оставаться теорией аналогической , то есть — лишенной практической значимости из-за отсутствия параметрического аппарата, который был бы способен связать различные уровни абстракции и сделать реалистичными описания этих связей. Подобная теория должна опираться на единичные инвариантные элементарные структуры и построенные на них более высокие — иерархические. Только в таком виде общая теория систем способна стать реальным инструментом исследования сложных систем (от техногенных до социальных).
Отсутствием на настоящее время такого комплексного подхода обусловлен рост числа различных направлений, «отпочковавшихся» от общей теории систем и приспособленных к решению некоторого числа специфических проблем в конкретных отраслях деятельности человека. Попыткам приведения общей теории систем в состояние, когда она действительно сможет стать интегрирующей научной дисциплиной, посвящено множество работ различных авторов. Характерной чертой всех этих работ является их ориентированность на привлечение к решению этой проблемы достижений термодинамики, кибернетики, теории самоорганизующихся систем и биологии (этот перечень остается достаточно стабильным — в остальном же авторы таких теорий не столь единодушны).
Изначально Л. фон Берталанфи определил систему как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой». Однако это определение позже неоднократно подвергалось корректировке.
Рассмотрим принципы, на которых строится общая теория систем:
1. Принцип системности: возникновение и существование любой системы обусловлено силами, действие которых обеспечивает возникновение и существование связей между ее элементами.
2. Принцип существования: всякая система, чтобы обеспечить свое
существование, должна уравновешивать в себе все воздействия на нее со стороны полной совокупности существующих систем.
3. Принцип эволюции: возникновение и существование всех систем
обусловлено эволюцией.
4. Принцип разнообразия: разнообразие объектов обусловлено историей их возникновения и развития.
Характерно, что все большее внимание по мере продвижения исследований в области теории систем уделяется проблеме структуры и структурной стабильности. Так, отечественный ученый-биолог и специалист в области общей теории систем А.А. Малиновский25 считает роль структуры определяющей для установления типа и характеристик системы в целом — в качестве аргумента он ссылается, в том числе, и на существование принципиального сходства структуры млекопитающих, обитающих в разных средах и отличающихся по массе.
Соответственно, отечественный ученый М.И. Штеренберг26 предлагает дополнить определение системы, данное Л. фон Берталанфи, указанием на необходимость сохранения системой структурной стабильности. В результате чего может быть сформулировано следующее определение: Система — есть сохраняющая в процессе эволюции свои структурные свойства совокупность элементов, проявляющая себя как единое целое. Функциональный же аспект не является показательным — он может быть обеспечен и без структурного сходства. В кибернетике «черный ящик» — это как раз и есть пример абстрактной системы, реализующую некоторую функцию27.
На более поздних этапах развития общей теории систем были предложены концепции кибернетических систем высших порядков (второго и третьего), включающих в себя в качестве компонента и самого наблюдателя-аналитика.
Как известно, там, где есть цель (даже примитивная), должно быть и управление. Соответственно, эти теории не могли не привлечь внимания специалистов по управлению. Эксперты-аналитики, чрезвычайно чувствительные к новшествам в научной сфере, в числе первых приступили к экспериментальной апробации методов системных исследований. При этом частнонаучные методы стали использоваться для обработки и анализа данных, получаемых теми средствами и на основе тех моделей обработки и интерпретации, которые были адаптированы к той предметной области, в которой осуществлялся первичный анализ, а процессы интеграции данных и синтеза аналитических выводов приобрели специфику, близкую к специфике системного подхода.
Как показала практика, не беспредельно углубляющийся процесс декомпозиции, а именно интегральный подход, ориентированный на выявление наиболее общих закономерностей функционирования сложных систем, позволил решить многие проблемы, возникающие при анализе функционирования сложных систем.
Аналитика начала постепенно создавать собственную методологию, опираясь на достижения естественных наук. Все больший вес в аналитических исследованиях стали приобретать частные и комплексные модели различного назначения. Эта методологическая установка аналитики, унаследованная от естественных наук, чрезвычайно важна по причинам уже упоминавшимся (масштабы последствий натурного эксперимента). Особо широкое распространение в аналитике получили исследования, проводимые на основе многомодельного метода, при использовании которого модели различной семантики, построенные на основе данных различного происхождения, объединялись в сложные иерархические структуры. Создание таких сложных моделей систем, состояние которых определялось действием множества факторов, потребовало развития методологии многомодельных исследований, создания методологического инструментария, позволяющего реализовать функции временной синхронизации моделей, управления их параметрами, оценивания адекватности моделей, учета действия случайных факторов и согласования входных и выходных данных.
Далее в книге будут приведены более детальные описания наиболее распространенных способов моделирования.
Отдельную проблему составили вопросы, связанные с оцениванием эффективности целенаправленного функционирования систем и прогнозированием потенциального эффекта от использования полученных в ходе моделирования результатов. Причем методы априорного установления ожидаемого эффекта от использования информации, полученной в ходе анализа, потребовали разработки целостной теории эффективности целенаправленно функционирующих систем. Наиболее последовательно и системно к ее разработке подошел в 1970—1980-е годы отечественный ученый Г.Б. Петухов, чьи работы в области теории эффективности целенаправленно функционирующих систем являются уникальными28 (разработанные им методы позволяют априори определить эффективность системы, относительно которой сформулирован некоторый набор гипотез вероятностного или статистического характера).
Заметим, что наиболее значимые методологические принципы аналитики были инициированы открытиями ученых, сталкивавшихся в ходе своей научной деятельности с проблемами анализа сложных систем, не достигших уровня развития, характеризующегося способностью к активному целеполаганию. Так было с общей теорией систем, обобщившей закономерности, выявленные в системах меньшей сложности и в качестве индуктивного шага распространившей эти закономерности на все типы сложных систем. Так случилось и с теорией самоорганизации сложных систем — в результате индуктивной процедуры была высказана гипотеза о существовании подобных явлений и в сложных системах любого происхождения. Так случилось и с кибернетикой, начавшей с проблем управления техногенными комплексами и распространившей свои подходы на общественные системы. В этом смысле традиция редукционизма в науке не прерывается, несмотря на пережитый наукой методологический кризис, вызванный именно склонностью к редукционизму.
Теория самоорганизации сложных систем, получившая наименование синергетика, рассматривает процессы самоорганизации, самоструктурирования, самосинхронизации, самоподстройки систем, происходящие под действием обмена со средой веществом, энергией или информацией. Основоположниками этой теории следует считать И.Р. Пригожина, Г. Хакена. Рассмотрим определение синергетики, данное в Большом энциклопедическом словаре29: «Синергетика (от греч. synergetikos совместный, согласованно действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологической, физико-химической и др.) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень ее упорядоченности, т. е. уменьшается энтропия (т. н. самоорганизация). Основа синергетики — термодинамика неравновесных процессов, теории случайных процессов, нелинейных колебаний и волн». Впервые феномены такого рода были обнаружены в ходе химических реакций в условиях, когда некие возмущающие воздействия препятствовали достижению равновесного состояния. В результате этого возникают колебательные процессы взаимного превращения веществ, рассматриваемые как частный случай пространственно-временной самоорганизации неравновесных систем.
Синергетика заняла сильные позиции в западной социологии, психологии, экономической науке, в медицине и многих других отраслях. Эта теория часто используется для доказательства рациональности принципов рыночной экономики, поскольку в демократической системе государственного устройства, где номинально отсутствует жесткая система управления, аналогия с термодинамической системой вполне уместна. Такая аналогия кажется уместной в силу того, что индивид в демократическом обществе может быть охарактеризован подобно пребывающим в некоторой среде молекулам газа с их физико-химическими свойствами. Сделано это может быть с тем лишь отличием, что в качестве аналогов массы, энергии и иных характеристик рассматриваются финансовый и интеллектуальный потенциал, его коммуникативные характеристики и иные свойства.
Рядом экспериментов справедливость подобного подхода была подтверждена для социальных сред, однако следует учитывать, что подобная схема функционирует при сохранении некоторого стационарного состояния системы и воздействий на нее. В условиях резких изменений интенсивности воздействий система вновь переходит в состояние хаоса, что едва ли можно считать удачным вариантом решения проблем управления в обществе. Но в стационарных условиях на стадии становления некоторой организационной структуры подобный подход вполне может быть применен (правда, при наличии некоторых стимулов к самоорганизации — аналогов тех самых слабых воздействий, которые препятствуют переходу системы в равновесное состояние). В медицине примеров торжества синергетических принципов масса
— подобные явления широко распространены там, где по каким-то причинам происходит угнетение тех или иных функций организма. В этих случаях у больного помимовольно, в результате функционирования тех уровней нервной системы, которые не подлежат сознательному регулированию, происходит компенсация дисбаланса, то есть — самоорганизация.
Однако, как уже было указано, процессы самоорганизации возникают лишь при наличии специфических условий. А это означает, что синергетика не может рассматриваться как универсальный подход к решению различных проблем. Должны существовать некие периоды стабильности параметров внешних воздействий, достаточные для установления состояния, близкого к равновесному. В противном случае — система может перейти в автоколебательный режим (рассмотрению условий возникновения которого вынуждена была уделить серьезное внимание кибернетика) — а это явления, предшествующие распаду системы.
Следует заметить, что идеи синергетики также неновы. Мы уже указывали на существование довольно интересного научного направления — теории циклов, основателем которого по праву считается Н.Д. Кондратьев (это не значит, что до него никто из экономистов не отмечал цикличности развития капиталистической экономики, но до него эти циклические процессы не рассматривались в качестве универсального принципа развития систем различного рода). Тогда эти исследования, противоречившие марксистскому взгляду на развитие общества, согласно которому в качестве движителя прогресса выступает классовая борьба, не получили официального признания, а ученый, получивший мировое признание, был расстрелян в 1938 году. До середины 1980-х последователи его учения не имели возможности для пропаганды своих идей. В конце 1980-х годов в советской науке начинают возрождаться идеи А.Л. Чижевского и Н.Д. Кондратьева. В Москве создается Международный Фонд Н.Д. Кондратьева. Фондом проводится большая организаторская и научно-исследовательскую работа в области экономических циклов. Приблизительно в это же время в Москве создается другая научная организация — Ассоциация «Прогнозы и циклы». В г. Санкт-Петербурге создается научная общественная организация «Циклы и управление». И вот, по прошествии нескольких десятилетий теория циклов получает развитие в виде общей теории циклов, разработанной Ю.Н. Соколовым. По существу его теория представляет собой своеобразный вариант синергетики, обогащенной идеями кибернетики и гомеостатики. В данной теории рассматривается весь процесс эволюции как некий колебательный процесс, аналогичный процессу, происходящему в гомеостате при компенсации воздействия среды. Большое влияние на развитие общей теории циклов оказали воззрения Чижевского, Вернадского, увязывавших человечество в единую систему вселенских масштабов, где все компоненты охвачены сложными связями и взаимообусловливают процессы протекающие в них. Многие положения, разрабатываемые в рамках общей теории циклов заслуживают серьезного внимания аналитиков, особенно в той части, которая рассматривает социальные и экономические процессы, а также реакции экосистем на нарушение экологического равновесия.
Формальный аппарат, разработанный в рамках теории циклов, оказывается достаточно удобным для моделирования поведения систем, в которых уместно рассматривать колебательные (циклические) процессы. Данное научное направление активно развивается НИИ «Циклы природы и общества»30, созданным Ю.Н. Соколовым при поддержке Северо-Кавказского Государственного технического университета. В 2001 году в издательстве СевКавГТУ вышла в свет монография «Циклы как основа мироздания», содержащая результаты фундаментальных исследований, сделанные на основе общей теории циклов; также существует возможность ознакомления с ее электронной версией с использованием глобальной телекоммуникационной сети Интернет на сайте http://www.nbs.stv.runnet.ru.
Анализ большинства попыток российских ученых выдвинуть новую оригинальную концепцию показывает, что наиболее пагубное влияние на судьбы этих учений оказывает не столько конкретные руководители или система государственного устройства, сколько стремление авторов этих теорий одним махом заместить все основополагающие принципы официальной науки. Вставая на этот путь, авторы не считают возможным установление даже временного компромисса: вступают в бой не столько с существующими теориями, сколько с мощной научной организацией, располагающей собственной и не менее хищной, чем в других отраслях, бюрократией. При этом создатель новой теории не ищет сходства позиций — он подчеркивает различия. Эта своеобразная форма научного мученичества встречается в нашей стране сплошь и рядом. Именно поэтому в России родилось и благополучно скончалось такое великое множество идей, какого, вероятно, нигде не сыщешь. Идей разных, но сходных в одном — им так и не удалось восторжествовать. Пытались ли такие ученые как Берталанфи, Винер, Пригожин или Хакен в одночасье спихнуть с научного Олимпа активно действующих авторитетов науки? — Нет, не пытались (по крайней мере, в тех формах, в которых это пытались делать наши научные мученики). Борьба была, но это была уважительная и бесстрастная борьба между равными. Попытка «срезать угол» в научной «гонке» почти всегда приводила к научной гибели «пилота» (если воспользоваться терминологией ныне популярной Формулы-1).
Таким образом, в результате развития естественных наук аналитика обогатилась целым рядом методологических принципов и инструментов исследования, включая и формальный аппарат, характерный для них. В число таких инструментов вошли:
- принципы декомпозиции и агрегирования;
- принцип многомодельности;
- аппарат теории множеств, графов и формальной логики и методы структурного и причинно-следственного анализа;
- аппарат дифференциального, интегрального и вариационного исчисления и методы математического анализа;
- аппарат матричного представления, векторного исчисления и методы векторного анализа;
- аппарат теории вероятностей и математической статистики и методы вероятностного и статистического анализа и иные.
Со времени доминирования физикалистских концепций сохранилось достаточно удобная система метафорических терминов, отражающих сущность понятий, ими обозначаемых. В число таких терминов могут быть включены «импульс», «скорость», «ускорение», «мощность», «энергия», а из более поздних заимствований — термины «спектр», «амплитуда», «фаза», «цепная реакция», «квант» и ряд других. Подобные метафоры существенно упрощают процесс синтеза концептуальных моделей и их последующую формализацию в интересах моделирования.
Кибернетика и системный анализ составляют некое гармоническое единство — настолько тесное, что сложно установить, где же пролегает линия раздела. Можно встретить утверждения о том, что кибернетика — это раздел теории систем, или о том, что теория систем — это раздел кибернетики. Однако предмет изучения этих наук различен: одна наука (кибернетика) исследует процессы управления, протекающие в различных системах, другая (системный анализ и теория систем) ориентировано в большей степени на методологические вопросы изучения и описания систем разного происхождения. Но поскольку речь идет именно о сложных системах, постольку имеет место взаимное обогащение этих наук методами и технологическими достижениями. Сходство это неслучайно, поскольку на их формирование оказал воздействие общий блок идей — философская концепция позитивизма и господствовавшая в нейрофизиологии и психологии в конце 1930-х годов концепция бихевиоризма. Оговоримся, что по мере развития этих наук исходные идеи претерпели достаточно серьезные трансформации. Таковы курьезы эволюции научного знания: идеи, на которых строилась исходная гипотеза, оказались несовершенны, но гипотеза в целом — полезной и правильной. Бревна нижних венцов заменили — и дом стоит, давая кров и тепло своим обитателям.
Обе эти научные дисциплины по праву могут считаться основными компонентами методологического ядра аналитики. Это вызвано тем, что обе научные дисциплины рассматривают объекты и системы, прежде всего, с точки зрения решения задач управления. А, как мы установили ранее, целью
информационно-аналитической работы является информационное обеспечение процессов управления. Следующий аргумент в пользу такого утверждения — это то, что эти науки предоставляют в распоряжение аналитика развитый формальный аппарат и комплекс отработанных и прошедших апробацию методик моделирования. Объединение же этих наук в рамках
методологического ядра аналитики обусловлено тем, что на этапе применения их для решения практических задач управления (анализа информации и синтеза управленческого воздействия) искусственное разделение их является нецелесообразным. Такое разграничение может быть признано обоснованным в качестве тактического шага на этапе создания новой научной школы, но на этапе их применения — излишне, поскольку методы этих наук вполне совместимы, дополняют и взаимно обогащают друг друга, и, что самое важное
— результаты их применения используются в едином цикле потребления информации.
Какие бы аргументы не предлагались в опровержение этой точки зрения, но отправной точкой в развитии кибернетики стала идея «черного ящика» — идея, согласно которой любой объект или система с точки зрения процессов управления предстает перед исследователем в качестве непознанного объекта (черного ящика с неизвестной начинкой), внутренне устройство которого не столь принципиально для достижения целей управления. Существенным же для управления состоянием этого ящика является то, каким образом реализуется управление им. Внимание кибернетики сосредоточено на том, каким образом построен контур управления объектом и каким образом объект реагирует на некоторые входные воздействия. То есть, представление объекта или системы в терминах вход-выход, что соответствует бихевиористскому подходу «стимул-реакция». Безусловно, важнейшим положением кибернетики является тезис о необходимости введения в контур управления объекта или системы регулирующей обратной связи, используемой для реализации автоматного (простейшего интеллектуального) поведения, однако кибернетикой рассматривается поведение автоматов как с замкнутым, так и с разомкнутым контурами управления.
Интересное влияние на общество оказало внедрение кибернетических подходов. С этого времени научная фантастика населяется роботами, сперва — наделенными интеллектом, позже — разумом, а далее — и эмоциями. Фантастика переходит к проблемам общефилософского, социального и этического плана. Утрачиваются ценнейшие традиции научной фантастики, заложенные Ж. Верном, Г. Уэллсом, И.А. Ефремовым, А.Р. Беляевым и другими авторами, сделавшими этот жанр столь популярным в начале — середине XX века. Эти традиции, связанные с познавательной функцией, быстро вытесняются из фантастики (техника в своих подробностях становится заумно сложной — да и какой в ней смысл, если автомат так же чувствует, мыслит и переживает, как человек) — фантастика соскальзывает к описаниям внешнего вида устройств, использует псевдо-термины и закономерно превращается в фэнтези. Где теперь встретишь вундеркинда-конструктора с портфелем, набитым проволочками и магнитами? Техника стала для них набором «черных ящиков».
Для системного анализа и иных системных дисциплин такой отправной точкой служит общая теория систем (ОТС) Л. фон Берталанфи. Существенно уточненная, оснащенная специфическим формальным аппаратом, допускающим сочетание различных способов описания сущностей и процессов реального мира, общая теория систем претерпела процесс, обратный первоначальному замыслу автора теории: если на первом этапе (этапе выдвижения идеи) ОТС выступала в качестве средства интеграции и обобщения знаний о системах различного происхождения, то позже в рамках теории систем выделились системотехника (с уклоном к изучению техногенных систем), системный анализ (характерный для систем с целеполаганием), исследование операций (сфера военного приложения теории систем, впоследствии получившая распространение и других отраслях) и иные научные направления, основанные на системной платформе.
Однако, если всмотреться в сущность подходов, предлагаемых кибернетикой и теорией систем, и абстрагироваться от ряда несущественных методологических отличий, то становится очевидным, что и системный анализ, и кибернетика при рассмотрении систем и объектов оперируют одними и теми же подходами. Для этих наук объекты и системы, суть — те же «черные ящики», характеризующиеся примерно одинаковым набором параметров, о содержимом которых на этапе анализа «забывают» вплоть до особых обстоятельств.
Основателем современной кибернетики по праву считается американский ученый Н. Винер, в период с 1938 по 1948 год интенсивно работавший над созданием новой теории. В 1948 году им была выпущена книга «Кибернетика», одновременно опубликованная в США и во Франции. Выход книги стал заметным событием в научной жизни: с этого момента во многих странах начинают формироваться научные школы, избравшие в качестве методологии своих исследований кибернетический подход. Активное участие в пропаганде и разработке идей кибернетики принял Дж. фон Нейман, при содействии которого в начале 1944 года было проведено совещание группы ведущих ученых США, работавших над проблемами создания вычислительной техники и систем автоматизированного управления. Позже, только в 1947 году, было впервые употреблено название новой науки «кибернетика», происходящее от греческого слова, соответствующего русским словам «рулевой, кормчий». Это название, поначалу казавшееся новым, позже вызвало споры — оказалось, что термин не нов и уже использовался для обозначения наук об управлении. Так, Платон использовал его в значении современного термина «навигация», а известный французский физик А. Ампер (тот самый, чьим именем названа единица измерения силы тока) — в значении «наука об управлении государством».
Несмотря на то, что в своих работах Винер неоднократно обращался к результатам исследований русского физиолога И.П. Павлова, еще в 1954 году в нашей стране для кибернетики использовалось следующее определение:
«Кибернетика — реакционная лженаука, возникшая в США после \1 второй мировой войны и получившая широкое распространение и в tL-/ других капиталистических странах; форма современного механицизма. Приверженцы кибернетики определяют ее как универсальную науку о связях и коммуникациях в технике, в живых существах и общественной жизни, о «всеобщей организации» и управлении всеми процессами в природе и обществе. .По существу своему кибернетика направлена против материалистической диалектики, современной научной физиологии, обоснованной И.П. Павловым, и марксистского, научного понимания законов общественной жизни. Эта механистическая метафизическая лженаука отлично уживается с идеализмом в философии, психологии, социологии. .Под прикрытием пропаганды кибернетики в странах империализма происходит привлечение ученых самых различных специальностей для разработки новых приемов массового истребления людей
— электронного, телемеханического, автоматического оружия, конструирование и производство которого превратилось в крупную отрасль
43
военной промышленности капиталистических стран» .
Однако уже в 1959 году (правда, спустя 11 лет после выхода книги
Н. Винера) в СССР был создан Научный совет по комплексной проблеме «Кибернетика» АН СССР — активно работавший до середины 90-х годов научно -организационный центр, осуществлявший координацию научноисследовательских работ в стране в области кибернетики и ее приложений. Совет поочередно возглавляли академики А.И. Берг (инициатор и первый руководитель Совета), Е.П. Велихов, О.М. Белоцерковский, А.П. Ершов. Совет осуществлял анализ состояния кибернетических исследований в СССР и за рубежом, определял содержание и основные направления научноисследовательских работ по кибернетике и содействовал их развитию, осуществлял контроль за ходом выполнения работ и разработку предложений по внедрению их результатов, организовывал процессы информационного обеспечения работ и координации международных научных связей. В состав Совета входили секции: математические проблемы кибернетики;
вычислительные системы; общие и математические вопросы теории информации; техническая кибернетика; кибернетика энергетических систем; системотехники строительства, бионика; биологическая и медицинская кибернетика; математическая теория эксперимента; философские проблемы кибернетики; применение кибернетики в психологии; экономическая кибернетика; семиотика; кибернетика и право и иные. В рамках работы секций проводились международные конференции, научные семинары, издавались сборники «Вопросы кибернетики», «Информационные материалы», «Проблемы кибернетики» и «Кибернетический сборник».
» Ç В 1961 году академик АН СССР А.И. Берг охарактеризовал ПОТ кибернетику следующим образом: «Кибернетика — это наука об | управлении сложными динамическими системами. Термин „сложность» здесь применяется как философская категория. Динамические системы на производстве, в природе и в человеческом обществе
— это системы, способные к развитию, к изменению своего состояния. Сложные динамические системы образуются множеством более простых или элементарных систем или элементов, взаимосвязанных и взаимодействующих. .Целью советской кибернетики является разработка и реализация научных методов управления сложными процессами для повышения эффективности человеческого труда»31. Изменения, произошедшие в общественной жизни с 1961 года по настоящее время не понизили актуальности приведенных слов.
В 1959 г. академик АН СССР А.Н. Колмогоров писал: «Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы «целесообразности» в машинах и философскому анализу изучаемого ею круга явлений»32.
С самого зарождения идеи кибернетики Н. Винер указывает на информационный характер процессов управления. Более того, уже в 1943 году в своих работах он вплотную подходит к теории информации, активно разрабатывавшейся в то время К. Шенноном, (интересно, что оба ученых находились под сильным влиянием идей Б. Рассела). Благодаря тесному сотрудничеству с ученым-медиком А. Розенблютом, исследования Винера носили комплексный характер (еще раз вспомним о влиянии естественных наук на развитие и становление аналитики). Совместно изучая особенности поведения больных с нарушением деятельности мозжечка или спинного мозга, они обнаружили подтверждение идеи о необходимости введения в контур управления объектами и системами обратной связи. Таким образом, кибернетика изначально связана с междисциплинарными проблемами, а идеи Винера нашли применение и в нейрофизиологии. Как следствие, естественным обобщением непознанного объекта типа «мозг» стала метафора «черного ящика», познание механизмов функционирования которого на тот момент было возможно лишь в результате наблюдения за его реакциями на конкретные раздражители.
Заметим, что кибернетика, как наука о функционировании систем управления, нашла массу приложений в самых различных отраслях деятельности человека. Однако первые прикладные результаты были получены в сфере управления техногенными объектами (например, в системах наведения вооружений, управления механизмами и приводами в авиации, автоматической подстройки частоты в радиоприемных устройствах и многих других системах, функционирующих в условиях изменяющейся обстановки).
Широкое применение в кибернетике получили математические методы, связанные с определением экстремумов функций, отражающих закономерности поведения физических объектов. Активно используются методы решения систем линейных и нелинейных уравнений, методы интегрального и дифференциального исчисления и многие другие. В сочетании с этими методами широко используется матричный аппарат. Большой интерес представляет кибернетическое направление, связанное с управлением термодинамическими системами — многие идеи, связанные со
стохастическими, вероятностными свойствами процессов управления, были почерпнуты Винером именно из этой отрасли, тогда стремительно завоевывавшей позиции в физической науке.
К числу важнейших понятий кибернетики следует отнести понятия «система (подсистема)» и «состояние».
Термину «система» в соответствие ставится некоторый материальный объект, состоящий из других объектов, называемых его подсистемами. По существу, когда речь идет о сложных системах, речь идет не только о физических объектах, но и об отражении в сознании некоторых фрагментов реального мира и условном разделении его на подсистемы в соответствии с задачами управления или иными задачами. Данное понятие адресовано, скорее, к пространственному воображению исследователя (аналитика), поскольку связано с понятием иерархии, обычно мыслимой в виде пирамиды.
Термину «состояние» в соответствие ставится некоторое протяженное во времени сочетание значений атрибутов (неотъемлемых свойств) системы, характеризующее ее с точки зрения применимости к ней некоторого управляющего воздействия (или их неизменной совокупности) для достижения заданного результата. Такое определение дано специально, дабы подчеркнуть специфику кибернетического подхода, связанного с решением задач управления и указывающего на общность подходов кибернетики и аналитики. Это понятие сложно (или невозможно) определить иначе, как со ссылкой на опыт в какой-либо из отраслей деятельности.
Оба рассмотренных понятия неявным образом связаны с понятием «отношение»: в одном случае — между системой и системой (подсистемой), в другом — между системой в предшествовавший изменению момент времени и в последовавший за ним (момент).
Соответственно, состояние системы определяется через совокупность состояний всех ее подсистем, в конечном счете — ее элементарных подсистем. При этом по числу возможных состояний различают элементарные подсистемы двух типов: дискретные подсистемы (с конечным числом
состояний) и подсистемы с непрерывными состояниями или аналоговые подсистемы (при бесконечном числе состояний). Дискретность/непрерывность может проявляться как во временной области, так и в пространстве признаков (например, напряжения нуля и единицы в интегральных логических схемах).
■V С Тут оказывается уместным упомянуть определение предмета ЛрТ исследования кибернетики, данное бывшим нашим I соотечественником, блестящим ученым В.Ф. Турчиным: «Кибернетика изучает организацию систем в пространстве и времени, то есть то, каким образом связаны подсистемы в систему и как влияет изменение состояния одних подсистем на состояние других подсистем. Основной упор делается ...на организацию во времени, которая в случае, когда она целенаправленна, называется управлением»33. Для описания процессов изменения состояния системы используются такие термины, как «динамика системы» и «организация системы во времени», однако, по замечанию В.Ф. Турчина, более уместным здесь является именно «организация во времени». Это вызвано тем, что термины «динамическое» и «статическое» принято использовать по отношению к вариантам описания системы (ее моделям, учитывающим либо и пространство и время, либо только пространственную компоненту); будучи же примененным к системе слово «динамика» невольно вызывает представление об однородности устройства системы.
Как уже было отмечено, в кибернетике широко используются различные методы моделирования. Весьма показателен подход к моделированию, используемый этой наукой — детализация моделей осуществляется в той степени, которая способна обеспечить заданное качество управления системой. Подсистемы наиболее низкого уровня детализации дальнейшей декомпозиции не подвергаются и рассматриваются как элементарные, неразложимые на составные части. Следствием этого может стать такая ситуация, когда объекты, считающиеся элементарными в некоторых моделях, будут иметь принципиально различную природу, а кибернетические модели, отражающие их взаимодействие, будут одинаковы. Соответственно, с кибернетической точки зрения эти системы будут тождественны, несмотря на те различия, которые заложены на нижнем уровне — уровне элементов. В этом-то и заключена красота исходной идеи, заложенной в основу кибернетики, этим и была оскорблена идеологическая верхушка советской науки в начале 1950-х годов. Хотя механицизмом это назвать было нелогично и недальновидно — ведь физики не возмущались, когда одинаковыми математическими уравнениями описывались различные процессы и явления.
Однако, вернемся к автоматному поведению, контуру управления, информационному циклу управления и обратной связи. Что подразумевается под автоматным поведением? Под автоматным поведением понимается такое поведение, при котором некоторое изменение состояния среды функционирования (существования) объекта приводит к осуществлению им действий, направленных на адаптацию к изменившимся условиям — ситуация на входе подсистемы сбора информации приводит к осуществлению системой того или иного действия.
Автоматное поведение свойственно, например, живым организмам, способным к реализации простых рефлексов. Для таких организмов справедлив подход, представляющий подсистему управления жизнедеятельностью организма в виде некоторым образом организованной системы нервных клеток (нейронов) чувствительных к изменению условий (рецепторов, образующих подсистему сбора информации) и исполнительных (эффекторов,
образующих подсистему доведения управляющих воздействий). Состояние всех рецепторов системы в некоторый момент времени в кибернетике принято называть ситуацией, а состояние всех эффекторов — действием. В этом случае можно утверждать, что роль, которую исполняет подсистема управления, сводится к преобразованию ситуации в действие.
■ySjkc В кибернетике принято выделять два вида обратных связей между f ДчД подсистемой сбора информации, образованной совокупностью I I некоторым образом организованных датчиков (или рецепторов), и —' подсистемой доведения управляющих воздействий, представленной совокупностью исполнительных компонентов (или эффекторов). В живых организмах эти связи представлены синапсами (местами близкого размещения или контакта нервных клеток):
- положительную обратную связь, при наличии которой возбуждение рецептора вызывает возбуждение эффектора, а покой — состояние покоя;
- отрицательную обратную связь, при наличии которой возбуждение рецептора вызывает переход эффектора в состояние покоя, а покой — возбуждение.
Благодаря наличию обратной связи контур управления приобретает замкнутый вид, за счет чего появляется возможность дозирования управляющих воздействий и анализа их результатов.
Число рецепторов и эффекторов в сложных системах бывает весьма велико (а в живых организмах — и подавно), что требует эффективных механизмов обработки поступающей от них информации и управления ими. Практика исследований как в нейрофизиологии, так и в социальных и технических дисциплин указывает на то, что в этих условиях наиболее эффективными являются механизмы обработки информации и управления, построенные по иерархическому принципу. В такой системе информация о состоянии обрабатывается наиболее быстро, а разнообразие различаемых состояний для единичного рецептора или эффектора в иерархической системе сводится к минимуму. Соответственно, для каждого элемента иерархии достаточно располагать информацией, необходимой для выполнения лишь того набора элементарных операций, который входит в его компетенцию.
Наибольший интерес с точки зрения процессов управления представляет категория цели. В кибернетике под целью принято понимать то желаемое состояние, на достижение которого направлена управленческая деятельность. Для систем с примитивным автоматным поведением (не обладающих способностью к целеполаганию) в качестве цели управления рассматривается поддержание гомеостаза (функционального состояния системы, при котором благодаря действию специальных систем управления, именуемых гомеостатами, обеспечивается динамическое постоянство жизненно важных функций и параметров системы при различных изменениях внутренней и внешней среды). Следует обратить внимание на то, что гомеостаз — это не есть покой или просто постоянство, гомеостаз — это состояние, обеспечиваемое динамическим процессом. При этом наравне с термином «гомеостаз», часто пользуются и другим термином — «гомеокинез». Так, если интегральные показатели системы при отсутствии изменений внешней среды остаются постоянными, мы имеем состояние гомеостаза, а если они колеблются около некоего среднего положения, оставаясь в определенных рамках, это — состояние гомеокинеза.
В 1952 году У.Р. Эшби34 было сформулировано понятие целеполагающего гомеостата. В качестве такого целеполагающего гомеостата им рассматривался человеческий мозг, способный через субъективно идеализированную абстракцию (модель мира субъекта целеполагания) прогнозировать возможные опасности собственному существованию и принимать превентивные меры для обеспечения собственной безопасности за счет интенсификации вещественно-энергетического потока из внешней для гомеостаза среды — среды его обитания.
Наиболее распространенным вариантом построения гомеостатов в природе и техники является иерархическая организация его компонентов. Такая конфигурация вполне объяснима с учетом приведенных одним абзацем выше рассуждений. Позже американским ученым С. Биром применительно к производству было сформулировано понятие иерархического гомеостата35, применение которого позволяло упростить процессы управления предприятием, построить рациональную организационно-штатную структуру, оптимально распределить должностные обязанности, а также выполнять массу иных процедур, связанных с управлением производством.
В принципе, присмотревшись к такой модели, можно уловить черты сходства с муравейником. Более того, несколько идей, относимых к разряду социальных утопий, основывались именно на таком идеале. В качестве примера кибернетического подхода к общественному устройству могут рассматриваться конфуцианство с его кодексами, «Город Солнца» Т. Кампанеллы и
49
представления ряда авторов социальных утопий прошлого и современности. Крайней формой кибернетизированного подхода к рассмотрению рациональной организации человеческого общества является так называемая «теория золотого миллиарда» — реакционная теория элитарного общества, построенная на основе неомальтузианства.
Характерно, что такой принцип устройства системы соответствует максимальной экономии расходуемых ресурсов, характеризуется высочайшей эффективностью и быстродействием, но при этом существенно возрастает уровень специализации элементов. Последствия роста специализации можно проиллюстрировать на следующем примере: простейшие живые организмы, не располагающие центральной нервной системой и обладающие малой специализацией клеток, их образующих, демонстрируют более высокую живучесть, а способность к регенерации утраченных органов у них распространена шире, нежели чем у более сложных организмов. Некоторые параллели могут быть проведены и при сопоставлении тоталитарной и демократической моделей государственного устройства, хотя здесь следует помнить, что кибернетика, как и многие другие науки, останавливается в своих абстракциях на некотором конечном уровне декомпозиции, отбрасывая своеобразие тех компонентов, которые оказываются ниже используемого уровня абстракции.
Кибернетические подходы к управлению обществом и производством на самом деле не содержат в себе ничего такого, о чем следовало бы говорить как об источнике угрозы обществу — просто любая крайность в управлении целеполагающими системами опасна и ведет либо к гипертрофированному индивидуализму или к чрезмерной централизации управления. И в том и в другом случае (хотя и по разным причинам) неминуемо происходит истончение интеллектуального слоя общества, его деградация. Однако при разумном сочетании централизованного и децентрализованного управления результаты могут быть получены весьма значительные преимущества, что отнюдь не противоречит кибернетике (техническая кибернетика наглядно продемонстрировала необходимость наличия люфтов в системах управления).
Польза люфтов в системах управления может быть продемонстрирована хотя бы на примере знакомой всем автомобилистам системы рулевого управления. На заре автомобилестроения соединение деталей в системе рулевого управления было жестким, лишенным люфтов (цепным или шестеренчатым). В результате такого конструктивного исполнения каждая выбоина на дороге (а дороги в то время были чаще всего брусчатыми) моментально отдавалась в рулевом колесе, вызывая у водителя автоматную реакцию — попытку сопротивления действию силы, вращающей колесо. Однако время задержки реакции оказывалось велико по сравнению с длительностью воздействия ударной нагрузки, и водитель прилагал компенсационное усилие уже на другом участке дороги, где направления компенсационного усилия и силы, вращающей рулевое колесо в результате следующего соударения, могли совпасть, что часто и случалось на практике. Управление автомобилем в то время требовало значительной физической силы и хороших навыков. Многие обращали внимание на то, как странно (по нынешним понятиям) вели себя на дороге старинные автомобили в кадрах кинохроники — они непрерывно совершали какие-то бессмысленные резкие зигзагообразные маневры на дороге, но мы-то знаем, в чем тут дело. Лишь в результате ряда усовершенствований (применение остроумно реализованных автоматов удержания прямолинейного направления движения за счет наличия углов развала и схождения) задача удержания рулевого колеса автомобиля существенно упростилась. Но главным здесь было изобретение рулевой трапеции, устроенной так, чтобы в ней обеспечивался люфт, позволяющий гасить незначительные удары и вибрации, возникающие при езде по дороге. Сейчас в правилах дорожного движения записано, в каких пределах должен обеспечиваться люфт в системе рулевого управления автомобиля.
Однако вернемся от проблем социальных и автомобильных к проблемам, рассматриваемым современной кибернетикой. Естественным продолжением исследований в области кибернетики стало возникновение таких теорий как теория распознавания образов, теория информации, теория искусственного интеллекта, кибернетической (математической) лингвистики и иных направлений, в основу которых заложено рассмотрение информационных процессов, связанных с управлением, целеполаганием, процессами возникновения и управления знаниями. В створе кибернетических наук зародилось весьма популярная в настоящее время технология нейросетевой обработки и анализа данных. Таким образом, мы приходим к утверждению, что на сегодня большая часть технологически реализованного аналитического инструментария базируется на принципах, сформулированных в рамках кибернетического подхода. Однако, как будет показано далее, человечество постепенно входит в эпоху, когда кибернетические подходы перестают быть единственным поставщиком технологий для аналитики — уровень развития кибернетических технологий завершает процесс создания платформы для начала внедрения технологий, основанных на теории систем и системного анализа, построения кибернетических систем высших порядков.
К числу разделов кибернетики, представляющих особый интерес для аналитики, несомненно, относится теория распознавания образов. Это направление получило развитие на самых ранних этапах развития кибернетики
— без этого было невозможно решить задачи обеспечения реакции автомата на изменение ситуации (как некоторой специфической совокупности сигналов, поступающих от рецепторов). Так, уже на этом этапе теория распознавания образов, пусть пока формально, но оказалась связана с распознаванием ситуаций. Вначале распознавание было наиболее тесно связано с распознаванием графических образов в технических системах, но при наличии устойчивой тенденции к кибернетическому рассмотрению общества это не могло не привести к возникновению специфического направления — распознавания ситуаций и в сфере управления организационно-техническими и социальными системами.
Наиболее интенсивно методы распознавания образов используются на этапе, когда данные, собранные и прошедшие первичную обработку, приводятся к единому формату представления, что позволяет использовать для их отображения и анализа нормализованное метрическое пространство признаков (это означает, что в таком пространстве признаков введены метрики, обеспечивающие возможность измерения степени близости полученных результатов к неким эталонам). В этом случае близость к заданным эталонам указывает на возникновение ситуации, полностью или в некоторых деталях сходной с эталонной, по тем или иным причинам выделенной из числа прочих возможных. В настоящее время все чаще для решения таких задач используются методы, ранее использовавшиеся для распознавания изображений, однако применяемые не после отображения, а на этапе работы с внутренним представлением данных в системах автоматизированной обработки.
Как видим, кибернетические методы широко используются для анализа данных, построения моделей объектов и систем, распознавания ситуаций, синтеза организационной структуры информационно-аналитических подразделений и для многих других аналитических приложений. Ранее мы указывали, что методы кибернетических исследований тесно связаны с методологией системного анализа и границу раздела между ними определить крайне сложно. Тем не менее, в рамках нашего повествования такую границу мы проведем здесь.
При объяснении феномена общности, приведшего к зарождению общей теории систем и системного анализа, можно сослаться на то, что исследователи чрезвычайно ограничены в средствах формализации и вынуждены выбирать сходный математический аппарат для обозначения природных явлений и процессов совершенно разного происхождения. Однако, это не совсем так (конечно, многое зависит от математического кругозора ученого) — дело в том, что современная математика достаточно богата разнообразными абстрактными объектами и инструментами формализации и способна предоставить исследователям все то, что может им потребоваться для представления результатов научных изысканий. Но, тем не менее, одни и те же зависимости, обратные квадрату расстояния, описывают изменение напряженности электромагнитного поля на некотором удалении от точечного носителя заряда, силу ударной волны на удалении от эпицентра взрыва, одинаковые дифференциальные уравнения описывают движение жидкостей, тока, переноса тепла в электро- и тепло- проводных средах, иначе говоря, слишком много «случайных» совпадений. Даже наоборот, по мере развития специальных разделов математики, возникших в результате развития кибернетики, информатики, теории игр, управления, аксиоматической теории принятия решений, факторного анализа, «нечеткой» математики, становится очевидным наличие объективных закономерностей, определяющих сходство многих внешне различающихся феноменов.
Использование этого знания давало гипотетическую возможность на некоторых этапах исследований, проводимых в междисциплинарных областях, абстрагироваться от тех особенностей исследуемых систем, которые были несущественны с точки зрения решаемой задачи. Преимущества, которые могло дать использование подобного подхода, были очевидны. Однако от догадки до знания дистанция достаточно велика. Предположение Л. фон Берталанфи было лишь первым шагом на пути к созданию стройной научной теории, способной принести реальную пользу при решении конкретных задач теоретических и прикладных исследований. Отсутствие единой теоретической платформы, роль которой ранее исполняла механика Ньютона, тормозило развитие науки, а потребности практической деятельности стали наталкиваться на ограничения методологического плана (в этом-то и проявляется кризис науки). Поскольку общей концепции устройства мира синтезировано так и не было, а заключения о природе всего сущего наука дать была неспособна, постоянно наталкиваясь на технологические ограничения, ученые во многих отраслях вынужденно перешли на макроуровень. Этот подход оказался весьма продуктивным — все чаще в системах различной природы стали обнаруживаться закономерности, указывавшие на наличие чего-то общего, судя по всему, вызванного общностью фундаментальных принципов организации всех систем от самого нижнего уровня агрегации до самого высшего.
По мере углубления исследований росла убежденность в том, что структурный подход к анализу систем чрезвычайно эффективен и позволяет, отказавшись от детального изучения конкретных физических механизмов реализации той или иной конструкции, успешно решать многие задачи как теоретического, так и практического плана. Установка А.А.Богданова, настаивавшего на том, что «структурные отношения могут быть обобщены до такой же степени формальной чистоты схем, как в математике отношения величин» в результате чего многие «задачи могут решаться способами, аналогичными математическим» находила все больше подтверждений. В науке начался переход от изучения динамики элементов к изучению динамики структур, где отношения были более наблюдаемы и предметны.
Однако поскольку предметные области, в которых осуществлялись исследования в рамках методологии общей теории систем, традиционно различались (именно типом элементов систем), постольку в рамках общей теории систем сформировалось несколько направлений, прижившихся в различных отраслях: в экономике, политике, военном деле, экологии,
социологии, демографии, ряде разделов медицины, и многих других.
На первых этапах общая теория систем, развивавшаяся в створе философских наук, оставалась предметом отвлеченных дискуссий, но по мере ознакомления специалистов-практиков с ее методологией, преимущества новых подходов стали очевидны. Там, где возникала потребность в создании и изучении сложных систем (в том числе — организационных и организационнотехнических), использование методов системного анализа приносило ощутимую пользу. Особенно ценным было то, что методы общей теории систем позволяли выявить потенциальные источники противоречий, способных привести к снижению эффективности функционирования или самопроизвольному распаду системы. В ходе работ, связанных с проектированием больших человеко-машинных систем (что на тот момент было особенно востребовано при проектировании систем военного назначения) постепенно сформировалось специфическое направление общей теории систем, получившее наименование системный анализ.
Прежде, чем продолжить разговор о системном анализе, следует определиться с терминологией. Определение любой научной дисциплине может быть дано различными способами: по цели исследования, по объекту (предмету) исследования, по методу исследования и по субъекту исследования. » f Определение по цели исследования. Системный анализ — это вид ЛрТ целенаправленной исследовательской деятельности,
| осуществляемой с целью создания оптимального по форме, содержанию, а также уровню детализации и формализации представления имеющихся знаний о сложных системах, являющихся предметом интересов исследователя.
- С Определение по предмету исследования. Системный анализ — это ЛОТ отрасль научного знания, предметом изучения которой являются
| наиболее общие закономерности процессов возникновения (создания), существования (функционирования), распада (разрушения) сложных систем, процессов зарождения, развития и разрешения противоречий, а также закономерности синтеза целей в сложных системах, определяемые структурой, характером и динамикой связей между их компонентами.
» С Определение по методу исследования. Системный анализ — это ()РТ вид комплексного исследования, использующего в интересах | достижения цели методы структурной и функциональной декомпозиции сложных систем, опирающиеся на достижения философии, естественных и гуманитарных наук, а также математики и математической логики.
- С Определение по субъекту исследования. Системный анализ — это ЛрТ вид исследовательской деятельности, осуществляемой
| специалистами в области системного анализа, системотехники и системологии, применительно к некоторой сфере деятельности.
Чтобы понять сущность системного анализа, на начальном этапе лучше прибегнуть к нестрогим определениям, например, системный анализ — это: «предпроектная стадия в разработках и предмодельная стадия в научных исследованиях», «дематематизированная кибернетика», «формализованный здравый смысл», «когда сначала думают, а потом делают» и тому подобные афористичные фразы. Все эти определения тем или иным образом указывают на связь системного анализа с принятием управленческого решения — неважно в какой отрасли.
Системный анализ может рассматривать в принципе любые типы систем и объектов, представляя объект исследования в качестве системы (в этом сущность его метода), в том числе и сложной. Однако оптимизация процесса исследования не есть главная задача системного анализа, первой и главной задачей системного анализа является получение модели предельно адекватной объекту исследования. А уж далее — на последующих этапах исследования — с применением методик системного анализа могут быть спланированы модельные, полунатурные и натурные эксперименты, исследованы поведенческие реакции исследуемой системы (методом задания изменений внешних воздействий), получены искомые модели поведения и перенесены на реальный объект исследования.
В предыдущем подразделе мы указывали, что исследования в области общей теории систем и кибернетики в СССР в первые годы после их зарождения по идеологическим соображениям были запрещены. Однако, по мере роста сложности создаваемых человеком систем, использование методов системного анализа стало объективной необходимостью, что по прошествии времени было признано и идеологическим руководством СССР. Со второй половины 1950-х методология системного анализа получила свое развитие и в советской науке. Характерно, что отечественные ученые быстро наверстали накопившееся в методологической области отставание, что было обусловлено высоким уровнем их теоретической подготовки и спецификой образовательной системы государства. Быстрому развитию и внедрению системного подхода в практику теоретических и прикладных исследований способствовали также сильные традиции междисциплинарных исследований, характерные для русской науки начиная с времен Д.И. Менделеева, В.В. Докучаева,
В.И. Вернадского, А.Л.Чижевского и многих других. Уже в 1970-х-80-х годах специалисты в области системных исследований готовятся в большинстве ведущих вузов СССР (таких, как Московский и Ленинградский Государственный университеты, Московский физико-технический институт, Ленинградский политехнический институт и многих других). Выпускники этих вузов — инженеры-системотехники — становятся одной из наиболее востребованных категорий специалистов — это не удивительно, ведь в стране шло повсеместное внедрение электронно-вычислительной техники, автоматизированных систем управления производством (в том числе — и таких сложных, как единая система энергоснабжения страны), то есть — те самые сложные человеко-машинные системы, большие социально-экономические и экологические системы. Ведущие научные коллективы объединяются во Всесоюзный институт системных исследований АН СССР (ВНИИСИ АН СССР), а ныне — Институт системного анализа РАН (ИСА РАН).
В этот период развитие системного анализа фактически привело к формированию иной научной дисциплины — некоего «обогащенного» системного анализа, в котором нашли отражение не только комплекс исходных идей, но и аппарат синтезированный в рамках смежных отраслей науки. В числе научных теорий, пополнивших своими методами методологический арсенал системного анализа, следует упомянуть теорию исследования операций, теорию рефлескивного управления и ряд других. Особенно примечательным в этом отношении является использование в системном анализе теории выбора и принятия решений, включающей в качестве своей основной составной части теорию предпочтений и полезности. Теория выбора и принятия решений прошла большой путь от концепции полезности в античной философии до современных методов многокритериальной оптимизации и оценки эффективности, существенно опирающихся на положения системного анализа, связанные с понятием цели. Следует отдать дань уважения классикам и основателям теории выбора — итальянскому экономисту В. Парето (в начале XX в. сформулировавшего «принцип наименьшего из зол») и выдающемуся математику фон Нейману (в 1930-40-е гг. разработавшему основы теории игр). Большой вклад в развитие системной концепции и системного анализа в их современном виде внесли академики В.Г. Афанасьев, Д.М. Гвишиани,
С.В. Емельянов, Н.Н. Моисеев, Г.С. Поспелов и другие советские ученые.
Системный анализ интенсивно заимствует и адаптирует к решению прикладных задач математические методы, разработанные в рамках исследований в области кибернетики, теории массового обслуживания, термодинамики, статистической радиотехники и других научных отраслей (в том числе и общественных наук). Появление вычислительных машин также способствовало реализации методологии системного анализа, ибо подавляющее большинство математических задач, решаемых в рамках исследований системного характера, не имеют аналитических решений и разрешимы только численными методами. Наиболее распространенным классом задач системного анализа являются задачи оптимизационного типа, связанные с определением экстремумов, решением систем линейных и нелинейных дифференциальных уравнений, задачи вариационного исчисления. Особенно часто эти методы используются при построении систем, обеспечивающих рациональное распределение ресурсов между группами взаимосвязанных процессов-потребителей для решения некоторого комплекса задач. При этом использование вычислительной техники позволяет осуществлять не только решение расчетных задач, но и осуществлять синтез имитационных моделей с применением специальных языков моделирования процессов и явлений. Речь идет о развитии особого раздела математики — дискретной математики, адаптированной дискретному характеру систем и наблюдений. Однако однозначной взаимосвязи между методологией системного анализа и конкретным типом математического формализма не существует. Выбор конкретных методов — это отдельный вопрос, решение которого в большей степени связано со спецификой предметной области. Характерно, что системные методы оказываются эффективными и на этапе выбора формальной системы для представления модели и тех численных методов, которые будут использоваться при реализации вычислений.
Чтобы проиллюстрировать последнее утверждение, обратимся к опыту проектирования и создания сложных программных и программно-технических комплексов, связанных с моделированием систем и процессов. Здесь на первом этапе работают аналитики, изучающие объект моделирования и разрабатывающие по результатам исследований его модель. Модель может содержать описания закономерностей поведения элементов и подсистем моделируемой системы в ответ на возмущающие и управляющие воздействия, состав атрибутов модельных объектов и топологию связей и т. д. Программисты же разрабатывают программы, реализующие предложенную модель, в том числе — осуществляют выбор конкретных алгоритмических решений и приемов дискретной математики в интересах создания программной реализации модели.
Здесь может быть проведена аналогия с управленческой деятельностью. Например, группа аналитиков разработала модель ситуации, выявила наиболее вероятные варианты ее развития, разработала совокупность методов управления ситуацией и оценила величину рисков для каждой из рассмотренных стратегий поведения. Руководитель же, на основе субъективных критериев предпочтения, определяемых его моделью мира и иерархией целей, выбирает или конструирует конкретные сценарии действий и определяет конкретные параметры для дальнейшей работы подчиненных. К числу прочих важнейших задач системного анализа следует выделить задачу экспертизы и оценивания проектно-технических и организационно-управленческих решений.
Как видно из приведенных рассуждений, системный анализ может претендовать на роль стержневой методологической системы для аналитики как комплексной научной дисциплины, поскольку располагает:
- наиболее развитым формальным аппаратом для описания систем различного происхождения;
- мощным арсеналом методов исследования систем;
- совокупностью методов анализа разнородных данных и компенсации неполноты знаний.
Это позволяет решать задачи анализа сложных междисциплинарных проблем в условиях высокой неопределенности знаний об исследуемых системах, планировать деятельность, направленную на компенсацию неполноты данных. То есть, системный анализ по своему потенциалу наиболее близок к роли интегрирующей научной дисциплины, обеспечивающей высокую эффективность применения различных научных методов в интересах решения управленческих задач.
В рамках системного анализа разработано множество методик аналитической деятельности, позволяющих сочетать логико-интуитивные подходы со строгими научными методами, в равной степенью эффективности использовать субъективные экспертные оценки и объективные результаты статистических наблюдений, гармонично сочетать динамические и статические модели при ведении многомодельных исследований.
Для того, чтобы убедиться в этом, рассмотрим те этапы, из которых j >L А состоит системное исследование, и сопоставим их с этапами
---управленческой деятельности. Итак, рассмотрим этапы системного
исследования.
1. Определение целей исследуемого процесса, операции и, собственно, исследования. Целевой подход занимает центральное место как в системном анализе, так и в управленческой деятельности. Целевой анализ начинается с формулировки глобальной цели. В дальнейшем она конкретизируется за счет указания подчиненных ей главных целей. В сложных задачах системного анализа, решение которых зависит от многих взаимосвязанных элементов, целесообразным является дальнейшее развертывание главных целей в многоуровневое дерево целей и задач. Как видим, налицо явная ориентация системного анализа на формализацию и приданию явной формы системе целей, что позволяет на раннем этапе выявить внутреннюю противоречивость глобальной цели, что очень важно для выявления формальной предпосылок достижимости цели.
2. Анализ ограничений, связанных с ресурсами и условиями реализации решения, направленного на достижение поставленных целей управления. Задачи системного анализа решаются в условиях различного рода ограничений, накладываемых обстановкой, в которой должно быть реализовано принимаемое решение. Важнейшими видами ограничений являются ресурсные ограничения, в том числе — в сфере финансового, материально-технического, методологического и организационного обеспечения, а также ограничений фундаментального характера, связанных с наличием принципиальной возможности реализации решения (отсутствием противоречий с фундаментальными принципами организации природы и общества). Целесообразно также рассматривать класс субъективных ограничений, обусловленных постановкой задачи и характером предпочтений аналитика (например, когда поле исследований сознательно ограничивается определенными рамками).
3. Анализ пространства альтернатив. Пространство альтернатив — это совокупность вариантов достижения поставленных целей и условий их реализации. Наличие максимально полной информации о возможных вариантах достижения цели позволяет принимать решение не только на основе интуитивных методов, но и с учетом всех возможных вариантов достижения целей и рисков, связанных с запуском тех или иных стратегий.
4. Выбор критериев эффективности. Наличие строгих, сопоставимых критериев, свидетельствующих об успешности решения поставленных задач, позволяет объективировать процесс выбора предпочтительной стратегии. В качестве критерия эффективности как правило выбирается некоторое значение или диапазон значений параметра, позволяющего судить о том, что успешное решение задачи получено с приемлемым уровнем затрат некоторого ресурса или группы ресурсов.
5. Синтез адекватной модели. В силу рискованности подходов, при которых для определения приемлемости той или иной стратегии требуется ее апробация в практической деятельности, исследование альтернативных стратегий производится на моделях (ведь результат апробации в ряде случаев может быть и необратимым). Поскольку различные стратегии для достижения цели могут использовать различные методы и привлекать различные ресурсы, требуется, чтобы модели, на которых проводится исследования, позволяли получить однородные показатели эффективности и были в равной степени адаптированы для моделирования различных стратегий.
6. Планирование и проведение модельного эксперимента. На этом этапе с применением различных методик планируется и проводится всесторонне исследование предлагаемых методов, исследуется устойчивость полученных решений к изменениям условий функционирования системы.
7. Выработка рекомендаций. Это заключительная часть системного анализа, содержащая выводы из проведенного исследования и указания по реализации его результатов.
По существу нами получен перечень, соответствующий схеме рациональной управленческой деятельности, при которой субъективизм в принятии решений снижен благодаря возможности анализа объективных критериев и логически построенной системы аргументов в пользу той или иной стратегии, но в то же время не игнорируется творческая активность руководителя. Последний тезис чрезвычайно важен, поскольку психологические особенности человека нередко приводят к попыткам принятия решения по методу «от противного», когда решение, предложенное экспертом, под действием неосознанных мотивов игнорируется. В случае же, когда сам волевой акт решения остается полностью в компетенции руководителя, риск принятия таких решений существенно снижается.
1.4 ГУМАНИТАРНЫЕ НА УКИ
Роль гуманитарных наук при рассмотрении многих отраслей человеческой деятельности часто принижается — особенно распространен пренебрежительный взгляд на гуманитарные дисциплины среди представителей технических специальностей, которым не приходилось сталкиваться с проблемами административной деятельности. В современных условиях количество тех, кто не считает гуманитарные знания существенными для профессиональной деятельности, стало еще большим. В эпоху тотального наступления телевидения устойчивое отвращение к блоку гуманитарных дисциплин стало присуще большинству выпускников общеобразовательных школ, чье знакомство с литературой ограничилось нудным составлением портретов литературных героев, пришедших из другого времени. Еще большая роль в воспитании такого отвращения принадлежит тем бездарным педагогическим экспериментам в области изучения истории и обществоведения, которые проводятся, начиная с 1991 года и по настоящее время.
Однако аналитика — это не та сфера деятельности, которая может позволить себе игнорировать гуманитарную сферу. Такая «роскошь» для нее просто непозволительна... Дискуссия о физиках и лириках, столь популярная в СССР 1960-х годов, навязавшая обществу наивный взгляд на соотношение духовного и рациональнологического начал, отозвалась резким снижением благосостояния и тех, и других — всякое нарушение гармонии рано или поздно карается. Этот принцип торжествует и в природе, и в обществе. Заметим, что в прагматичных США гуманитарное направление в образовании развито в большей степени, нежели в нашей стране, причем это отличие особенно заметно именно в высшем образовании. Правда, гуманитарное направление там имеет несколько иную форму, нежели в отечественной системе образования — оно имеет более прикладной характер и в большей степени математизировано. Для того, чтобы почувствовать разницу, достаточно сравнить традиции американской и российской лингвистики (при всем богатстве традиций лингвистических исследований, российская лингвистическая школа создает по преимуществу специалистов, мало приспособленных к решению прикладных задач, связанных с применением специальных знаний). Тогда — в 1960-х годах — в СССР возобладал индустриальный подход со свойственным ему социальным инфантилизмом... Ничем не заполненная, гуманитарная ниша быстро заполнилась вовремя предложенным капиталистическим миром блоком аутистических идей, и вот — появились талантливейшие физики-правозащитники, которые были чужими в той стране тогда и — что не удивительно — остались чужими в этой стране сегодня. Их подвел пресловутый кибернетический романтизм, породивший и весьма продуктивные идеи теории искусственного интеллекта, и киберфантастику, довольно быстро утратившую связь с наукой (часть авторов обратилась к проблемам этикоморального и экологического плана, а другая — к сценариям в духе авантюрных и военных приключений с участием роботов, киборгов и т. п. персонажей).
Однако вернемся к аналитике. Если при анализе сугубо технических проблем гуманитарные знания редко бывают востребованными, то при первом же соприкосновении с проблемами управления организационно-техническими системами или с проблемами построения человеко-машинного интерфейса потребности в этих знаниях становятся очевидными, а в некоторых случаях даже начинают доминировать. Так, например, многим программистам, создававшим программные средства, взаимодействующие с человеком-оператором, знакома проблема создания интуитивно понятного интерфейса, обеспечивающего оптимальный режим работы пользователя. Важность этих знаний наглядно продемонстрировала корпорация Microsoft, благодаря учету психологии пользователя и использованию системного подхода добившаяся мощного прорыва на рынке программного обеспечения. Первой введя унифицированный графический интерфейс, эта корпорация на целое десятилетие потеснила семейство операционных систем UNIX и создала во всем мире мощную армию пользователей, не желающих знать ничего нового, кроме очередного Windows-проекта от Microsoft.
Попробуем перечислить те гуманитарные науки, из которых аналитика позаимствовала некоторые рабочие методы: психология и психоанализ, социология, политология, история, источниковедение, библиотечное дело, лингвистика, педагогика, криминалистика, юриспруденция и многие другие. Практически полный комплекс наук, которые когда-либо предпринимали попытки научного инвариантного описания особенностей поведения индивида или группы в различных ситуациях: при групповой и индивидуальной деятельности, при изложении мыслей, при синтезе целей и выборе методов их достижений и в иных ситуациях. Заимствовались методы, позволяющие оценить физическое и эмоциональное состояние человека, соотнести некие письменные документы с конкретным источником, выявить скрытые мотивы поведения, методы организации быстрого поиска информации, выявления противоречий в аргументации неких поступков или декларируемых намерений. Аналитика пополняла свой арсенал всем, что могло способствовать интенсификации процессов переработки информации, извлечению максимального объема полезной информации из имеющегося объема данных.
Приведем интересный пример: многим известна теория Ломброзо о существовании некоторого «порочного типа» человека, который может быть выявлен в результате физиономического анализа. Эта ^ теория стала столь известной благодаря интуитивной очевидности и,
увы — бесславно окончившимся опытам ее применения. Но мало кому известна история, связанная с успешным решением проблемы каталогизации фотографий преступников А. Бертильоном (1880-е годы). Он предложил стандартизовать процедуру фотосъемки (сигналетическая проекция), а при помещении снимков в каталог ввести индексацию, учитывающую несколько
объективных параметров: длину и ширину головы, расстояние между
скуловыми костями, длину и ширину правого уха. Метод каталогизации А. Бертильона живет и поныне, воплощенный в технологиях распознавания личности по совокупности базовых точек, в число которых входят скулы, цвет и форма глаз, ширина переносицы и губ. Как показывает практика, для достоверного определения личности достаточно 15-20 таких точек. Сейчас такими системами оборудуются аэропорты, вокзалы и прочие места скопления людей, где возможно проведение террористических акций. Правда, все атрибуты «бертильонизации» — специальные стулья с зажимами, обеспечивавшими фиксацию головы в заданном положении — вскоре отошли в прошлое, а методы идентификации по фотографии до поры были вытеснены дактилоскопией.
Но с точки зрения аналитики ценность идей Бертильона заключается и в еще одном новшестве: была предложена стандартизированная методика составления словесного портрета. Благодаря этому новшеству в конце XIX века полицейские специалисты всех стран, изучив методику составления словесного портрета, смогли наладить эффективное взаимодействие при ведении оперативно-розыскной работы, что дало весьма положительные результаты. Тогда А. Бертильон писал: «...до тех пор, пока та или другая анатомическая особенность наружности индивидуума, отличающая его от тысячи других лиц и дающая возможность запечатлеть ее в памяти, не получит точного названия, она остается незамеченной и как бы не существует. Уже давно известно, что мы не можем представить себе того, чего не можем выразить словами, также запечатлеть в мозгу то, чего не можем описать».
Эта методика послужила прототипом для множества полезных процедур, связанных с нормализацией терминологии, которые получили широкое применение в аналитике для уточнения понятийного аппарата предметной области исследований.
Однако отвлечемся от криминалистики и перейдем к рассмотрению основных идей, пришедших в аналитику из гуманитарных наук. Следует заметить, что гуманитарные науки настолько взаимоувязаны, что отнести некоторый метод к конкретной научной дисциплине чрезвычайно сложно. По этой причине мы не будем акцентировать внимание на истоках метода, а сконцентрируемся на самих методах.
МЕТОДЫ АТТЕСТАЦИИ ТЕКСТОВ
Эти методы, как и большинство других, являются комплексными и основываются как на структурных и статистических методах, так и на методах качественного анализа. При аттестации текстов решаются следующие задачи:
- установление источника (и получателя), его пространственных и временных координат;
- установление логико-фактографической компоненты текста, его тематики;
- анализ полноты и непротиворчивости аргументации в рамках сообщения;
- установление эмоциональной компоненты текста и системы оценочных суждений источника;
- установление специфики лексикона источника в интересах паспортизации источника;
- выявление ценностной ориентации источника;
- установление категории текста;
- установление цели генерации текста;
- установление достоверности излагаемых фактов.
Весомый вклад в развитие этих методов внесли практически все перечисленные выше науки. Для специфических классов информационноаналитической работы этот список может приобретать специфические черты за счет изъятия тех или иных пунктов. Полный комплекс задач, как правило, подлежит решению лишь в весьма специфических отраслях, как правило — связанных с решением задач обеспечения безопасности.
Задача установления источника (и получателя), его пространственных и временных координат может иметь очевидное решение, содержащееся в самом тексте, однако в ряде случаев может вызывать серьезные затруднения. В этом случае приходится применять достаточно сложные процедуры, связанные с анализом распределения служебных терминов, определением специфики лексикона источника. В частности, может строиться «спектр», а вернее — распределения частот употребления слов, принадлежащих к эталонному словарю, сопоставление с имеющимися спектрами-паспортами известных источников с целью отнесения к профессиональной/социальной, этнической/диалектной группе и т. п. Исследуются все имеющиеся в сообщении указания на его принадлежность к некоторому временному интервалу, отраженному в ссылках на некоторые значимые события, времена и даты которых известны или могут быть установлены (в том числе, такую информацию могут нести ссылки на цитируемые источники и т. п.). Определяется область пространства, из которой могло исходить сообщение, либо область, в которой имели место события, описываемые в сообщении. В некоторых случаях рассматривается схема построения адресации, используемая для описания размещения источника (такие задачи могут встречаться, например в глобальной телекоммуникационной сети Интернет, где по адресам серверов может быть установлена государственная принадлежность источника, опубликовавшего те или иные данные и т. д.).
Задача установления логико-фактографической компоненты текста, его тематики представляет собой задачу высокой сложности. Это связано с тем, что статус факта в сообщении может быть придан не только реальным событиям и явлениям, но и тем, которые на самом деле к этому разряду отнесены быть не могут. Такие искажения могут быть обусловлены множеством причин, в число которых могут входить и непреднамеренные ошибки логического плана, и некорректное построение грамматических конструкций, и преднамеренные искажения аргументации. Особый класс проблем возникает в связи с эмоциональной окрашенностью повествования, способной вызвать впечатление реальности факта, упоминание которого даже не встречалось в сообщении. Здесь важно выявить в тексте те маркеры, которые указывают на присутствие в тексте конструкций, соответствующих причинноследственным, временным и пространственным отношениям, установить модальные конструкции типа «вероятно», «очевидно» и т. п., отсылающие к некоторой субъективной интерпретационной модели (редко декларируемой источником сообщения). На основе такого анализа текст может быть разделен на: 1) компоненты, которые могут быть отнесены к разряду фактов на основе объективных критериев; 2) компоненты, которые потенциально могут быть отнесены к разряду фактов (в существенной степени зависящие от совместимости субъективных моделей мира источника и потребителя сообщения); 3) компоненты, которые не могут быть интерпретированы как факт, но отражают специфику модели мира источника суждения.
Задача анализа полноты и непротиворечивости аргументации в рамках сообщения, чаще всего, требует формализации текста, приведения его к нормализованной лексике, исключающей метафорическое или некорректное употребление терминов. Для этого могут быть использованы методы, широко применяемые в современной лингвистике и теории формальных языков, реализованные на базе аппарата формальных грамматик в сочетании с семантическими сетями. После выполнения процедуры формализации текст становится пригоден для производства анализа логической корректности системы аргументов на основе применения формально-логических процедур.
Задача установления эмоциональной компоненты текста и системы оценочных суждений источника требует применения методов контент-анализа, основанных на детальном анализе текста с целью выявления слов, терминов или специфических ситуаций их употребления, способных воздействовать на эмоциональное состояние потребителя сообщения. При этом анализ должен проводиться на различных уровнях иерархии смысловыражающих и словообразующих единиц — от уровня морфем до уровня связных цепочек терминов, включая также выявление ритмического рисунка и аллитераций. Явным образом представленная расстановка эмоциональных акцентов в тексте (их соотнесение с терминами, выступающими в различных семантических ролях) позволяет выявить систему ценностей источника сообщения, сопоставить ее с набором классификационных эталонов и — в некоторых случаях — предсказать поведенческие особенности источника, а также более точно определить цели, преследуемые источником при генерации сообщения. Для этого могут использоваться различные методы — от традиционных методов морфологического разбора и анализа контекста употребления до новейших нейросетевых методов (в данном случае механизмы реализации несущественны).
Задача установления специфики лексикона источника в интересах паспортизации источника является существенной в приложениях, связанных с решением задачи сбора априорной информации об источнике сообщения (например, для дальнейшего взаимодействия с ним или выявления общеобразовательного уровня и/или профессиональной подготовленности в некоторой предметной области). В большинстве случаев эта задача может быть решена на основе статистического анализа текста и сопоставления с набором эталонов, полученных в результате анализа текстов аналогичной тематики, порожденных людьми с известными исследователям уровнем специальной подготовки и психологическими особенностями. При работе с текстами средств массовой информации, генерируемыми одной и той же группой авторов может быть сформирована адаптивная стратегия отбраковки текстов по авторам и тематике с учетом их квалификации в той или иной области знаний, а также для выявления «заказных» статей, написанных «под диктовку». Настоящий аналитик в состоянии оценить полезность подобных знаний. Здесь может быть использован опыт анализа принадлежности текстов перу того или иного автора или исторической эпохи, приобретенный в области источниковедения — специального раздела науки, лежащего на стыке исторической науки и лингвистики.
Задача выявления ценностной ориентации источника связана с решением задачи эмоциональной оценки текста. Ее успешное решение позволяет предвидеть поведенческие реакции источника сообщения, типы событий, оказывающие на него влияние и побуждающие к генерации сообщений. При наличии известных навыков, аттестация источника (выявление его ценностной ориентации) по порождаемым им текстам позволяет сформировать социальный, мировоззренческий портрет автора, его менталитет, позволяющий при использовании специальных методик осуществить информационное управление им. Здесь, в частности, могут быть использованы социальные технологии А.А. Шияна. Еще одно — весьма важное — приложение знаний о специфике ценностной ориентации источника сообщения
— это фильтрация оценочных суждений источника. Кроме того, на основе анализа ценностной ориентации источника может быть сформирована гипотеза о мотивационных доминантах, определяющих процессы целеполагания автора.
Задача установления категории текста является задачей, решение которой целесообразно проводить в два этапа: формальный экспресс-анализ и детальный анализ. Экспресс-анализ направлен на оценивание целесообразности дальнейшей обработки текста, для чего в зависимости от целей анализа могут быть введены различные эталонные модели, позволяющие по ряду формальных признаков отнести текст к той или иной категории. К числу таких признаков могут быть отнесены: длина и степень сложности предложений, характеристика частотно-рангового распределения длин слов, пунктуационная специфика и иные. В литературе по лингвистике функциональная категория текста часто отождествляется со стилистическими особенностями, однако это именно тот подход, который реализуется на первом этапе установления категории текста. Детальный же анализ позволяет отнести текст именно к функциональной категории на основе более объективных критериев, возможность оценивания которых может быть получена лишь в результате решения всех задач, перечисленных ранее. При этом классификация функциональных категорий текста примерно соответствует функциональной классификации предложений и выделяет следующие категории текстов:
- информативные тексты, содержащие изложение фактов и/или нейтральных в эмоциональном плане суждений (эта категория примерно соответствует повествовательным предложениям), реализующие функцию передачи информации;
- проблемно-постановочные тексты, содержащие логическую аргументацию, направленную на выделение проблемы или комплекса проблем, однако не предлагающие путей решения проблемы (эта категория примерно соответствует вопросительным предложениям);
- побудительные тексты, содержащие побуждение к действиям,
подкрепленные логической и/или эмоциональной аргументацией, реализующие функцию побуждения к действию.
Задача установления цели генерации текста непосредственно связана с предыдущей задачей установления функциональной категории текста, однако требует анализа прагматической компоненты и оснований для реализации функции целеполагания источником сообщения. Учитывая, что любое информационное взаимодействие направлено на формирование/модификацию модели мира потребителя сообщения, при решении этой задачи целью является установление того, направлен ли данный текст на синхронизацию модели мира потребителя с моделью мира источника или же целью источника является внесение рассогласования, десинхронизация моделей мира.
Задача установления достоверности излагаемых фактов является задачей, для решения которой требуется привлечение дополнительных источников информации, обладающих иным уровнем доказательности фактов, в том числе — использования результатов наблюдения за физическими проявлениями деятельности или пребывания некоторых объектов и систем в декларируемом состоянии.
АНАЛИЗ ИСТОРИЧЕСКИХ ПРЕЦЕДЕНТОВ
Политология, исторические, социальные и экономические науки способны предоставить немало примеров того, сколь мало разнообразия вносят в наиболее распространенные политические и экономические стратегии различные технологические нововведения. Особенно ярко это демонстрируют военная история и политология — наиболее эффективные стратегические решения остаются неизменными на протяжении многих веков и их арсенал пополняется крайне редко. Здесь стоит привести известное изречение: «Что было, то и будет; что делалось, то будет делаться, и ничего нового нет под солнцем. Бывает нечто, о чем говорят: смотри, вот новое; но это было уже в веках, бывших прежде нас» (Экклезиаст, 1.8, 1.9).
Многие прогнозы, сделанные на основе анализа исторических прецедентов, поражают своей точностью. Зачастую, стратегии, которые по сей день используются в общественно-политической сфере, на некотором уровне абстракции могут быть сведены к ограниченному набору сценариев. Работы по приведению комплекса сюжетов к минимальному набору сценариев в литературоведении были проделаны в 1928 году В.Я. Проппом на примере формального исследования русских народных сказок36. Интересно, что практически те же самые сюжеты-сценарии с некоторыми вариациями могут быть рассмотрены и применительно к большинству реальных ситуаций.
В связи с последним замечанием нельзя не упомянуть знаменитые китайские стратагемы. Их системное собрание впервые предстало взорам читателей еще в VI веке до нашей эры в трактате о военном искусстве китайского полководца Сун-Цзы, указывавшего на величайшее значение в военном искусстве так называемого Гунь-Дао (Пути Обмана). В связи с началом исследований, посвященных синтезу теории информационнопсихологических операций, в конце 20 века стратагемный подход вновь приобрел высочайшую актуальность. Появилось множество публикаций, посвященных вопросам стратагемного мышления и поведения37. Стратагемы, представлявшие собой краткие афористичные высказывания-наставления, содержавшие иносказательную формулировку стратегии обманного достижения поставленной цели. Считается, что китайский менталитет построен на 36 основных стратагемах, имеющих немалое число толкований, приложимых к большинству жизненных ситуаций.
Характерно, что сопоставление базовых стратагем с большинством успешных стратегий, используемых в современной политике, военном деле и бизнесе позволило прийти к выводу, что будучи соответствующим образом формализованы, стратагемы могли бы выступать в качестве инвариантных концептуальных моделей высшего уровня, положенных в основу функционирования систем ситуационного анализа. Они могли бы служить интересам распознавания стратегий и ситуаций на основе применения метода исторических прецедентов.
При использовании метода исторических прецедентов (аналогий) речь, как правило, идет об анализе потока сообщений, описывающих некие объекты, системы, ситуации, процессы и явления. Если предполагается осуществлять некие аналитические операции, в том числе и над данными, не приведенными к виду символьных (текстовых) сообщений, то на этапе предшествующем анализу, эти данные подвергаются процедуре преобразования к символьному виду. Это объясняется тем, что операции над данными, имеющими единую модель представления и интерпретации, вызывают меньшие затруднения.
В принципе, вне зависимости от степени избыточности и уровня формализации описаний, любую развернутую во времени совокупность различным образом представленных сообщений можно рассматривать в качестве модели, описывающей последовательную смену состояний, процессов и явлений в некоторой сложной системе. Для исходной (произвольной) совокупности текстовых сообщений, полученных за некоторый промежуток времени, это утверждение справедливо лишь отчасти, поскольку эта совокупность, не отвечает требованию упорядоченности во времени и не избирательна (то есть, над ней не выполнена процедура отбора сообщений, релевантных, соответствующих задаче исследования). Однако, при условии, что процедуры отбора релевантных сообщений и их упорядочивания во времени выполнены и привели к получению непустого массива, справедливым становится утверждение о том, что полученный массив сообщений будет содержать некий набор альтернативных моделей ситуации. Правда, на этом этапе модели будут иметь вид, весьма отдаленный от того, что принято считать строгой моделью, но существует несколько способов их поэтапного приведения к той степени строгости, которая могла бы обеспечить возможность автоматизированного перехода к иным способам представления либо непосредственно к этапу экспертной оценки. Интенсивные исследования в этой области ведутся известным белорусским ученым В.В. Мартыновым, американцем Д. Ленатом (D. Lenat), П.Ю. Конотоповым и рядом других, чьи исследования сконцентрированы на несколько иных аспектах обработки текстов. К сожалению, в России это направление исследований пока представлено существенно меньшим числом исследователей, нежели за рубежом, а многие российские исследователи после сокращения финансирования науки были поставлены перед выбором: прекратить работу или продолжить ее в зарубежных исследовательских центрах. В настоящее время многие отечественные ученые работают в университетских и государственных исследовательских центрах США, Великобритании и других западных стран, где руководство уже осознало возможные последствия информационного бума.
Однако вернемся к обработке текстов. Мы уже отметили, что полученные вербальные модели могут быть приведены к некоторому представлению, являющемуся промежуточной стадией между формальной моделью и текстом. Следует отметить, что такое представление дает ряд преимуществ, поскольку модели на этом этапе еще доступны пониманию эксперта и способны активизировать его творческую активность, но уже близки по своим свойствам к строгим формальным моделям и могут обрабатываться с помощью средств вычислительной техники.
Интересные результаты дает применение различного рода формальных грамматик, ориентированных на обработку семантической информации (семантических грамматик). Данный класс грамматик отличаются от прочих тем, что ее категории обозначают как семантические, так и синтаксические понятия. Исследования семантических грамматик были начаты в 1970-е годы. Их применение оказалось оправданным при организации человеко-машинных интерфейсов, реализующих диалог с пользователем на языках естественного общения. В настоящее время аппарат семантических грамматик используется для построения интерфейсов в ряде коммерческих систем, в том числе — в известной системе XCALIBUR, широко использующейся в структурах информационно-аналитического обеспечения органов государственного управления. Для представления семантических грамматик использовались различные формальные системы, включая расширенные сети перехода и расширенные грамматики непосредственных составляющих. Дальнейшее развитие этого подхода потенциально способно решить проблему естественноязыкового взаимодействия с компьютерными системами, что в сочетании с системами распознавания речи обеспечит возможность более удобного управления процедурами поиска и востребования информации, что особенно важно для информационного обеспечения процессов управления системами, обладающими высоким динамизмом.
Перечисленные методы широко используются при анализе и прогнозировании развития социальной ситуации, в PR-технологиях и многих других отраслях, связанных с оцениванием проявления человеческого фактора в политической и экономической сфере жизни общества. В настоящее время существует несколько аналитических программных продуктов, использующих сходные методы в интересах анализа и управления рынками, коллективами, большими группами людей. Стоимость подобного программного обеспечения достаточно высока, а использование их является прерогативой специалистов высокого уровня, результаты работы которых непосредственным образом сказываются на стратегических аспектах управления.
1.5 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ СИСТЕМНОГО АНАЛИЗА КАК МЕТОДОЛОГИЧЕСКОГО ЯДРА АНАЛИТИКИ
Первое, что следует подчеркнуть — это необычность методологии системного анализа: наряду со специально созданными для него
детализированными и строго формализованными процедурами, в его рамках используются и нестрогие методы. При этом предполагается, что решение о выборе таких методов принимается взвешенно, как правило, обусловлено невозможностью однозначного количественного описания систем и объектов, и что для их изучения необходимо прибегать к неформализованным, качественным методам анализа. Именно это имелось в виду В.Н. Садовским, когда он определял системный анализ как «особый тип научно-технического искусства, приводящего в руках опытного мастера к значительным результатам и практически бесполезного при его механическом, нетворческом
52
применении» .
В системном анализе могут быть выделены следующие основные направления:
- философское;
- математическое;
- управленческое;
- информационное;
- прикладные аспекты.
Достаточно часто при рассмотрении данного феномена наблюдается размытость методологических и методических подходов, большой разброс идей. За исключением использования слова «система», многие работы в данной области ничем не отличаются от обычных исследований в традиционных областях философии, математики, управления. О едином подходе к системному анализу в рамках учебных изданий также говорить достаточно тяжело. Наше мнение состоит в том, что аналитика является самостоятельной научной дисциплиной, ядром которой является системный анализ, имеющий свою собственную теорию, разработанный специфический формально-логический аппарат и особые методы для решения задач практики.
Прежде чем перейти к рассмотрению методологии системного анализа, следует обратиться к классификации систем, являющихся предметом его изучения. Всякая классификация условна, по этой причине мы выделим несколько наиболее существенных для изложения материала классификационных критериев (памятуя о том, что может быть предложено множество других — не менее обоснованных — классификаций). Итак, введем следующие классификационные критерии и классы:
- критерий однородности (однородные или гомогенные системы и неоднородные или гетерогенные);
- критерий разложимости (разложимые38 на компоненты или, собственно, системы и неразложимые — элементы) — здесь важно понимать, что всякая декомпозиция — это процесс целенаправленный, исследователь может не иметь намерения расщеплять систему далее, а во главу иерархии
54
поставить именно тот элемент, который соответствует цели исследования ;
- критерий гносеологической сложности, связанный со сложностью процесса познания системы, проявляющийся на этапе исследования (обычные39, большие, сложные, сверхсложные системы);
- критерий онтологической сложности, связанный с бытийным аспектом системы (структурная сложность, функциональная сложность, кибернетическая сложность, поведенческая сложность и т. д.);
- критерий эргатичности (с участием человека или эргатические системы и без участия человека или техногенные системы);
- критерий непрерывности (системы с непрерывными состояниями и системы с дискретными состояниями);
- критерий количества состояний (дискретные системы с конечным числом состояний и с бесконечным числом состояний);
- критерий детерминированности (системы детерминированные и недетерминированные);
- критерий определяющих закономерностей (социальные, биологические, физические, химические и т. д.).
Как видно из некоторых пунктов классификации, системный подход связан с понятием целесообразности, в том числе — целесообразности и допустимости введения некоторых пределов обобщения и редукции. При изучении систем их сначала выделяют как некое целостное образование из среды, обращая внимание на сохранение существенных для анализа свойств, а позже — выделяют ее существенные компоненты и структуру их взаимодействия, характеризующую интегральные свойства системы. В равной степени опасны и чрезмерное агрегирование элементов системы, и чрезмерная детализация описания системы. В одном случае — теряются существенные свойства, а в другом — исследователь «тонет» в обилии свойств и параметров, не получая при этом ощутимого выигрыша ни в точности, ни в адекватности.
Существует определенный круг задач в области управления, где применение системного анализа наиболее эффективно. К числу таких задач относятся задачи, связанные со стратегическим управлением.
В России основные работы по данному направлению осуществляются в ряде институтов Российской Академии Наук (Институте системного анализа, Институте проблем управления и других), МГУ им. М.В. Ломоносова, Российской академии государственной службы при Президенте РФ и ряде других учреждений. За последние годы были проведены представительные научные форумы в рамках деятельности Международного комитета по общим системах — общественной организации, которая провела в 1996-99 годах ряд научно-практических конференций «Анализ систем на пороге XXI века», материалы которых были опубликованы и способствуют утверждению системного анализа как основы для современного научного мышления. В основании рассматриваемого в последние годы представления о системах лежат не только структура и материальные элементы, а процесс, определяющий ее сущность и задающий ее целостность. В одних случаях это будет процесс функционирования, в других — процесс развития, в третьих — их единство40
- то есть динамическое единство элементов и отношений.
Современная ситуация характеризуется тем, что назрела необходимость освещения основных разделов системного анализа с единых методологических позиций и, главное, доступно для специалистов среднего уровня. В настоящее время теория системного анализа усложнилась настолько, что основная масса управленцев и технической интеллигенции оказалась не в состоянии оперировать ее категориями и методами. Порой не предпринимается никаких усилий, направленных на повышение эффективности деятельности в различных сферах из-за боязни «высоких теорий», приводящей к полному отказу от опоры на теорию вообще. Нередко руководство предпочитает метод проб и ошибок и иные эмпирические подходы.
Зачастую реальные процессы формирования, развития и согласования ключевых понятий аналитики в ходе решения конкретных прикладных проблем далеки от привычных теоретических идеализаций, так многие методологические положения аналитики были сформулированы в ходе объяснения причин затруднений в практической деятельности и в процессе генерации новых подходов для их преодоления.
Примером использования такого подхода может служить коллективная работа сотрудников Института проблем управления РАН во главе с И.В. Прангишвили41. В ней предложен ряд подходов, методов, частных технологий, рекомендуемых для использования в индивидуальных и коллективных творческих процессах решения научно-прикладных задач и анализа сложных проблемных ситуаций. В их работе доказывается, что схемы и общие понятия, которые воплощают в себе научные знания и опыт, в процессе мышления могут использоваться и для целенаправленного порождения новых знаний, и для улучшения качества имеющихся. В ходе деятельности этого коллектива сформировался схемный подход к решению творческих задач в области научной деятельности и практики проектирования и испытаний программных средств и систем. В основе схемного подхода лежат, с одной стороны — научные знания и опыт решения задач, а с другой — психологические механизмы схемно-понятийного мышления, выполняющие функции представления знаний, оценки их качества и переноса знаний на новые задачи. На основе схемного подхода разработаны и проверены в научноприкладной деятельности систематические методы решения творческих задач в области информатики, управления, начиная от задач практического проектирования и вплоть до разработки теоретических моделей, специализированных теорий, методов, формализованных языков.
Мощный толчок к развитию системный анализ получил в ходе решения прикладных задач стратегического управления. Например, так было в США при решении проблем управления на уровне корпораций, на государственном уровне — тогда были реализованы системы ПАТТЕРН42, МИРАЖ-75 и другие.
Примерами организационных решений, связанных с применением методологии системного анализа и стимулировавших его развитие, могут служить внедрение в США системы ППБ (система Планирования, Программирования и разработки Бюджета)43, принятие руководством Японии закона о технополисах, введение элементов государственного регулирования технологической структуры экономики во Франции и другие.
Аналитическая деятельность всегда связана с выбором — так или иначе, итогом ее является некоторое решение, принимаемое как итог анализа некоторого набора данных. В рамках системного анализа существует специальный раздел, касающийся вопросов приятия решений в условиях так называемого уникального выбора. Ситуация уникального выбора характеризуется тремя необходимыми элементами: существованием проблемы, требующей разрешения; наличием человека или коллективного органа, принимающего решение и набором альтернатив, из которых осуществляется выбор. В ситуациях, характеризующихся одинаковым или сходным набором альтернатив, лицо, принимающее решение, начинает использовать повторяющиеся управленческие решения — происходит закрепление стереотипа. В этом случае можно говорить о том, что руководитель пренебрегает ситуацией выбора, выбор для него перестает существовать. Однако, очевидно, что абсолютная повторяемость ситуации возможна лишь в техногенных системах, реальные же системы существенно сложнее — для них характерна уникальность набора альтернатив, характеризующихся:
- многокритериальностью выбора (анализ ситуации несводим к операции получения одной универсальной оценки);
- неполнотой знаний о системе (в частности — о полноте перечня показателей качества и альтернатив);
- несопоставимостью отдельных показателей качества (проблема согласования размерности);
- наличием субъективизма в оценках качества и другие.
Для решения таких проблем часто прибегают к методикам оценки рисков, что позволяет согласовать размерность показателей рисков, перейдя к вероятностным оценкам. При этом риск интерпретируется не только как цена ошибки, но и как вероятность того, что цель не будет достигнута или что неучтенными при совершении выбора осталось некоторое число вариантов. Однако не каждый специалист по управлению в состоянии самостоятельно исчислить риски или располагает временем для этого — для этой работы чаще всего и привлекаются консультанты и эксперты. Задачей таких специалистов является структуризация проблем, квалифицированная оценка пространства альтернатив — то есть информационное обеспечение процесса принятия решения конкретным руководителем. Здесь работает принцип разделения ответственности, значение которого трудно переоценить.
Существует целый ряд подходов к сравнению альтернатив. При этом проблема выбора конкретного метода нередко сама заслуживает проведения отдельного исследования. К числу наиболее мощных подходов обычно относят следующие:
1. Метод стоимость-эффективность, разработанный и впервые примененный в США при оценке военно-политических и военно-технических проблем. При его использовании требуется дать экономическую и политическую оценку различных вариантов того или иного военнотехнического проекта, а затем рекомендовать наилучший на основе анализа, включающего в себя как моделирование на ЭВМ, так и учет субъективных суждений экспертов. Анализ осуществляется для нескольких вариантов: 1) максимальная эффективность при заданной стоимости; 2) минимальная стоимость при заданной эффективности; 3) максимальное отношение эффективности к стоимости. Этот метод объединяет методологию исследования операций и экспертных оценок. Однако по мере снижения доли объективных оценок, получаемых в ходе моделирования, данный метод дает резкое ухудшение качества решений.
2. Методы многокритериальной оценки альтернатив, связанные с нахождением значения некоторой функции полезности (количественной оценки полезности каждой из рассматриваемых альтернатив). Выделяются следующие группы методов:
- аксиоматические методы, когда определяются некие правила количественной оценки полезности при наличии ряда требований к ним, именуемых аксиомами (соответствие сформулированных правил аксиомам позволяет математически обосновать существование функции полезности и ее свойства, в том числе — непрерывность);
- прямые методы, когда общая полезность задается как функция от оценок по отдельным видам критериев (например, задается численная оценка веса каждого критерия, после чего определяется сумма взвешенных оценок, являющаяся показателем полезности);
- методы компенсации, когда для альтернатив, характеризующихся различными наборами оценок, устанавливаются некоторые правила компенсации, позволяющие отказаться от рассмотрения скомпенсированных оценок, то есть снизить размерность задачи;
- методы порогов несравнимости, когда задаются некие правила сравнения пар альтернатив, благодаря чему пространство альтернатив структурируется, приобретает упорядоченный вид, что упрощает процесс выбора.
— человеко-машинные методы применяются при принятии решений при наличии соответствующей количественной модели поведения управляемого объекта или процесса.
В общем случае выбор методов не является произвольным и зависит от специфики системы, целей управления, а также допустимой вероятности ошибочного решения. При этом следует учитывать ряд важнейших особенностей систем, определяющих то, каким образом система реагирует на различные изменения.
Важно учитывать, что смена состояний системы сопровождается Л I гА не только обязательными изменениями ее интегральных llvKl показателей, но иногда приводит и к структурным изменениям.
---‘ При этом система может сохранить ряд своих наиболее важных
характеристик, останется целостной и сохранит свое место в иерархии систем. Смена состояний, сопровождающаяся структурными изменениями, получила название кризиса. Кризис не ведет к разрушению системы, но ведет к ее существенной перестройке или перенастройке на новые условия существования. Для большинства систем кризис есть механизм обновления, адаптации к экстренным условиям — таковы экономические кризисы, сопровождающиеся структурной перестройкой экономики. Более глубокие изменения системы получили называние катастрофы. Катастрофа
— это изменение, навязанное системе извне. Адаптация здесь существует лишь как механизм сохранения системы с потерей части существенных свойств. Еще более радикальные изменения системы называются катаклизмом. Катаклизм
— это, по существу, фаза разрушения системы.
Иначе говоря, сложные системы в восприятии аналитика ведут себя дискретно — иначе анализ становится невозможным (такова специфика аналитической деятельности — процедуры анализа состояния системы лишены смысла, если отсутствуют критерии различения состояний). Сложным системам присущи некие квазистационарные состояния, когда их реакции на изменения окружающей среды (управляющие воздействия) просты, однообразны. При моделировании поведения сложной системы, находящейся в квазистационарном состоянии, ее можно описать довольно простыми моделями. Однако граничные режимы (так называемые точки бифуркации, когда система пребывает в состоянии неустойчивого равновесия) и сами переходные процессы, как правило, чрезвычайно трудно описать адекватно. Вернее, само состояние, соответствующее точке бифуркации, описано может быть достаточно точно, однако определение перечня и величин воздействий, достаточных для перехода системы в некоторое заданное состояние, представляет собой сложную задачу — здесь должен осуществляться учет действия случайных факторов и процессов, зарождающихся как в самой системе, так и действующих на нее извне.
Следует заметить, что информационно-аналитическая работа — это работа, в первую очередь, связанная с решением задачи компенсации неполноты или избыточности данных о состоянии и процессах протекающих в системе и вне ее. Как нельзя более точно для описания проблем этого типа здесь подходит термин «наблюдаемость». Этим термином описывается ситуация наблюдателя (аналитика), в которой ему требуется, пребывая вне непосредственного контакта с фрагментом реальности, образующим систему, установить ее предыдущее, текущее или последующее состояние по доступным данным. Понятие наблюдаемости можно трактовать как возможность получать информацию о поведении системы и на ее основе предвидеть ее поведение в будущем.
Здесь уместна аналогия с пацаненком, вознамерившимся поживиться яблоками из чужого сада. Проблема наблюдаемости предстает перед ним во всей своей красе, когда он, пробираясь вдоль высокого щелеватого забора из досок, пытается определить: не ждет ли его за забором какая-нибудь каверза — вот кабы щели пошире, да досочки поуже (реденький штакетник был бы куда приятнее).
Поскольку проблема наблюдаемости в системном анализе доставляет аналитикам массу неприятностей, постольку в рамках системного анализа было разработано множество методов компенсации неполноты или избыточности информации, разнообразие которых может быть сведено к перечню из четырех базовых методов. К их числу могут быть отнесены такие методы, как морфологический анализ (структурный или топологический анализ), метод аналогий, методы экспертных оценок, методы моделирования. Каждый из методов может использоваться на различных этапах исследования проблемной ситуации и характеризуется как различным начальным уровнем неопределенности, приемлемым для выбора того или иного метода, так и уровнем неопределенности, получаемым после применения этих методов.
Морфологический анализ (структурный или топологический анализ) предполагает систематизированное изучение объекта с целью выявления его структуры и основных закономерностей развития. Есть одна неприятная особенность термина «морфологический анализ» — он неоднозначен: в разных случаях и разных научных дисциплинах он определен настолько различными способами, что удивляешься, как ученым удается понимать друг друга. Именно поэтому потребовалось в скобках добавить еще два уточняющих слова, чтобы акцентировать внимание на наиболее существенной особенности именно этого метода.
Особенность морфологического (структурного, топологического) анализа заключена в том, что он исходит из постулата единства формы и содержания. Предполагается, что если система выглядит как нечто известное снаружи и ведет себя аналогичным образом, то внутреннее ее строение и состояние ее элементов подобно известному или наоборот — если известно строение, то может быть предсказано поведение и внешний вид. При этом структура системы устанавливается на основе изучения и описания комплекса наблюдаемых каналов обмена массой, энергией и/или информацией, связывающих отдельные элементы и компоненты системы. Сочетание, взаимное расположение элементов и каналов (их топология или пространственная структура) и информация, передаваемая в них, формируют некий «облик» системы, представление о ее внутренней организации — то есть — морфологию. На этом этапе наблюдение, описание и классификация морфологии системы являются методом познания ее структуры и функциональной среды. Морфология системы позволяет исследователям отнести ее к конкретному типу или состоянию.
Большинство наук в своем развитии начинали именно с этого способа познания действительности. Достаточно вспомнить комичного энтомолога, кузена Бенедикта из книги Ж. Верна «Пятнадцатилетний капитан» — этот эксцентричный ученый занимался именно морфологическим анализом, пересчитывая лапки африканским жукам. Применительно к предмету научных изысканий кузена Бенедикта это занятие носило название «систематизация по К. Линнею».
По существу, на основе морфологии прогнозируются непосредственно не наблюдаемые в данное время явления. Структурный (морфологический) метод является основой целого ряда приложений, где разделение системы на элементы по тем или иным причинам невозможно или нежелательно (например, в медицине, где по внешним проявлениям делаются выводы о состоянии организма в целом и отдельных его органов). Для получения положительного эффекта от применения структурного (морфологического) метода крайне важно установить состав системы, связи и функции элементов системы и их реакции на те или иные воздействия. Это дает возможность, располагая схемой причинно-следственных связей,
предсказывать поведение системы в целом в ответ на те или иные воздействия. Недостатком морфологического (структурного) анализа является его ориентация на статическое описание систем.
Метод аналогий основан на установлении систем-аналогов, кибернетическая модель которых известна. Отправным пунктом всех суждений о поведении системы в этом случае служит предположение, что поведение изучаемой системы будет подобно поведению системы, рассматриваемой в качестве аналога. Метод аналогий широко применяется в естественных и общественных науках, военном деле. Следует заметить, что подобие может рассматриваться не
только между исследуемой системой и системой-аналогом, но и рассматривается и вариант самоподобия, или автокорреляции, когда предшествующее поведение системы рассматривается в качестве эталона. Здесь широко распространены методы математической экстраполяции, корреляционного анализа и иные. Однако сфера применения метода ограничена теми приложениями, где возможно существование аналогов или прецедентов. Заметим, что система, прошедшая стадию кризиса, не всегда может быть рассмотрена в качестве полного аналога, так как уже адаптировалась к ряду возмущающих воздействий, то есть, обладает новыми свойствами.
Метод экспертных оценок основан на анализе мнений и выводов различных экспертов о прошлом, настоящем или будущем состоянии изучаемого объекта. Важной проблемой являются способы организации экспертиз и согласования мнений специалистов. В настоящее время сформулирован целый ряд методик, направленных на усовершенствование различных аспектов этого метода — начиная от методик организации опроса, заканчивая методиками обработки результатов, однако основным недостатком этого метода остается высокий субъективизм оценок.
Моделирование является важнейшим методом и инструментом системного анализа. Этот метод обладает массой достоинств и характеризуется множеством различных подходов к моделированию. С точки зрения наиболее общей классификации модели целесообразно подразделять на статические и динамические — прочие же параметры классификации, как правило, диктуются спецификой моделируемых систем. Основополагающим понятием здесь является понятие модели. Приведем ряд определений, раскрывающих сущность этого понятия.
» Ç Модель — это система, исследование которой служит средством
tet
для получения информации о другой системе6". Данным
определением указывается на иерархичную организацию процесса познания. Во-первых, модель сама выступает в качестве системы, что является предпосылкой для дальнейшего развертывания системного подхода к моделированию, а во-вторых, модель — есть средство получения информации о некоторой системе (прототипе модели).
Модель — это некоторая промежуточная вспомогательная система (естественная или искусственная, материальная или абстрактная), обладающая следующими основными свойствами:
- пребывает в объективном соответствии с познаваемым (изучаемым) объектом (системой);
tf
- замещает в определенном отношении данный объект (систему);
- дает при этом информацию о данном объекте, получаемую на основе исследования данной модели и соответствующих правил перехода модель
— объект (прототип)61.
Применение в качестве инструмента познания методов, основанных на применении моделей, стал одним из важнейших этапов в развитии науки, и означал переход от сугубо эмпирических к эмпирико-абстрактным научным методам. Однако общая теория моделирования все еще пребывает в стадии формирования. Как было указано ранее, функцией моделирования является идеальное или материальное замещение изучаемого оригинала. В настоящее время существует масса различных методов моделирования, более подробному рассмотрению которых внимание будет уделено ниже.
Для успешного проведения системных исследований очень важно установить тип (класс) системы, с которой предполагается осуществлять те или иные манипуляции. Дело в том, что от типа системы зависит то, является ли допустимым тот или иной метод ее моделирования, какое подмножество управляющих воздействий пригодно для исследования поведения системы с целью построения кибернетической модели и т. д. Ранее мы указывали на то, что специфика системы в первую очередь определяется ее интегральными характеристиками, проявляющимися у системы как целостного объекта, рассматриваемого в качестве компонента системы более высокого уровня. Рядом исследований подтверждено, что в этом отношении наиболее показательны ее структурные свойства, то есть ее компонентный состав и архитектура (топология) связей.
Ранее нами была приведена достаточно общая классификация систем, имевшая следующий вид:
- системы гомогенные и гетерогенные;
- системы, разложимые и неразложимые на элементы;
- системы, сложные с гносеологической точки зрения;
- системы, сложные с онтологической точки зрения;
- системы эргатические и техногенные;
- системы с непрерывными и дискретными состояниями (с конечным и бесконечным количеством состояний);
- системы детерминированные и недетерминированные;
- системы социальные, биологические, физические, химические и т. п.
Недостатком этой классификации является то, что в ней мы оперировали термином «сложная система», так и не дав его четкого определения. Где же проходит раздел между сложными и «несложными» системами? — Различные исследователи дают на этот вопрос сильно разнящиеся ответы ... Но все же, мы попытаемся уловить общее в этих определениях.
2.1 ПОНЯТИЕ СЛОЖНОЙ СИСТЕМЫ
Первым и наиболее распространенным определением понятия «сложная система» является. определение, которого никто не давал. В большинстве случаев специалисты пользуются понятием «сложная система», попросту не определяя его — апеллируя к здравому смыслу и житейскому опыту. К сожалению, из этого умолчания рождается масса недоразумений и конфликтов, как среди «системщиков», так и среди тех, кто пытается использовать теорию систем для решения практических задач.
Другой подход демонстрируют специалисты в области общей теории систем, определяющие сложные системы, как системы, в которых в качестве хотя бы одного из компонентов выступает человек. Соответственно, в этот разряд попадают все системы, в которых реализуется функция целеполагания.
Специалисты в области системной инженерии или системотехники используют иной критерий сложности. Для них сложными системами являются такие системы, в качестве хотя бы одного из компонентов которых выступает система. При этом к системам, выступающим в роли элементов системы высшего уровня предъявляется требование неоднородности — без этого система не может считаться сложной. В противном случае система является либо обычной (система, как таковая), либо может быть отнесена к классу больших систем (но не сложных). Этот подход более характерен для технических приложений системного анализа.
Специалисты в области биологии, медицины и иных наук, связанных с изучением живых организмов, склонны рассматривать в качестве сложной системы любую организованную живую материю или совокупность взаимосвязанных организмов. Такой критерий сложности также является оправданным.
Некоторые исследователи склонны считать сложными системы, для описания которых требуется использовать многомодельные методы исследований и многокритериальные методы оценивания эффективности.
Собственно, это замаскированная попытка определить сложность по образцу первых двух из числа уже приведенных определений.
Еще одна группа исследователей в качестве критерия сложности использует наличие системной динамики (невозможность описать систему с помощью статической модели — по существу переход к тому же многомодельному исследованию).
К числу свойств сложных систем, которые могут рассматриваться в качестве «показателя сложности» могут быть отнесен целый ряд свойств, из
которого наиболее весомыми являются следующие:
62
- свойство эмерджентности ;
- свойство отставания управления от специализации;
- свойства способности к адаптации, самосовершенствованию, самовоспроизводству, средопреобразованию.
- С Эмерджентность — это новоприобретенное свойство системы, ЛрТ возникновение которого не может рассматриваться как итог ^ ^ I примитивного суммирования показателей ее элементов, а является результатом возникновения системных связей и адаптивного перераспределения функций между элементами. Одним из альтернативных названий свойства эмерджентности является название «свойство организованной сложности». Характеристики всякой системы занимают одно из «промежуточных положений» в пространстве от примитивной физической аддитивности (аналог векторной суммы) до абсолютной целостности (эмерджентности).
Функционирование сложных систем связано с процессами развития систем, в том числе — с процессами развития специализации элементов и совершенствования координации их деятельности. Еще одним интересным свойством сложных систем является свойство отставания управления от специализации в сложных системах. В связи с этим был сформулирован закон необходимого разнообразия (закон Эшби), гласящий, что для того, чтобы некоторая система могла управлять другой системой, она должна обладать сложностью не меньшей, чем сложность управляемой системы.
Объединение в одну группу таких свойств, как способность к адаптации, самосовершенствованию, самовоспроизводству и преобразованию среды функционирования не случайно, поскольку они имеют общий корень — сложные системы способны создавать внутри себя информационную модель себя и окружающей среды.
Существуют различные критерии оценки сложности, в том числе — в кибернетике, социологии, политологии — везде, где исследователь, сталкиваясь с проблемой размерности, ищет выход в построении некоторым образом организованной совокупности абстрактных объектов, рассмотрение которых в качестве единого целого обеспечивает возможность «изолированного» решения задач, относящихся к некоторому уровню в общей иерархии задач исследования.
Таким образом, мы вышли на некоторую общую закономерность:
понятие сложной системы связано с иерархическим устройством самой системы и/или моделей, используемых для ее описания. Небольшой комментарий по поводу употребления «и/или» — в ряде случаев прием «иерархизации» используется исключительно на модельном уровне — такой подход может быть выражением специфики мышления и способа организации целей субъекта исследований. В этом случае сложность — не есть атрибут системы, а лишь выражение способа ее рассмотрения, принципа упорядочения целей исследований или результат проявления действия ограничений на допустимую для исследователя и его инструментария размерность задач.
_ Г Таким образом, мы можем перейти к этапу формулирования своего, ЛЛТ специфического, определения сложной системы. Авторы считают, ^ ^ I что сложная система — это система, для рассмотрения которой в контексте конкретной проблемной ситуации необходимо использовать прием иерархического упорядочивания
\ 63
ее элементов в интересах понижения размерности решаемых задач .
А поскольку системный анализ имеет в качестве предмета исследований сложные системы, можно утверждать, что системный анализ может рассматриваться в качестве средства понижения размерности задач, структурирования целей. Системный анализ — это инструмент, позволяющий исследователю преодолеть ограничения на допустимую размерность задач, ядром которого является функция целеполагания исследователя. В зависимости от целей анализа один и тот же объект исследования может рассматриваться либо как некая неделимая сущность, либо как системное единство его частей.
Несомненно, что главной задачей системного анализа является получение модели, предельно адекватной объекту исследования. А уже на втором этапе, методом задания изменений внешних воздействий добиваются достижения необходимого отклика в поведении модели системы и транспонируют (переносят) его на объект исследования. При этом могут достигаться различные, подчас противоположные цели, и они могут быть как структурированными, так и абсолютно не связанными друг с другом.
2.2 МОДЕЛИРОВАНИЕ КАК МЕТОД ПОЗНАНИЯ
Коль скоро мы рассматриваем системный анализ в качестве инструмента, а вернее комплекта инструментов научных исследований и решения прикладных задач управленческой деятельности, то прежде, чем этим комплектом воспользоваться, следует хотя бы поверхностно ознакомиться с описью комплекта. Что же входит в его состав?
Следует разделить все инструменты на две группы:
- неформальные методы;
- формальные методы.
Каждая из этих групп может быть подвергнута дальнейшему дроблению, однако на этом этапе мы не будем углубляться в дебри классификации, а остановимся на ее верхнем уровне.
Неформальные методы системного анализа преимущественно концентрируются на решении задач организации аналитической деятельности. Здесь широко используются методики, широко привлекающие знания, накопленные в отрасли гуманитарных наук (как наук о человеке, включая психологию и ее технические приложения, такие как инженерная психология). Важную роль здесь играет, например, когнитивная психология (раздел психологии, изучающий специфику познавательной деятельности человека). Здесь рассматриваются вопросы оптимального представления знаний, организации интеллектуального труда (от регламента рабочих сессий аналитиков до подбора состава рабочих групп, порядка проведения «мозговых штурмов»).
По мере развития средств вычислительной техники эта отрасль системного анализа получила в свое распоряжение мощные средства хранения и представления знаний, работающие, в том числе и в псевдо-трехмерном режиме отображения, средства телекоммуникационного обеспечения аналитической деятельности и иные инструменты, способствующие интенсификации интеллектуального труда. Некоторые авторы называют эту группу методов системного анализа методами, направленными на
64
активизацию использования интуиции и опыта специалистов .
Характерно, что, несмотря на свое название, неформальные методы отнюдь не бедны формальными процедурами. Здесь используются достаточно сложные статистические, теоретико-множественные и логические процедуры, обеспечивающие возможность перехода от многообразия субъективных оценок экспертов к взвешенным и аргументированным решениям, вырабатываемым на основе их анализа. Формальные средства, используемые на этапе обработки результатов рабочих сессий не менее сложны и изощренны, чем те, которые используются в других отраслях науки.
К числу неформальных методов относят:
- методы мозгового штурма;
- методы модерирования44 рабочих сессий и игротехники;
- методы экспертного анализа;
- метод Дельфи;
- метод сценариев;
- методы классификации и структуризации проблемной области;
- методы компактного представления данных (диаграммы и т. д.); методы календарного планирования и иные.
Формальные методы системного анализа внешне являют противоположность неформальным; оперируя строгой математической символикой, они мало походят на неформальные методы, находящиеся на противоположном полюсе системной теории. Абстрактные математические построения обеспечивают здесь не вспомогательные операции, а являются выражением сущности процессов, обеспечивая прогнозируемую точность и высокую объективность результатов исследования. Однако переход от неформальных методов к формальным — есть результат эволюции знаний о системе (да, и весь системный анализ, собственно, является инструментом поэтапного накопления и структурирования знаний, совершенствования кибернетической модели процессов и систем).
Отличительной чертой системно-кибернетической отрасли является возможность органичного сочетания в ее рамках строгих и нестрогих методов, возможность сочетания логико-лингвистических и аналитических методов описания предметной области. По существу, системный анализ — методологическая система, в рамках которой обеспечиваются условия для эволюции знаний и моделей (как их представления) в режиме, не исключающем возможность их применения уже на ранних этапах накопления знаний.
Формальные методы также именуются методами формализованного представления систем и включают в себя:
- аналитические методы;
- вероятностные и статистические методы;
- теоретико-множественные и логические методы;
- лингвистические и семиотические методы;
- графические и иные методы.
Переход от одной группы методов к другой осуществляется благодаря применению методик поэтапного структурирования знаний, благодаря применению которых знания о системе приобретают все более строгое выражение, а поведение системы — большую предсказуемость.
Большинству из нас знакомо то чувство облегчения, которое испытываешь, когда открыв текст на незнакомую, но важную для решения некоторого комплекса задач тему обнаруживаешь там четкое и ясное изложение сущности проблемы и предлагаемых методов ее решения. Постепенно углубляясь в чтение, часто не замечаешь, как легко и естественно укладываются в голове новые понятия, как давно и с радостью забытые формулы вновь наполнились каким-то смыслом. В чем дело? — А фокус в том, что изложение подчинено строгим композиционным правилам, сложность подачи материала дозирована и нарастает по достижении вами готовности к усвоению новых знаний, от вас не спешат отгородиться частоколом формул (за которыми часто скрываются прописные истины). Значит, вам повезло: автор является мастером композиции, он знает, как правильно выстроить иерархию знаний. Литературоведы утверждают, что большинство гениальных литературных произведений построено по круговой (или спиральной) композиции: читатель, как будто кружится на карусели, на каждом ее витке наблюдая, как разворачиваются события, узнавая о героях все новые и новые подробности. Таковы произведения Л.Н. Толстого, А.С. Пушкина и многих других классиков. Особенно ярко это погружение в слои реальности чувствуется в «Божественной комедии» Дантэ Алигьери (это не случайно — Данте был не чужд философии, да и предмет повествования был особый). Но вернемся к аналитике и системному анализу.
Какова связь между композицией и предметом нашего повествования? — Самая, что ни на есть прямая. Композиция — это один из способов организации (формализации) данных. Собственно, системный анализ — это тоже своего рода средство композиции, но только не в литературе, а в научноисследовательской, проектной и управленческой деятельности. Здесь системный анализ выступает в роли мощного инструментария
структурирования, формализации проблемных ситуаций, приводящий к их конструктивному упрощению. С этой целью синтезирована масса прикладных направлений системного анализа, ориентированных на решение узко специальных задач. Однако при их решении эти отраслевые направления придерживаются общих методологических принципов системного анализа, то есть оперируют органичным сочетанием как логико-эвристических
неформальных процедур, так и строгих математических моделей различных классов.
Системный анализ сочетает в себе использование неформальных и формальных методов анализа и синтеза, это сочетание достигается использованием таких системных теорий, как неформальный системный анализ и прогностика (ориентированные на применение процедур
эвристического характера, основывающихся на личном и социальном опыте аналитика), теория выбора и принятия решений (основывающаяся на теории предпочтений или полезности), теория сложных систем и многомодельных исследований, синергетика и теория иерархических систем, теория больших систем (основывающаяся на формальных процедурах агрегирования и декомпозиции). Перечисленные теории обладают специфическим формальным аппаратом, ориентированным на решение различных исследовательских задач. В одном случае — это инструментарий оценивания согласованности экспертных оценок, использование субъективных вероятностей, в другом — это строгие математические процедуры многокритериального выбора стратегий, в третьем — основной упор делается на логическом формальном аппарате...
Некоторые авторы, например — Б.А. Резников66, указывают на возникновение в рамках системной теории своеобразного феномена — обобщенного системного анализа, выделяя это направление из более обширной отрасли системно-кибернетических исследований. Этот взгляд можно считать более чем обоснованным — системный анализ давно выступает в роли инструмента интеграции разноплановых исследований, методологических подходов, выработанных в рамках частных научных отраслей и системного анализа. Более того, между теорией систем и кибернетикой трудно провести границу, четко разделяющую эти две отрасли научных исследований — обе науки тесно связаны с научным обеспечением процессов управления объектами и системами различного рода, обе используют сходные формальные средства... Различия проявляются преимущественно в том, на каком этапе происходит применение результатов исследований. Для системного анализа — это этап, непосредственно предшествующий этапу выбора управленческого решения, а для кибернетического исследования — этап непосредственного применения управляющего воздействия. Хотя в практике исследований эти этапы часто образуют замкнутый цикл, в котором реализуется принцип обратной связи по результатам исследований.
Вполне закономерно возникновение следующего вопроса: почему речь идет именно об анализе, если очевидно, что системный анализ методологически гораздо богаче, нежели любая научная отрасль, методом исследования которой является членение целого на части, ведь системный подход на различных этапах исследования предписывает как аналитические, так и синтетические процедуры. Причина этого состоит в терминологическом консерватизме науки, зачастую приводящем к удержанию в активном лексиконе ученых терминов не в их прямом, а в метафорическом значении.
Соответственно, термин «системный анализ» сейчас имеет иное наполнение, нежели на этапе его введения в тезаурус науки.
Чтобы убедиться в этом, рассмотрим основное содержание этапов системно-кибернетического исследования. Достаточно бегло просмотреть наименования этапов, чтобы убедиться в том, что о строгом разделении анализа и синтеза в системных исследованиях и речи быть не может. Итак.
1. Анализ и синтез целей. Как видим, здесь все тот же круговорот «инь» и «янь» — анализ имеет конструктивную направленность. Обычно целевой анализ начинается с синтеза основной цели (или с анализа проблемной ситуации?). Основная цель раскрывается путем указания подчиненных ей главных целей (аналитический — декомпозиционный этап). В сложных задачах системного анализа, решение которых зависит от многих взаимосвязанных элементов, целесообразным является дальнейшее развертывание главных целей в многоуровневое дерево целей и задач (этому вопросу будет уделено внимание позже).
2. Анализ ограничений различного рода (как ресурсных, так и иных). Характерно, что анализ целей и ограничений представляют собой взаимоувязанные процессы — задачи системного анализа решаются в условиях различного рода ограничений, налагаемых обстановкой. При этом цель должна быть достигнута именно в существующих условиях (впрочем, в число целей могут быть включены и цели, связанные с необходимостью модификации условий). Ограничения могут иметь различный характер, в том числе и различную степень жесткости. Из числа всех ограничений, несомненно, наиболее жесткими ограничениями являются ресурсные ограничения (если не считать ограничений фундаментального характера, например — продиктованных законами физики). Однако, и анализ ограничений не может протекать без стадии синтеза — прежде должна быть создана модель системы и/или ситуации (степень формализации этой модели может быть минимальной — в ряде случаев достаточно и концептуальной модели, сформулированной на языке естественного общения). На этом этапе модель выступает в роли инструмента, посредством которого могут быть выражены и/или выявлены противоречия, существующие в предметной области.
3. Синтез альтернативных стратегий. Альтернативные стратегии синтезируются с учетом объективно существующих и/или введенных на основе субъективных оценок ограничений и представляют собой в той или ной степени детализированные последовательности действий. На этом этапе стратегии, гипотетически позволяющие остаться в рамках установленных ограничений, включаются в множество допустимых альтернатив — пока без учета предпочтений.
4. Синтез критериев предпочтения. Критерий предпочтения — это некое правило, определяющее порядок выбора предпочтительной альтернативы из множества допустимых. Такое правило лишь в простейших случаях бывает единственным — как правило, критериев несколько. В процессе синтеза критериев предпочтения устанавливается то множество критериев, которое отвечает поставленным целям и обеспечивает реальную сопоставимость альтернативных стратегий. На этом этапе задачей аналитика является синтез критериев объективного оценивания, сводящих к минимуму субъективизм оценок. В результате синтезируется комплексный критерий выбора альтернативы, интегрирующий в себе отдельные критерии предпочтения.
5. Синтез и анализ модели. Исследование альтернативных стратегий, как правило, производится на моделях (увы, не всегда это возможно, да и не всякий руководитель в состоянии оценить преимущества моделирования перед непосредственным действием). Как правило, для решения задач многокритериального оценивания требуется использовать несколько разнородных моделей, отражающих различные аспекты поведения системы и ее элементов. Кроме того, здесь мы снова сталкиваемся с проблемой изоляции процессов: с одной стороны — модель уже должна существовать (иначе невозможен синтез критериев), с другой — модель необходимо синтезировать. Но есть одно обстоятельство: в одном случае речь идет о модели системы и ситуации в целом, а в другом о характере ее изменения в ходе реализации альтернативной стратегии (по существу, модель должна быть кибернетической — то есть, учитывать свойства системы с точки зрения анализа управленческих стратегий). На этом этапе оценивается эффективность реализации некоторой альтернативы и производится выбор оптимальной (или близкой к оптимальной) альтернативы из множества допустимых.
6. Собственно, моделирование. На этом этапе модель используется не в качестве объекта синтеза и анализа, а как инструмент исследования. То есть, модели полагаются адекватными и предполагается, что дальнейшие итерации по совершенствованию моделей нецелесообразны. Модели используются в качестве систем, замещающих заданные фрагменты реальности — на них проводятся вычислительные и логические операции, выражающие выявленные на предшествующих этапах отношения и зависимости, определяются значения критериев выбора, обеспечивающие возможность сопоставления альтернативных стратегий. Речь идет о вариации
исходных параметров и логики, отображающей стратегию управления. В результате чего формируется блок исходных данных, включающих значения и оценки критериев выбора, рисков и т. п. данных, используемых на заключительном этапе. По завершении этого этапа могут быть получены ответы на вопрос «А что, если.?»
7. Синтез рекомендаций. Это заключительный этап системного
анализа, на котором формулируются выводы из проведенного исследования и указания по реализации его результатов. Именно здесь реализуется золотое правило аналитики принцип разделения ответственности — для обеспечения качества анализа аналитик не должен находиться под грузом ответственности выбора управляющего воздействия. Его ответственность простирается на сферу, связанную с обеспечением качества и полноты проведенного анализа, качества представления (оформительский аспект) аналитических материалов. На этом этапе знания, полученные в результате проведения всего цикла процедур системно-кибернетического исследования, должны приобрести точное и наглядное выражение. Лицу, принимающему решение (осуществляющему выбор альтернативы), должны быть предоставлены аргументированные выводы и рекомендации в той форме и тех терминах, в которых он способен их воспринять.
Очевидно, что системный анализ проходит по схеме от этапа применения неформальных методов, через этап применения формальных — вновь к неформальным. Как видим, этапы анализа и синтеза чередуются, в ряде случаев процесс протекает циклически: результаты, полученные на предыдущем этапе работы, выступают в качестве исходных данных для последующего, после чего могут быть переданы на вход предыдущего этапа для уточнения данных и урегулирования выявленных противоречий. Особенно часто это происходит на начальных этапах (анализ и синтез цели на фоне существующих ограничений) и на этапах моделирования и принятия решения.
Можно говорить о существовании некоего обобщенного алгоритма проведения системно-кибернетического исследования, относительно которого могут допускаться незначительные отклонения, но в целом сохраняющем свою структуру для большинства приложений системного анализа. Алгоритм, приблизительно отображающий схему проведения системно-кибернетического исследования, представлен на рисунке приведенном ниже (рис. 2.1).
Начало
Моделирование, | Вариация исходных | ||
производство | данных и логики, | ||
вычислительных | отображающей | ||
операций | стратегию |
Анализ проблемной ситуации, синтез основной и частных целей
Итак, мы вновь обращаемся к понятиям модели, формальной системы, поскольку без них системное исследование приобретает черты донаучного исследования (например, алхимии, хотя даже на этом этапе развития методологии науки знаковые модели уже завоевывали признание в научных кругах). Достаточно вспомнить астрологию, по сей день оперирующую символикой и методологией, разработанной в средние века.
Следует признать, что астрология — это тоже весьма интересная ; отрасль знания, методологию которой следовало бы изучить многим * экспертам-аналитикам. Речь идет не о способе познания мира, а о методиках синтеза разрозненных фрагментов «знания» и методиках
■К"?'
представления аналитических выводов45. Метод синтеза сложных знаковых моделей и моделей интерпретации здесь начал применяться намного раньше, чем где бы то ни было, а арсенал современной астрологии пополнился за счет применения методик ТРИЗ (теории рационализации и изобретательства, активно использующей комбинаторные методы для синтеза нового знания — об этом, как всегда, позже). Как и всякая авантюрная сфера деятельности, астрология привлекает и высокоинтеллектуальных специалистов, готовых в числе первых принять на вооружение последние достижения науки, да и которые сами в состоянии разработать весьма эффективные интеллектуальные технологии. Многим доводилось слышать о Дельфийском Оракуле, но не все знают, насколько мощная и разветвленная сеть сбора информации и информационно-аналитическая служба обеспечивала высокий «рейтинг» очередного Оракула, выступавшего в роли средства доведения результатов анализа. Интересно, что и сейчас существует немало примеров того, как астрологи активно вмешиваются в политическую сферу жизни общества, а к их мнению прислушиваются ведущие политики. Это и неудивительно — часто аналитики, утратив надежду получить влияние на «сильных мира сего» рациональным путем, переходят к публичной деятельности, демонстрируя поразительную точность прогноза. Кроме того, астрология и астрологи часто используются в качестве инструмента проведения информационно -психологических акций (например, формирования тревожных ожиданий в обществе) — благо, что современная массовая культура создает благодатную почву для этого.
Однако, вернемся к моделям... Модели играют в жизни человека чрезвычайно важную роль — достаточно сказать, что в основе поведения человека, как системы разумной, лежит субъективная модель мира, создаваемая им на протяжении всей жизни на основе анализа личного и социального опыта. Заметим, что анализ этого опыта, в свою очередь, осуществляется на основе ранее усвоенных (образующих аксиоматику модельного мира) знаний. Наблюдая кадры, на которых запечатлены террористические акты, совершаемые террористами-смертниками, мы, сегодняшние, не можем понять: как человек в здравом уме может решиться на такой шаг. Журналисты часто описывают экстремистов в тех же терминах, что и параноиков, но разве их поступки так уж необъяснимы? Давайте просто вспомним: так ли давно мы воспринимали подобные акты, как отчаянную попытку угнетенного человека изменить этот мир к лучшему? Очевидно, что модели мира, которыми мы оперировали всего 20 лет назад, оценивая поведение этих людей, были совершенно иными, нежели нынешние.
Правда, между теми моделями, которые используются человеком в его повседневной деятельности и моделями, используемыми в системных исследованиях — дистанция огромного размера. Но все же.
Какими бывают модели? И какие средства формализации используются для представления знаний о системах?
Для начала еще раз обратимся к понятию модели и ее свойствам. Итак...
» Ç Модель — это совокупность логических, математических или ЛОТ иных объектов, связей и соотношений, отображающих с | необходимой или предельно достижимой степенью подобия некоторый фрагмент реальности, подлежащий изучению, а также описание всех существенных свойств моделируемого объекта. Можно рассматривать различные аспекты подобия между моделью и фрагментов реального мира:
- физическое подобие, когда модель и объект имеют близкую физическую сущность;
- функциональное подобие, когда сходны их функции;
- динамическое подобие, проявляющееся в сходстве динамики изменения состояния объекта;
- топологическое подобие, проявляющееся в сходстве пространственной (в широком смысле, в том числе — организационной) структуры и иные.
Соответственно различают физические, функциональные, динамические, топологические и иные виды моделей. Кроме того, по принципу реализации выделяют натурные, полунатурные, имитационные и теоретические модели. В зависимости от обстоятельств (целей, условий) в аналитической практике используются разные модели.
Очевидно, что степень формализации моделей может варьироваться в широких пределах: от моделей, не подвергнутых процедурам формализации, до моделей строго формальных. Выбор формальных средств, используемых для представления моделей, не является произвольным и определяется двумя аспектами-компонентами модели:
- моделью интерпретации или интерфейсным компонентом
(характеризующим процесс двунаправленного взаимодействия с
потребителем, в роли которого может выступать как человек, так и автоматизированная система, реализующая функции ввода и считывания данных);
- сущностным компонентом (характеризующим специфику моделируемого фрагмента реальности, закономерности его функционирования, структуры и т. п.).
Если взглянуть на любую модель с точки зрения, характерной для специалиста в области разработки программного обеспечения, знакомого с объектным подходом к программированию, то модель предстанет в виде совокупности инкапсулированных (помещенных одна в другую) моделей. При этом модель интерпретации (адаптации, интерфейса) представляет собой внешнюю оболочку модели, а сущностная модель фрагмента реальности (объекта, процесса явления и т. п.) заключена внутрь (см. рис. 2.2).
В отличие от простых — одноуровневых — моделей, сложные модели имеют несколько уровней вложенности, и на каждом уровне вложенности может существовать несколько разнородных моделей, однако, и для них изложенный выше подход остается справедливым (см. рис 2.3). Принцип матрешки широко используется при синтезе моделей самой различной семантики.
Во многих культурах этот принцип выражен в декоративно-прикладном искусстве — русская матрешка, китайские ажурные костяные шары, вырезанные из монолита — эти неутилитарные игрушки не случайно привлекают внимание представителей разных культур.
Характерно, что принцип иерархичного представления моделей применим и к естественно-языковым (лингвистическим) моделям, однако, в силу специфики устройства знаковой системы, используемой в естественных языках, эта иерархичность не всегда может быть воспринята потребителем. Примером иерархической организации естественно-языковой модели может служить и эта книга с ее системой рубрикации и композиционной спецификой.
Для простейших, неформализованных моделей интерфейсный компонент модели (модель интерпретации46) присутствует неявно — для них моделей модель интерпретации представляет собой часть модели мира потребителя, относительно которой он в состоянии без привлечения дополнительных средств интерпретации воспринимать семантическую компоненту модели. Так, для моделей, выраженных на естественном языке, в роли модели интерпретации выступает субъективная модель языка (его синтаксиса, семантики), которой располагает потребитель модели. Для моделей формальных эту роль играют специализированные тезаурусы, позволяющие осуществить преобразование синтаксиса и семантики модели к виду, доступному пониманию потребителя.
Собственно, модель интерпретации значима как инструмент согласования формальной системы, используемой для выражения сущностной компоненты модели, со способом представления информации, характерным для потребителя. В этом смысле в качестве модели интерпретации для некоторого текста может выступать перечень используемых сокращений, для карты — легенда с расшифровкой условных обозначений и т. д. В качестве примера применения модели интерпретации может рассматриваться научно-популярный текст, в котором на доступном уровне излагаются достаточно сложные научные положения, резюме к отчету о проведенных научных исследованиях и иные виды некоторым образом организованных и упорядоченных данных.
Сущностная компонента модели является отражением некоторых сущностей, процессов и явлений реального мира и, в отличие от модели интерпретации, не может быть отображена с применением произвольно выбранных средств формализации предметной области. Для каждой предметной области существует некоторый диапазон приемлемых средств формального выражения отношений и сущностей реального мира, отличающихся степенью детализации их выражения. Степень же детализации с одной стороны определяется спецификой задачи, а с другой — спецификой системы или процесса.
Перечислим наиболее значимые факторы, оказывающие влияние на выбор адекватной степени детализации модели:
- назначение модели и цель исследования (аналитическая, прогностическая модель и т. д., исследовательская (научная) модель, кибернетическая (управленческая) модель);
- избирательность исследования (выражению средствами модели подлежит система или процесс в целом или их отдельные аспекты);
- степенью полноты знаний о системе или процессах, подлежащих моделированию;
- динамические характеристики моделируемой системы/процесса;
- структура моделируемой системы;
- условия наблюдаемости (непрерывное, кусочно-непрерывное, дискретное);
- характеристика среды и параметры возмущающих воздействий;
- время, доступное для синтеза модели/производства вычислений;
- динамические и точностные характеристики системы сбора информации (точность результатов не может быть выше точности измерений);
- динамические и точностные характеристики системы управления (чаще всего, нет смысла анализировать динамические и статические параметры системы или процесса, если отсутствуют средства управления, обеспечивающие необходимую скорость и точность доведения управлеяющих воздействий)
- точностные характеристики методов, используемых для обработки данных;
- характеристики платформы, используемой для реализации модели (в случае применения специальных технологических средств, например — ЭВМ);
- точностные характеристики реализации методов, с учетом ограничений технологической платформы, используемой их реализации и иные.
Приведенный перечень, несмотря на его громоздкость, нельзя назвать исчерпывающим, однако уже и его достаточно для понимания того, что модель должна удовлетворять целому ряду требований, а процесс моделирования не является процессом сугубо абстрактным, отвлеченным. По существу, на этапе синтеза модели решаются те же самые задачи системного исследования, но применительно к задаче построения модели, обеспечивающей решение задач следующего уровня. Так же, как и в иных случаях производится анализ объективных и субъективных ограничений, определяются оптимальные значения параметров, но не системы, а ее модели.
Рассмотрим, каким образом сущностная компонента модели влияет на выбор средств формального представления моделей.
Ранее мы отмечали, что для каждой предметной области существует некий «коридор», в рамках которого допустим выбор тех или иных средств формализации. Лишь в крайне редких случаях выбор средств формального представления практически не ограничен и плавно варьируется в диапазоне от вербальных до алгебраических средств — в таких условиях выбор того или иного варианта может определяться исключительно субъективными предпочтениями исследователя. Однако уже малейшее стеснение в ресурсах приводит к необходимости сужения области выбора.
В целом, процесс синтеза модели может быть представлен как процесс постепенного повышения уровня формализации и поэтапного продвижения в иерархии знаний следующего вида:
- гипотеза, предположение;
- теория, концепция;
- закономерность;
- закон.
Располагая знаниями высшего уровня (зная закон) исследователь мене всего стеснен в выборе средств моделирования. Однако в большинстве же случаев такой свободы нет. Например, отсутствие достаточного объема знаний о системе не позволяет построить модель более высокой степени формализации, нежели вербальная или логико-лингвистическая модель типа сценария. Такая ситуация возникает тогда, когда причинно-следственные отношения не выявлены, структура системы и отношения между компонентами установлены лишь частично и подлежат уточнению, что соответствует знаниям уровня гипотезы или теории в предложенной иерархии.
В то же время, даже располагая знанием закона, исследователь не всегда может выбрать произвольный способ формального представления системы, поскольку формальный аппарат, как правило, не универсален и привязан к конкретной предметной области и условиям наблюдений. Случаи, когда различные формальные методы, будучи применены к описанию одного и того же феномена, обеспечивают одинаковые по точности и
вычислительным затратам результаты встречаются редко — как правило, речь идет о существовании различий в составе и
характеристиках исходных данных, компенсируемых за счет тех или иных приемов. Это означает, что среди многообразия методов существует некий метод, который является наиболее приемлемым, оптимальным с некоторой точки зрения. Попробуйте-ка несколькими способами описать простейшее равноускоренное движение при одинаковом наборе исходных данных — даже на этой примитивной задаче вы столкнетесь с теми проблемами, о которых мы только что рассуждали.
Однако на практике чаще встречается ситуация, когда некоторая формальная система позволяет адекватно описывать феномены
различного происхождения — так обстоит дело со многими математическими формальными системами, полученными в результате развития естественнонаучных дисциплин (таковы дифференциальное, интегральное исчисление, теория множеств и иные). Выявление подобных закономерностей в свое время стимулировало развитие теории систем. А прием метафорического переноса формальных представлений на смежные (а порой — и на весьма отдаленные) предметные отрасли прочно укоренился в современной науке и практике синтеза моделей.
Зачастую, при синтезе имитационных моделей в качестве гипотез выдвигаются предположения о возможности использования для описания некоторой системы или процесса той или иной группы зависимостей, выражаемых теми или иными формальными средствами. Так, в современной науке сосуществуют теории электромагнитного и информационного полей, использующие одинаковый формальный аппарат. Характерно, что «примазавшаяся» к ранее разработанному формальному аппарату теория информационного поля постулирует справедливость утверждений теории электромагнитного поля для процессов распространения информации и, более того, подтверждает некоторые утверждения экспериментально. Часто подобные метафоры оказывают стимулирующее воздействие и на развитие первичных теорий, но бывает и так, что вместе с «обвалом» первичной теории рушится целый «куст» стройных формальных построений.
Но гипотеза — на то и гипотеза, чтобы выражать лишь потенциально верное знание, а предназначение имитационных моделей — исследование справедливости выдвинутых гипотез, создание предпосылок для перехода на качественно новый уровень знания о системе (уровень теории). Когда же из множества гипотез на основе некоторого набора критериев удается выбрать одну, наилучшим образом объясняющую наблюдаемые явления, за ней закрепляется статус «индикатора» или «скелета» теории. Иными словами, если некоторая гипотеза, построенная в рамках более обширной (и, возможно, ранее существовавшей) теории, подтвердилась, то в дальнейшем эта теория считается адекватно описывающей процессы, протекающие в системе и закономерности ее функционирования. В случае же, когда теории, соответствующей выдвинутой гипотезе ранее не существовало, на основании подтвержденной гипотезы формулируется новая теория, в рамках которой решается задача вскрытия и описания устойчивых закономерностей.
Если теория была сформулирована ранее, из нее заимствуются соответствующие методы формального описания системы. В противном случае методы формального описания заимствуются из других теорий или разрабатываются новые (что случается реже). При синтезе методов формального описания чрезвычайно продуктивен «прием метафоры», заключающийся в поиске сходства с ранее изученными феноменами и уподоблении им наблюдаемых. Данный прием входит в число методов активизации использования интуиции и опыта специалистов. При этом формулируется гипотеза о подобии наблюдаемых процессов тем процессам и явлениям (а также переносимости закономерностей и законов, свойственных им), которые были избраны на этапе выбора метафоры.
Ранее в этом разделе нами были перечислены методы формального представления систем, к числу которых были отнесены аналитические, вероятностные и статистические, теоретико-множественные и логические, лингвистические и семиотические, а также графические и иные методы. Такое разбиение на группы методов было осуществлено по сходству формального аппарата, используемого ими.
Формальные модели, построенные с применением этих методов, получают названия, сходные с названиями использованных методов, однако могут включать в себя и термины, характеризующие и иные свойства моделей, а именно:
- характеристика стабильности модели/системы (статические и динамические модели, модели параметрической, структурной и функциональной динамики т. д.);
- характеристика среды функционирования, степени устойчивости причинноследственных отношений, степени неопределенности исходных данных (детерминированные, стохастические, логические модели, модели нечеткой логики);
- характеристика целенаправленности системы/процесса (целенаправленные, гомеостатические, нецеленаправленные);
- характеристика состава системы/участников процесса (социальные, организационно-технические, эргатические, экологические, технические и т. п.).
Помимо перечисленных, в наименование формальной модели могут быть включены и иные характеристики, отражающие специфику формального аппарата и системы, представленной с его помощью. В качестве примера наименования такой модели может быть использовано следующее: «логиколингвистическая модель структурной динамики организационно-технической системы».
Потеря семантики предметной области является характерной чертой большинства методов строгого формального представления систем — этот феномен наблюдается при переходе на высокие уровни абстракции описаний. Так, например, выражение А+В=С может выражать практически любое тернарное отношение между некими сущностями, семантическую компоненту которого возможно восстановить лишь с привлечением внешнего тезауруса. По этой причине во избежание потери содержательности модели развитие формальной модели всегда синхронно с построением строгого тезауруса предметной области.
» f Соответственно, приходим к определению понятия формализации.
()РТ Формализация — это процесс описания теорий, | закономерностей, законов и иных осмысленных в данной предметной области предложений и высказываний с помощью формальных средств, прежде всего — символов математики и математической логики. В ряде приложений в качестве символов используются слова языка естественного общения, приобретшие статус терминов, то есть слова и словосочетания, имеющие четко установленный объем понятия или содержание. Систему таких символов и правил обращения с ними называют формализмом данной науки.
» С Определим также и понятие «термин». Термин (от лат terminus —
()РТ граница, предел) — это слово или совокупность слов, | предназначенных для обозначения некоторого строго определенного класса сущностей и отношений реального или идеального (мыслимого, виртуального) мира. В отличие от обычных слов, термин представляет собой стандартизованный элемент формальной системы и его употребление для обозначения некоторого класса сущностей является обязательным в рамках установленной терминологии. Часто для обозначения компонентов термина используют термин «терм», указывая тем самым на его несамостоятельность. Любое усечение термина приводит к увеличению объема понятия (в этом случае из исходного термина получается другой термин) или к потере разграничительной функции термина (термин перестает быть термином). Совокупность терминов, используемых в некоторой предметной области называется терминологией или лексиконом предметной области.
- С Последнее, вводимое в данном разделе понятие — это тезаурус.
()Р\ Тезаурус, применительно к процессу синтеза формальных систем,
_ I — это система, образованная проекцией терминологии, установленной в заданной предметной области, на формальную модель данной предметной области. Степень формализации модели для тезауруса устанавливается исходя из потребностей субъекта, использующего тезаурус. Для тезаурусов, предназначенных для описания сложных систем, существует возможность их иерархической организации, а также установления некоторого уровня формализации описаний, необходимого и достаточного для решения некоторого класса задач, связанных с необходимостью выражения сущностей и отношений предметной области.
Как следствие, можно утверждать, что любое непротиворечивое описание некоторой предметной области, полученное с применением адекватно выбранного тезауруса, может рассматриваться в качестве модели некоторого уровня формализации. Далее наше внимание будет сконцентрировано на более подробном рассмотрении основных приемов и методов формализации предметной области исследований, а также на вопросах поэтапного синтеза моделей систем и процессов.
Синонимов для обозначения этого типа моделей существует масса. Приведем наиболее распространенные из числа названий:
- вербальные модели;
- концептуальные модели;
- понятийные модели;
- лингвистические модели;
- естественно-языковые модели.
В иерархии формальных моделей вербальные модели занимают почетное место в основании этой «пирамиды». Такое положение действительно почетно, поскольку вербальные модели — это «альфа» и «омега» многоэтапного процесса моделирования — с этапа синтеза вербальной модели начинается процесс поэтапной формализации и вербальная же (в большинстве случаев) модель формируется на заключительном этапе функционирования модели. Это вызвано вполне понятными причинами — формализм вербальной модели легко воспринимается широким классом потребителей, а синтез вербальной модели (по крайней мере, в первом приближении) может быть осуществлен и специалистом, не обладающим специальными навыками в области построения формальных моделей. Благодаря тому, что языки естественного общения не ограничены рамками узкой предметной области, вербальные модели обладают наивысшей выразительной способностью и часто используются как инструмент интеграции формальных моделей и результатов их применения.
По существу, первичная вербальная модель представляет собой словесный портрет системы и проблемной ситуации, то есть представляет собой документ, аналогичный проекту технического (информационнопоискового и т. п.) задания, разрабатываемого некой организацией-заказчиком. Заметим: процесс синтеза первичной вербальной модели может осуществляться и при участии сторонних (приглашенных) специалистов. К этому шагу приходится прибегать в тех случаях, когда организация не располагает информацией, достаточной для принятия решения или выявления сущности противоречий. Заказчик не всегда в состоянии осознать суть проблем (например, проблем в области управления), с которыми он сталкивается. Находясь внутри системы, заказчик часто пребывает в состоянии информационной изоляции, лишен возможности наблюдать изменения, происшедшие в среде. Для такого типа заказчика (если говорить о производстве) смысл производственного процесса состоит в том, чтобы «... на срезе фланца патрубка ... обеспечивалось ... не хуже ...» и так далее.
По представлению заказчика «срез фланца» его организации — это одновременно и граница системы. В таких случаях все, что он может сообщить эксперту — это, скорее, проявленные в функционировании его системы симптомы проблемной ситуации, но отнюдь не причины. На эксперта возлагается ответственность за организацию процесса сбора, обобщение информации, установление происхождения проблем и формулирование первичной модели системы и проблемной ситуации. Здесь эксперту активно приходится использовать методы когнитивной психологии, игротехники и т. п.
Часто на этапе синтеза вербальной модели применяются методы активизации интеллектуальной деятельности специалистов, методы извлечения экспертных знаний, призванные выявить неосознанные алгоритмические схемы функционирования отдельных сотрудников и организации в целом. Здесь могут проводиться в том числе и деловые игры, в ходе которых сторонний специалист пытается выявить алгоритмы функционирования системы, составить схему информационных процессов, информационных контуров управления.
Однако, сказанное ранее — это слова о том, «как», но не о том, «что»... Собственно, мы вторглись в технологию синтеза вербальной модели, а сущность модели оставили в стороне. Чтобы понять сущность вербального моделирования, разберемся, для чего создаются вербальные модели. Итак, вербальные модели создаются для:
1) получения на материальном носителе вербального описания:
- структуры системы;
- отношений между элементами;
- функций системы и ее компонентов;
- динамических параметров системы;
- проблемной ситуации;
- совокупности целей и задач деятельности;
- разнообразных ограничений (в том числе — по ресурсам);
- характеристик среды функционирования и возмущающих воздействий;
2) формирования массива исходных данных, используемых на этапе структурирования и формализации знаний о системе;
3) выявления специфики тезауруса, применяемого в данной предметной области (для внешнего эксперта), и упорядочения системы понятий, подлежащих выражению формальными средствами;
4) выявления неполноты системы знаний и организации процесса их пополнения как за счет внутренних ресурсов системы, так и с привлечением внешних информационных ресурсов;
5) установления характера неопределенностей, с которыми придется столкнуться на этапе синтеза формальной модели;
6) поиска базовых закономерностей и аналогий в смежных отраслях, которые могут быть использованы в дальнейшем.
Таким образом, вербальная модель создается для сокращения неопределенности, компенсации неполноты знаний и формирования гипотезы или набора гипотез. Но первая и главная задача вербального моделирования — создание вербального описания на материальном носителе.
Вербальная модель — это не обязательно исключительно текстовый документ — она может содержать в том числе и количественные характеристики, элементы структуризации (например, таблицы, схемы и графики).
В ходе дальнейшей формализации вербальная модель подвергается процедуре структурирования. На этом этапе устанавливаются группы взаимосвязанных элементов системы и с необходимой степенью детализации (для решения поставленной задачи) описываются отношения между ними, осуществляется атрибуция элементов системы и данных о них (устанавливается структура описаний, формулируются требования к точности и т. п.), а также производится группирование данных.
Важным этапом вербального моделирования является этап приведения (стандартизации) терминологии и сокращения избыточности описаний. Результатом выполнения этой процедуры является вербальная модель, построенная в едином стандартизованном тезаурусе, дальнейшее использование которой упрощает решение задач автоматизации процессов анализа и перевода модели на следующий уровень формального представления.
При решении задачи синтеза баз данных и систем информационного обеспечения деловых процессов, данных, полученных на этом этапе, зачастую оказывается достаточно для синтеза макета информационной системы.
Чрезвычайно важно, чтобы в ходе структуризации вербальной модели были выявлены причинно-следственные отношения, отношения ресурсопотребления, хотя бы приблизительно были оценены инерционные характеристики отдельных элементов и системы в целом, тип доминирующих отношений и потенциальные источники конфликтов в системе. Подобные сведения обладают высокой ценностью при проведении процедур реорганизации деловых процессов, а также на этапе принятия решения.
По завершении этапа вербального моделирования системы/процесса, при условии, что логическая компонента модели была успешно выделена (не изъята, а именно выделена, маркирована или акцентирована), становится возможен переход на следующий уровень — уровень логико-лингвистического моделирования.
2.4 ЛОГИКО-ЛИНГВИСТИЧЕСКИЕ И СЕМИОТИЧЕСКИЕ МОДЕЛИ И ПРЕДСТАВЛЕНИЯ
Как было отмечено, логико-лингвистические и семиотические модели представляют собой следующий — более высокий уровень моделей. Характерно, что и для этого класса моделей существует несколько почти синонимических наименований:
- логико-лингвистические модели;
- логико-семантические модели;
- логико-смысловые модели;
- семиотические представления.
Данный тип моделей характеризуется более высокой степенью формализации. Формализация затрагивает преимущественно логический аспект существования/функционирования моделируемой системы. При построении логико-лингвистических моделей широко используется символьный язык логики и формализм теории графов и алгоритмов. Логические отношения между отдельными элементами модели могут отображаться с применением выразительных средств различных логических систем (краткая характеристика которых была приведена ранее в этой книге). При этом строгость логических отношений может варьироваться в широких пределах от отношений строгого детерминизма до отношений вероятностной логики. Существует возможность построения логико-лингвистических моделей в базисе нескольких формальнологических систем, отражающих различные аспекты функционирования системы и знаний о ней.
» С Наиболее распространенным способом формального представления ()Р\ логико-лингвистических моделей является граф. Граф — это | формальная система, предназначенная для выражения отношений между элементами произвольной природы, оперирующая модельными объектами двух типов: вершина (точка), символизирующая элемент, и ребро (дуга, связь), символизирующее отношение между связываемыми им элементами. В математической интерпретации граф представляет собой формальную систему, описываемую, как G=(X,U), где Х — множество вершин, U — множество ребер (дуг). Граф состоит из упорядоченных пар вершин, причем одна и та же пара может входить в множество U любое число раз, описывая различные виды отношений. Классический пример графа приведен на рис. 2.4.
Различают несколько видов графов, среди которых, если представить классификацию графов в виде иерархии, наиболее крупными классами (второй сверху слой модельных объектов в пирамиде) являются ориентированные, неориентированные и смешанные графы. В зависимости от того является отношение, отображаемое на графе линией, обратимым или необратимым для именования линии могут использоваться термины «ребро» (неориентированная, обратимая связь — отображается обычной линией) или «дуга» (ориентированная, необратимая связь — отображается стрелкой).
В качестве примера графа также можно использовать привычные нам иерархические классификации в виде прямоугольников, связанных линиями, схемы метрополитена, технологические карты и т. п. документы.
Для логико-лингвистических моделей в роли вершин графа выступают атомарные (примитивные) или сложные утверждения на естественном языке или символы, их заменяющие. Связи могут маркироваться различным образом, с тем, чтобы наиболее полным образом охарактеризовать тип связи (отношения). В частности, дуги могут отображать и наличие функциональных зависимостей, операционных связей (входная ситуация — операция — выходная ситуация) — в этих случаях дуги маркируются специальным образом. » f В зависимости от характера отображаемых с помощью графа ()0\ отношений, граф может развертываться с привязкой к некоторой ^ f шкале (например — шкале времени) — шкале, отображающей введенную в рамках данной модели метрику. Метрика — это некоторое правило, на основании которого в рамках некоторой модели могут осуществляться операции сравнения объектов, их состояний, определения расстояния между точками в некотором пространстве признаков. Кроме того, метрикой часто называют, собственно, параметр, значение которого определяется в соответствии с введенным правилом.
» f Одним из видов логико-лингвистических моделей являются сценарии ()РТ или сценарные модели. Сценарные модели (сценарии) — это ^ f разновидность логико-лингвистических моделей, предназначенных для отображения развернутых во времени последовательностей взаимосвязанных состояний, операций или процессов. Сценарии могут иметь как линейную, так и ветвящуюся структуру, в которой могут быть установлены условия перехода к той или иной частной стратегии, либо просто отображены возможные альтернативы без указания условий. Требование взаимосвязанности применительно к сценарным моделям не является строгим и носит довольно условный характер, поскольку устанавливается на основе субъективных суждений экспертов, а также определяется спецификой формулировки целей деятельности. Так, если вам, читатель, вздумается включить в некую сценарную модель, отражающую динамику событий, последовавших за террористическими актами 11 сентября 2002 года, только США и Афганистан
— это ваше право, но если вам вздумается включить в число игроков все нефтедобывающие страны, то и тут вас никто не может ни осудить, ни отговорить. Сценарии, как разновидность логико-лингвистических моделей, широко распространены в отраслях деятельности, связанных с моделированием социально-политической, экономической и военной обстановки, созданием информационных систем поддержки управленческой деятельности и во многих других.
Следует отметить, что в ряде случаев трудно провести грань между сценарной моделью и алгоритмом. Однако между сценарной моделью и алгоритмом существует достаточно существенное различие, а заключено оно в том, что алгоритм — это совокупность инструкций, выполнение которых должно привести к некоторому результату, в то время как сценарная модель — это не обязательно алгоритм, например, она может представлять собой протокол событий, повторение которых в той же последовательности не обязательно приведет к той же ситуации, что и в предыдущий раз. То есть, понятие сценарной модели — это более широкое понятие, нежели понятие алгоритма. Понятие алгоритма связано с операционным подходом к моделированию, а алгоритмический подход к анализу причинно-следственных отношений имеет много общего с детерминизмом (правда, многими алгоритмами предусматриваются процедуры обработки различных исключительных ситуаций — вплоть до отказа от принятия решения). Сценарная модель налагает менее строгие ограничения на характер причинно-следственных отношений.