Фотоэлектро'нная эми'ссия, внешний фотоэффект, испускание электронов твёрдыми телами и жидкостями под действием электромагнитного излучения (фотонов) в вакуум или др. среды. Практическое значение в большинстве случаев имеет Ф. э. из твёрдых тел (металлов, полупроводников, диэлектриков) в вакуум. Основные закономерности Ф. э. состоят в следующем: 1) количество испускаемых электронов пропорционально интенсивности излучения; 2) для каждого вещества при определенном состоянии его поверхности и температуре Т ® 0 К существует порог – минимальная частота w0 (или максимальная длина волны l0 ) излучения, за которой Ф. э. не возникает; 3) максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности.
Ф. э. – результат 3 последовательных процессов: поглощения фотона и появления электрона с высокой (по сравнению со средней) энергией; движения этого электрона к поверхности, при котором часть энергии может рассеяться; выхода электрона в др. среду через поверхность раздела. Количественной характеристикой Ф. э. является квантовый выход Y – число вылетевших электронов, приходящееся на 1 фотон излучения, падающего на поверхность тела. Величина Y зависит от свойств тела, состояния его поверхности и энергии фотонов.
Ф. э. из металлов возникает, если энергия фотона (
– Планка постоянная
,
w – частота излучения) превышает работу выхода
металла е
j. Последняя для чистых поверхностей металлов > 2 эв
(а для большинства из них > 3 эв
), поэтому Ф. э. из металлов (если работа выхода не снижена специальным покрытием поверхности) может наблюдаться в видимой и ультрафиолетовой (для щелочных металлов и бария) или только в ультрафиолетовой (для всех др. металлов) областях спектра. Вблизи порога Ф. э. для большинства металлов Y
~ 10-4
электрон/фотон. Малая величина Y
обусловлена тем, что поверхности металлов сильно отражают видимое и ближнее ультрафиолетовое излучение (коэффициент отражения R
> 90%), так что в металл проникает лишь малая доля падающего на него излучения. Кроме того, фотоэлектроны при движении к поверхности сильно взаимодействуют с электронами проводимости, которых в металле много (~ 1022
см
-3
), и быстро рассеивают энергию, полученную от излучения. Энергию, достаточную для совершения работы выхода, сохраняют только те фотоэлектроны, которые образовались вблизи поверхности на глубине, не превышающей несколько нм
(рис.
, а).
Менее «энергичные» фотоэлектроны могут пройти без потерь энергии в десятки раз больший путь в металле, но их энергия недостаточна для преодоления поверхностного потенциального барьера и выхода в вакуум.
С увеличением энергии фотонов Y
металлов возрастает сначала медленно. При
=
12 эв Y
чистых металлических плёнок (полученных испарением металла в высоком вакууме) составляет для Al 0,04, для Bi – 0,015 электрон/фотон. При
> 15 эв
R
резко падает (до 5%), a Y
увеличивается и у некоторых металлов (Pt, W, Sn, Ta, In, Be, Bi) достигает 0,1–0,2 электрон/фотон. Случайные загрязнения могут сильно снизить j, вследствие чего порог Ф. э. сдвигается в сторону более длинных волн, и Y
в этой области может сильно возрасти. Резкого увеличения Y
и сдвига порога Ф. э. металлов в видимую область спектра достигают, покрывая чистую поверхность металла моноатомным слоем электроположительных (см. Ионизация
) атомов или молекул (Cs, Rb, Cs2
O), образующих на поверхности дипольный электрический слой. Например, слой Cs снижает (и соответственно сдвигает порог Ф. э.: для W – от 5,05 до 1,7 эв
, для Ag – от 4,62 до 1,65 эв,
для Cu – от 4,52 до 1,55 эв,
для Ni – от 4,74 до 1,42 эв
.
Ф. э. из полупроводников и диэлектриков. В полупроводниках
и диэлектриках
сильное поглощение электромагнитного излучения начинается от энергий фотонов ,
равных ширине запрещенной зоны DE
(для прямых оптических переходов). При
» DE
поглощения показатель
К
» 104
см
-1
и с увеличением (возрастает до 105
см
-1
.
Порог Ф. э.
, где c – сродство к электрону
,
т. е. высота потенциального барьера для электронов проводимости (рис.
, б).
В несильно легированных полупроводниках электронов проводимости мало, поэтому здесь, в отличие от металлов, рассеяние энергии фотоэлектронов на электронах проводимости роли не играет. В этих материалах фотоэлектрон теряет энергию при взаимодействии с электронами валентной зоны (ударная ионизация) или с тепловыми колебаниями кристаллической решётки
(рождение фононов
). Скорость рассеяния энергии и глубина, из которой фотоэлектроны могут выйти в вакуум, зависят от величины c и от соотношения c и DE
. Если c > 2 DE
, то фотоэлектрон с начальной кинетической энергией ³ c рождает электронно-дырочную пару. Длина пробега на рассеяние энергии в таком акте (1–2 нм
) во много раз меньше глубины проникновения излучения в кристалл (0,1–1 мкм
). Т. о., в этом случае подавляющая часть фотоэлектронов по пути к поверхности теряет энергию и не выходит в вакуум. Такая картина имеет место в Si (DE
= 1,1 эв,
c = 4,05 эв
);
в Ge (DE
= 0,7 эв,
c = 4,2 эе); в GaAs (DE
= 1,4 эв,
c = 4,07 эв
) и др. полупроводниках. В этих материалах вблизи порога Ф. э. Y ~ 10 -6
электрон/фотон и даже на относительно большом расстоянии от порога (при
=
+ 1 эв
)
всё ещё не превышает 10-4
электрон/фотон. Если c < DE
, но больше энергии оптического фонона (10-2
эв
),
то фотоэлектроны теряют энергию при рождении оптических фононов. При таком механизме потерь энергия фотоэлектронов рассеивается в полупроводниках на длине пробега всего 10–30 нм.
Поэтому, если снизить (полупроводника, например от 4 до 1 эв,
Ф. э. вблизи порога остаётся малой. В кристаллах щёлочно-галоидных соединений длина пробега больше 50–100 нм,
невелико, поэтому Y
таких кристаллов резко возрастает от самого порога Ф. э. и достигает высоких значений. Так, в CsJ DE
= 6,4 эв,
c = 0,1 эв
и уже при
= 7 эв
(т. е. всего на 0,6 эв
от порога), Y =
0,1 электрон/фотон и практически не изменяется при увеличении
.
Применение. Из-за больших DE порог Ф. э. для щёлочно-галоидных кристаллов лежит в ультрафиолетовой области спектра, для которой они (в виде тонкой плёнки на проводящей подложке) являются хорошими фотокатодами . Для большинства технических применений важны также материалы, обладающие высоким Y для видимого и ближнего инфракрасного излучений при малых DE и c. Наиболее распространены (и технически хорошо освоены) в качестве фотокатодов полупроводниковые материалы на основе элементов I и V групп периодической системы элементов, часто в сочетании с кислородом (Cs3 Sb, Na2 KSb и др.). У них DE < 2 эв , c < 2 эв и Y в видимой области спектра достигает величины ~ 0,1 электрон/фотон.
Усовершенствование техники очистки поверхностей полупроводников в сверхвысоком вакууме
позволило резко снизить полупроводников типа AIII
BV
и Si р
-типа до величины
< DE
с одновременным созданием в тонком приповерхностном слое полупроводника сильного внутреннего электрического поля, ускоряющего фотоэлектроны. При этом работа выхода
< DE
, а высота поверхностного потенциального барьера (ниже уровня дна зоны проводимости в объёме кристалла. В результате обеспечивается выход в вакуум значительного числа термализованных (имеющих тепловые энергии) электронов из большой глубины порядка диффузионной длины неосновных носителей заряда (~ 10-4
см
).
Фотокатоды такого типа называются фотокатодами с отрицательным электронным сродством (рис.
, б). Они обладают самым высоким квантовым выходом в ближней инфракрасной области спектра, достигающим 0,09 электрон/фотон при l
=
1,06 мкм.
Ф. э. широко используется для исследования энергетической структуры веществ, для химического анализа (фотоэлектронная спектроскопия ), в измерительной аппаратуре, в звуковоспроизводящей киноаппаратуре и в приборах автоматики (фотоэлементы , фотоэлектронные умножители ), в передающих телевизионных трубках (супериконоскоп , суперортикон ), в инфракрасной технике (электроннооптический преобразователь ) и в др. приборах, предназначенных для регистрации излучений рентгеновского, ультрафиолетового, видимого и ближнего инфракрасного диапазонов длин волн.
Лит.: Соболева Н. А., Фотоэлектронные приборы, М., 1965; Соммер А., Фотоэмиссионные материалы, пер. с англ., М., 1973; Соболева Н. А., Новый класс электронных эмиттеров, «Успехи физических наук», 1973, т. Ill, в. 2, с. 331–53: Ненакаливаемые катоды, М., 1974.
Г. М. Лифшиц.
Энергетические схемы фотоэлектронной эмиссии из металла (а); полупроводника
с c > 2DE (б); полупроводника с поверхностью, обработанной до «отрицательного» электронного сродства (ej < DE) (в). В области сильного внутреннего электрического поля энергетические зоны изогнуты; клеточки показывают заполненные электронные состояния; жирная черта — дно зоны проводимости; j — поверхностный потенциальный барьер.