*Locus classicus (букв.: классическое место, здесь: классическое) описание этой программы может быть найдено у Паскаля (Pascal, 1657-1658).
*Тем самым (лат.)
*Наиболее лирическое описание некоторых аспектов эмпирицистской теории дано у М. Шлика.
*Средним термином называется такой термин посылки силлогизма, который отсутствует в его заключении. Например, средним термином силлогизма "Сократ человек, все люди смертны, следовательно, Сократ смертен" будет термин "человек". Сравнивая теоретические термины со "средними терминами силлогизмов", называя их "оккультными" и т.д., Лакатос поясняет эмпирицистскую программу обоснования теории: эти термины, считают эмпирицисты, должны быть обоснованы, т.е. в данном случае определены на базе терминов, выражающих непосредственно наблюдаемые свойства.
Р.Б. Брейтвейт показал, что строго эмпирическая теория без теоретических терминов может быть осмысленной, но неспособной к росту (Braithwaite, 1953, p. 76).
См.: Popper, 1959. P. 91-92. Я не знаю, кто первый предположил, что мы проверяем респектабельные научные теории на непротиворечивость.
*Лакатос указывает здесь на различные возможные трактовки эмпирицистской теории. Эта теория может опираться на "фактуальные положения", выражающие ощущения, т.е. переживания исследователя. Она может опираться, как считает Поппер, на сингулярные "базисные" предложения, принимаемые решением ученых. Эти предложения, описывающие события, вбирают в себя информацию об описанных явлениях, имеющих место в той или иной точке пространства-времени.
*Лакатос подчеркивает, что его здесь не интересует, как понимается истина. Важно, что в дедуктивную систему поступает истинностное значение или какой-то его заместитель типа карнаповской вероятности, правдоподобия. "Карнаповская вероятность" ― это подсчитанная по определенным правилам условная вероятность гипотезы относительно эмпирического свидетельства (см.: Карнап Р. Философские основания физики. М.: Прогресс, 1971. С. 78).
*Лакатос в этом месте подходит к понятию научной исследовательской программы, сформулированному им в последующих работах. Разбираемые им программы обоснования математики могут быть истолкованы в духе этого понятия. Экзистенциальное утверждение о том, что существует набор тривиальных первых принципов, из которых следует вся истина, составляет "жесткое ядро" евклидианской научной исследовательской программы. Это "жесткое ядро" окружено "защитным поясом", включающим конкретные исчисления, отвечающие евклидианской установке. "Жесткое ядро" сохраняется, пока исследовательская программа работает. Его можно уподобить "влиятельной метафизике", т.е. положениям, стоящим над эмпирической проверкой и направляющим научный поиск. (Поппер и попперианцы ушли от того отрицательного отношения к "метафизике", которое было у неопозитивистов.)
*В свое время неопозитивисты много внимания уделяли логическому аппарату, позволяющему строить определения теоретических конструктов в терминах непосредственного наблюдения. Контекстуальным называется определение, в котором значение термина задано некоторым контекстом или контекстами, на основе анализа которых оно может быть сформулировано в явном виде (см.: Горский Д.П. Определение: логико-методологические проблемы. М.: Мысль, 1974. С. 50-61).
*Расселовский метод "конструкционизма" был попыткой решить проблему индуктивного определения и, следовательно, установить твердое концептуальное основание для его индуктивизма.
*Эта идея может быть прослежена от Лейбница (Лейбниц, 1984. С. 420-421) и Гюйгенса (Huyghens, 1690, Preface; Гюйгенс, 1935. Предисловие). Индуктивная логика была замещена Кейнсом, Рейхенбахом и Карнапом новой, более слабой, вероятностной логикой. См. ссылки и критику у Поппера (Popper, 1959, chap. X).
*Ложь во спасение (нем.).
*Подобно тому как Просвещение объявило темной ночью эпоху средних веков, Лакатос иронически погружает в "темную ночь" допопперианскую науку, науку эпохи Просвещения. Эта ирония идет в русле типичного для философии XX в. разоблачения "предрассудков Просвещения".
Цитата из статьи Рамсея (Ramsey, 1931, p. 56). Следуя Рамсею, Рассел (Russell, 1959, р. 125) использовал эту фразу, чтобы характеризовать свои собственные намерения и свой метод.
*В 1889 г. Г. Пеано предложил аксиоматизацию арифметики натуральных чисел, ставшую потом предметом ряда уточнений и формализации. Рассел следующим образом оценивал работы Пеано: "Великим учителем в искусстве формального рассуждения является в наше время итальянец Пеано, профессор Туринского университета. Он привел большую часть математики (со временем это удастся ему и его последователям относительно всей математики) к точной символической форме, в которой совершенно отсутствуют слова. В обыкновенных математических книгах, без сомнения, и теперь меньше слов, чем желательно многим читателям. Однако время от времени встречаются маленькие фразы, как-то: поэтому, предположим, рассмотрим. Но и эти слова исключены проф. Пеано. Например, если мы хотим изучить всю совокупность арифметики, алгебры и анализа… мы должны исходить их трех слов. Один символ обозначает нуль, другой ― число, третий ― следующий за" (Рассел, 1913, с. 86-87).
*В русском переводе: "элемент фривольной неискренности".
*Название автобиографической книги Рассела (Russell, 1959).
*Г. Фреге (1848-1920), Б. Рассел (1872-1970).
*Теоретико-множественная интуиция требуется, чтобы оперировать с первичными понятиями канторовской (наивной) теории множеств. "Под множеством, ― писал Кантор, ― мы понимаем любое объединение в одном целом М определенных вполне различаемых объектов m из нашего восприятия или мысли" {Кантор Г. Теория множеств. М.: Наука, 1985. С. 173). Глобальная интуиция ― это минимальная интуиция, необходимая для работы с формальной системой. Она нужна для того, чтобы решить, "совпадают ли два рассматриваемых символа или нет" (Френкель А., Бар-Хиллел И. Основания теории множеств. М.: Мир, 1966. С. 319). Касаясь интуиции "брауэровского толка", С. Клини, сам сторонник интуиционизма, пишет, что, согласно Брауэру, "для математики не остается никакого другого источника, кроме интуиции, которая с непосредственной ясностью помещает перед нашими глазами математические понятия и выводы… Анализируя идею натурального ряда чисел, мы видим, что она может быть основана на возможности, во-первых, рассматривать какой-либо предмет или опыт как данный нам независимо от всего остального мира, во-вторых, отличать одно такое рассмотрение от другого и, в-третьих, представить себе неограниченное повторение процесса" (Клини, 1957, с. 52).
*Теория типов была реакцией на парадокс теории множеств, открытый Б. Расселом (парадокс Рассела). Этот парадокс возникает, когда ставится вопрос о множествах всех множеств, не являющихся собственными элементами (обозначим такие множества S). Логичный ответ на этот вопрос приводит к тому, что S есть элемент S в том и только в том случае, когда S не есть элемент S.
Обычно парадокс Рассела поясняют, ставя вопрос: "Бреет ли себя деревенский брадобрей, который бреет всех тех жителей данной деревни, которые не бреются сами?"
*"Суть теории типов (или теории логических ступеней) состоит в том, что все математические высказывания делятся на классы в соответствии с областью определения. Пусть имеется некоторая область объектов: a, b, c и т.д. К первому типу относятся высказывания о свойствах этих объектов: f(a), g(b) и т.д. Ко второму типу относятся высказывания о свойствах этих свойств, которые могут быть выражены логическими функциями F(f), F(g) и т.д. К третьему типу ― высказывания о свойствах свойств свойств… Основное правило теории типов состоит в том, что каждый предикат относится только к определенному типу и может быть применен только к объектам нижележащего типа, он не может быть применен к предикатам более высокого уровня или к самому себе как объекту" (Беляев Е.А., Перминов В. Я. Философские и методологические проблемы математики. М.: МГУ, 1981. с. 75).
*Уже увиденное (фр.).
*"Пеано, ― писал Рассел в 1903 г., ― определил процесс, названный им определением через абстракцию, который, как он показывает, часто употребляется в математике. Это следующий процесс: когда существует какое-либо отношение, которое транзитивно, симметрично и … рефлексивно, то, если это отношение выполняется между u и v, мы определяем новый объект Ф(u), который должен быть тождествен Ф(v). Таким образом, наше отношение описывается через подобие отношений к новым терминам Ф(u) и Ф(v). Чтобы легитимизировать процесс, предложенный Пеано, требуется, однако, аксиома о том, что если существует какой-либо случай рассматриваемого отношения, то существует такой объект, как Ф(u) или Ф(v). Эта аксиома и есть мой принцип абстракции, который точно формулируется следующим образом: "Каждое симметричное и транзитивное отношение, которое осуществляется по меньшей мере в одном случае, описывается как совместное вхождение в новое отношение к новому термину, причем это новое отношение будет таковым, что ни один термин не может иметь это отношение к более, чем одному термину, но не наоборот (обратное отношение этим свойством не обладает)". В обычном языке этот принцип равнозначен утверждению о том, что транзитивное и симметричное отношение возникает из общего свойства, с добавлением о том, что это свойство стоит (к терминам, которые им обладают) в отношении, в котором ничто иное не стоит к этим терминам" (Russell B. The Principles of Mathematics. L., 1937 (впервые опубликовано в 1903 г.). р. 220).
*Это неверно. Лакатос сам потом признал это. ― Прим. ред.
*Д. Гильберт (1862-1893). Его биографии посвящена книга: Рид К. Гильберт. С приложением обзора Г. Вейля математических трудов Гильберта. М.: Наука, 1977.
Мы использовали здесь терминологию Кемени: "Две модели существенно различны, если существуют предложения, истинные в одной, но ложные в другой" (Kemeny, 1958, р. 164).
*Касаясь первоначальной программы Гильберта, С. Клини пишет: "В метатеории мы будем применять только те методы, которые формалисты называют финитными и которые используют только интуитивно представляемые предметы и осуществимые процессы" (Клини, 1957, с. 61). Касаясь генценовского доказательства непротиворечивости, Клини отмечает: "В первоначальных предложениях формалистов ― спасти классическую математику посредством доказательства непротиворечивости… ― не предусматривалось, что придется пользоваться таким методом, как трансфинитная индукция до ε0. В какой мере генценовское доказательство может быть воспринято как спасение классической арифметики в смысле этой постановки проблемы, это при современном положении вещей зависит от индивидуального мнения, а именно, от готовности рассматривать индукцию до ε0 как финитный метод" (там же, с. 423).
*Детские болезни, прорезывание зубов (нем.).