В.Г. Левин
АКТУАЛЬНОСТЬ СЛОЖНОСТИ:
Вероятность и моделирование
динамических систем
Издательство «Эдитус»
Москва, 2017
УДК 001
ББК 3.1.2
Л36
В.Г. Лёвин.
Актуальность сложности: Вероятность и моделирование
динамических систем. - М.: Эдитус, 2017. -156 с.
ISBN 978-5-00058-502-3
Исследуется проблема сложности в контексте разработки принципов моделирования динамических систем. Применяется авторский метод двойной рефлексии. Дается современная характеристика вероятностных и статистических систем. Определяются общеметодологические основания неодетерминизма. Раскрывается его связь с решением задач общей теории систем. Эксплицируется историко-научный контекст разработки проблемы сложности.
Рецензент: профессор Е.М. Ковшов.
ISBN 978-5-00058-502-3 © В.Г. Лёвин, 2017
© Оформление. Издательство «Эдитус», 2017
ВВЕДЕНИЕ
Эта книга ориентирована на продолжение и развитие темы, которая обсуждалась автором в работе «Вероятность как форма научного мышления» (2016). Однако теперь эта тема рассматривается сквозь призму проблемы сложности, в аспекте парадигмы сложности. Здесь предложены концептуальные средства, позволяющие трактовать вероятностно-статистические методы и системный подход в качестве общенаучных форм решения задач моделирования сложных систем.
Уточняя поле исследования, автор стремится показать новые грани моделирующей роли научного познания. Теперь в сферу его внимания включаются вопросы изучения, конструирования и управления сложными динамическими системами. При этом моделирование характеризуется как способ рефлексии, опирающейся на использование приближенных к реальности форм и способов описания и объяснения мира, основанных на учете теоретических и практических возможностей субъекта науки. Вместе с тем, подчеркивается, что моделирующее научное познание, развиваясь в рамках парадигмы сложности, изменяет представление о собственном предмете исследования. Автор на историко-научном материале стремится раскрыть тезис о существенном преобразовании научного познания, которое осуществляет переход от изучения монообъектов к исследованию взаимодействий. Отражением такого перехода стало широкое использование в научном моделировании представления о состоянии объекта в различные моменты его существования, а также применение языка событий для описания смены подобных состояний. Сделана попытка обозначить общий вектор нового поворота в науке на базе вероятностных, статистических, кибернетических и синергетических идей и представлений.
Автор намерен проследить историческую эволюцию принципов функционального моделирования. Ее первая фаза, по мнению автора, может быть обозначена возникновением и становлением методов много-многозначного описания сложных объектов. Следующий этап получает определение в связи с формированием принципов и методов, ориентированных на описание управления сложным поведением систем. Дальнейший прогресс методов научного моделирования оказался связан с разработкой принципов описания объектов, способных к самоорганизации.
В предлагаемой работе ставится задача эксплицировать методологическое поле исследования проблемы сложности в контексте общей методологии науки и в контексте специфических методов вероятностного и системного подходов.
1. Этот сложный мир и вероятность
В авторской концепции проблема сложности рассматривается на фоне крупных изменений в методах и в понятийном аппарате науки. Один из крупных поворотов в науке тесно связан с понятием «вероятность», которое стало чрезвычайно широко употребимым в разных областях науки. Это происходило главным образом за счет внедрения в различные сферы познания вероятностно-статистических методов, которые учитывают неопределенность событий и существенным образом опираются на понятие «вероятность».
Выяснение познавательных границ, гносеологического содержания и функций этих методов вошли в число важных задач современного философско-методологического анализа. Раскрытие природы, содержания понятия «вероятность», его роли в теоретических построениях современной науки поставило вопрос о способах соединения научного рационализма с вероятностным стилем мышления. Наряду с этим подобный анализ, касаясь содержательной стороны фундаментальных понятий теории вероятностей, приобрел существенное значение для понимания оснований данной математической теории и составляет одно из важных условий ее разработки.
В свете сказанного, представляет интерес рассмотрение различных подходов к истолкованию вероятности, имеющее целью, как оценку их глубокого методологического контекста, так и выяснение координации и субординации между ними. В историческом контексте особая роль принадлежит классическому и частотному подходам. Они не потеряли, на мой взгляд, своего значения и в настоящее время. Это объясняется важностью и незавершенностью ряда вопросов, поднимаемых в их рамках.
Классическое истолкование вероятности. Широко признается, что оно было исторически первым и в явной форме сформулировано выдающимися математиками прошлого - Я.Бернулли и ПЛапласом. Понятие вероятности выражено было ими на языке математики, с использованием, в первую очередь, достижений комбинаторики.
Известно, что П.Лаплас в своих трудах определял вероятность как отношение числа случаев, благоприятствующих явлению к числу всех возможных случаев [1]. Подобное определение оказалось более точным, нежели используемое в обыденной речи интуитивное понятие вероятности. Однако область его приложения весьма узкая. В свое время Я. Бернулли отмечал, что применение классического понятия вероятности ограничивается, пожалуй, азартными играми, в которых совершенно известны числа случаев, влекущих выигрыш или проигрыш, а сами случаи могли бы встречаться одинаково легко [2].
Что касается Пьера Лапласа, то он определял вероятность в рамках теории случайностей. Для такого определения Лаплас сводил все однородные явления к известному числу равно возможных случаев, т.е. таких, существование которых было бы одинаково неопределенно, и фиксировал число случаев, благоприятствующих явлению, вероятность которого отыскивается. Отношение этого числа к числу всех возможных случаев характеризовалась Лапласом как мера этой вероятности. Математически эта мера представлена как дробь, числитель которой есть число всех благоприятных случаев, а знаменатель - число всех возможных случаев [3].
Итак, задача формулировалась в сфере установления полной группы событий, которая должна быть конечной. Другое важное допущение, принимаемое при этом подходе, состояло в том, что постулировалась равновозможность событий такой группы. Поэтому важнейшее значение приобрел для классической теории поиск критерия равновозможности события.
Такой критерий формулировался Лапласом следующим образом: равновозможные - это такие события, о которых мы равно мало знаем, чтобы предпочесть одно другому. Позже этот критерий получил наименование «принципа недостаточного основания» [4]. Неоднократно отмечалось, однако, что этот принцип является весьма туманным и нечетким логическим правилом.
Обычно в качестве примера такой нечеткости называлось использование термина «равновозможность», который по смыслу идентичен «равновероятности». Но в таком случае уже предполагалась известной мера вероятности, которую еще требуется найти, опираясь на это базовое понятие. Получался логический круг.
Опираясь на принцип недостаточного основания, классическая теория в явном виде не задавалась вопросом об объективных основаниях «равновозможности» и заслужила упрек в субъективизме и априоризме. Соответственно утрачивался объективный смысл понятия «вероятность», чему способствовали исходные методологические предпосылки авторов классической концепции.
«Вероятность коренится в неполноте наших знаний» - гласила классическая доктрина. Будь наши знания полнее, не было бы повода вводить понятие вероятности. Истоком такого взгляда служило представление о вселенной как о гигантском механизме, в котором все его части и отдельные элементы жестко связаны друг с другом. Каждое явление, согласно этому представлению, суть неизбежное следствие великих законов природы. И лишь не зная уз, связывающих их с системой мира в целом, их приписывают случаю или конечным причинам, в зависимости от того, следовали ли они друг за другом без видимого порядка или с известной правильностью.
В названной выше книге П. Лаплас ясно сформулировал представление о субъективном характере вероятности и об отсутствии случая в самой природе, в которой все будто бы подчинено жесткой необходимости. В этом проявился так называемый лапласовский детерминизм.
Согласно этой концепции лишь относительное незнание есть та причина, которая заставляет обращаться к вероятности. Для всеведущего же существа не было бы случая и не было бы нужды использовать вероятность.
Предпосылки, лежащие в основаниях классического подхода, оказались несовместимыми с признанием какой-либо объективной неопределенности. Предполагалось также, что даже самые незначительные события были заложены в виде возможности в прошлом. Но это означает, что в мире не возникает ничего принципиально нового. И тогда, по существу, отрицается и само развитие [5].
Вопреки П. Лапласу надо все-таки признать, что развитию материальных систем объективно присущ момент неопределенности. Ибо, сам процесс развития представляет развертывание и реализацию некоторых возможностей, которые в качестве скрытых тенденций характеризуют различные направления в развитии этих систем. Вместе с тем, лишь немногие из массы возможностей обычно реализуются в действительность. И в этом процессе нет предопределения.
Новые дискуссии подтвердили, что неопределенность в развитии материальных систем имеет место и вследствие того, что всегда возникают новые возможности, которых не было в прошлых состояниях системы. Но наличие объективной неопределенности если не отрицает полностью, то, по крайней мере, значительно сужает сферу приложимости лапласовской абстракции «жесткой» определенности, оставляя тем самым место для вероятности среди объективных понятий, как особой характеристики этой объективной неопределенности.
Наряду с рассмотренными выше гносеологическими и методологическими пороками классической концепции серьезным ее недостатком являлась узость сферы, где классическое понятие работало достаточно удовлетворительно (азартные игры, страховое дело, лотереи). Со всей очевидностью необходимость радикальных перемен в теории вероятностей обнаружилась лишь с переходом к исследованию класса непрерывных и бесконечных величин. Начало такого рода исследованиям положила статистическая физика (Клаузиус, Максвелл, Гиббс).
Частотный подход. Весьма приспособленной к решению нового круга задач оказалась концепция вероятности, связывающая ее не с поведением индивидуального объекта, как в классической теории, а с массовыми случайными событиями, с классом объектов, которые комбинируют индивидуальную иррегулярность с агрегатной регулярностью. Этот подход получил в литературе название частотного или статистического.
Его специфику осознал Дж.Венн, хотя ряд предварительных соображений был высказан еще Эллисом, Пуассоном и др. Дж Венн был первым, кто ясно поставил проблему определения области приложения понятия и теории вероятностей, правомерность которой до него просто не осознавалась, ибо эта область считалась интуитивно ясной [6]. Такой областью применения понятия вероятности Венн считал массовые случайные события. Для характеристики этих событий им введено было понятие СЕРИИ, которое вполне родственно позднее развитому Р.Мизесом понятию КОЛЛЕКТИВА (Б. Н. Пятницын, В. И. Метлов).
Историки науки связывают частотный подход с учением о вероятностях, представленным в работах немецкого математика Р. фон Мизеса. Его концепция была систематизирована и уточнена затем Г. Рейхенбахом. Позиция Мизеса оказалась весьма противоречивой, что уже не раз отмечалось в литературе [7]. Свидетельство тому - истолкование им теории вероятностей в качестве отрасли математического естествознания; и в то же время он предпринял попытку сформулировать ее как строгую математическую дисциплину, что обнаруживается, скажем, в соотнесенности базисного понятия данной концепции - коллектива - с традиционным математическим понятием - предел. В то же время Мизес неоднократно подчеркивал, что идеальный и абстрактный объект - коллектив -не является математическим объектом. [8]. По существу же в данном пункте Мизес сталкивал стремление к математической корректности в определении понятия коллектива с основным требованием радикального эмпиризма - идеализация должна быть непосредственно связанной с наглядно наблюдаемым.
Ранее я отмечал, что в концепции Мизеса имело место переплетение собственно конструктивных и философских задач, вследствие чего надо различать его теорию частоты и фи-лософско-методологическую интерпретацию данной теории. В философском плане эта концепция вписывается в рамки редукционистской программы. Суть последней, как известно, составляют два следующих момента:
1. указание так называемого базисного языка как фрагмента естественного языка;
2. утверждение о том, что познавательная ценность терминов теории определяется их отношением к базисному языку.
Выбор базисного языка дает ряд форм редукционизма, например, феноменализм и физикализм.
Мизесовский подход предложил в качестве базисного языка язык относительных частот. В то же время Мизес высказывал убеждение, что возможен перевод в термины относительных частот большинства вероятностных высказываний, используемых в науке.
Важным пунктом этого подхода явилось утверждение о тождественности вероятности с эмпирически наблюдаемыми частотами. Поскольку же вероятность выступает как объект математики, требуются средства для перехода от вероятности к эмпирическому материалу. Мизес усматривал это средство в понятии коллектива.
Одно из центральных положений частотной теории звучало так: о вероятности можно говорить только в случае, если налицо имеется твердо определенный и отграниченный коллектив [9]. Коллектив, по Мизесу, есть некоторая безграничная последовательность экспериментов, в которой каждый ее элемент (эксперимент) либо наделен, либо не наделен каким-то определенным признаком (например, таким признаком может быть выпадение фиксированной грани игрального кубика). Причем, каждый признак должен иметь в коллективе определенную долю, которая и есть его вероятность.
Важнейшими свойствами коллектива объявлялись: существование пределов относительных частот определенных признаков, а также иррегулярность (Regellosigkeit). Первое свойство совпадает с идеей бесконечности как снятием эмпирических отклонений частот от вероятности. Второе вводится для сохранения собственно вероятностного смысла данной концепции.
Мизес руководствовался соображением, что поскольку вероятность все точнее измеряется при увеличении числа испытаний отношением m/ n (что известно было уже в классической теории из теоремы Бернулли), то в пределе она совпадает с этим отношением. В традиционном истолковании это соотношение служило выражением лишь одного из свойств вероятности. Мизес же принимал его за определение вероятности.
Доказательство существования пределов относительных частот дается им в чисто эмпирическом плане. Так, он берет пример с бросанием 2-х костей и указывает, что при достаточно большом числе бросаний можно установить постоянство первого десятичного знака в отношении. При дальнейшем увеличении числа бросаний можно установить постоянство дроби, выражающей относительную частоту, скажем, для трех десятичных знаков. Именно этот факт, по Мизесу, должен привести к мысли о сходимости относительных частот, точнее к тому, что предел относительной частоты возможен [10].
Правило иррегулярности Мизес определял следующим образом: предельное значение относительной частоты, с которым выступает в коллективе какой-либо признак, должно оставаться неизменным, если из всей последовательности произвольно выбрать любую часть и рассматривать в дальнейшем только эту часть. При этом, выбранная частичная последовательность должна быть безграничной, как и сама основная последовательность. То есть, любой признак в любой части коллектива должен иметь ту же самую долю, что и во всем коллективе [11].
В последующем было показано, что требование предела относительных частот находится в противоречии с требованием правила иррегулярности. Аргументы в этом случае таковы: Понятие предела связано с бесконечной последовательностью, которая не может быть задана актуально вследствие того, что такое задание должно производиться через общий закон образования ее членов по нумерическому признаку. Но это-то и запрещается правилом иррегулярности. В то же время из математики хорошо известно, что только в таком случае можно вести речь о строгом математическом пределе [12]. В другом месте читаем: «...самое понятие предела в его обычном понимании применимо лишь к индивидуальной, закономерно определенной последовательности. Там, где закономерностей, определяющих данную последовательность, нет и принципиально быть не может, нельзя даже ставить вопроса о существовании или несуществовании предела» [13].
Позже Мизес предлагал раскрыть коллектив не как актуальную, а становящуюся последовательность. Но, с математической точки зрения, у такой последовательности также не может быть предела.
Р. Мизес пытался уточнить определение иррегулярности, объявляя ее уже нечувствительностью не к любому закону выбора, а по отношению к счетному множеству законов, сформулированных в рамках определенной формализованной логики. Ибо, в реальной ситуации речь всегда идет о некотором конечном числе операций выбора. За пределами этой формализованной системы оказывается возможным задать явно случайную последовательность обладающую свойством коллектива, по крайней мере, в принципе [14].
Давая оценку концепции Мизеса, надо отметить: 1) Невозможность на ее основе делать определенные предсказания о течении реальных процессов. И указанное выше уточнение не снимает этой трудности, поскольку не затрагивает понятия предела. Идеализация Мизеса в этом пункте чрезвычайно нечеткая, и ее приложение к реальным испытаниям слабо обосновано. Например, согласно позиции Мизеса, мы не можем сказать хотя бы предположительно заранее, сколько раз при 1000 подбрасываний «правильной» монеты выпадет «герб». По Мизесу надо бы ответить, что возможны все числа - от 0 до 1000 раз. Реальное же испытание дает некоторое устойчивое число, вокруг которого группируются выпадения «герба». Без дополнительного постулата, как указывал А.Я.Хинчин, до произведения испытаний Мизес не может сделать никакого выбора из возможных чисел выпадения «герба». Можно лишь вычислить вероятность того, что «герб» выпадет столько-то раз[15]. 2) Учение Мизеса о вероятностях приложимо лишь к некоторому идеализированному процессу бесконечного эксперимента и неясно как его применить к реальным процессам, которые всегда конечны. 3) Проблема сложности здесь не решена.
Настаивая на эмпирическом обосновании понятия вероятности и отбрасывая классическую теорию из-за отсутствия такого обоснования, частотный подход Мизеса оказался неспособным удержать то положительное, что нес в себе классический подход. Оно состояло в следующем. Неявным образом при определении вероятности принимались во внимание определенные свойства индивидуального объекта, характеризующие набор объективных возможностей его поведения в испытании (например, однородность строения, симметрия и т.п.). Благодаря этому в известном смысле обоснованным становилось приложение классической теории к реальным сериям испытаний.
Следует заметить, что эта сторона классического подхода обычно остается в тени. Более того, вместе с принципом недостаточного основания, символизирующим субъективизм и априоризм данной концепции, отбрасывают самую идею «равновозможности» как исходный пункт истолкования вероятности. Между тем, эту концепцию, если придавать «равновозможности» объективный смысл, нельзя рассматривать как полностью преодоленный этап. Скорее правы те авторы, которые считают, что теоретическое истолкование вероятности на базе данного понятия не исчерпало себя полностью. Так, А.Я.Хинчин, разбирая в одной из своих статей пример Мизеса с неправильной костью, показывал, что противопоставление данного случая идее равновозможности не оправдано, если исходить из некоторых топологических представлений[16].
Поставленный выше вопрос о возможности эмпирических предсказаний на основе теории Мизеса непосредственно связан с так называемой проблемой тестификации вероятностных суждений (проблемой их эмпирических испытаний). Сложность ее решения в рамках данной концепции вытекает из нечеткости ее базовых понятий.
В самом деле, если рассматривать классы, связываемые посредством отношений частот, как бесконечные, тогда ни одно конечное число экспериментов не в состоянии ни полностью подтвердить, ни полностью опровергнуть вероятностное суждение, ибо частотный подход не имеет каких-либо разумных средств ограничения требования иррегулярности. Теоретически здесь нельзя исключать факта, что любая конечная серия проведенных экспериментов может оказаться лишь флюктуацией с каким угодно большим отклонением относительной частоты в данной серии от относительной частоты во всем бесконечном классе. Между тем, на практике прогнозы по конечным наблюдаемым сериям являются обычным делом.
Концепция Г. Рейхенбаха. Она имела логикогносеологическую направленность. Г. Рейхенбах, разрабатывал идею вероятностной логики для характеристики сложных ситуаций. Он показал, что высказывания о таких ситуациях можно рассматривать как многозначные, и это навело на мысль о возможности многозначной, в отличие от двузначной, логики, использующей всегда два истинностных значения. В качестве значения истинности в своей новой логике он принимал значение вероятности. Одновременно он принимал постулат, что высказывания многозначной логики могут быть переведены в высказывания двузначной логики (если вероятность равна 0 или 1)[17].
Вероятностные суждения, согласно Рейхенбаху, не могут быть сообщениями, как обычные предложения в рамках строгой логики (т.е. стоять в однозначном соответствии с наблюдаемыми фактами). Наоборот, они могут лишь соответствовать некоторой последовательности фактов, в зависимости от того, делают эти факты данное высказывание более или менее вероятным[18]. Одновременно, по его мнению, можно говорить и о том, что факт тоже устанавливает в свою очередь последовательность вероятностных высказываний в зависимости от большего или меньшего их соответствия факту. Именно поэтому, писал Рейхенбах, можно говорить о вероятности события так же, как о вероятности высказывания. Тут дело, дескать, только в терминологии.
Вследствие этого, обычные способы тестификации, опирающиеся на двузначную логику (истинно-ложно) здесь неприемлемы. Но вероятностное высказывание может получить рациональный смысл, если его рассматривать как неопределенное предсказание, которое относится к частоте появления события в будущем. Оправдание вероятностного суждения возможно лишь индуктивным путем[19].
В том, что здесь отсутствует действительное решение проблемы, убеждает рассмотрение одного из важных следствий позиции Рейхенбаха по данному вопросу, на которое обратил внимание еще Б.Рассел и назвал «бесконечным регрессом» [20]. Бесконечным оказывается процесс оценки вероятности отдельного высказывания (а в этом Рейхенбах видел одну из главных задач своей вероятностной логики). Это связано с тем, что решение проблемы смысла вероятностных суждений покоится у Рейхенбаха на положении об исключительно вероятностном характере всего знания, ибо истинность у него отождествляется с вероятностью, а ее крайние границы - значения 0 и 1 - при статистическом подходе недостижимы.
Чтобы избежать такой бесконечности и сложности рассуждений, Рейхенбах вынужден обратиться к дополнительной предпосылке, являющейся внешней по отношению к статистической трактовке вероятности, которую он отстаивал. Роль этой предпосылки играет у него понятие «неквалифицированной ставки», которую он называет также «слепой». Под ней Рейхенбах понимает высказывание, истинность которого принимается без доказательства. Но, в таком случае, здесь выдвигается постулат, не имеющий эмпирического эквивалента, что является незаконным допущением с позиций строго частотной трактовки вероятности.
Существенным пунктом, приведшим попытку Рейхенбаха к неудаче, является, на мой взгляд, несовместимость принимаемого им решения проблемы смысла вероятностных суждений с решением проблемы их значения. Позиция Рейхенбаха в этом вопросе двойственная.
С одной стороны, принимая частотное истолкование вероятности, он ратовал будто бы за объективность вероятностных суждений, считая их одновременно средством эмпирического предвидения. Но правомерность употребления вероятностных суждений видел не в том, что они имеют объективное содержание, а в том, что таков характер нашего познания, которому изначально свойственна вероятностная природа.
Вероятностную логику с ее центральным понятием «вероятность» Рейхенбах объявляет некой «абстрактной средой» всего естествознания, его фундаментом, который нельзя обосновать, но возможно лишь открыть и исследовать [21]. Отсюда получается, что проблему тестификации, которую нельзя решать, отвлекаясь от вопроса об отношении вероятностных суждений к объективной реальности, Рейхенбах пытался просто обойти.
Здесь важно снова подчеркнуть, что объективность частотного истолкования вероятности в этой концепции - мнимая, поскольку в ней не дается качественное объяснение устойчивости частот появления какого-либо признака в серии испытаний. Кроме того, в подходе Мизеса-Рейхенбаха игнорировалось по существу важное обстоятельство, что последовательность, называемая коллективом, составляется из индивидуальных и независимых событий, обладающих определенной свободой поведения по отношению друг к другу. И потому, именно свойства таких событий должны учитываться при содержательном истолковании вероятности.
Итак, правомерно ли настаивать на онтологическом статусе понятия вероятности? Есть позиция, согласно которой утверждается «...кроме количественных отношений, о которых explicite говорят вероятностные суждения, мы имеем дело с определенными отношениями и физическими влияниями, мерой которых (в каком-то аспекте) является математическая вероятность» [22].
При таком подходе ясно формулируется требование рассмотрения проблем объективного содержания понятия вероятности в определенных детерминистических рамках, чего нет при частотном подходе, развиваемом Мизесом и Рейхенбахом. Требованию детерминизма соответствует основное убеждение, состоящее в том, что вероятность обнаруживается через относительную частоту и представляет собой какую-то глубокую характеристику связи условий эксперимента с его результатами [23]. Выше я отмечал, что в ряде работ, посвященных анализу вероятностной проблемы, высказывалась мысль, что эта связь получает дополнительное обоснование в свете системных представлений. Обычно ее характеризуют при обсуждении содержания статистических законов. Здесь я не буду касаться данного вопроса, поскольку подробное его рассмотрение составляет предмет третьей главы.
Сложности частотного подхода к определению понятия вероятности свидетельствуют об ограниченности данной концепции, обнаруживая тем самым, что частотное понятие вероятности - это понятие не в своей общей форме, как пытались представить авторы данной концепции, но лишь понятие в особенной форме. Этот же самый вывод следует из анализа роли аксиоматического подхода, конкретными интерпретациями которого являются и классическое, и частотное понятия вероятности.
Аксиоматический подход (А. Н. Колмогоров). В его рамках не дается явного развернутого определения понятия вероятности, но оно задается через систему аксиом примерно так же, как алгебраические неизвестные определяются системой алгебраических уравнений. Вероятностью в таком случае можно назвать любое понятие, удовлетворяющее требованиям системы аксиом.
Не останавливаясь на аксиоматическом подходе к определению понятия вероятности подробно, замечу лишь, что подобный подход расширил область приложения теории вероятностей практически беспредельно [24]. Дело в том, что по своему существу аксиоматическое определение не фиксирует того класса объектов, к которому оно может быть приложимо, но связано лишь с набором формальных признаков. Под эти признаки посредством идеализации может быть подведено бесконечное множество классов объектов. Соответственно можно иметь бесконечное множество интерпретаций той или иной аксиоматики.
В настоящее время наибольшим признанием пользуется аксиоматика А.Н.Колмогорова, представляющая вероятность одним из случаев меры множества [25]. В то же время, в математической литературе показано, что классическое и частотное определения, формулируемые в явном виде, являются лишь одним из возможных интерпретаций аксиоматически построенной теории вероятностей, поскольку фиксируют класс объектов приложения и допускают формализацию, удовлетворяющую требованиям аксиом.
С этих позиций реальным достижением мизесовского подхода является как раз то, что была показана возможность новой (в сравнении с классической) интерпретации понятия вероятности. А это, в свою очередь, подсказывает определенные возможности дальнейшей формализации математической теории.
Следует отметить также, что трудности строго эмпирической трактовки вероятности, отмеченные выше при обсуждении проблемы тестификации, свидетельствуют в пользу необходимости разработки теоретико-содержательных представлений о вероятности, т.е. выработки представлений о вероятности как о теоретическом понятии. Соответственно этому, по-иному должен ставиться вопрос об эмпирической проверке вероятностной гипотезы. Таковую не может исчерпать эмпирический материал относительных частот.
Общий смысл постановки вопроса о разработке представлений о вероятности как теоретическом понятии выводит за рамки чисто математической проблематики. Полагаю, что он касается поиска содержательных форм вероятностного мышления. И здесь в первую очередь возникает задача соотнесения вероятности с детерминистическими представлениями в том аспекте, который ориентирует на отражение сложных отношений между объектами.
2. Проблема сложности и вероятностный детерминизм
Теперь понятно, что переход к аксиоматическому построению и развитию математической теории вероятностей выводит этот раздел знания в сферу абстракций чрезвычайно высокого уровня. При этом окончательно утрачивается связь современного понятийного аппарата теории вероятностей с исходными наглядными представлениями, выступавшими в роли интерпретаций первых понятий этой теории, которые, в свою очередь, служили отражением предшествовавшего практического опыта и определенного состояния науки.
Утрата наглядности онтологической картины, соответствующей нынешнему движению концептуального аппарата данной теории, со всей остротой поставило вопрос об основаниях введения понятия вероятности в состав большинства научных теорий. В свете данного обстоятельства и на фоне столкновения науки с проблемой сложности актуальными стали вопросы интерпретации вероятности. В то же время, трудности наиболее известных из них свидетельствуют об ограниченности традиционных путей обоснования данного понятия и необходимости обращения к иным средствам.
Надо заметить, что существуют два основных канала ввода в научный обиход понятий высокой степени абстрактности, аналогичных понятию вероятности. Соответственно, можно указать на два способа оправдания обоснования их ввода.
Напомню, что характеристика первого способа дается на базе понятий «операциональная стратагема» и «оборачивание метода», использованных К.Марксом в его «Математических рукописях» [26]. По Марксу, понятия и теории определенной степени абстракции, будучи ненаглядными по своей гносеологической природе (вследствие отсутствия непосредственной цепи, ведущей от них к сфере конкретных предметов и отношений), приобретают операциональную наглядность, становясь формой, знаком некоторой оперативной стратагемы[27].
Роль такой стратагемы в теории вероятностей выполняют два следующих постулата:
1. Закон больших чисел.
2. Центральная предельная теорема (в формулировке A.M. Ляпунова).
Сами эти постулаты получают формальное выражение в ряде требований:
Для задачи больших чисел - математическое ожидание случайной величины должно быть равно нулю и дисперсия случайной величины должна быть конечной.
Центральная предельная теорема выполнима, если существует значительное число независящих факторов, влияющих на значение случайной величины, а действие каждого фактора само по себе мало.
Но есть и другой способ, который связан с соответствующей картиной мира. Ее основные генерализации берутся из ведущих областей знания (ведущая роль той или иной дисциплины является исторически обусловленной), а также из сферы философских оснований научного знания вообще.
Обращение к мировоззренческим принципам, к философским категориям и законам имеет в данном случае тот смысл, что позволяет вскрыть качественный момент, а вместе с тем содержательную сторону абстрактных концептуальных форм научного мышления. Как показывает анализ литературы, в отношении понятия вероятности реализация подобного способа обоснования затрагивает, прежде всего, проблему детерминизма, центральный вопрос которой состоит в том, как возможно вхождение вероятности в современную науку без разрушения детерминизма.
В прежних своих работах я стремился показать, что поиск ответов на этот вопрос имеет самое непосредственное отношение к раскрытию наиболее существенных и глубоких основ вероятностных методов. Дело здесь в том, что большинство попыток вписать понятие вероятности в детерминистические рамки осуществляется посредством сопряжения его с понятиями сложности, определенности и неопределенности и рядом других, выступающих в качестве основного категориального аппарата многих отраслей науки. С другой стороны, очевидно, истолкование форм детерминации, соответствующих сложным материальным системам, не может идти в отрыве от объективного истолкования содержания идей и методов теории вероятностей, так как язык вероятностно-статистического описания оказался весьма приспособленным для выражения собственной природы таких систем.
Отмечу, что разработка сформулированной выше проблемы осуществлялась и на иных путях. Например, значительное число работ, ей посвященным, шло и сейчас идет в русле исследований логики квантовой механики, где в основание кладут аксиоматический метод анализа структуры научной теории. Именно таким путем стремятся выяснить условия вхождения статистичности в квантовую механику и перспективы изменения этой формы теории в сторону приближения к строго детерминистическому описанию микропроцессов [28]. Не касаясь здесь реальных возможностей данного направления, сосредоточу свое внимание на анализе проблемы соотношения вероятности и детерминизма, которые представляют интерес в свете современной методологии науки.
В порядке уточнения исходных категорий такого анализа отмечу, что здесь оставляются в стороне те представления о детерминизме, которые связывают данное понятие лишь с той или иной метатеоретической концепцией, акцентирующей внимание на логической структуре научных теорий, именно на структуре выводов и предсказаний, осуществляемых в рамках этих теорий. Бесспорно, что этот аспект детерминизма заслуживает самостоятельного исследования, но при том только условии, если осознается его узкий гносеологический характер. Принципиальная же постановка проблемы детерминизма всегда была связана с вопросами мировоззренческого плана, о чем свидетельствуют историко-философские уроки ее обсуждения.
Попытки решения задачи о совместимости понятия вероятности с концепцией детерминизма предпринимались на основе различного понимания собственного содержания последнего. Известно, например, что первая из таких попыток исходным пунктом имела представление о так называемом причинном (казуальном) детерминизме.
Концепция причинного детерминизма. Ее истоки восходят к Демокриту. Он противопоставлял произволу богов и сверхъестественному вмешательству в сущее однозначную, строгую определенность и обусловленность в реальном мире, которая имеет место благодаря действию естественной необходимости[33]. Окончательное оформление данная концепция получила в рамках материализма Нового времени. Здесь понятие однозначной естественной необходимости редуцировалось до понятия причинности (причинно-следственной связи). В то же время причинность расширялась до уровня универсального мирового принципа.
Утверждение принципа причинности, связанное с отрицанием потусторонних и сверхъестественных сил в качестве источника изменения в мире, означало также развитие представления о том, что материя является причиной самой себя. В ней самой имеются истоки и движущие силы изменения и порождения и ей присуща внутренняя активность и саморазвитие (Спиноза, Толанд, Гольбах, Дидро и др.).
Вместе с тем, конкретная интерпретация принципа причинности в эпоху формирования классической науки страдала существенной односторонностью. В силу длительного господства механической естественнонаучной картины мира для истолкования собственно причинности привлекались, прежде всего, механические характеристики: пространственное перемещение, изменение количества движения и др. на этой основе происходила по существу элиминация идеи внутренней активности материи, поскольку в рамках механических представлений, экстраполируемых до уровня универсальных принципов, нет места понятию внутренней причины. Источником движения, изменения в механической системе, в конечном счете, выступают внешние по отношению к ней силы механического порядка. Кроме того, механическая трактовка причинности не способна служить выражением появления нового в мире, ибо один из главных постулатов механики требует сохранения количества движения в замкнутой механической системе (допускает лишь его перераспределение между математическими точками такой системы).
Причинно-следственная зависимость характеризовалась в рамках классического причинного детерминизма как связь двух явлений, из которых одно выступает активным изменяющим фактором состояния или движения другого. Далее. Подчеркивался внешний характер причинного воздействия, качественное и количественной соответствие причины и следствия, линейная последовательность причинений, уходящая в бесконечность. В этом случае определенность и обусловленность одного другим брались в своем абсолютном смысле, как не обремененные своей противоположностью - неопределяемостью и неопределенностью, поскольку исключались связи определения иного, непричинного рода.
Неопределенность, с которой сталкиваются в практических исследованиях, признавалась в рамках традиционной формы причинного детерминизма лишь в качестве момента выбора конкретного уровня определения и обусловливания. По своей же природе подобная неоднозначность считалась иллюзией, не имеющей истинного содержания, поскольку здесь исходят из предпосылки об определенности мира в целом, из признания мира в качестве единого материального процесса, подчиняющегося некоторой единой закономерности однозначного типа. Вследствие этого считается возможным в принципе всегда найти такой круг определяющих факторов для любой материальной системы (соответственно, такой уровень определения), который однозначно обуславливал бы некоторую группу событий, принадлежащих этой системе.
Подобная трактовка детерминизма нашла, казалось, прочное основание в атомизме и классической динамике И. Ньютона с ее центральным понятием «сила», долженствующим служить синонимом понятия «причина» на самом глубоком по тем представлениям - механическом - уровне рассмотрения процессов изменения вещей и явлений. Успехи классической механики в освоении целого ряда областей действительности привели к тому, что собственно причинное объяснение стало просто отождествляться с механическим объяснением явлений.
Свое рафинированное выражение в качестве мировоззренческого принципа механическая причинность получила, как известно, в «Системе мира» ПЛапласа. Впоследствии критика причинного детерминизма ориентировалась, как правило, именно на лапласовскую его версию. Однако, если последний качественно ограничивал уровень обусловленности и определенности явлений механическим движением и его закономерностями, то общая форма причинного детерминизма, как это выясняется при ближайшем рассмотрении, не нуждается для своей формулировки в подобной конкретизации уровня определяемости. И данное обстоятельство следует учитывать при выявлении возможностей причинного детерминизма в решении им задачи ассимиляции понятий вероятности, неопределенности, сложности.
Но понятие вероятность, как вытекает из предыдущего рассмотрения, существенным образом включает в себя представление об иррегулярности и отсутствии строгой зависимости между определяемым и определяющим. Вследствие этого признание онтологического статуса за данным понятием (т.е. приписывание ему такого содержания, которое бы соответствовало объективной структуре мира) приходит в противоречие с онтологической картиной, описываемой традиционной формой причинного детерминизма и более сильным его вариантом - лапласовским детерминизмом.
Такое положение дела породило две крайности: 1) с одной стороны, оживились попытки укрепления позиции индетерминизма, исходящие из признания онтологического статуса понятия вероятности (К.Поппер и др.); 2) с другой - сохраняя неприкосновенной старую форму детерминизма, придают понятию вероятности статус лишь гносеологической категории, служащей инструментом ориентировки в условиях неопределенности знания (с последним соглашался еще П.Лаплас). И в том, и в другом случае, однако, понятие вероятности оказывается вне онтологической версии причинного детерминизма.
Попытки перебросить мосты между понятием причинного детерминизма и вероятности, остающиеся в рамках онтологического аспекта, привели к формированию концепции так называемой вероятностной причинности, отстаиваемой в недавнем еще прошлом большой группой авторов (Баженов Л.Б., Готт B.C., Украинцев Б.С., Шарыпин Л.П. и др.). Непосредственным толчком к ее выдвижению послужили трудности методологического и общефилософского плана, возникшие на почве квантовой механики (это - попытки непричинного истолкования принципиальной статистичности квантово-механического описания) [29].
Тезис «вероятностной причинности» связан с утверждением необходимости расширения традиционно принимаемого смысла категории «причинность» за счет признания неопределенности и неоднозначности в качестве существенного момента причинно-следственной зависимости. Однозначная причинная связь здесь обычно трактуется как предельный случай[30].
В пользу введения нового понятия выдвигались аргументы методологического порядка. Например, Л.Б.Баженов обращался к положению о том, что характер причинной связи должен быть непосредственно сопряжен с той или иной теоретической схемой объяснений (Т), называемой «внутренним механизмом» связи состояний. Он утверждал, что если Т - строго однозначна, тогда причинность является однозначной. Если же Т - принципиально вероятностная теория, то имеем дело с вероятностной причинностью [31].
В этом пункте произошло, на мой взгляд, смещение акцентов. Гносеологическая точка зрения (характер теоретического описания) рассматривалась как более фундаментальная, определяющая наши представления об объективном содержании процессов причинения. При подобном подходе снимается по существу проблема отражения, главный момент которой состоит в характеристике всех познавательных форм как ступеней приближения к объекту, к материальному содержанию того или иного фрагмента реальности. На такой почве становится возможной абсолютизация способа описания. Между тем он сам должен получить оправдание в тех или иных характеристиках отражаемого объективного мира.
Можно было бы согласиться с изменением смысла категории причинности, если признавать существование мира иной онтологической природы, стоящего за статистической картиной описания. Вслед за В. П. Бранским, я считаю это требование достаточно сильным для изменения содержания традиционных категорий[32].
Однако методологическая ценность применения идеи существования миров различной онтологической природы в рассматриваемом конкретном случае (в ее отношении к проблеме причинности в квантовой механике) оказывается весьма проблематичной. Дело в том, что недоказанной остается, например, производность от нее постулата о полноте квантовой механики. А это открывает возможности для реализации существенно иных подходов к истолкованию специфики квантово-механического мира, в том числе, позволяет вести поиск в русле идеи «скрытых параметров» [33]. Слабой стороной концепции «вероятностной причинности» надо признать то, что в ее рамках стремились по существу всю сложность и многообразие реальных связей, характеризующих определенность и неопределенность материального мира, выразить посредством одного понятия - причинности. Между тем философская и научная традиция подсказывает достаточно строгий смысл употребления данной категории. Ее использование предполагает, как отмечал В.И.Ленин, вырывание, огрубление, идеализацию действительных взаимозависимостей [34].
Такая идеализация дает уже иной уровень, нежели детерминация, которая может иметь и вероятностный характер, поскольку детерминизм, понимаемый в широком смысле, может и должен содержать момент неопределенности. В категории же причинности специально берется однозначный случай одностороннего взаимодействия. И это имеет смысл для широкого круга материальных явлений.
Да, знание причинной связи позволяет проследить строгую определенность, зависимость одного явления от другого. Но ее выделение оказывается возможным лишь в достаточно простых случаях, при наличии массы идеализаций, упрощений и т.д. Сознательная же установка на учет сложных ситуаций, выделение в анализе сложных систем заставляют искать новые формы фиксации определенности (с учетом в той или иной мере случайности, возможности, субординации уровней организации и т.д.). В этом плане следует рассматривать, например, вероятностно-статистическую форму зависимости, именно как одну из разновидностей детерминации, выходящей за рамки собственно причинной детерминации.
Соответственно сказанному мне представляется более перспективным в решении проблемы связи вероятности и детерминизма то направление, которое характеризуется отказом от отождествления детерминизма вообще с причинным детерминизмом, прежде всего в его крайней - лапласовской - форме. Общий принцип детерминизма, согласно данному подходу, предполагает определенность явлений не только на основе действия закона причинности, но всей совокупности законов, связей и опосредований, в которые включено то или иное явление.
В этом смысле детерминизм означает просто всеобщую материальную обусловленность и взаимосвязь явлений действительности. Причем, учитывается качественное разнообразие связей и отношений определения и опосредования, так что самостоятельное значение и ценность приобретают законы временного следования, содержания и формы, возможности и действительности и т.д., которые своеобразно переплетаются и дают тот или иной эффект для каждого конкретного случая. Подобная точка зрения нашла в XX столетии широкое признание[35].
Замечу, что этот подход позволяет снять абсолютизацию однозначной причинно-следственной зависимости, которая вместе с тем занимает свое важное место в сети определений, однако не всегда выступает в качестве основного звена определения. Сохраняя универсальность действия принципа причинности, подобная трактовка детерминизма позволяет рассматривать причинность как тенденцию, как частичку универсальной мировой связи (В. И. Ленин).
Автор полагает, что однозначная причинность выступает в роли важной абстракции, идеализации. Ее, однако, нельзя, называть лишь условной формой выражения всемирной связи явлений, как это иногда делается [36]. Напротив, такая идеализация не является беспочвенной, и именно потому она играла и играет столь существенную роль в научном познании. В качестве примера можно указать на применимость к широкому кругу материальных объектов абстракций «абсолютно изолированной системы» и «абсолютно точного измерения начальных условий и параметров системы».
Вместе с тем учет гносеологической природы понятий детерминизма и причинности, т.е. их связи с познавательными задачами определенного рода, позволяет характеризовать однозначную причинность как способ выделения упрощенной формы детерминации, связанной с чрезвычайно сильными идеализациями, образцы которых демонстрируют классическая физика, классическая механика, термодинамика и т.д.
Новый тип познавательных задач, выдвигающийся в настоящее время на передний план, имеет дело с богатым уровнем сложности. Их решение прямо связано с отказом от ряда допущений названной формы детерминации (учет всех существенных причин, неограниченная точность фиксации условий и др.) и в силу этого выходит за ее пределы.
Для этого случая решающее значение приобрело истолкование детерминизма с позиций единства определенности и неопределенности. Такого рода единство находит свое выражение, например, в категории «возможность», органически входящей в рамки обобщенной концепции детерминизма. На базе этой категории признается связь, скажем, результатов с воздействиями, однако она приобретает характер некоторой возможностной области. Причем важно, что границы этой сферы возможности имеют достаточно четкие и определенные контуры. Например, при задании ряда граничных условий, обеспечивающих нормальный выстрел из артиллерийского орудия, более или менее четко определяется сектор обстрела в соответствии с законами механики. Вообще же конкретизация общей необходимости налагает границы на область возможностей.
Здесь автор выступает за сохранение детерминизма в описании сложных ситуаций, что потребовало выработки средств учета неопределенности и неоднозначности одного уровня сложности системы по отношении к другому. Формализованный подход к решению данной задачи связан с реализацией идеи функции множеств. К числу таковых относится вероятность, истолковываемая в математическом плане как функция, которой становится в соответствии некоторая мера пересечения двух множеств, ограниченная значениями 0 и 1.
С качественной стороны подобный подход к анализу и описанию сложной детерминации может быть охарактеризован как отказ от поэлементного рассмотрения совокупности детерминирующих факторов, что составляет центральное содержание современного системного подхода.
Хотя надо добавить, что отказ от поэлементного анализа в рамках системного подхода не является абсолютным (и это подчеркивается уже в определении понятия «система»). Напротив, так или иначе, учитываются особенности элементов, но на более глубоком и абстрактном уровне, чем при традиционном рассмотрении (например, посредством фиксации их разнообразия). Важно также, что в рамках системных характеристик осуществляется учет, как внутреннего разнообразия системы, так и внешнего разнообразия воздействий. А это служит основанием для применения много-многозначной формы детерминации.
В данном случае складывается иная ситуация, чем в классической области, поскольку в последней неопределенность лежала просто за пределами точности измерения и отвлечение от неточностей не оказывало значимого влияния на характер детерминации (не искажало ее однозначности). В сложных же системах имеют дело с тем случаем, когда от воздействий нельзя отвлечься.
Теперь можно считать установленным, что выявление некоторой типичной картины сложного поведения объектов должно включать в себя учет отклоняющегося результата в любой момент времени. Понятие вероятности и вероятностное описание оказываются как раз тем инструментом, который способен характеризовать такого рода ситуации. Данная способность обусловлена вхождением неопределенности в качестве существенного момента содержания понятия вероятности. В то же время аппарат теории вероятностей включает ряд ограничений для разброса вероятностей, что дает возможность сохранять определенность. Одним из обобщенных выражений подобного рода ограничений служит, например, закон больших чисел. Он характеризует минимизацию отклонения относительных частот от значения вероятности при определенных допущениях. Следует отметить, что для некоторых областей можно, конечно, обойтись без вероятностного описания, хотя в каких-то отношениях оно могло бы оказаться полезным. Возьмем, к примеру, проводник тока. Естественно, что он находится в сети бесконечных взаимодействий, поскольку, вообще говоря, все материальные системы бесконечно сложны. Но, практически, всегда можно создать такие условия, в рамках которых длительное время будут отсутствовать возмущения характера течения тока. Здесь применим тогда однозначный детерминизм. Иной случай представляет, скажем, жизнь биологического индивида. Никак, к примеру, нельзя гарантировать его выживаемость в течение 10 лет. Очевидно, что тогда в самом аппарате описания надо учесть данное обстоятельство. Как следствие - обращение к статистике и вероятности.
Итак, вероятность как теоретическая форма послужила способом выражения определенности, моментом которой выступает неопределенность. Классическая наука использовала сильные идеализации, но одновременно и те объекты, с которыми она имела дело, позволяли опираться на однозначный детерминизм. Сложные объекты требуют поиска иных средств анализа. Для них удается сохранить детерминизм в описании поведения уже не на уровне отдельных событий, но на уровне вероятностей этих событий. Здесь налицо развитие классического описания, поскольку в отношениях вероятностей просвечивает детерминизм второго уровня.
3. О природе статистических законов
В истории науки и в философии XX столетия была признана возможность, опираясь на обобщенный смысл детерминизма, органически включать неопределенность в круг радей об определенности явлений действительности. Важнейшим средством такого включения выступила статистическая форма описания массовых событий. Более того, выяснилось, что существует особый статистический тип определенности, устойчивости и, соответственно, необходимости и закономерности. Признание же статистического типа необходимости и закономерности переводит проблему соотношения вероятности и детерминизма на новый уровень - уровень законов.
В самом общем плане это означает, что статистическая форма описания явлений должна была получить еще свое оправдание в существенных чертах и признаках закономерности. В такой постановке данная проблема касается по существу вопроса о статусе вероятностно-статистических закономерностей, разработка которого до настоящего времени носит весьма дискуссионный характер [37].
В ходе длительной дискуссии многие ее участники ограничивались сравнительно узкой постановкой вопроса, а именно: элиминирует ли статистический тип закономерности традиционно признаваемый классической наукой динамический тип закона? В тесной связи с этим вопросом ставился также другой: является ли однозначность атрибутивной характеристикой закона вообще? Их взаимозависимость выявляется, скажем, в том обстоятельстве, что из тезиса об однозначности и строгой определенности закономерности нередко выводилось отрицание объективного и универсального содержания статистических закономерностей.
Как это часто принято в теоретическом познании, автор намерен обратиться, прежде всего, к тем исходным идеализациям, которые используются при формировании закономерностей того и другого типа, и сопоставить последние под углом зрения их направленности на решение задач системного анализа.
С формальной стороны различие между динамическими и статистическими законами состоит в том, что математическое выражение статистических закономерностей опирается на понятие вероятности. Тогда как динамические законы описываются в форме дифференциальных уравнений, либо однозначных функциональных зависимостей. Учитывая это обстоятельство правомерно говорить о поэлементном подчинении динамическим законам всех объектов некоторой рассматриваемой совокупности. В качестве таких элементов часто рассматривают состояния изменяющего во времени материального явления или процесса. Кроме того, в случае динамических законов говорят о жестко детерминированном, строго определенном характере этого подчинения.
В абстрактно-математическом плане статистическая форма зависимости для некоторой упрощенной ситуации также может быть выражена в виде функции. Однако таковая обладает рядом специфических особенностей, важнейшие из которых, например, в свое время М.Смолуховский определил следующим образом; Если статистический закон представить как функцию y=f(x), то должны выполняться такие указания: 1) небольшие изменения «X» в общем вызывают большие изменения «У»; 2) совокупности таких группировок «X», которым, приблизительно, соответствует одна и та же группировка значений «У», неизмеримо более многочисленны, чем совокупность группировок «X», которым соответствует заметно отклоняющееся распределение значений «У» [38].
Очевидно, что первое из названных свойств выводит данную функцию из класса таких, для которых приложим принцип: ограничение приращения аргумента ограничивает область изменения функции. Следовательно, статистическая зависимость не может быть описана в дифференциальной форме, поскольку здесь неприложимо математическое понятие предела. Второе же свойство подчеркивает новый тип устойчивости, обнаруживаемый у данной функции, для выражения которой необходимо учитывать массовость рассматриваемого явления.
Отмеченный здесь характер соответствия между изменениями аргумента «X» и функции «У» совпадает, по существу, с требованием непрерывности вероятностной функции распределения начальных данных. На этот признак указывали, например, А.Пуанкаре и Г.Рейхенбах [39]. Смысл названного требования состоит в том, что при общей устойчивости некоторого комплекса начальных условий реализации данного явления из него нельзя исключить факторы, обуславливающие вариации отдельных элементов массового явления. Ибо эти факторы невозможно изолировать или проконтролировать. Тем самым, в своем качественном содержании, уже простейшая теоретическая модель статистической закономерности ориентирована на принципиальную неизолированность изучаемого явления. А это представление, в свою очередь, сопряжено с отказом от поэлементного рассмотрения цепей подчинения, т.к. признание требования непрерывности вероятностной функции распределения начальных данных делает излишним поиск, выделение какого-либо отдельного возмущающего фактора, приводящего к разбросу значений элементов совокупности. Все такие факторы из группы возможных оказываются равновероятными.
В XX столетии развитый аппарат представления статистической закономерности формировался на базе понятия «распределение», которое относилось к так называемой «случайной величине». «Распределение», взятое в этом смысле, стало своеобразной математической формой выражения закона. В ее рамках задаются всевозможные значения случайной величины. Причем, такое задание осуществляется путем установления «веса» каждого из значений, характеризуемого посредством численной меры вероятности. В своей абстрактно-математической форме статистическая закономерность описывает зависимость одних распределений от других и их изменение во времени. Инструмент такого описания дают теория вероятностей и математическая статистика, теоремы и правила которых как раз позволяют осуществлять сложные переходы от одних распределений к другим.
Какие же особенности и свойства вероятностного распределения позволили рассматривать его в качестве формы выражения закона? Если признавать существенность таких характеристик закона, как устойчивость и обобщенность, тогда естественно попытаться обнаружить соответствие свойств распределения выделенным здесь признакам закона.
Надо отметить, что устойчивость на уровне распределения обнаруживается, когда устанавливаются строго фиксированные значения вероятностей, сопоставляемых с выделенными по какому-либо признаку группировками случайной величины. Метрическое задание значений вероятностей позволяет в таком случае характеризовать любое вероятностное распределение как выражение устойчивого количественного отношения между определенными параметрами множества случайных явлений. Такие формы связи широко выделяются с помощью аппарата теории вероятностей в рамках статистической физики (классической и квантовой), в социологии, демографии, генетике и др. В то же время, «распределение» есть способ группировки вероятностей, значения которых составляют некоторую замкнутость и целостность, поскольку их общая сумма строго приравнивается к единице.
Обратимся теперь к обобщающей функции теоретико-вероятностной модели распределения. Таковая имеет непосредственную связь с выражением устойчивости в массовом случайном явлении, поскольку общее имеет один из своих моментов: одинаковость, повторяемость, которые в известном смысле могут служить синонимами устойчивости. В этом плане устойчивость количественных отношений, фиксируемая численными значениями вероятностей, может рассматриваться и как обобщающая характеристика для вариаций случайных признаков соответствующей группировки или подмножества. Дело здесь заключается в том, что посредством вероятностей случайное событие получает свое определение как отнесенное к тому или иному подмножеству из некоторого множества возможных. Обобщенность же выражения случайного события состоит тогда в том, что оно становится элементом, так называемой случайной величины, возможные значения которой определяют собой тип или вид событий из некоторого их множества. Например, случайным событием можно считать выпадение или невыпадение какой-либо грани игральной кости. Переход к вероятностям дает здесь возможность иметь дело не просто с множеством или полем случайных событий, но с их упорядоченностью в рамках случайной величины, именно с классами ее возможных значений, которым становится в соответствие та или иная вероятность.
Вопрос о характере обобщения, осуществляемого в рамках теоретико-вероятностной модели распределения, остается весьма трудным, поскольку данная форма представляет собой особый вид абстракций, связанный с отвлечением от общей необходимости, присущей отдельным статистическим единицам. Эта особенность статистического подхода позволяет иметь дело с чрезвычайно широкой сферой его приложения. Так что объект его исследования может быть выделен из различных целостностей и разнообразной среды, и, в принципе, объекты статистической совокупности могут принадлежать различным в качественном отношении уровням и областям действительности.
Вместе с тем, чтобы результат статистического исследования имел ценность не простой классификации, производимой по произволу исследователя, но давать действительно обобщенный вывод, применение статистической формы должно иметь своей предпосылкой представление о некоторой объективно общей основе данных массовых явлений. Мне представляется существенным, что исходной точкой статистического исследования всегда выступает признание единства объектов совокупности по некоторому качественному признаку. И это обстоятельство давно отмечается во всех руководствах по статистическому анализу [40]. Понятно, что выбор такого признака требует применения иных, нестатистических средств анализа - с целью нахождения общей основы статистической совокупности (ею может быть структура объекта, общие условия, влияние природы некоторого объемлющего целого, например, типа общественной формации и т.д.).
Следовательно, произвольная совокупность явления или факторов, выбранная, скажем, лишь по признаку пространственной смежности, не может служить основанием для применения статистических методов исследования. Одновременно можно утверждать, что чисто формальное объединение случайных событий, опосредованное их принадлежностью к видам значений случайной величины, имеет тот глубокий смысл, что основывается на учете признаков или параметров более абстрактного и фундаментального уровня. Часто использовавшийся в науке пример с игральной костью демонстрировал такое обращение к обобщенным параметрам, на базе которых складывается единство случайных событий, - к симметрии в строении кубика.
Исследование истории науки показывает одну важную особенность теоретико-вероятностной модели обобщения. Она проявляется в том, обобщение достигается опосредованным путем, поскольку переход от признаков элементов к признакам совокупности предполагает использование структурных характеристик целого, задаваемых вероятностным распределением. Точка зрения целостности, устойчивой общности массового явления выступает в статистическом исследовании исходным пунктом и предпосылкой. Собственно случайные события получают свое определение не в единичных, поэлементных характеристиках, но напротив, как представители некоторых подмножеств или классов. Тем самым, следует признать, что существенное содержание статистического подхода нельзя ограничивать категориями единичного и случайного. Более правильным будет утверждение, что оба названных момента выступают в статистической зависимости в качестве подчиненных, поскольку на передний план выдвигается момент целостности определенного множества случайных явлений.
Со своей стороны добавлю, что признание случайности в отдельных явлениях присуще в известном смысле и нестатистическому исследованию. Речь идет о том подходе, когда ограничиваются чисто поэлементным рассмотрением, когда каждое явление из данной совокупности выступает единичным объектом анализа.
В противовес статистическому подходу здесь отыскивают устойчиво общее, которое имеет значение для всякого отдельного элемента, и лишь на этой основе утверждается устойчивость и самого множества. Очевидно, что в таком случае исходят из представления об однопорядковости параметров, свойств или характеристик отдельных элементов и всей совокупности.
В то же время, сами статистики давно осознали, что в статистическом исследовании заранее принимается во внимание подвижность, вариативность собственных признаков каждого объекта совокупности. Так что поэлементный переход от одного к другому оказывается неосуществимым. В силу этого статистическая закономерность, описывая устойчивость на уровне целостности, не предписывает распределения общего признака среди всех элементов множества. Например, для случая с правильной игральной костью описание ее поведения посредством задания вероятностей выпадения каждой грани не означает, что эмпирическое испытание обязательно даст выпадение всех граней и что мощность подмножеств, соответствующих каждому признаку, будет совпадать с теоретически предвычислимой.
Эта особенность статистической закономерности демонстрирует, как справедливо отмечал Ю.В.Сачков, такой способ обобщения, когда исходные и обобщенные параметры являются разнопорядковыми, относятся к различным уровням кодирования информации об объекте.
Ю.В.Сачков показал, что вероятностно-статистическое описание связано с выделением двух классов параметров сложного объекта, относящихся к различным уровням его организации. «Характеристики первого, исходного уровня, - те, которые постоянно и независимо изменяют свои значения при переходе от одного элемента к другому в исследуемом массовом явлении и соответственно каждое из значений которого рассматривается как случайное событие» [41].
Иначе говоря, поставленная в рамках детерминизма проблема неоднозначности получает свое истолкование в концепции уровней кодирования. Существенным здесь является тот факт, что признание неоднозначности зависимостей (взаимообусловленности) элементов некоторой совокупности имеет своей оборотной стороной признание их автономности. В такой ситуации зависимость элементов приобретает дополнительные характеристики, которых не знала классическая наука и которые выражаться понятиями интенсивности, тесноты, уровней, функциональности этой зависимости и т.д.
Полезно отметить, что указанная выше особенность вероятностно-статистического обобщения представляет собой новое научное средство выражения гибкости объективного мира. Причем, основное идейное содержание данного способа обобщения совпало с кругом идей формирующегося в ту же эпоху системного подхода, который был ориентирован на разработку средств выражения структурно-функциональной динамики и сложности материальных систем.
Наука и практика, начиная с середины XX столетия, столкнулись с ситуацией, которая получила свою оценку в терминах «сложность» и «неопределенность». В целом ряде научных областей было признано, что сложность не сводится к учету множественности составных элементов материального объекта. Пристальное внимание привлек еще один аспект сложности. Он выявился в разнообразии взаимодействий данного объекта как целого со своим окружением. И эти взаимодействия несут на себе печать неопределенности, поскольку всегда имеют открытый характер. Для теоретического описания подобной ситуации стали привлекаться такие концептуальные формы, которые, сохраняя рационализм, давая вполне определенную картину явлений действительности, могли бы учитывать ее гибкую и неопределенностную природу.
Теперь в центр внимания науки передвинулись вопросы, касающиеся изучения целостностей, демонстрирующих гибкость и неопределенность связей и взаимодействий с окружающей средой. И с этого момента во весь рост встала задача нахождения способов выражения структуры сложных целостностей. Статистический тип закона благодаря использованию языка вероятностных распределений послужил как раз моделью такой структуры.
Здесь я говорю об идейном родстве вероятностно-статистического и системного подходов. Но оно нашло свое проявление также в реальной истории науки. На протяжении многих десятилетий пути их формирования проходили в тесной зависимости друг от друга.
Наглядным подтверждением тому является становление молекулярно-кинетической теории теплоты, в рамках которой природа термодинамических систем получила статистическое истолкование. Одновременно развитие физической теории в этом направлении привело к переформулированию ряда однозначных (динамических) законов посредством терминов вероятности (например, больцмановское статистическое истолкование закона энтропии). Смысл подобной переформулировки состоит в том, что некоторые интегральные характеристики термодинамических систем (температура, теплоемкость, энтропия и т.д.) оказались выводимыми из характеристик более глубокого уровня посредством статистического приема обобщения. Наиболее развитый аппарат такого вывода или перехода был предложен теорией так называемых «статистических ансамблей» Гиббса.
Современные исследования в области теории информационных систем также показали важность применения статистики для раскрытия природы информации. Например, Н.Винер писал: «...для господина Бигелоу и для меня уже стало очевидным, что техника управления и техника связи неотделимы друг от друга и что они концентрируются не вокруг понятий электротехники, а вокруг более фундаментального понятия сообщения... Сообщение представляет собой дискретную или непрерывную последовательность измеримых событий, распределенных во времени, т.е. в точности то, что статистики называют временным рядом» [42]. И несколько далее он продолжал: «Приняв определенную статистику для временного ряда, можно найти явное выражение для среднего квадрата ошибки предсказания при данном методе и на данное время вперед. А располагая таким выражением, мы можем свести задачу оптимального предсказания к нахождению определенного оператора, при котором становилась бы минимальной некоторая положительная величина, зависящая от этого оператора» [43]. Здесь существенным оказалось признание принципиального значения статистического характера сообщения для получения определенного предсказания или информации.
В своей кандидатской диссертации (1973 г) автор уже говорил о взаимозависимости и взаимовлиянии вероятностного и системного подходов. Теперь я вновь подчеркиваю наличие определенной тенденции в их взаимозависимости. Принимая во внимание характер идеализаций того или другого подходов, представляется правомерным рассматривать современный системный подход как развитие вероятностного. В самом деле, специфическая природа статистических закономерностей получает свое определение из особенностей так называемого массового случайного явления. Подобный способ определения используется во многих руководствах по теории вероятностей. Напомню, что в математике под массовым случайным явлением понимают особый класс массовых явлений, удовлетворяющий следующим условиям:
1. Число группировок случайных событий должно быть конечным.
2. Совокупность группировок образует так называемую полную группу событий.
3. Перечисленные в пункте 1 группировки случайных событий являются несовместимыми.
4. События, образующие полную группу, являются равновозможными
Данная математическая абстракция представляет собой довольно удачную модель, реальных массовых явлений, традиционно служивших объектом приложений вероятностно-статистических методов исследования (социальная статистика, атомно-молекулярные явления газовой динамики и др.). Она послужила исходным пунктом формирования первичных понятий, приспособленных для выражения статистических закономерностей.
Однако то основание, на базе которого складывались первые представления о статистических закономерностях, довольно быстро обнаружило свою ограниченность, оказавшись тесным для многих приложений. Предметом критики, прежде всего, стала идея равновозможности (или равновероятности). Основные моменты этой критики отмечены были выше при обсуждении классического подхода к определению понятия «вероятность», и здесь я не буду затрагивать их во всех подробностях.
В рамках обсуждаемого вопроса существенное значение имеет следующее: равновозможность (или равновероятность) каждого из полного набора случайных событий можно истолковать как их равноценность с некоторой вероятностной точки зрения. Иными словами, если a1, а2 ... представляют собой полную группу событий, то любое а можно рассматривать в качестве равноценного параметра, элемента или альтернативы данной совокупности. Однако значительное число задач, скажем, таких, которые связаны с предсказаниями на основе анализа временных рядов (сообщений) требуют отказа от идеи равноценности статистических параметров. Например, построение оператора для восстановления истинного сообщения из искаженного шумом прошлого сообщения включает в качестве основополагающей идею «наилучшего значения» одного или некоторой совокупности параметров, характеризующих с известной мерой ошибки истинное сообщение» [44]. Дело, таким образом, идет о поиске «подходящей интерпретации «наилучшего значения» какого-либо из этих статистических параметров или множеств статистических параметров» [45].
В науке возникла проблема выбора критерия такого значения. С ней оказалось связано решение более общей задачи -задачи оптимального предсказания, разработка общей теории оптимизации. В итоге можно констатировать, что более общая постановка задач вероятностно-статистического подхода вводит исследование в рамки системного подхода. Осознав это обстоятельство можно перейти к исследованию глубинных общеметодологических истоков формирования статистических методов познания.
4. Статистический подход и причинность
Можно ли истолковать статистический закон в качестве особой формы причинного закона, описывающего сложный способ перехода от причины к следствию?
Подобное истолкование делает своим исходным пунктом признание взаимосвязи причинного порождения и производства с качественно-количественными характеристиками. Речь идет в этом случае о признании различных видов и форм причинной связи, выделяемых по следующему признаку: одни из них не ведут к качественно новым результатам (пример - механическая причинность), другие же относятся к высшим формам движения материи и предполагают качественное различие между собственно причиной и ее действием. В последнем случае характер причинной связи чрезвычайно усложняется.
Сложная природа этой связи предполагает специальные средства или способы ее выражения. Известно, например, что в ряде разделов знания удается выразить причинную связь в виде функциональной зависимости, основные свойства которой как математического объекта задаются в рамках математического анализа. Именно к данному случаю приложим обычно термин «динамическая закономерность». Однако в нашей литературе справедливо подчеркивалось, что функциональная зависимость не может служить адекватной и единственной формой такого выражения, ибо она не является тождественной самой причинности [46]. Будучи специальным математическим объектом, она не несет сама по себе конкретного знания о причинности в том или ином рассматриваемом случае изменения материальной системы. Признание же функциональной зависимости в качестве известной идеализации приводит к мысли, что невозможность выразить причинную связь в форме такой зависимости не может еще свидетельствовать об отсутствии причинности.
Особенность идеализации, скрытой за данной формой зависимости, состоит в том, что причинная связь ограничивается со стороны требования непрерывности ее переноса. Это и служит основанием для применения дифференциальных уравнений в области математического выражения динамических законов, поскольку решение дифференциальных уравнений предполагает наличие непрерывной функции у=ф(х), определенной в некотором интервале (а,в). Соответственно, признание лишь данной формы выражения причинности и закономерности означает введение представления о последний только как о неизбежности, ибо принципиально результат, действие запрограммированы в системе дифференциальных уравнений.
С содержательной, качественной стороны сложные случаи причинения характеризуются отсутствием простой дедуктивной выводимости следствия из причины. В этой ситуации налицо разрыв постепенности, некоторая иррациональность (см. Ю. В. Сачков. «Введение в вероятностный мир», с.167). Она связана с порождением нового, с возникновением нового качества, новых возможностей и т.д.
Вместе с тем, важным признаком понятия «статистическая закономерность» является известная неоднозначность предсказания поведения системы. На этом основании строится дедукция, приводящая к утверждению, что за статистической закономерностью кроится иная, нежели за динамической закономерностью, форма причинной связи. Вероятностная природа статистических закономерностей истолковывается в данном случае как особая черта причинной связи, получающая свое выражение посредством понятия «возможность». Т.е. принимают во внимание следующее: при заданной причине следствие имеет ряд возможностей реализации. Вероятность тогда характеризует не что иное, как множественность путей реализации следствия.
При ближайшем рассмотрении выявляется, однако, что подобное истолкование не включает вероятность в структуру отдельной изолированной цепи причинения. Здесь вероятность служит качественным выражением неопределенности некоторой общей ситуации, в которой фиксируемому воздействию ставится в соответствие разброс или набор результатов. Известная упорядоченность этого набора результатов позволяет ввести количественную меру вероятности, которая способна выражать степень той или иной возможности реализации следствия. Причем, надо учитывать, что введение степени такой возможности осуществимо на некотором обобщенном уровне, связанном с отказом от рассмотрения конкретных цепей причинения во всех их деталях и подробностях. В определенном смысле слова статистическое выражение изменений материальной системы делает неразличимым отдельные изолированные цепи причинности.
Если исходить из того, что в основе динамической закономерности лежит причинная связь простого типа (изолированная причинная цепь, имеющая непрерывный характер), тогда применимость динамической закономерности к сложным случаям изменений оказывается возможной при допущении суммативности действия причинных рядов. Математическое описание такого изменения реализуется с помощью системы дифференциальных уравнений. При этом предполагается однозначность перехода от одного распределения микросостояний к другому, так что все микросостояния, характеризующие макросостояния системы, становятся различимыми как в перспективном плане изменений системы, так и в ретроспективном.
Статистический подход, применяемый для описания связи состояния системы, зиждется на принципиально иной основе, в чем легко убедиться, обратившись к постановке задач статистической физики. Он опирается на ряд важных допущений, как то: выполнимость эргодической гипотезы, конечность времени релаксации и монотонность возрастания термодинамической вероятности (осуществимость второго начала термодинамики). Принятие этих условий делает излишним прослеживание всех распределений микросостояний статистической системы. Добавлю, что с позиций термодинамического равновесия (максимального значения энтропии) существенное значение приобретает лишь некоторое общее для каждого из этих распределений отношение к равновесному состоянию, определяемое вероятностной мерой. Но тогда данный подход можно рассматривать как способ обобщенного выражения изменений системы.
При этом обращение к статистическим закономерностям является реализацией идеи упрощения в ее специфически системном смысле, когда на первый план выдвигается структур-но-функциональный аспект сложности. Специфика здесь в том, что в ходе статистического исследования отказываются от рассмотрения уровня элементарных причинных рядов, характеризующихся непрерывной цепью звеньев переноса материи и движения, и сосредотачивают внимание не на процессивной стороне причинения, а на результативной.
Статистический подход есть особый способ схватывания дискретных результатов процесса, о чем свидетельствует приложимость его к событиям, реально разделенным во времени и в пространстве, т.е. к тем, для которых действительно налицо разрыв цепи причинения. Причем, язык статистического описания позволяет уловить отношение результатов микропроцессов в рамках некоторой общей обусловленности, что делает оправданной его Характеристику как выражение особой детерминации интегрального типа.
В каком же отношении находится этот тип детерминации к причинности? В философско-методологической литературе по данному вопросу нет единства мнений. Ряд авторов склонялись к признанию непосредственно причинного содержания статистических закономерностей (Баженов Л.Б., Готт B.C. и др.). Для обоснования такой позиции привлекалось представление о сложном характере реального причинения, содержащего массу различных оттенков, включая и снятие противоречия между определенностью и неопределенностью. Высказывалось также утверждение о важности учета в категории причинности диалектики необходимости и случайности [47].
Противоположная точка зрения отрицала причинный смысл статистических закономерностей. Почвой для такого отрицания служил, например, тезис об ориентированности последних на описание случайностей и в этом смысле об их противоположности необходимости. Подобная мысль ясно выражалась, скажем, Н.А.Князевым, утверждавшим одновременно, что статистическая закономерность не является одним из видов причинной связи [48].
Наличие рада подходов, подчас исключающих друг друга, наметившихся в трактовке разбираемой проблемы, явилось признаком ее остро дискуссионного характера. Дискуссия не дала каких-то окончательных выводов. Вместе с тем, как я полагаю, в отношении достаточно определившихся крайних позиций можно высказать некоторые принципиальные соображения.
Основная слабость подхода, отрицающего причинный характер статистических закономерностей на базе представлений о безусловно необходимой и однозначной причинности, состоит в односторонней трактовке природы вероятности и соответственно, статистической неопределенности. Вряд ли правильно без тщательного анализа связывать вероятность лишь со случайностью и неопределенностью. Уже тот факт, что математическое понятие вероятности приобретает смысл в рамках некоторого распределения, свидетельствует в пользу момента определенности, органически входящего в содержание вероятности. В силу этого содержание статистических закономерностей не может быть истолковано только на базе категорий случайности и неопределенности. В свою очередь, данное обстоятельство открывает возможности для более тонкой характеристики соотношения статистических закономерностей и причинности.
Другой подход, отождествляющий причинность и статистическую закономерность, опирается на тезис об ослабленной определенности причинно-следственной связи. Оправданием данной позиции могло бы служить обоснование вероятностного характера причинности. На мой взгляд, и об этом уже шла речь выше, в настоящее время отсутствуют достаточно убедительные аргументы в пользу вероятностной причинности.
Здесь можно добавить, что попытки включить момент неопределенности в содержание причинной связи характеризуется обычно стремлением учесть процессивный момент реального причинения. На данное обстоятельство в свое время указывал, например, Б.С.Украинцев [49]. Он, по существу, утверждал, что строгая определенность требует некоторой абсолютной системы отсчета. Если под системой отсчета понимать начальное состояние причинного фактора и сопутствующих условий, то эти состояния не могут еще выступать в роли собственно причины. Необходимым признаком последней является момент действования, перехода причины в следствие. А подобный переход, как подчеркивал Б.С.Украинцев, не может иметь точных количественных критериев. Однако он утверждал наличие вполне определенных качественных рамок такой подвижности, выявляющих себя в тенденции или некоторой нормы в массе отклоняющихся результатов.
Необходимо между тем отметить, что процессуальный характер причинения, а вместе с тем сложное переплетение и переходы причинности и других видов связей и зависимостей, нельзя абсолютизировать. Диалектическое истолкование причинности обязывает встать также на точку зрения опосредования, результативности причинной связи. На это, как известно, указывал В.И.Ленин [50]. Такая позиция ориентирует на признание интегрального характера выражения причинной определенности.
Возвращаясь к вопросу о природе статистической закономерности, отмечу, что статистическое описание как форма выражения такой закономерности, будучи ориентированной на воспроизведение результативного момента, не порывает полностью с собственно причинным описанием в его традиционной форме. В известном смысле, первое есть абстракция от абстракции, если иметь в виду, что обращение к статистическим закономерностям связано с отказом от учета процессуального момента непосредственным образом. Однако следует подчеркнуть, что косвенным образом данный момент все же присутствует, когда используют статистическую форму описания. Дело здесь в ее способности выражать неопределенность, выступающую существенной стороной любого реального процесса изменения.
Итак, грань между вероятностно-статистическим и причинным описанием не является жесткой и непроходимой. Проведение идеи определенного совпадения причинного и статистического способов описания имеет особый смысл, в связи с тем, что в литературе иногда проводится тезис о чисто функциональной природе статистических закономерностей. При этом имеется в виду отвлечение статистического исследования от непосредственного выявления причин изменения совокупностей и ориентированность его на фиксацию лишь отношений между состояниями объектов совокупностей.
Такое истолкование характера статистического описания выражалось следующим тезисом: «Статистический закон представляет собой распределение детерминации по группам совокупности в соответствии с числовыми характеристиками состояния отдельных вещей» [51]. Одновременно подчеркивалось, что смысл статистического закона состоит в раскрытии связи отдельного и совокупного, причем эта связь устанавливается на уровне отношений между количественными значениями параметров некоторой выборки и всей совокупности [52].
Между тем, если полностью игнорировать причинное содержание статистических законов, тогда чрезвычайно затруднительным оказывается отмежевание от тезиса об их чисто эмпирической природе. Понимая под статистическим законом количественное отношение между классами наблюдаемых значений параметров совокупности объекты, не трудно усмотреть в них простые классификации, описывающие, например, сосуществующие классы. Их существенное отличие от динамических законов проводится тогда по линии индивидуального (отдельного) и коллективного (многого). Подобное основание для различения между двумя типами законов выдвинул еще М.Планк [53]. Не вдаваясь в специальное обсуждение вопроса о правомерности использования такого основания, замечу лишь, что абсолютизация количественного критерия различения статистических и динамических законов приводит к трудности выделения собственной сферы действия первых по объективному признаку. Дело заключается в том, что в силу дискретности материальных образований любой индивидуальный объект может быть представлен как некоторая совокупность (как многое) и при известных дополнительных условиях исследоваться статистически.
Кроме того, динамическая закономерность, если ее понимать как тенденцию, также имеет сферой своего действия многое. И это говорит о необходимости усиления количественного критерия показателями иного рода. Данное обстоятельство уже отмечалось в литературе [54].
По-видимому, опора на идею классов в статистических законах имеет иной смысл, нежели чисто количественное упорядочивание совокупности объектов. Достаточно очевидной является большая информационная емкость статистической формы описания поведения некоторой материальной системы в сравнении с соответствующей динамической формой. С гносеологической точки зрения именно в этом плане следует истолковывать, например, переход к статистической форме в теории теплоты. В ее рамках эмпирически наблюдаемые тепловые параметры получили объяснение как возникающие на более глубоком уровне беспорядочного в известном смысле молекулярного движения. Тем самым была показана субстанциальная природа тепловых явлений, трактуемых в классической теории в феноменальном плане.
Приведенный здесь факт свидетельствует также о том, что статистические законы могут служить средством теоретического овладения миром, поскольку они используются для построения гипотетических конструкции и вывода из них эмпирически проверяемых следствий. Так, например, обращение к классической статистике Максвелла-Больцмана позволяет предвычислить универсальную газовую постоянную в уравнении Менделеева-Клапейрона, теплоемкости газов.
Вместе с тем, мысль о функциональной природе статистических законов имеет определенные основания. Дело в том, что обращение к статистическим зависимостям не способно непосредственно выразить взаимодействие причинного фактора и его результата. Эти зависимости не включают в свое содержание конкретные вещи или свойства как взаимодействующие компоненты, но берут во внимание совокупность отношений, оцениваемых метрическим значением вероятности. Можно согласиться здесь с высказанным в свое время мнением А.С.Кравца, что лишь в исключительных случаях вероятностным функциям (как формальным выражениям статистического закона) может быть придан непосредственно субстанциальный смысл. Например, при умножении вероятностных функций на некоторые нормировочные множители они получают смысл потока энергии, интенсивности действия и т.д. [55].
Однако в свете высказанных выше соображений мне не представляется убедительным утверждение этого автора, что вероятностная зависимость в большинстве случаев имеет чисто функциональную природу. В естественнонаучной области отношение причинного и статистического описания друг к другу является более сложным, чем простое взаимоисключение либо полное совпадение. Скорее всего, следует вести речь о косвенном выражении с помощью статистических законов сложного причинения. Здесь как будто налицо тот случай, когда абстрагирование, отвлечение от ряда характеристик причинной связи является отступлением, чтобы вернее попасть, полнее охватить соответствующий аспект действительности.
Иными словами, соглашаясь с А.С.Кравцом в том, что в вероятностном законе учитываются не непосредственно причинные отношения между явлениями (событиями), но структурные, следует подчеркнуть, что структурно-функциональный подход, осуществляемый в рамках статистического описания, дает известное совпадение с причинным подходом. Факт такого относительного совпадения обнаруживается хотя бы во взаимозависимости этих двух форм описания, на что указывал в своей книге А.С.Кравец.
Правда, А.С.Кравец не ставил вопроса о степени эквивалентности данных форм описания и границах их взаимозависимости. Более того, он по существу склонялся к точке зрения дополнительности причинного и вероятностного описания. При этом имелось в виду, что находясь в рамках одного, мы вынуждены отойти от другого. Задавая, скажем, вопрос о причине отдельного явления (события), надо перестать мыслить в вероятностных категориях, поскольку в каких-то других рамках можно указать строго однозначную материальную связь, ведущую именно к этому отдельному событию [56].
Но, если принимать идею дополнительности в такой форме, то чрезвычайно затруднительно найти какие-то рациональные основания отмеченной выше взаимозаменяемости причинного и вероятностного описаний. Не трудно заметить также, что А.С.Кравец противопоставлял вероятностное описание причинному описанию индивидуального события, как структурное (т.е. имеющее отношение ко всей системе). Он исходил по существу из предположения о возможности выделения индивидуальных причинных рядов. Однако для сложного случая причинения как раз такое выделение и становится если не возможным, то,- по крайней мере, весьма трудным делом. Считаю, что противопоставлять индивидуальную причинную цепь структуре массового явления - это значит вырывать индивидуальное событие из целостной системы взаимоопределяющих факторов и включать его в другую жестко детерминированную систему. Оставаясь же в рамках статистической системы, необходимо признать, что вероятностное описание касается индивидуальных событий, а структуру вероятностных отношений следует рассматривать в ряду детерминирующих факторов для этого события.
5. Статистика: необходимость и случайность
Отмеченный выше момент относительного, частичного совпадения причинного и вероятностно-статистического описания свидетельствует, очевидно, о том, что на базе категории причинности нельзя дать исчерпывающего раскрытия природы статистических закономерностей. Косвенным подтверждением тому могут служить многочисленные попытки истолкования их содержания посредством других категорий. Чаще всего эти попытки связаны с обращением к категориям «необходимость» и «случайность». Такие попытки в известное время представлялись вполне естественными. Существовала определенная традиция соотнесения категорий «закон» и «необходимость».
Свою главную задачу в исследовании природы статистических закономерностей на базе данных категорий значительная часть авторов усматривала в решении вопроса о правомерности приписывания закону двух атрибутов одновременно: необходимости и случайности. Дело здесь в том, что классическая наука демонстрировала лишь одну форму закономерности, которая не знала исключений и выражала строгую определенность, истолковываемую как необходимость. Причем, строгий характер этой определенности не ставился под сомнение даже при учете несовпадения эмпирически наблюдаемых результатов с теоретически вычисляемыми. Такое расхождение объяснялось неточностью измерений, которая в принципе считалась устранимой.
Иная картина наблюдается в отношении статистических законов. В применении к физическим явлениям, скажем, закон первого типа звучит так: в солнечной системе орбита Земля является строго определенной (пусть даже в некоторых рамках точности), так что нельзя представить себе движение Земли по любому произвольному направлению.
Статистический же закон утверждает нечто другое. Например, в термодинамике говорят: теплое тело нагревает холодное тело, потому что слишком невероятно, чтобы холодное тело охлаждало теплое. В иной формулировке это звучит так: наиболее вероятен переход тепла от тела с высшей температурой к телу с низшей температурой. Приводя этот пример, А.Эддингтон справедливо добавлял, что обратный случай, хотя не является полностью невозможным, но он невероятен [57].
В свою очередь, невероятность обнаруживает себя достаточно строго в тех случаях, когда имеют дело с большим числом элементов. Данное обстоятельство служит часто основанием для утверждения, что статистический закон, рассматриваемый в плане необходимости, характеризует не уровень отдельных элементов, а уровень массовости. Что касается случайности, то ее истолковывают тогда как характеристику отдельного элемента.
Подобная трактовка природы статистических законов получила довольно широкое распространение. Однако резкое разделение уровней так называемой случайности и необходимости приводит к ряду трудностей. В первую очередь возникает вопрос о механизме складывания необходимости, «фундаментом» которой является «чистая» случайность. Отвечая на него, говорят о нейтрализации случайностей, их взаимном погашении и т.п. Но такой ответ неявно предполагает взаимодействия и взаимовлияние между объектами совокупности, между тем как уже самый смысл случайности состоит здесь в признании независимости между микрообъектами. Об этом явно говорил, например, Ю.В.Сачков. Он писал: «...статистические совокупности не есть, так сказать, целостные системы, где состояние одних частей системы существенным образом влияет на состояние ее других частей, где положение отдельных частей определяет структуру целого, наподобие того, как атомы, входящие в состав некоторой молекулы, определяют строение и свойства молекулы» [58].
Примерно также высказывался А.С.Кравец, когда указывал, что подчеркивание массового характера статистических закономерностей фиксирует лишь их внешнюю сторону, поскольку не отражает специфику явлений, подчиняющихся этим законам. Остается неясным, скажем, почему в одном случае сквозь массу явлений просвечивает закон жесткой детерминации, а в другом - закон статистической детерминации [59].
Способ истолкования статистической неоднозначности, использующий идею двух различных уровней - необходимости и случайности - имеет кроме того тот недостаток, что по существу не порывает с ориентацией, идущей от классической механики: закон должен быть «очищен» от случайности и содержать лишь необходимость. Однако собственное содержание статистических законов вряд ли можно вписать в рамки такого истолкования, поскольку им свойственна принципиально вероятностная природа. Если же настаивать на том, что случайность, в конечном счете, должна быть элиминирована из содержания закона, тогда возникают сомнения относительно полноценности вероятностных методов и статистических закономерностей (Сачков Ю. В.). Соответственно, при подобной трактовке возникают трудности доказательства объективного содержания статистических теорий и их самостоятельной значимости. Такой характер обоснования статистических законов и свойственной им неоднозначности трудно согласовать с широким внедрением вероятностно-статистических методов в естественнонаучные теории, если исходить из признания объективного содержания и значимости последних.
Я полагаю, что все это заставляет исходить из более широкого толкования необходимости и случайности, именно из учета их диалектической природы и, тем самым, из их взаимопроникновения и взаимопереходов.
Специфическое переплетение необходимости и случайности находит свое отражение в понятии «вероятность». В самом деле, описание массовых случайных явлений посредством аппарата теории вероятностей позволяет приписывать определенные значения вероятностей, как отдельным элементам всего множества случайных событий, так и различным его подклассам. Значение же вероятности выступает как важнейшая характеристика случайной величины, входя составным компонентом в распределение этой величины. Следовательно, установление вероятности (даже и единичного явления) означает включение его некоторым образом в класс необходимых связей, но не на уровне его конкретных (скажем, физико-химических) свойств, а на уровне вероятностей.
Здесь надо иметь в виду, что элементы статистической совокупности, находят свое выражение в количественных отношениях. Статистическая же закономерность выявляет устойчивый, инвариантный аспект этих отношений. Своеобразие данного инварианта состоит в том, что его нельзя непосредственно приложить к элементам, т.е. он не дает какого-либо правила перехода от одного объекта статистической совокупности к другому.
Налицо, таким образом, обобщенный, интегральный характер статистической необходимости, в рамках которой случайность утрачивает специфическую черту изолированности и самостоятельности, но выступает как лабильный момент упорядоченной связи, обусловливания двух уровней - массовости и отдельных элементов. Иными словами, обращение к вероятностям позволяет отразить своеобразным способом некоторую абстрактно-общую природу элементов, и данное обстоятельство свидетельствует в пользу наличия в такой связи момента необходимости.
Вместе с тем, в силу самого определения вероятности, с данным понятием всегда связан момент случайности, иррегулярности, так что применимость вероятности к уровню массовости свидетельствует о соотносимости присущих ему характеристик со случайностью. Более того, даже значение вероятности, близкое к единице или равное единице, не выводит данный класс явлений за рамки влияния случайности, что и выражается, например, в широко известном физическом принципе флуктуации (используемом в статистической физике).
В этой связи уместно остановиться на утверждении, звучащем: строго говоря, всякая закономерность является статистической. Иная формулировка этой же мысли такова: всякая динамическая закономерность является статистической с вероятностью осуществления, близкой к единице. Вероятностный смысл динамической закономерности, равно как и статистической, обосновывается тем самым введением представления о степени ее реализуемости. Последняя ограничивается со стороны неисчерпаемости вглубь любого материального образования, а также со стороны незамкнутости любой материальной системы от внешних воздействий. В свете этих ограничений представление о динамических законах приходится рассматривать как отвлечение от реальных моментов сложности, как чрезмерную идеализацию, упрощающую действительную картину поведения системы. Иными словами, сложность, свойственная любой связи или обусловливанию, при описании с помощью динамических закономерностей просто игнорируется (и элиминируется таким грубым образом).
Именно, и только, в плане стремления выразить некоторым образом универсальный характер неопределенности следует, по моему мнению, понимать приписывание динамическим закономерностям значение вероятности близкое единице.
Однако в строгом смысле слова приведенное выше использование понятия и метрического значения вероятности содержит элементы вольности и его нельзя, как мне представляется, понимать буквально. Например, математическое понятие вероятности допускает в данном случае и сопряженное значение вероятности, равное нулю, для нереализуемости динамического закона. Дело здесь в том, что вероятность есть математическая характеристика распределения и вне такового она не имеет строгого математического смысла. Даже простейший случай, когда вероятность р=1, имеет смысл в связи с дополнительным значением вероятности противоположного события q=0. Причем, класс событий, сопутствующих этой вероятности, не может быть пустым.
В применении к вопросу о вероятностном характере динамических закономерностей это означает, что в некоторых однородных условиях, необходимых для реализации данного типа закона, можно иметь случай его нереализуемости. Но тогда, очевидно, подрывается самый смысл закономерности. Из сказанного следует, что необходим более осторожный и строгий подход к выработке средств, характеризующих неопределенность в рамках динамических закономерностей.
Не вдаваясь в обсуждение таких средств, замечу лишь, что формальный перенос соответствующих характеристик со статистических закономерностей на динамические оказывается в данном случае неприменимым. Вместе с тем, это обстоятельство может служить одним из свидетельств в пользу качественного своеобразия каждого из названных типов законов и их несводимости друг к другу.
Одновременно подчеркну, что не оправдывается и то представление, которое соотносит вероятность только со случайностью. И дело здесь не в том, что в ряде вероятностных концепций исключается возможность приписывания вероятности отдельному, случайному (в массе) событию. Известно, скажем, что вопрос о применимости понятия вероятности к отдельному событию получил особую значимость в свете становления идей и аппарата квантовой механики. Причем, большинство ученых считали, что теоретико-вероятностные методы используются для описания закономерностей поведения и свойств отдельных микрообъектов. Не вдаваясь в детали дискуссии по этому вопросу, скажу, что его решение связано обычно с признанием новых аспектов вероятности, выражаемых, например, в категориях «возможность» и «действительность».
Главный мотив таких поисков состоял в стремлении найти рациональный фундамент для объяснения индивидуальной случайности, лабильности, иррегулярности. Для той обстановки, которая сложилась в квантовой механике, такого рода разработки, по-видимому, вполне обоснованы. Однако я в сформулированном выше тезисе имею в виду нечто другое. Сам способ вероятностного описания позволяет устанавливать вероятностную меру отдельному событию, правда, при условии отнесения его к некоторому классу. Но посредством такого отнесения вероятность жестким образом связывается с этим случайным событием, что вряд ли можно объяснить исходя лишь из случайной природы вероятности.
В свете сказанного важно уточнить соотношение понятий необходимости и определенности, характеризующих существенные стороны закономерности. Такое уточнение имеет особый смысл для раскрытия форм детерминации, отвечающих задачам исследования сложных систем.
Известно, что давняя философская традиция связывает необходимость со строгой определенностью (Демокрит, Спиноза, Гольбах, Лаплас и т.д.). В этом плане своеобразно продолжал традицию Г.В.Плеханов. Он писал: «Случайное есть нечто относительное. Оно является лишь в точке пересечения необходимых процессов» [60].
Относительность случайности получила здесь смысл возможности перехода к строгой необходимости, если брать более широкую систему связей явления. С этих позиций определялся в последствие идеал науки как установка на преодоление и элиминацию случайности. Эта установка уже подвергалась основательной критике. Между тем, точка зрения на необходимость как строгую определенность имеет и сейчас своих сторонников. В рамках названной позиции необходимость - это такая характеристика действительных связей, отношений, которая раскрывает себя как неизбежность, обязательность именно данного события, результата, процесса и т.д. Случайность же, в отличие от необходимости, не имеет обязательного характера в силу того, что с ней связано нечто в данном отношении недетерминированное или частично детерминированное.
Мне представляется, что такая позиция заслуживает критики на основании следующих соображений. Прежде всего, если под детерминизмом понимают просто опосредование и зависимость одного от другого, тогда трудно оправдать исключение случайности из рамок детерминизм. Ибо, случайность представляет из себя один из видов связи и способна служить характеристикой изменения, опосредования и т.д.
В то же время выдвижение для различения случайности и детерминизма (соответственно - необходимости) признака определенности в его строгом значении проводит резкую грань между случайностью и необходимостью, что трудно согласовать с признанием диалектической природы необходимости и случайности.