюции планеты.
Отметим, что понятие биосферы не эквивалентно понятию географической оболочки, под которой в литературе понимается разнородный природный комплекс поверхности планеты, основанный на взаимодействиях литосферы, гидросферы, атмосферы и оказывающий воздействие на живые организмы.
Биосфера же есть специфическое естественное природное явление, целостная саморазвивающаяся система, в которой на первое место выдвинута активность живого вещества».
Биосфера, по определению Вернадского, «закономерное проявление механизма планеты, ее верхней оболочки — земной коры». При характеристике биосферы ученый особо подчеркивал значение космических факторов. «С одной стороны, мы имеем здесь природную лабораторию, в которой господствуют резкие воздействия разных форм космической энергии… с другой — область планеты, которая непрерывно в течение миллиардов лет принимает в себя непрерывный приток космической материи и энергии, которая образовалась в условиях, чуждых нашей планете…» Вещество биосферы, по мнению ученого, сложно и имеет несколько компонентов.
Среди них ученый выделяет следующие: 1) совокупность живых организмов — живое вещество; 2) вещество, создаваемое и переработанное живыми организмами, — биогенное вещество (каменный уголь, битумы, известняки, нефть и др.); 3) косное вещество, образуемое процессами, в которых живое вещество не участвует (твердое, жидкое, газообразное и др.); 4) биокосное вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамическое равновесие системы тех и других (почти вся вода биосферы, нефть, почвы, кора выветривания и др.) — Организмы в них играют ведущую роль; 5) вещество, находящееся в процессе радиоактивного распада; 6) рассеянные атомы, которые непрерывно создаются из различных видов земного вещества под влиянием космических излучений, потоки которых непрерывно поступают в околоземное пространство. Их физический состав требует дальнейших исследований; 7) вещество космического происхождения, которое включает отдельные атомы и молекулы, входящие в ионосферу из электромагнитного поля Солнца, проникающие из космических пространств.
Определяя биосферу как естественно-природное явление, Вернадский в основе его видит, прежде всего, процесс — космопланетарную эволюцию Земли и роль в этой эволюции живого вещества как главного системообразующего фактора биосферы. Биосфера в условиях Земли является своеобразным вместилищем живого вещества, она включает его как основу. Сама биосфера предстает в этом отношении как сложная саморегулирующаяся космоплацетарная система, новая оболочка Земли.
Вернадский первым ощутил и постиг единство живого вещества в биосфере. В те годы, когда идеи Вернадского только еще входили в науку, они выглядели сугубо теоретическими, не связанными с насущными нуждами людей.
Сегодня учение о биосфере — научная основа всей деятельности человечества, направленной на преобразование природы. Оно становится основой многих как глобальных, так и региональных экологических преобразований, прогнозов, на его основе строятся многие исследования сравнительной планетологии, космической экологии и антропоэ-кологии.
«Этап за этапом пути эволюции живых организмов изучают преимущественно биологи и палеонтологи, — пишет Р. Баландин. — Но живое вещество — лишь часть биосферы, всецело от нее зависящая. А биосфера — часть планеты, неотделимая от потока лучистой энергии Солнца. Все происходящее на Земле есть проявление не только земных, но и космических сил. И человечество, как часть живого вещества биосферы и планеты, — явление космическое, а его появление, развитие, бытие — естественные процессы саморазвития природы.
До Вернадского подобные идеи были известны. Более двух столетий они в разной форме встречаются в философских и научных трактатах, своеобразно и ярко они были высказаны уже в XVIII веке философом Гердером, натуралистом Бюффоном, поэтом и мыслителем Гете, а позже — естествоиспытателем Александром Гумбольдтом, географами Ф. Ратцелем и Э. Реклю… Значит ли это, что Вернадский просто-напросто пересказал давно известные и отчасти забытые мысли других мудрецов?
Нет, конечно… Вернадский сумел по-новому организовать разрозненные сведения о взаимодействии человека и природы, о саморазвитии материи. Осенью 1924 года он начал работу над статьей „Идеи о прогрессе и автотрофности человечества“. Написал ее по-французски и опубликовал в Париже под измененным названием — „Автотрофность человечества“, очень неполно отражающим содержание этой работы. Вернадский выделил особо важную, с его точки зрения, мысль о будущем переходе человека от гетеротрофности (питания живыми организмами) к автотрофности (питанию синтетической пищей без уничтожения живого)».
Развивая идеи об эволюции биосферы, появлении на Земле человечества, русский ученый делает шаг к новому обобщению — к идее перехода биосферы в ноосферу. При этом Вернадский опирается на данные многих естественных наук, как минералогия, геология, космохимия, биогеохимия и др. Им подчеркнутаы неизбежность этого процесса как особого естественно-природного явления, которое коренным образом меняет строение биосферы нашей планеты. Вернадский отмечает: «Научная мысль человечества работает только в биосфере и в ходе своего появления в конце концов превращает ее в ноосферу, геологически охватывает ее разумом. Научная мысль есть часть структуры — организованности — биосферы и ее в ней проявления, ее создание в эволюционном процессе жизни является величайшей важности событием в истории биосферы, в истории планеты».
Вот что говорил на лекциях Вернадский:
«В нашу геологическую эпоху — психозойную эру, эру Разума — появляется новый геохимический фактор капитальной важности. В течение последних тысяч лет геохимическое воздействие человечества, захватившего посредством земледелия живое вещество, стало необыкновенно интенсивным и разнообразным. Мы видим удивительную быстроту роста геохимической работы человечества. Мы видим все более яркое влияние сознания и коллективного разума человека на геохимические процессы. Раньше организмы влияли на историю только тех атомов, которые были нужны для их роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы, нужные для техники и для создания цивилизованных форм жизни. Человек действует здесь не как Homo Sapiens (человек разумный), а как Homo Faber (человек творящий).
И он распространяет свое влияние на все химические элементы. Он изменяет геохимическую историю всех металлов, он образует новые соединения, воспроизводит их в количествах того же порядка, какой создался для минералов, продуктов природных реакций. Этот факт исключительной важности в истории всех химических элементов. Мы видим в первый раз в истории нашей планеты образование новых соединений, невероятное изменение земного лика. С геохимической точки зрения все эти продукты — массы свободных металлов, таких, как железо, медь, олово или цинк, массы угольной кислоты, произведенной обжиганием извести или сгоранием каменных углей, огромные количества серного ангидрида или сероводородов, образовавшихся во время химических и металлургических процессов, и все увеличивающееся количество других технических продуктов — не отличаются от минералов. Они изменяют вечный бег геохимических циклов…
Где остановится этот новый геологический процесс? И остановится ли он?.. Изучение геохимии доказывает важность этого процесса и его глубочайшую связь со всем химическим механизмом земной коры. Он находится еще в состоянии эволюции, конечный результат которой от нас еще скрыт…
Человек всюду увеличивает количество атомов, выходящих из старинных циклов — геохимических „вечных циклов“. Он усугубляет нарушение этих процессов, вводит туда новые, расстраивает старые. С человеком, несомненно, появилась новая огромная геологическая сила на поверхности нашей планеты».
На лекциях в Сорбонне, прочитанных Вернадским, присутствовали французские ученые, друзья: математик и философ Ле Руа и палеонтолог, еще в юности вступивший в иезуитский орден «Общество Иисуса», Тейяр де Шарден. Выступления русского ученого не могли оставить их равнодушными.
Лекции Вернадского и беседы с Тейяром де Шарденом, знатоком древней истории, вдохновили Ле Руа на создание двух крупных работ, изданных в 1928 и 1929 годах. Он описал эволюцию человека, этапы формирования человечества и создание на Земле ноосферы. Впервые новый термин — ноосфера — вошел в науку. Вернадский постоянно использовал его в своих трудах.
Пьер Тейяр де Шарден (1881–1955) прославился как один из первооткрывателей в 1929 году древнейшего предка человека — синантропа. Его главную работу «Феномен человека» опубликовали лишь в 1961 году, уже после смерти автора. Тогда же началось на Западе широкое увлечение его учением. Тейяра де Шардена вскоре стали называть крупнейшим французским мыслителем двадцатого века.
Французский ученый признавал теорию возникновения жизни из неживого, постоянного усложнения организации организмов и естественного закономерного появления человека разумного.
«Какова бы ни была группа животных (позвоночные или антропоиды), при изучении ее эволюции обнаруживается замечательный факт, что во всех случаях нервная система со временем увеличивается в объеме и усложняется по устройству и одновременно концентрируется в верхней головной части тела… Если рассматривать ее с точки зрения развития мозговых ганглий, то все формы жизни, вся жизнь движется… как один нарастающий вал, в направлении все большего мозга».
«Человек и только он один, — последний по времени возникновения, самый свежий, самый сложный, самый радужный, многоцветный из последовательных пластов жизни».
О ноосфере Тейяр де Шарден писал так: «Гармоничная общность сознаний эквивалентна своего рода сверхсознанию. Земля не только покрывается мириадами крупинок мысли, но окутывается единой мыслящей оболочкой, образующей… одну обширную крупинку мысли в космическом масштабе. Множество индивидуальных мышлений группируется и усиливается в акте одного единодушного мышления».
«Ноосфера стремится стать одной замкнутой системой, где каждый элемент в отдельности видит, чувствует, желает, страдает так же, как все другие, и одновременно с ними».
Тейяр де Шарден основном началом в мире считает жизне неуловимые силы синтеза, обозначенные им как «плазматическая роль живой психеи». Такой акцент в трактовке жизни сближает его с иррационали-стическими представлениями.
«Здесь он становится на точку зрения, — пишет В.П. Казначеев, — которая противоположна естественно-научному биогеохимическому подходу В. И. Вернадского при анализе явлений жизни (земного живого вещества) В рамках естественно-научного, биогеохимического анализа прослеживаются реально действующие на явления жизни материальные факторы, которые и определяют организованность биосферы (космические излучения, энергия радиоактивного распада, миграция химических элементов, связанная с биогеохимическими функциями, и т. д.). На этом фоне словоупотребления типа „живая психея“, „тангенциальная“ физическая энергия, „радиальная“ психическая энергия выглядят, скорее, как метафорические обороты, а не содержательные научные или интеллектуально-философские понятия…
Следующая ступень космогенеза — ноогенез, или сфера разума, — у П. Тейяр де Шардена отражает определенные особенности социально-природного развития человечества, поскольку здесь подчеркнута значимость культурных традиций, интеллектуальных достижений, свойственных человеку. Однако основой становления феномена человека в этой концепции утверждается направленность к теосфере, некоторому финальному мистическому состоянию ноогенеза, переход к которому определяется точкой Омега (высшим полюсом мира). В этом пункте описание поступательного (ступенчатого) развития мирового целого особенно отчетливо перекрывается и элиминируется теолого-католическим мировоззрением».
Эволюция ноосферы у Шардена имеет конечной ступенью теосфе-ру, приносится в жертву теосфере — мистическому положению католического миросозерцания.
Вернадский же имел в виду в первую очередь геологическую деятельность человечества, активную перестройку биосферы Земли и космическое расширение ноосферы. Для Вернадского в ноосфере соединялись, взаимодействуя, мысль и работа человечества.
«…С биогеохимической точки зрения важны, конечно, не научная мысль, не научный аппарат, не орудия науки, но тот реальный результат, который сказывается в геохимических явлениях, вызванных мыслью и работой человека, в новом состоянии биосферы, которое им создается… в ноосфере».
Вернадский такое важнейшее явление общества, как культура, рассматривает в планетарном масштабе, оценивая его наряду с научной мыслью как явление планетное. В своей работе «Размышления натуралиста», оценивая новую форму энергии — жизнедеятельность человеческого общества, он пишет: «Эта новая форма биогеохимической энергии, которую можно назвать энергией человеческой культуры или культурной биогеохимической энергией, является той формой биогеохимической энергии, которая создает в настоящее время ноосферу».
В.П. Казначеев пишет: «В соответствии с проведенным анализом космопланетарной среды биосферы и живого вещества, определением ноосферы как нового, социально-исторического и социально-природного по своей сути явления, возникающего в этой среде, следует характеризовать превращение биосферы в ноосферу как процесс естественно-исторический. Формирование ноосферы протекает как развертывание новой геокосмической силы, управляющей всей дальнейшей эволюцией планеты — космического тела Солнечной системы. Это влияние социальной деятельности и знания постепенно, но неизбежно превратится в управление всеми космопланетарными силами, включая всю планетную систему и ее космическую среду. Таковы, как указывалось выше, сформулированные В.И. Вернадским основные черты превращения биосферы в ноосферу — сферу, охваченную трудовой, социальной деятельностью человека. Здесь научная мысль становится мощнейшим инструментом управления планетой, гарантируя собственное прогрессивное развитие человечества в обозримом уже не только социальном, но и космогеологическом времени».
В те же примерно годы ученик Вернадского Ферсман тоже писал о геологической роли человека. В отличие от Тейяр де Шардена, уделявшего основное внимание разуму, и Вернадского, отдававшего приоритет соединению в ноосфере мысли и действия, Ферсман писал почти исключительно о технической деятельности человечества.
В особом разделе своей четырехтомной «Геохимии» советский ученый дает характеристику геохимии техногенеза, то есть технической деятельности. Здесь Ферсман ноосферу даже не упоминает. Будучи геологом, он интересовался не причинами явлений, не побуждениями человека, не разумом самим по себе, а лишь результатами технического воздействия на биосферу. Основываясь на многочисленных фактах, он пришел к выводу:
«Хозяйственная и промышленная деятельность человека по своему масштабу и значению сделалась сравнимою с процессами самой природы. Вещество и энергия не беспредельны в сравнении с растущими потребностями человека, их запасы по величине одного порядка с потребностями человечества; природные геохимические законы распределения и концентрирования элементов сравнимы с законами техно-химии, т. е. химическими преобразованиями, вносимыми промышленностью и народным хозяйством. Человек геохимически переделывает мир». О переделываемой биосфере Ферсман говорит скорее как о техносфере — области технической деятельности человечества.
Как отмечает Р.Баландин: «Такова была творящая сила идей Вернадского: от его учения о геологической деятельности человека и формирования сферы разума, как от могучего древесного ствола, отделилось учение о ноосфере Ле Руа и Тейяра де Шардена, а также учение Ферсмана о техногенезе (техносфере).
До сих пор эти три течения научной и философской мысли сохраняют свое значение и свою популярность. Каждое из них имеет своих приверженцев и своих критиков. Однако надо помнить, что у истоков всех трех течений стоит научный гений Вернадского».
Возможность расширения Вселенной была предсказана теоретически как одно из следствий применения к решению космологических проблем общей теории относительности. Первые труды в этой области принадлежат талантливому советскому математику Александру Александровичу Фридману (1888–1925). Он широко известен как геофизик-метеоролог, специалист по прикладным вопросам динамики атмосферы. Но много времени Фридман отдал математическому анализу решений космологических уравнений Эйнштейна. Незадолго до смерти Фридман получил серию решений уравнений Эйнштейна. Выходило, что расширение может явиться одним из основных общих свойств Вселенной — важнейшим атрибутом ее эволюции. Работы русского ученого поначалу не привлекли к себе должного внимания. Они были оценены по достоинству лишь в связи с открытием Э. Хабблом красного смещения и развитием современных представлений о первоначально горячей Вселенной и Большом Взрыве.
В 1927 году Ж. Леметр, студент из Эддингтона, независимо от Фридмана выдвинул свою идею возникновения Вселенной и ее дальнейшего расширения из точки. Ей дали на некоторое время название «атома-отца». Сам Леметр категорически был против подобного образа и вообще теологической трактовки своей теории. Процесс возникновения Вселенной Леметр представил в форме Большого Взрыва. Молодой ученый первым попытался найти и вероятные следы начального Взрыва. Леметр допускал, что таким отголоском могли быть космические лучи. Его гипотезу астрономы заметили лишь после выступления в 1933 году, когда Леметр выдвинул новый вариант концепции расширения Вселенной — из плотного сгустка материи конечных, но очень малых размеров.
Задача формирования более конкретной, физически разработанной эволюционной космолого-космогонической модели расширяющейся Вселенной была решена в основном американским физиком Гамовым, русским по происхождению. Джордж (Георгий Антонович) Гамов (1904–1968) впервые предложил в 1946 году теорию, получившую затем наименование «теории Большого Взрыва» (а точнее — «Большого Удара»). Согласно ей, вся современная наблюдаемая Вселенная представляет собой результат катастрофически быстрого разлета материи, находившейся до того в сверхплотном состоянии, недоступном для описания в рамках современной физики.
Удаление галактик подчиняется необычным математическим закономерностям. Оно происходит с различными скоростями. Чем больше расстояние между галактиками, тем выше оказывается скорость их взаимного удаления.
«Мы в силах построить модель описанного выше „разбегания“ галактик, — пишет А.А. Гурнштейн, — если не будем рассматривать реальное бесконечное пространство трех измерений, а ограничимся в своей модели лишь поверхностью — пространством двух измерений. Представим себе, что „вся Вселенная“ расположена на некоторой замкнутой поверхности, которая подобна поверхности постоянно раздуваемого резинового шара. Пусть галактики в нашей модели изображаются точками, нанесенными на поверхности этого шара. По мере его раздувания все расстояния между „галактиками“, измеренные по поверхности шара, действительно будут систематически увеличиваться, причем скорость разбегания „галактик“ окажется тем больше, чем больше было первоначальное расстояние между ними».
Как считал Гамов, начавшееся при этом расширение материи — в форме неразделимой вначале высокотемпературной смеси излучения и вещества (элементарных частиц) — наблюдается и в наши дни в виде эффекта «красного смещения».
Гамов вместе со своими сотрудниками Р. Альфером и Р. Германом в 1948 году предсказал, что должно наблюдаться и остывшее первичное изотропное электромагнитное излучение тепловое с температурой около 5 К.
«Однако развитию теории в значительной степени препятствовало общее скептическое отношение астрофизиков тех лет к возможности решения столь фантастической задачи — понять „начало истории всей Вселенной в целом“, — пишут в своей книге „История астрономии“ А.И. Еремеева и Ф.А. Цицин. — С другой стороны, уловить в мировом пространстве с помощью имевшейся аппаратуры тепловое радиоизлучение столь низкой температуры специалисты-радиофизики считали совершенно невозможным уже из-за того, что подобный сигнал был бы заглушён радиоизлучением звезд, галактик, межзвездной среды, короче, космическим радиошумом.
Почти два десятилетия концепция Большого Взрыва для большинства астрономов оставалась „игрой ума“ немногих физиков и космологов. И только позднее стало ясно, что более раннему решению проблемы в немалой степени помешал тот разрыв в научных контактах, который все еще существует между современными теоретиками и наблюдателями. Сыграла существенную негативную роль и дифференцированность науки, из-за которой специалисты, даже работающие в близких областях, порой мало знают о проблемах своих соседей».
Следствием концепции первоначально горячей Вселенной явился вывод, что в наследство от этой эпохи, если только она действительно имела место, должно повсеместно сохраниться во Вселенной остаточное, или, как его называют, реликтовое, излучение в радиодиапазоне.
Канадский астрофизик Э. Мак-Келлар в 1941 году столкнулся с необычным явлением — возбужденным состоянием молекул межзвездного циана. Температура возбуждения составляла 2,3 К. Подобный факт мог стать основанием для вывода о наличии в мировом пространстве соответствующего излучения-возбудителя. Однако, похоже, авторы теории Большого Взрыва ничего не знали об этом открытии. Лишь много позднее то, что такое состояние молекул циана вызвано именно реликтовым излучением, доказали советский астрофизик И.С. Шкловский и независимо ряд других авторов.
Расчеты А.Г. Дорошкевича и И.Д. Новикова в 1964 году показали, что реликтовое излучение в принципе регистрируемо, и, следовательно, вывод теории Большого Взрыва возможно проверить с помощью наблюдений. Гораздо позднее задним числом выяснилось, что ко времени указанного расчета реликтовое излучение уже было открыто в СССР и в Японии. В СССР это открытие было опубликовано аспирантом Пулковской обсерватории Т.А. Шмаоновым в 1957 году.
«Но беда заключалась в том, — пишет Гурнштейн, — что наблюдатели и теоретики работали в отрыве друг от друга. Между ними не было обмена информацией. Наблюдатель не знал, как правильно истолковать свои странные результаты. Замечательная же статья теоретиков осталась незамеченной.
К середине шестидесятых годов радиоастрономы-экспериментаторы вознамерились построить специальную аппаратуру для обнаружения реликтового излучения. Но их опередили инженеры, выполнявшие исследования по борьбе с радиошумами при связи с искусственными спутниками Земли».
В 1965 году радиоинженеры А. Пензиас и Р. Вильсон (США) при испытании рупорной антенны для наблюдения американского спутника «Эхо» случайно открыли существование микроволнового (на волне 7,35 сантиметра) космического радиошума, не зависящего от направления антенны.
На протяжении 1966–1967 годов это открытие — открытие реликтового радиоизлучения Вселенной — было независимо друг от друга подтверждено рядом исследователей в разных странах. Особенности этого явления, соответствующего общему тепловому излучению Вселенной с температурой около 2,7 К, совпали с предсказаниями теории Большого Взрыва.
Авторы книги «История астрономии» отмечают: «Открытие реликтового излучения стало величайшим достижением в астрономии XX века и в значительной степени явилось результатом развития радиоастрономической техники и того, что сама научная атмосфера созрела для его восприятия. Это открытие сделало достоверным фактом по меньшей мере то, что Вселенная (Метагалактика) действительно эволюционирует. Наконец, открытие реликтового излучения стало мощным стимулом для дальнейшей разработки идеи Большого Взрыва.
Новым этапом развития представлений о ранних стадиях эволюции Вселенной стала „теория горячей Вселенной“, особенно в работах академика Я.Б. Зельдовича (1914–1987) и его школы. Представление о характере начального расширения Вселенной в наши дни сильно изменилось. Помимо главной трудности в описании такого „начала“ (недоступности его для современной теоретической физики), обнаружились другие серьезные трудности при попытке описать и последующую, уже в принципе доступную современной физике, но еще очень раннюю историю расширения Вселенной как целого.
С целью преодоления этих трудностей в 80-е годы была предложена концепция раздувающейся (или инфляционной) Вселенной (А. Гут, США; А Д. Линде, СССР). Обсуждается идея множественности и неоднократного возникновения в разные моменты времени самих раздувающихся вселенных. Таким образом, древнейшая идея возрождения Вселенной, идея бесконечной цепи рождений и гибели миров всех масштабов, как и концепция островных вселенных, родившаяся уже в результате соединения гравитационной теории и наблюдений, в наши дни возрождаются, но уже на несравненно более высоком уровне — как в отношении масштабов, так и качественного многообразия объектов. Эти идеи могут рассматриваться как предвестник, а может быть и начало уже третьей революции в космологической картине мира».