Гильбертовская*[25] метаматематика была "замыслена, чтобы раз и навсегда положить конец скептицизму" (Ramsey, 1926, р. 68). Таким образом, ее цель была та же, что и у логицизма:
"Приходится принять, ― писал Гильберт в 1926 г., ― что ситуация, в которую мы попали из-за парадоксов, нетерпима. Давайте представим: в математике, в этой парадигме достоверности и истины, наиболее общая формация понятий и выводов, которые учатся, изучаются и используются, ведет к абсурдностям. Но если даже математика терпит неудачу, где же нам искать достоверность и истину? Есть, однако, удовлетворительный метод обойти парадоксы".
Гильбертовская теория базируется на идее формальной аксиоматики. Гильберт утверждал, что: а) все формально доказанные арифметические высказывания ― арифметические теоремы ― будут с достоверностью истинными, если формальная система непротиворечива, т.е. если А и не-А не являются одновременно теоремами; б) все арифметические истины могут быть формально доказаны; в) метаматематика, эта новая ветвь математики, устанавливаемая, чтобы доказывать непротиворечивость и полноту формальных систем, будет особым случаем евклидианской теории ― "финитной" теорией с тривиально истинными аксиомами, содержащими только совершенно общеизвестные термины, и с тривиально безопасными выводами. "Установлено, что принципы, используемые в метаматематическом доказательстве того, что аксиомы математики не ведут к противоречиям, настолько очевидно истинные, что не позволяют сомневаться в себе даже скептикам" (Ramsey, 1926, р. 68). Метаматематическое доказательство ― это "конкатенация самоочевидного интуитивного (inhaltlich) проникновения" (Neumann, 1927, р. 2). Арифметические истины ― и ввиду уже совершенной арифметизации математики все виды математических истин ― будут покоиться на твердой, тривиальной, "глобальной" интуиции и таким образом, как говорил Гильберт, на "абсолютной достоверности" (Гильберт, 1948, с.391).
Решающим препятствием на пути этой надежды на евклидианскую метаматематику явилась вторая теорема Гёделя. Бесконечный регресс в доказательстве не может иссякнуть в "финитной" тривиальной метатеории: доказательства непротиворечивости должны содержать достаточно изощренности, чтобы представить спорной непротиворечивость теории, в которой они проводятся, и, следовательно, они не могут не быть погрешимыми. Например, предположение Гольдбаха о том, что любое четное число есть сумма двух простых чисел, формально могло бы быть доказано завтра, но мы никогда не узнаем, что оно истинно. Ибо оно было бы истинно, только если метаматематика, метаметаматематика и т.д. до бесконечности были бы непротиворечивы. Этого мы никогда не познаем. Формализация может дать сбой, и наша аксиоматическая система может оказаться совсем без модели.
На второй сбой, который может дать формальная теория, указывает первая теорема Гёделя: если формальная теория имеет модель, то она имеет больше моделей, чем подразумевается (intended). В непротиворечивой формальной теории мы можем доказывать те и только те высказывания, которые истинны во всех моделях, так что мы не можем формально доказать высказывания, которые истинны в подразумеваемой модели и ложны в неподразумеваемой модели. Первая теорема Гёделя показывает, что селективность формальных систем, включающих арифметику, хронически плохая, ибо никакая непротиворечивая формализация арифметики не позволяет "отстроиться" от неподразумеваемых моделей, существенно отличных от подразумеваемой модели.[26] Следовательно, в любой непротиворечивой формализации найдутся формально недоказуемые арифметические истины. Если предположение Гольдбаха истинно в его подразумеваемой интерпретации, но ложно в неподразумеваемой интерпретации, то в какой-либо формализации не будет формального доказательства, ведущего к нему.
Открытие Гёделем ω-противоречивых систем сделало положение еще хуже. Оказалось, что "непротиворечивость системы не исключает возможности структурной ложности". Формализованная арифметика может быть непротиворечивой, т.е. иметь модели, но ни одна из этих моделей не будет подразумеваемой моделью, каждая модель, коль скоро она содержит все числа, может содержать другие чужеродные элементы, которые способны обеспечить контрпримеры высказываниям, истинным в узкой области подразумеваемой интерпретации. В непротиворечивой, но ω-противоречивой системе мы могли бы доказать отрицание предположения Гольдбаха, даже если это предположение является истинным. В формализации, дающей сбой такого извращенного рода, истина и доказуемость раздельны. Если противоречивая система арифметики или логики не имеет модели, т.е. близка к тому, чтобы быть ничем, то ω-противоречивая система арифметики или логики не имеет подразумеваемой модели, т.е. даже близко не подходит к арифметике или логике.
Открытие ω-противоречивости и связанных с ней явлений положило конец гильбертовской формализации, центральной идеей которой была та, что формализация "устраняет всякую неопределенность в отношении того, что такое предложение теории или что такое доказательство в ней… Формализация теории имеет целью дать явное определение понятия доказательства. После того как это сделано, нет надобности обращаться каждый раз прямо к интуиции" (Kleene, 1952, р. 63, 86; Клини, 1957, с. 62, 81). То, что это предположение было опровергнуто, выражают обычно эвфемизмом: "синтаксическое понятие доказательства уступило дорогу семантической идее доказательства", эвфемизмом, прячущим поражение главной догматической идеи ― спасти математику от скептицизма.
Таким образом, гильбертовская программа тривиализации на метауровне коллапсировала. Но вскоре началась мощная кампания, направленная на заполнение пробелов. Генцен внес вклад в это заполнение пробелов, предложив свое остроумное доказательство непротиворечивости, за что и бились гильбертианцы, доказательство, находящееся в согласии с минимальными стандартами гёделевской утонченности и еще не переступившие границ тривиальности.*[27] Некоторые результаты Тарского обозначили путь, позволявший заполнить пробелы в проблематике полноты теории (Tarski, 1956, р. 276-277):
"Определение истины и, более широко, установление семантики позволяет нам блокировать некоторые негативные результаты, которые были получены в методологии дедуктивных наук, параллельными позитивными результатами и таким образом заполнить до некоторой степени [курсив мой ― И.Л.] пробелы, обнаруженные в дедуктивном методе и в конструкции самого дедуктивного знания".
К сожалению, некоторые логики склонны игнорировать эту осторожную квалификацию Тарского. В недавно изданном учебнике мы читаем, что гёделевский "негативный" (sic) результат был блокирован позитивным результатом Тарского (Stegmüller, 1957, S. 253). Автор прав, оставив слово "позитивный" без кавычек, в которые заключил бы его скептик, но зачем слово "негативный" заключать в кавычки?
Итак, резиновый евклидианизм вышел снова на авансцену, вышел в наше время, обнаруживая себя в качестве новой партийной линии постгильбертианцев. Забавно, какой утонченной может быть тривиальность. Самоочевидность, коль скоро она принята, оказывается, разумеется, растяжимой, и проверить высказывание на самоочевидную истину то же самое, что проверить его на истину ― показать, что оно внутренне противоречиво или ложно. Если мы отказываемся растягивать интуицию до бесконечности, нам придется признать, что метаматематика не останавливает бесконечный регресс в доказательстве, который возникает теперь в виде бесконечной иерархии все более богатых метатеорий (первая теорема Гёделя представляет собой по своей сути принцип сохранения утонченности или принцип сохранения погрешимости). Но это не обязывает нас впадать в математический скептицизм: мы только признаем погрешимость смелых спекуляций. Доказательство непротиворечивости Генценом, как и семантические результаты Тарского, действительные, а не пирровы (как называл их Вейль) (Weyl, 1949, р. 222) победы, они являются таковыми, даже если принимается не только "существенно более низкий стандарт очевидности" (ibid), но и определенно предположительный характер новых методов. Поскольку метаматематика растет, ее утонченная тривиальность становится все более утонченной и менее тривиальной. Тривиальность и достоверность суть Kinderkrankheiten*[28] знания.
Подчеркнем еще раз, что евклидианец и после любого поражения может всегда прибегнуть к своему оружию: либо обнадеживая найти выше действительные первые принципы, либо совершив некоторое логическое или эпистемологическое сальто-мортале, оглупляя верой в то, что то, что на деле оказывается погрешимой спекуляцией, есть очевидная истина. В логицистской программе любимым сальто-мортале была индукция. Гильбертовское сальто-мортале ― мольба обреченного о вере в новое снисхождение и неожиданное и поистине удивительное воцарение метаматематической резиновой интуиции, которая сначала была финитной брауэрианской, затем трансфинитной генценианской и даже семантической тарскианской. Мы читаем в одной из самых компетентных книг, написанных на эту тему, что "окончательным (sic) критерием допустимости некоторого метода в метаматематике должна быть, конечно (sic), его интуитивная убедительность" (Kleene, 1952, р. 63; Клини, 1957, с. 62). Но почему тогда мы не остановились шагом раньше, почему не заявили, что окончательным критерием определения того, приемлем ли метод в арифметике, должна, конечно, быть интуитивная убедительность, и не отбросили вообще метаматематику, как это сделал Бурбаки (Bourbaki, 1949, р. 8). Метаматематика, как и расселовская логика, происходит из критики интуиции; теперь метаматематики, как раньше логицисты, просят нас принять их интуицию как "окончательный" критерий, следовательно, отбрасывают нас к тому же субъективному психологизму, который они раньше критиковали. Но почему на Земле появились "окончательные" критерии и "высшие" авторитеты? Зачем нам основания, если мы сознаем их субъективность? Почему не принять честно математическую погрешимость и не постараться защитить достоинство погрешимого знания от циничного скептицизма, а обманываться относительно того, что мы могли бы незаметно заделать новую дыру в машине "окончательных" интуиций?