Stephen W. Hawking


Breve História

do Tempo


Do *Big Bang*

aos Buracos Negros


Introdução

de Carl Sagan


Tradução de

Ribeiro da Fonseca


Revisão, adaptação

do texto e notas de

José Félix Gomes Costa

Instituto Superior Técnico


Gradiva


Título original inglês: *a Brief History of Time -- From the Big Bang to Black Holes*


c 1988 by *Stephen W. Hawking*


Introducão c 1988 by *Carl Sagan*


Ilustrações do texto c 1988 by *Ron Miller*


Tradução: *Ribeiro da Fonseca*


Revisão de texto: *A. Miguel Saraiva*


Capa: *Armando Lopes* a partir de fotos de David Montgomery e Roger Ressmeyer


Fotocomposição, paginação e fotolitos: *Textype -- Artes Gráficas, L.da*


Impressão e acabamento: *Tipografia Guerra/Viseu*


Direitos reservados para Portugal a:

*Gradiva -- Publicações, L.da*

Rua de Almeida e Sousa, 21, r/c, esq., 1300 LISBOA

Telef. 3974067/8


3.a edição: *Abril de 1994*


Depósito legal n.° 75248/94


isbn 972-662-010-4


stephen w. hawking


stephen w. hawking é reconhecido internacionalmente como um dos génios do século xx. físico inglês de 46 anos de idade, ocupa hoje na universidade de cambridge a cátedra que pertenceu a newton e é, segundo a opinião geral, um forte candidato ao nobel da física. há alguns anos, foi anunciada a publicação de uma obra sua, considerada pelos especialistas de todo o mundo como um grande acontecimento editorial. a saída do livro foi sendo, porém, sucessivamente adiada. é que stephen hawking é vítima de uma doença estranha e terrível que, em 1984, o deixou completamente paralítico. na altura, ainda podia falar. hoje não. mas o autor não desistiu e, com a ajuda de um computador que criou e três dedos da mão esquerda, levou a cabo a empresa de escrever apaixonadamente *breve história do tempo*, recentemente publicado nos estados unidos e já traduzido para várias línguas. porquê? como nos diz o editor americano, o sonho deste físico é ter o seu livro à venda nos aeroportos, porque passa a maior parte do seu tempo a viajar para dar conferências nas mais prestigiadas universidades do mundo inteiro.


breve história do tempo


pela primeira vez, hawking escreve uma obra de divulgação, explorando os limites do nosso conhecimento da astrofísica e da natureza do tempo e do universo. o resultado é um livro absolutamente brilhante; uma apresentação clássica das ideias científicas mais importantes dos nossos dias e a possibilidade única de poder seguir o intelecto de um dos pensadores mais imaginativos e influentes do nosso tempo. houve realmente um princípio do tempo? haverá um fim? o universo é infinito ou tem limites? pegando nestas questões, hawking passa em revista as grandes teorias do cosmos e as contradições e paradoxos ainda por resolver e explora a ideia de uma combinação da teoria da relatividade geral com a mecânica quântica numa teoria unificada que resolveria todos os mistérios. *breve história do tempo* é um livro escrito para os que preferem as palavras às equações, onde, no estilo incisivo que lhe é próprio, hawking nos mostra como o "retrato" do mundo evoluiu até aos nossos dias. brilhante.


*Este livro é dedicado à Jane*


*Agradecimentos*


Resolvi tentar escrever um livro popular sobre o espaço e o tempo depois de ter proferido, em 1982, as conferências de Loeb, em Harvard. Já havia uma quantidade considerável de livros sobre o Universo primitivo e os "buracos negros", desde os muito bons, como o livro de Steven Weinberg, *The First Three Minutes* (1), aos péssimos, que não vou identificar. Senti, contudo, que nenhum deles abordava realmente as questões que me tinham levado a fazer investigação em cosmologia e teoria quântica: Donde surgiu o Universo? Como e por que começou? Irá ter um fim e, se assim for, qual? Estas questões interessam a todos nós. Mas, a ciência moderna tornou-se tão técnica que apenas um número muito pequeno de especialistas é capaz de dominar a matemática utilizada para as descrever. No entanto, as ideias básicas sobre a origem e destino do Universo podem ser formuladas sem matemática, de forma a que as pessoas sem conhecimentos científicos consigam compreendê-las. Foi o que tentei fazer neste livro. O leitor irá julgar se o consegui ou não. :,


(1) Tradução portuguesa: *Os Três Primeiros Minutos*, Uma Análise Moderna da Origem do Universo, com prefácio e notas de Paulo Crawford do Nascimento, Gradiva, Lisboa, 1987 (*N. do R.*).


Alguém me disse que cada equação que eu incluísse no livro reduziria as vendas para metade. Assim, resolvi não utilizar nenhuma. No entanto, no final, *incluí* mesmo uma, a famosa equação de Einstein: *E = mcâ2*. Espero que isso não assuste metade dos meus potenciais leitores.


À excepção de ter tido o azar de contrair a doença de Gehrig ou neuropatia motora, tenho sido afortunado em quase todos os outros aspectos. A ajuda e o apoio da minha mulher Jane e dos meus filhos Robert, Lucy e Timmy, fizeram com que me fosse possível levar uma vida razoavelmente normal e ter uma carreira bem sucedida. Também tive a sorte de escolher física teórica, porque tudo é feito mentalmente. Por isso, a minha incapacidade não tem constituído uma verdadeira objecção. Os meus colegas cientistas têm dado, sem excepção, uma boa ajuda.


Na primeira fase "clássica" da minha carreira, os meus principais assistentes e colaboradores foram Roger Penrose, Robert Geroch, Brandon Carter e George Ellis. Estou-lhes grato pela ajuda que me deram e pelo trabalho que juntos fizemos. Esta fase foi coligida no livro *The Large Scale Structure of Spacetime*, que escrevi juntamente com Ellis em 1973. Não aconselharia os leitores deste livro a consultarem essa obra para informação posterior: é altamente técnica e bastante ilegível. Espero que, de então para cá, tenha aprendido a escrever de forma mais compreensível.


Na segunda fase "quântica" do meu trabalho, a partir de 1974, os meus colaboradores principais têm sido Gary Gibbons, Don Page e Jim Hartle. Devo-lhes muitíssimo a eles e aos meus alunos de investigação, que me auxiliaram bastante tanto no sentido teórico como no sentido físico da palavra. Ter de acompanhar os meus alunos tem constituído um grande estímulo e impediu-me, espero, de ficar preso à rotina.


Neste livro, tive também a grande ajuda de Brian Whitt, um dos meus alunos. Em 1985, apanhei uma pneumonia, :, depois de ter escrito o primeiro esboço. Foi necessário fazerem-me uma traqueotomia que me retirou a capacidade de falar, tornando-se quase impossível a comunicação. Pensei não ser capaz de o concluir. Contudo, Brian não só me ajudou a revê-lo, como me arranjou um programa de comunicação chamado "Living Center" que me foi oferecido por Walt Woltosz, da Word Plus Inc., em Sunnyvale, Califórnia. Com ele posso escrever livros e artigos e falar com as pessoas utilizando um sintetizador da fala oferecido pela Speech Plus, também de Sunnyvale, Califórnia. O sintetizador e um pequeno computador pessoal foram incorporados na minha cadeira de rodas por David Mason. Este sistema realizou toda a diferença: com efeito, posso comunicar melhor agora do que antes de ter perdido a voz.


Muitas pessoas que leram as versões preliminares fizeram-me sugestões para melhorar o livro. Em particular, Peter Guzzardi, o meu editor na Bantam Books, que me enviou páginas e páginas de comentários e perguntas sobre pontos que considerava não estarem devidamente explicados. Tenho de admitir que fiquei bastante irritado quando recebi a sua grande lista de coisas para alterar, mas ele tinha razão. Estou certo que o livro ficou muito melhor por ele me ter obrigado a manter os pés na terra.


Agradeço muito aos meus assistentes, Colin Williams, David Thomas e Raymond Laflamme; às minhas secretárias Judy Fella, Ann Ralph, Cheryl Billington e Sue Masey; e à minha equipa de enfermeiras. Nada disto teria sido possível sem o apoio às minhas despesas médicas e de investigação dispensado pelos Gonville and Caius College, Science and Engineering Research Council e pelas fundações Leverhulme, McArthur, Nuffield e Ralph Smith.


Estou-lhes muito grato.


20 de Outubro de 1987.


Stephen Hawking


*Introdução*


Vivemos o nosso quotidiano sem entendermos quase nada do mundo. Reflectimos pouco sobre o mecanismo que gera a luz solar e que torna a vida possível, sobre a gravidade que nos cola a uma Terra que, de outro modo, nos projectaria girando para o espaço, ou sobre os átomos de que somos feitos e de cuja estabilidade dependemos fundamentalmente. Exceptuando as crianças (que não sabem o suficiente para não fazerem as perguntas importantes), poucos de nós dedicamos algum tempo a indagar por que é que a natureza é assim; de onde veio o cosmos ou se sempre aqui esteve; se um dia o tempo fluirá ao contrário e se os efeitos irão preceder as causas; ou se haverá limites definidos para o conhecimento humano. Há crianças, e conheci algumas, que querem saber qual é o aspecto dos "buracos negros"; qual é o mais pequeno pedaço de matéria; por que é que nos lembramos` do passado e não do futuro; como é que, se inicialmente havia o caos, hoje existe aparentemente a ordem; e por que *há* um Universo.


Ainda é habitual, na nossa sociedade, os pais e os professores responderem à maioria destas questões com um encolher de ombros, ou com um apelo a preceitos religiosos vagamente relembrados. Alguns sentem-se pouco à :, vontade com temas como estes, porque expressam vividamente as limitações da compreensão humana.


Mas grande parte da filosofia e da ciência tem evoluído através de tais demandas. Um número crescente de adultos quer responder a questões desta natureza e, ocasionalmente, obtém respostas surpreendentes. Equidistantes dos átomos e das estrelas, estamos a expandir os nossos horizontes de exploração para abrangermos tanto o infinitamente pequeno como o infinitamente grande.


Na Primavera de 1974, cerca de dois anos antes da nave espacial Viking ter descido na superfície de Marte, eu estava em Inglaterra numa reunião patrocinada pela Royal Society of London para discutir a questão de como procurar vida extraterrestre. Durante um intervalo para o café reparei que estava a decorrer uma reunião muito maior num salão adjacente, onde entrei por curiosidade. Em breve percebi que estava a assistir a uma cerimónia antiga, a investidura de novos membros da Royal Society, uma das organizações académicas mais antigas do planeta. Na fila da frente, um jovem numa cadeira de rodas estava a assinar muito lentamente o seu nome num livro que continha nas primeiras páginas a assinatura de Isaac Newton. Quando finalmente terminou, houve uma ovação estrondosa. Já então Stephen Hawking era uma lenda.


Hawking é actualmente o Professor Lucasiano (2) de Matemáticas na Universidade de Cambridge, lugar ocupado outrora por Newton e mais tarde por P. A. M. Dirac, dois famosos investigadores do infinitamente grande e do infinitamente pequeno. Ele é o seu sucessor de mérito. Este primeiro livro de Hawking para não especialistas oferece aos leigos variadas informações. Tão interessante como o vasto conteúdo é a visão que fornece do pensamento do autor. Neste livro encontram-se revelações lúcidas nos :, domínios da física, da astronomia, da cosmologia e da coragem.


(2) Cátedra honorífica (*N. do R.*).


É também um livro sobre Deus... ou talvez sobre a ausência de Deus. A palavra Deus enche estas páginas. Hawking parte em demanda da resposta à famosa pergunta de Einstein sobre se Deus teve alguma escolha na Criação do Universo. Hawking tenta, como explicitamente afirma, entender o pensamento de Deus. E isso torna a conclusão do seu esforço ainda mais inesperada, pelo menos até agora: um Universo sem limites no espaço, sem principio nem fim no tempo, e sem nada para um Criador fazer.


Carl Sagan

Universidade de Cornell

Ithaca, Nova Iorque


I. A Nossa Representação

do Universo


Um conhecido homem de ciência (segundo as más línguas, Bertrand Russel) deu uma vez uma conferência sobre astronomia. Descreveu como a Terra orbita em volta do Sol e como o Sol, por sua vez, orbita em redor do centro de um vasto conjunto de estrelas que constitui a nossa galáxia (1). No fim da conferência, uma velhinha, no fundo da sala, levantou-se e disse: "O que o senhor nos disse é um disparate. O mundo não passa de um prato achatado equilibrado nas costas de uma tartaruga gigante." O cientista sorriu com ar superior e retorquiu com outra pergunta: "E onde se apoia a tartaruga?" A velhinha então exclamou: "Você é um jovem muito inteligente, mas são tudo tartarugas por aí abaixo!"


(1) A nossa galáxia ou, mais familiarmente, a Galáxia (*N. do R.*).


A maior parte das pessoas acharia bastante ridícula a imagem do Universo como uma torre infinita de tartarugas. Mas o que nos leva a concluir que sabemos mais? Que sabemos ao certo sobre o Universo e como atingimos esse conhecimento? De onde veio e para onde vai? Teve um princípio e, nesse caso, que aconteceu *antes* dele? Qual é a natureza do tempo? Acabará alguma vez? Descobertas recentes em física, tornadas possíveis em parte pela fantástica :, tecnologia actual, sugerem respostas a algumas destas perguntas antigas. Um dia, essas respostas poderão parecer tão óbvias para nós como o facto de a Terra girar em volta do Sol; ou talvez tão ridículas como uma torre de tartarugas. Só o tempo (seja ele o que for) o dirá.


Já no ano 340 a.C. o filosofo grego Aristóteles, no seu livro *Sobre os Céus*, foi capaz de apresentar dois bons argumentos para se acreditar que a Terra era uma esfera e não um prato achatado. Primeiro, compreendeu que os eclipses da Lua eram causados pelo facto de a Terra se interpor entre o Sol e a Lua. A sombra da Terra projectada na Lua era sempre redonda, o que só poderia acontecer se a Terra fosse esférica. Se esta fosse um disco achatado, a sombra seria alongada e elíptica, a não ser que o eclipse ocorresse sempre numa altura em que o Sol estivesse directamente por baixo do centro do disco. Em segundo lugar, os Gregos sabiam, das suas viagens, que a Estrela Polar surgia menos alta no céu quando era observada mais a sul das regiões onde ela se encontra mais alta. Uma vez que a Estrela Polar se encontra no zénite do Pólo Norte, parece estar directamente por cima de um observador no pólo boreal, mas para um observador no equador ela encontra-se na direcção do horizonte. A partir da diferença da posição aparente da Estrela Polar no Egipto e na Grécia, Aristóteles estimou o perímetro da Terra em quatrocentos mil estádios. Não se sabe exactamente o valor da medida de comprimento que os Gregos designavam por estádio, mas pensa-se que seria de cento e oitenta metros, o que equivale a dizer que Aristóteles calculou cerca de duas vezes o valor actual do perímetro da Terra. Os Gregos encontraram ainda um terceiro argumento em prol da esfericidade da Terra: por que motivo se vislumbram primeiro as velas de um navio que surge no horizonte, e somente depois o casco? :,


esfera da lua

esfera de mercúrio

esfera de vénus

esfera do sol

esfera de marte

esfera de júpiter

esfera de saturno

esfera das estrelas fixas


Fig. 1.1


Aristóteles pensava que a Terra se encontrava imóvel e que o Sol, a Lua, os planetas e as estrelas se moviam em órbitas circulares em volta dela. Pensava assim porque sentia, por razões místicas, que a Terra era o centro do Universo e que o movimento circular era o mais perfeito. Esta ideia foi depois sintetizada por Ptolomeu, no segundo século da era cristã, num modelo cosmológico acabado. A Terra ocupava o centro, rodeada por oito esferas com a Lua, o Sol, as estrelas e os cinco planetas então conhecidos: Mercúrio, Vénus, Marte, Júpiter e Saturno. Os planetas moviam-se em círculos menores ligados às suas esferas respectivas, o que explicaria as bastante complicadas trajectórias percorridas no céu. A esfera mais afastada do centro continha as chamadas estrelas fixas, que estão sempre nas mesmas posições relativamente umas às outras, :, mas que têm um movimento de rotação conjunto no céu. O que ficava para além da última esfera nunca foi bem esclarecido, mas não era certamente parte do Universo que podia ser observado pela humanidade (2).


(2) Esta descrição encaixa mais fielmente na cosmologia física de Aristóteles que subsiste paralelamente à astronomia matemática ptolomaica (*N. do R.*).


O modelo de Ptolomeu forneceu um sistema razoavelmente preciso para predizer as posições dos corpos celestes no céu. Mas, para predizer estas posições correctamente, ele teve de partir do princípio de que a Lua seguia uma trajectória tal que, por vezes, a Lua encontrava-se duas vezes mais próxima do que noutras. Por consequência, haveria ocasiões em que a Lua pareceria duas vezes maior que noutras. Ptolomeu reconheceu esta falha, o que não impediu que o seu modelo fosse geralmente, embora não universalmente, aceite. Foi adoptado pela Igreja Cristã como modelo do Universo (3) de acordo com a Bíblia, mas tinha a grande vantagem de deixar imenso espaço, fora da esfera das fixas, para o Céu e o Inferno.


(3) Atente na grafia, o *Universo* de que somos parte e os seus modelos matemáticos ou *universos* (*N. do R.*).


Um modelo mais simples, contudo, foi proposto em 1514 por um cónego polaco de nome Nicolau Copérnico. (Ao princípio, talvez com medo de ser classificado de herege pela Igreja, Copérnico apresentou o seu modelo anonimamente). A sua ideia era que o Sol se encontrava imóvel no centro e os planetas se moviam em órbitas circulares em seu redor. Foi necessário cerca de um século para esta ideia ser levada a sério. Então, dois astrónomos o alemão Johannes Kepler e o italiano Galileu Galilei, defenderam publicamente a teoria de Copérnico, apesar do facto de as órbitas que predizia não coincidirem completamente com as que eram observadas. O golpe mortal para a teoria de Aristóteles e Ptolomeu chegou em 1609. Nesse ano, Galileu começou a observar o céu de noite, com um telescópio, que acabara de ser inventado. Quando olhou para o planeta Júpiter, descobriu que se encontrava acompanhado de vários pequenos satélites, ou luas, que orbitavam em seu redor. Isto implicava que *nem tudo* tinha de ter uma órbita em redor da Terra, como pensavam Aristóteles e Ptolomeu. (Claro que ainda era possível pensar que a Terra estava imóvel no centro do Universo e que as luas de Júpiter se moviam por trajectórias extremamente complicadas em volta da Terra, *aparentando* girarem em volta de Júpiter. No entanto, a teoria de Copérnico era muito mais simples). Ao mesmo tempo, Kepler tinha-a modificado, sugerindo que os planetas se moviam não em círculos mas sim em elipses ("círculos" oblongos). As predições, finalmente, condiziam com as observações.


Quanto a Kepler, as órbitas elípticas eram apenas uma hipótese *ad hoc*, e até bastante repugnante, porque as elipses eram claramente menos perfeitas do que os círculos. Tendo descoberto quase por acaso que as órbitas elípticas condiziam com as observações, não conseguiu reconciliá-las com a sua ideia de que os planetas giravam em volta do Sol devido a forças magnéticas. Só muito mais tarde, em 1687, surgiu uma explicação, quando Sir Isaac Newton publicou a sua obra *Philosophiae Naturalis Principia Mathematica*, provavelmente o mais importante livro de física alguma vez publicado. Nele, Newton não só apresentou uma teoria sobre o movimento dos corpos, como desenvolveu o aparato matemático necessário para análise do movimento. Além disso, Newton postulou uma lei universal segundo a qual quaisquer dois corpos do Universo se atraíam com uma força tanto mais intensa quanto maiores as suas respectivas massas e maior a sua proximidade. Era esta mesma força que solicitava os corpos para o chão. (A história de que Newton se inspirou numa maçã que lhe caiu na cabeça é quase de certeza apócrifa. Tudo :, o que ele alguma vez disse foi que a ideia da gravidade lhe tinha surgido quando estava sentado "com os seus pensamentos" e "tinha sido provocada pela queda de uma maçã"). Newton mostrou ainda que, segundo a sua lei, a gravidade faz com que a Lua se mova numa órbita elíptica em redor da Terra e com que a Terra e os outros planetas sigam trajectórias elípticas em volta do Sol.


O modelo de Copérnico fez desaparecer ás esferas celestes de Ptolomeu (4) e, com elas, a ideia de que o Universo apresentava limite natural. Uma vez que as "fixas" não pareciam alterar a sua posição, exceptuando o seu movimento aparente de rotação que tem origem no movimento da Terra em torno do seu eixo em sentido contrário, tornou-se natural supor que as estrelas, assimiláveis ao nosso Sol, se encontravam muito mais longe.


(4) De Aristóteles, a bem dizer (*N. do R.*).


Newton compreendeu que, segundo a sua teoria da gravitação, as estrelas deviam atrair-se umas às outras, de modo que parecia não poderem permanecer essencialmente sem movimento. Não colapsariam todas a um tempo em algum ponto? Numa carta escrita em 1691 a Richard Bentley, outro importante pensador desse tempo, Newton argumentava que isso aconteceria realmente se houvesse um número finito de estrelas distribuídas numa região finita de espaço. Mas afirmava também que se, por outro lado, houvesse um número infinito de estrelas, distribuídas mais ou menos uniformemente num espaço infinito, tal não aconteceria, porque careceriam de ponto privilegiado para o colapso.

Este raciocínio é um exemplo das rasteiras que se podem encontrar ao falar acerca do infinito. Num universo infinito, cada ponto pode ser eleito o centro, porque em cada direcção que cruza o ponto podem contar-se infinitas estrelas. A maneira correcta de se pensar o assunto, compreendeu-se :, muito mais tarde, é considerar a situação numa região finita onde as estrelas caem todas umas sobre as outras, e depois perguntar se uma distribuição mais ou menos uniforme de estrelas fora daquela região alteraria alguma coisa. Segundo a lei de Newton, as estrelas exteriores não introduziriam, em média, a menor diferença na situação das já existentes, de maneira que estas cairiam com a mesma rapidez. Podemos acrescentar as estrelas que quisermos, que continuarão a cair sobre si mesmas. Sabemos agora que é impossível conceber um modelo estático de um universo infinito em que a gravidade seja sempre atractiva.


é interessante reflectir acerca das ideias gerais sobre o Universo antes do século XX, quando ainda não tinha sido sugerido que o Universo estivesse a expandir-se ou a contrair-se. Era geralmente aceite que o Universo tinha permanecido imutável através dos tempos, ou que tinha sido criado num certo instante do passado, mais ou menos como o observamos hoje. Em parte, isto pode dever-se à tendência das pessoas para acreditarem em verdades eternas, bem como ao conforto que lhes dá o pensamento de que, embora possam envelhecer e morrer, o Universo é eterno e imutável.


Até aqueles que compreenderam que a teoria da gravitação de Newton mostrava que o Universo não podia ser estático, não pensaram sugerir que podia estar a expandir-se. Em vez disso, procuraram modificar a teoria, tornando a força gravitacional repulsiva a distâncias muito grandes. Isto não afectou significativamente as suas predições dos movimentos dos planetas, mas permitiu o entendimento de que uma distribuição infinita de estrelas permanecesse em equilíbrio, opondo-se as forças atractivas entre estrelas próximas às forças repulsivas das mais afastadas. Contudo, acreditamos agora que esse equilíbrio seria instável: se as estrelas numa região se aproximassem ainda que ligeiramente :, umas das outras, as forças atractivas mútuas tornar-se-iam mais intensas e dominariam as forças repulsivas, de modo que as estrelas continuariam a aproximar-se umas de encontro às outras. Por outro lado, se as estrelas se afastassem um pouco umas das outras, as forças repulsivas tornar-se-iam dominantes e afastá-las-iam mais ainda umas das outras.


Outra objecção a um universo estático infinito é normalmente atribuída ao filósofo alemão Heinrich Olbers, que escreveu sobre esta teoria em 1823. De facto, vários contemporâneos de Newton (5) tinham levantado o problema e o artigo de Olbers nem sequer foi o primeiro a apresentar argumentos plausíveis contra ele. Foi, no entanto, o primeiro a ser largamente notado. A dificuldade reside em que num universo infinito (6) estático quase toda a direcção do olhar iria culminar na superfície de uma estrela. Assim, esperar-se-ia que o céu fosse tão brilhante como o Sol, mesmo à noite.


(5) O próprio Kepler numa das suas obras mais divulgadas, *Dissertatio cum Nuncio Sidereo*, usa um argumento similar para concluir da finitude do mundo (*N. do R.*).


(6) O argumento é válido num universo estático infinito no espaço e no tempo (*N. do R.*).


A proposta de Olbers para resolver este problema era que a luz das estrelas distantes seria atenuada por absorção na matéria interestelar interposta. No entanto, se isso acontecesse, a matéria interveniente aqueceria eventualmente até brilhar com a intensidade das estrelas. A única maneira de evitar a conclusão de que todo o céu nocturno seria tão brilhante como a superfície do Sol, seria admitir que as estrelas não tinham estado sempre a brilhar, mas que tinham iniciado as suas carreiras há um tempo finito no passado. Nesse caso, a matéria absorvente podia não ter ainda aquecido, ou a luz das estrelas distantes não ter ainda chegado até nós. E isto :, leva-nos à questão de qual poderia ter sido a causa de as estrelas se terem acendido.


O começo do Universo tinha, evidentemente, sido discutido antes. Segundo algumas das mais antigas cosmologias e a tradição judaico-cristã-muçulmana, o Universo teve origem há um tempo finito e não muito distante no passado. Um dos argumentos a favor desta teoria era a sensação de ser necessária a "Causa Primeira" para explicar a existência do Universo. (Dentro deste, sempre se explicou um acontecimento como causado por outro anterior, mas a existência do próprio Universo só podia ser explicada desta maneira se tivesse tido um começo). Outro argumento foi exposto por Santo Agostinho no seu livro *A Cidade de Deus*. Chamou a atenção para o facto de a civilização estar a progredir e de nos lembrarmos daqueles que realizaram feitos heróicos e dos que inventaram novas técnicas. Portanto, o Homem, e talvez também o Universo, não podiam existir há tanto tempo como isso. Santo Agostinho aceitou uma data de cerca de cinco mil anos antes de Cristo para a criação do Universo, segundo o livro do Génesis. (É interessante verificar que esta data não está muito longe do fim da última idade glaciar, cerca de dez mil anos antes de Cristo, data a que os arqueólogos fazem remontar o início da civilização).


Aristóteles, bem como a maioria dos filósofos gregos, por outro lado, não se afeiçoaram à ideia da criação porque tinha demasiado sabor a intervenção divina. Acreditavam que a raça humana, e o mundo à sua volta, sempre tinham existido e existiriam para sempre. Os Antigos tinham levado em conta o argumento acima referido acerca da evolução, e explicavam-no recorrendo a dilúvios cíclicos e outros desastres que periodicamente tinham reconduzido a raça humana de novo ao começo da civilização.


As questões de o Universo ter ou não tido um começo no tempo e se é ou não limitado no espaço foram mais :, tarde examinadas em pormenor pelo filósofo Emmanuel Kant, na sua monumental e muito obscura obra *Crítica da Razão Pura*, publicada em 1781. Chamou a essas questões antinomias (ou seja, contradições) da razão pura, porque achava que eram argumentos igualmente atraentes para se acreditar na tese de que o Universo tinha tido um começo e na antítese de que existira sempre. O seu argumento em defesa da tese era que, se o Universo não tivesse tido um começo, teria havido um período infinito de tempo antes de qualquer acontecimento, o que ele considerava absurdo. O argumento antitético era que, se o Universo tinha tido um princípio, teria havido um período de tempo infinito antes da sua origem: então por que tinha o Universo começado num momento especial? De facto, os argumentos que apresenta tanto para a tese como para a antítese são realmente os mesmos. Baseiam-se ambos na sua suposição não expressa de que o tempo continua indefinidamente para trás, quer o Universo tenha ou não existido sempre. Como veremos, o conceito de tempo não tem qualquer significado *antes* (7) do começo do Universo. Este facto foi apontado por Santo Agostinho. Quando lhe perguntaram: "Que fazia Deus antes de criar o mundo?" Agostinho não respondeu: "Andava a preparar o Inferno para todos os que fazem essas perguntas." Em vez disso, respondeu que o tempo era uma propriedade do Universo que Deus tinha criado, e que não existia *antes* (8) do começo do Universo.


(7) O itálico é do revisor. Repare na incapacidade e ambiguidade da linguagem comum quando se exprime a temática: antes não faz sentido, em rigor, pois o tempo surge com a criação (*N. do R.*).


(8) *Idem (N. do R.)*.


Quando a maior parte das pessoas acreditava num universo essencialmente estático e imutável, a questão de saber se tinha ou não tido um começo era na verdade do domínio da metafísica ou da teologia. Podia explicar-se o que :, se observava tanto segundo a teoria de que o Universo sempre existira ou a de que tinha sido accionado há um tempo finito mas de tal modo que parecesse ter existido sempre (9). Mas, em 1929, Edwin Hubble apresentou factos da observação que iniciaram uma nova era: seja para onde for que se olhe, as galáxias distantes afastam-se velozmente. Por outras palavras, o Universo está em expansão, o que significa que nos primeiros tempos os corpos celestes (10) encontrar-se-iam mais perto uns dos outros.


(9) Tudo depende de admitirmos que o estado inicial do universo era mais ou menos complexo (*N. do R.*).


(10) As galáxias, ou melhor, os superaglomerados galácticos que constituem *as partículas* do *fluido cósmico* (*N. do R.*).


De facto, parece ter havido um tempo, há cerca de dez ou vinte mil milhões de anos, em que os objectos estavam todos exactamente no mesmo lugar (11) e em que, portanto, a densidade do Universo era infinita. Esta descoberta trouxe finalmente a questão das origens para o domínio da ciência.


(11) Não deve entender-se *lugar* no espaço, mas sim que ocupavam o *único lugar* do espaço (*N. do R.*).


As observações de Hubble sugeriam que tinha havido um tempo para uma grande explosão [um *big bang*] (12), em que o Universo era infinitamente pequeno e denso. Nessas condições, todas as leis da física e, portanto, toda a possibilidade de predizer o futuro cairiam por terra. Se houve acontecimentos antes desse tempo, não podem afectar o que acontece no tempo presente. A sua existência pode ser ignorada, por não ter consequências observáveis. Pode dizer-se que o tempo começou com o *big bang*, no sentido em que os primeiros momentos não podiam ser definidos.


(12)os comentários parentéticos (á..../ú) são da responsabilidade do revisor (*n. do R.*).


Deve sublinhar-se que este começo no tempo é muito diferente dos que tinham sido considerados previamente. Num universo imutável, um começo no tempo é :, uma coisa que tem de ser imposta por algum Ser exterior ao Universo; não há necessidade física de um começo. Pode imaginar-se que Deus criou o Universo em qualquer momento do passado. Por outro lado, se o Universo está em expansão, pode haver razões de natureza física para um começo. Podia continuar a imaginar-se que Deus criou o Universo no instante do *big bang*, ou mesmo depois, de tal modo que o *big bang* nos pareça ter ocorrido, mas não teria qualquer significado supor que tinha sido criado *antes* do *big bang*. Um universo em expansão não exclui um Criador, mas impõe limitações ao momento do desempenho da Criação!


Para se falar da natureza do Universo e discutir assuntos tais como o princípio e o fim, temos de ser claros acerca do que é uma teoria científica. Vou partir do princípio simplista de que uma teoria não é mais do que um modelo do Universo, ou de uma parte restrita deste e um conjunto de regras que relacionam quantidades do modelo com as observações que praticamos. Existe apenas na nossa mente e não tem qualquer outra realidade, seja o que for que signifique. Uma teoria é boa quando satisfaz dois requisitos: deve descrever com precisão um grande número de observações que estão na base do modelo, que pode conter um pequeno número de elementos arbitrários, e deve elaborar predições definidas sobre os resultados de observações futuras. Por exemplo, a teoria de Aristóteles de que todas as coisas eram feitas de quatro elementos -- a terra, o ar, o fogo e a água (l3) -- era suficientemente simples para :, valer como tal, embora apresentasse um conteúdo preditivo pobre. Por outro lado, a teoria da gravitação de Newton baseava-se num modelo ainda mais simples, em que os corpos se atraíam uns aos outros com uma força proporcional às suas massas e inversamente proporcional ao quadrado da distância entre eles. No entanto, prediz os movimentos do Sol, da Lua e dos planetas com elevado grau de precisão.


(13) Os *elementos* nem por isso designam as substâncias do mesmo nome (*N. do R.*).


Qualquer teoria física é sempre provisória, no sentido de não passar de uma hipótese: nunca consegue provar-se. Por muitas vezes que os resultados da experiência estejam de acordo com alguma teoria, nunca pode ter-se a certeza de que na vez seguinte o resultado não a contrarie. Por outro lado, pode refutar-se uma teoria descobrindo uma única observação em desacordo com as predições da teoria. Como o filósofo da ciência Karl Popper realçou, uma boa teoria caracteriza-se pelo facto de fazer predições que podem, em princípio, ser contestadas ou falseadas pela observação. Sempre que novas experiências concordam com as predições, a teoria sobrevive e a nossa confiança nela aumenta; mas, se uma nova observação surge em desacordo, temos de abandonar ou modificar a teoria. Pelo menos, é o que se supõe acontecer, mas pode sempre pôr-se em dúvida a competência da pessoa que efectuou a observação.


Na prática, o que acontece muitas vezes é surgir uma teoria que mais não é que uma extensão de outra. Por exemplo, observações muito precisas do planeta Mercúrio revelaram uma pequena discrepância entre o movimento observado e o movimento previsto pela teoria da gravitação de Newton. A teoria da relatividade geral de einstein previa um movimento ligeiramente diferente do da teoria de Newton. O facto de as predições de Einstein condizerem com as observações, ao passo que as de Newton não, foi uma das confirmações cruciais da nova teoria. :, Contudo, ainda se usa a teoria de Newton para fins práticos, porque as diferenças entre as predições de uma e outra são muito pequenas nas situações com que normalmente deparamos (14). (A teoria de Newton também tem a grande vantagem de ser [matematicamente] muito mais operacional que a de Einstein!)


(14) Se, por um lado, a teoria de Newton é indispensável na prática, por outro, o seu suporte metafísico foi completamente eliminado (*N. do R.*).


O objectivo final da ciência é fornecer uma única teoria que descreva todo o Universo. No entanto, o caminho seguido pela maior parte dos cientistas é separar o problema em duas partes. Primeiro, há as leis que nos dizem como o Universo evoluciona. (Se conhecermos o estado do Universo num dado momento, essas leis possibilitam inferir o estado do Universo em qualquer momento futuro). Segundo, há a questão do estado inicial do Universo. Há quem pense [e defenda] que a ciência se devia preocupar apenas com a primeira parte: a questão do estado inicial é remetida para a metafísica ou para a religião. Pensam que Deus, sendo omnipotente, podia ter criado o Universo como quisesse. Pode ser que isto seja assim, mas nesse caso também podia tê-lo feito desenvolver-se de modo completamente arbitrário. Contudo, parece que decidiu fazê-lo evoluir de modo muito regular e segundo certas leis. Parece, portanto, igualmente razoável supor que também há leis que governam o estado inicial.


Acaba por ser muito difícil arranjar uma teoria que descreva o Universo de uma vez só. Em vez disso, dividimos o problema em partes e inventamos teorias parciais. Cada uma destas descreve e prediz certo conjunto limitado de observações, desprezando o efeito de outras quantidades ou representando-as por simples conjuntos de números, procedimento que pode estar completamente errado. Se :, tudo no Universo depende de tudo o mais de uma maneira fundamental, pode ser impossível aproximarmo-nos de uma solução completa investigando isoladamente as partes do problema. Contudo, é certamente este o processo como temos logrado progressos no passado. O exemplo clássico é mais uma vez a teoria de Newton da gravitação, que nos diz que a força atractiva entre dois corpos á.a uma certa distância fixa] depende apenas de um número associado a cada corpo, a sua massa, mas é independente da matéria de que os corpos são feitos. Deste modo, não é necessária uma teoria de estrutura e constituição do Sol e dos planetas para calcular as suas órbitas.


Os cientistas de hoje descrevem o Universo em termos de duas teorias parciais fundamentais: a teoria da relatividade geral e a mecânica quântica. São estes os grandes feitos intelectuais da primeira metade do século. A teoria da relatividade geral descreve a força da gravidade e a estrutura em macro-escala do Universo, ou seja, a estrutura em escalas que vão de apenas alguns quilómetros a alguns milhões de milhões de milhões de milhões (1.000.000.000.000.000.000.000.000) de quilómetros: as dimensões do Universo observável. A mecânica quântica, por seu lado, tem a ver com fenómenos que ocorrem em escalas extremamente reduzidas, tais como um milionésimo de milionésimo de centímetro. Infelizmente, contudo, estas duas teorias são incompatíveis: não podem estar ambas correctas. Uma das maiores demandas da física actual, e o assunto principal deste livro, é a nova teoria que concilie as duas. uma teoria quântica da gravidade. Ainda não a encontrámos e podemos estar muito longe dela, mas já conhecemos muitas das propriedades que a devem caracterizar. E veremos, em capítulos posteriores, que já sabemos muito sobre as predições a que essa teoria nos irá conduzir. :,


Portanto, se acreditarmos que o Universo não é arbitrário, mas sim governado por leis definidas, ter-se-á finalmente que combinar as teorias parciais numa teoria unificada completa que descreva todo o Universo. Mas existe um paradoxo fundamental na busca dessa teoria. As ideias sobre as teorias científicas que foram aqui delineadas presumem que somos seres racionais livres para observar o Universo como quisermos e tirar conclusões lógicas daquilo que observamos. Num esquema como este, é razoável supor que seremos capazes de progredir cada vez mais em direcção às leis que governam o Universo. Contudo, se houver realmente uma teoria unificada ela também determinará presumivelmente as nossas acções (15). E assim, a própria teoria determinaria o resultado da nossa busca. E por que motivo determinaria que chegássemos às conclusões certas, a partir da evidência? Não poderia também determinar que chegássemos à conclusão errada? Ou a nenhuma conclusão?


(15) Esta problemática é evitada demarcando uma separação nítida entre Universo e universos. Se o homem fosse encontrado como solução matemática num universo seria inevitável o dilema, da regressão: a solução apontaria o cientista que constrói o modelo que explica o cientista que constrói o modelo... (*N. do R.*).


A única resposta que posso dar tem por base o princípio da selecção natural de Darwin. A ideia é que em qualquer população de organismos auto-reprodutores haverá variações no material genético e na criação de diferentes indivíduos. Estas variações significam que alguns indivíduos são mais capazes do que outros para tirar as conclusões certas sobre o mundo que os rodeia e para agir de acordo com elas. Estes indivíduos terão mais hipóteses de sobreviver e de se reproduzir; deste modo, o seu padrão de comportamento e pensamento virá a ser dominante. Tem-se verificado no passado que aquilo a que chamamos :, inteligência e descobertas científicas tem acarretado vantagens de sobrevivência. Já não é tão claro que isto se mantenha: as nossas descobertas científicas podem perfeitamente acabar por nos destruir a todos e, mesmo que o não façam, uma teoria unificada pode não fazer grande diferença quanto às nossas hipóteses de sobrevivência. Contudo, desde que o Universo tenha evoluído de modo regular, pode esperar-se que a capacidade de raciocínio que nos foi dada pela selecção natural seja válida também na nossa busca de uma teoria unificada, não nos conduzindo a conclusões erradas.


Como as teorias parciais que já temos são suficientes para fazer predições exactas em todas as situações, excepto nas mais extremas, a busca da teoria definitiva do Universo parece de difícil justificação em termos práticos. (De nada vale, no entanto, que argumentos semelhantes possam ter sido utilizados quer contra a relatividade quer contra a mecânica quântica, e estas teorias deram-nos a energia nuclear e a revolução da micro-electrónica!) A descoberta de uma teoria unificada, portanto, pode não ajudar à sobrevivência das nossas espécies. Pode mesmo nem afectar a nossa maneira de viver. Mas desde a alvorada da civilização, as pessoas não se contentam com ver os acontecimentos desligados e sem explicação. Têm ansiado por um entendimento da ordem subjacente no mundo. Ainda hoje sentimos a mesma ânsia de saber por que estamos aqui e de onde viemos. O mais profundo desejo de conhecimentos da humanidade é justificação suficiente para a nossa procura contínua. E o nosso objectivo é, nada mais nada menos, do: que uma descrição completa do Universo em que vivemos.


II. Espaço e Tempo


As nossas ideias actuais sobre o movimento dos corpos vêm dos tempos de Galileu e de Newton. Antes deles, as pessoas acreditavam em Aristóteles, que afirmou que o estado natural de um corpo era estar em repouso e só se mover quando sobre ele actuasse uma força ou impulso. Assim, um corpo pesado cairia mais depressa que um leve porque sofreria um impulso maior em direcção à terra.


A tradição aristotélica também afirmava que era possível descobrir todas as leis que governam o Universo por puro pensamento, sem necessidade de confirmação observacional. Deste modo, ninguém até Galileu se preocupou em ver se corpos de pesos diferentes caíam de facto com velocidades diferentes. Diz-se que Galileu demonstrou que a crença de Aristóteles era falsa deixando cair pesos da Torre Inclinada de Pisa. A história é, quase de certeza, falsa, mas Galileu fez uma coisa equivalente: fez rolar bolas de pesos diferentes pelo suave declive de um plano inclinado. A situação é semelhante à de corpos pesados que caem verticalmente, mas mais fácil de observar, porque se movimentam com velocidades diferentes. As medições de Galileu indicavam que a velocidade de cada corpo aumentava na mesma proporção, qualquer que fosse o seu peso. Por exemplo, se deixarmos rolar uma bola por uma :, encosta que desce um metro por cada dez metros de caminho andado, veremos que a bola desce a uma velocidade de cerca de um metro por segundo após um segundo, dois metros por segundo após dois segundos, e por aí fora, por mais pesada que seja. É evidente que um peso de chumbo cairá mais depressa que uma pena, mas tal sucede apenas porque a pena é retardada pela resistência do ar. Se deixarmos cair dois corpos que sofram pequena resistência por parte do ar, por exemplo dois pesos de chumbo diferentes, a velocidade da queda é a mesma.


As medições de Galileu foram utilizadas por Newton como base para as suas leis do movimento. Nas experiências de Galileu, quando um corpo rolava por um plano inclinado exercia-se sobre ele sempre a mesma força (o seu peso), e o seu efeito era fazer aumentar constantemente a velocidade. Isto mostrou que o verdadeiro efeito da força é modificar sempre a velocidade de um corpo, e não só imprimir-lhe o movimento, como se pensara antes. Também significava que, quando um corpo não sofre o efeito de qualquer força, se manterá em movimento rectilíneo com velocidade constante. Esta ideia foi explicitada pela primeira vez na obra de Newton *Principia Mathematica*, publicada em 1687, e é conhecida por primeira lei de Newton. O que acontece a um corpo quando uma força actua sobre ele é explicado pela segunda lei de Newton, que afirma que o corpo acelerará, ou modificará a sua velocidade proporcionalmente à força. (Por exemplo, a aceleração será duas vezes maior se a força for duas vezes maior). A aceleração também é menor quanto maior for a massa (ou quantidade de matéria) do corpo. (A mesma força actuando sobre um corpo com o dobro da massa produzirá metade da aceleração). O automóvel é um exemplo familiar: quanto mais potente for o motor, maior será a aceleração, mas, quanto mais pesado for o carro, menor será a aceleração para o mesmo motor. :,


Para além das leis do movimento, Newton descobriu uma lei para descrever a força da gravidade, que afirma que um corpo atrai outro corpo com uma força proporcional à massa de cada um deles. Assim, a força entre dois corpos será duas vezes mais intensa se um dos corpos (por exemplo, o corpo A) tiver o dobro da massa. É o que se poderia esperar, porque se pode pensar no novo corpo A como sendo constituído por dois corpos com a massa original. Cada um atrairia o corpo B com a sua força original. Assim, a força total entre A e B seria duas vezes a força original. E se, por exemplo, um dos corpos tiver duas vezes a massa e o outro três vezes, então a força será seis vezes mais intensa. Vê-se assim por que razão todos os corpos caem com a mesma velocidade relativa; um corpo com o dobro do peso terá duas vezes a força da gravidade a puxá-lo para baixo, mas terá também duas vezes a massa original. De acordo com a segunda lei de Newton, estes dois efeitos anulam-se exactamente um ao outro, de modo que a aceleração será a mesma em todos os casos.


A lei da gravitação de Newton também nos diz que, quanto mais separados estiverem os corpos, mais pequena será a força. E também nos diz que a atracção gravitacional de uma estrela é exactamente um quarto da de uma estrela semelhante a metade da distância. Esta lei prediz as órbitas da Terra, da Lua e dos outros planetas com grande precisão. Se a lei dissesse que a atracção gravitacional de uma estrela diminuía mais depressa com a distância, as órbitas dos planetas não seriam elípticas: mover-se-iam em espiral até colidirem com o Sol. Se diminuísse mais devagar, as forças gravitacionais das estrelas distantes dominariam a da Terra.


A grande diferença entre as ideias de Aristóteles e as de Galileu e Newton é que Aristóteles acreditava num estado preferido de repouso, que qualquer corpo tomaria se não fosse actuado por qualquer força ou impulso. Pensava particularmente :, que a Terra estava em repouso. Mas, das leis de Newton, decorre que não existe um padrão único de repouso. Poder-se-ia igualmente dizer que o corpo A está em repouso e o corpo B em movimento com velocidade constante em relação ao corpo A, ou que o corpo B está em repouso e o corpo A em movimento. Por exemplo, se pusermos de lado, por instantes, a rotação da Terra e a sua órbita em torno do Sol, podemos dizer que a Terra está em repouso e que um comboio se desloca para norte a cento e vinte quilómetros por hora. Ou que o comboio está em repouso e que a Terra se move para sul a cento e vinte quilómetros por hora. Se efectuássemos experiências com corpos em movimento no comboio, todas as leis de Newton continuariam válidas. Por exemplo, jogando ténis de mesa no comboio, verificar-se-ia que a bola obedecia às leis de Newton, tal como a bola numa mesa colocada junto à linha. Portanto, não existe maneira de dizer se é o comboio ou a Terra que está em movimento (1).


(1) Quer dizer: não há processo mecânico de fazer distinguir entre estado de repouso e estado de movimento uniforme e rectilíneo. Esta afirmação constitui o enunciado do princípio da relatividade galilaica (*N. do R.*).


A falta de um padrão absoluto de repouso significava que não era possível determinar se dois acontecimentos que ocorriam em momentos diferentes ocorriam na mesma posição no espaço. Por exemplo, suponhamos que a bola de ténis de mesa no comboio saltita verticalmente, para cima e para baixo, atingindo a mesa duas vezes no mesmo sítio com um segundo de intervalo. Para alguém na linha, os dois saltos pareceriam ocorrer a cerca de cem metros um do outro, porque o comboio teria percorrido essa distância entre os dois saltos. A não existência de repouso absoluto significava portanto que não se podia dar uma posição absoluta no espaço a um acontecimento, como :, Aristóteles acreditou. As posições dos acontecimentos e as distâncias entre eles seriam diferentes para uma pessoa no comboio e outra na linha, e não haveria motivo para dar preferência a qualquer delas.


Newton preocupou-se muito com esta falta de posição absoluta ou espaço absoluto, como se chamava, por não estar de acordo com a sua ideia de um Deus absoluto. De facto, recusou-se a aceitar [que] o espaço [não fosse (2)] absoluto, embora as suas leis o sugerissem. Muitas pessoas criticaram severamente a sua crença irracional, particularmente o bispo Berkeley, filósofo que acreditava que todos os objectos materiais e o espaço e o tempo não passavam de uma ilusão. Quando o famoso Dr. Johnson ouviu a opinião de Berkeley, gritou: "Refuto-a assim!" e deu um pontapé numa pedra.


(2) Trata-se, é quase certo, de um lapso da edição original (*n. do R.*).


Tanto Aristóteles como Newton acreditavam no tempo absoluto. Ou seja, acreditavam que se podia medir sem ambiguidade o intervalo de tempo entre dois acontecimentos, e que esse tempo seria o mesmo para quem quer que o medisse, desde que utilizasse um bom relógio. O tempo era completamente separado e independente do espaço. Isto é o que a maior parte das pessoas acharia ser uma opinião de senso comum. Contudo, fomos obrigados a mudar de ideias quanto ao espaço e ao tempo. Embora estas noções de aparente senso comum funcionem perfeitamente quando lidamos com coisas como maçãs ou planetas, que se movem relativamente devagar, já não funcionam à velocidade da luz ou perto dela. O facto de a luz se deslocar com uma velocidade finita, mas muito elevada, foi descoberto em 1676 pelo astrónomo dinamarquês Ole Christensen Roemer. Este observou que os períodos em que as luas de Júpiter pareciam passar por trás do planeta não tinham intervalos regulares, como se esperaria se elas girassem :, à volta do planeta com uma velocidade constante. Como a Terra e Júpiter orbitam em volta do Sol, a distância entre eles varia. Roemer reparou que os eclipses das luas de Júpiter ocorriam tanto mais tarde quanto mais longe se estivesse do planeta. Argumentou que isto acontecia porque a luz das luas levava mais tempo a chegar até nós quando estávamos mais longe. As suas medições das variações da distância da Terra a Júpiter não eram, contudo, muito precisas e, assim, o valor da velocidade da luz era de duzentos e vinte e cinco mil quilómetros por segundo, em comparação com o valor actual de trezentos mil quilómetros por segundo. No entanto, a proeza de Roemer, não só ao provar que a luz se propaga a uma velocidade finita mas também ao medi-la, foi notável: conseguida onze anos antes da publicação dos *Principia Mathematica* de Newton.


Uma teoria correcta da propagação da luz só surgiu em 1865, quando o físico britânico James Clerk Maxwell conseguiu unificar as teorias parciais utilizadas até então para descrever as forças da electricidade e do magnetismo. As equações de Maxwell prediziam que podia haver perturbações de tipo ondulatório no campo electromagnético e que elas se propagariam com uma velocidade determinada, como pequenas ondulações num tanque. Se o comprimento de onda destas ondas (a distância entre uma crista de onda e a seguinte) for de um metro ou mais trata-se do que hoje chamamos ondas de rádio. De comprimentos de onda mais curtos são as chamadas micro-ondas (alguns centímetros) ou ondas infravermelhas (um pouco mais de dez milésimos de centímetro). A luz visível tem um comprimento de onda compreendido apenas entre quarenta e oitenta milionésimos de centímetro. São conhecidos comprimentos de onda mais curtos como ondas ultravioletas, raios X e raios gama.


A teoria de Maxwell predizia que as ondas de rádio ou de luz deviam propagar-se a uma velocidade determinada. :, Mas a teoria de Newton tinha acabado com a ideia do repouso absoluto, de maneira que, supondo que a luz se devia propagar a uma velocidade finita, era preciso dizer em relação a quê essa velocidade teria de ser medida. Foi ainda sugerido que havia uma substancia chamada "éter", presente em todo o lado, mesmo no espaço "vazio". As ondas de luz propagar-se-iam através do éter como as ondas sonoras se propagam através do ar, e a sua velocidade seria assim relativa ao éter. Observadores diferentes que se movessem em relação ao éter veriam a luz propagar-se na sua direcção com velocidades diferentes, mas a velocidade da luz em relação ao éter manter-se-ia fixa. Em particular, como a Terra se movia no seio do éter, na sua órbita em torno do Sol, a velocidade da luz medida na direcção do movimento da Terra através do éter (quando nos movemos em direcção à fonte de luz) devia ser mais elevada que a velocidade da luz na direcção perpendicular a esse movimento (quando não nos dirigimos para a fonte). Em 1887, Albert Michelson (que mais tarde veio a ser o primeiro americano galardoado com o prémio Nobel da Física) e Edward Morley realizaram uma experiência cuidadosa na Case School de Ciências Aplicadas, em Cleveland.: Compararam a velocidade da luz na direcção do movimento da Terra com a velocidade medida na direcção perpendicular a esse movimento. Para sua grande surpresa, descobriram que os seus valores eram exactamente os mesmos!


Entre 1887 e 1905, houve várias tentativas, sobretudo as do físico holandês Hendrick Lorentz, para explicar o resultado 'da experiência de Michelson e Morley, em termos de contracção de objectos e de atrasos nos relógios, quando se moviam no éter. Contudo, num famoso trabalho de 1905, um funcionário até então desconhecido do Gabinete de Patentes suíço, Albert Einstein, mostrou que a ideia do éter era desnecessária desde que se abandonasse :, a ideia do tempo absoluto. Umas semanas mais tarde, um importante matemático francês, Henri Poincaré, demonstrou a mesma coisa. Os argumentos de Einstein estavam mais próximos da física que os de Poincaré, que encarava o problema sob o ponto de vista matemático. Geralmente, o crédito da nova teoria cabe a Einstein, mas o nome de Poincaré é lembrado por estar ligado a uma importante parte dela.


o postulado fundamental da teoria da relatividade, como foi chamada, foi que as leis da física (3) deviam ser as mesmas para todos os observadores que se movessem livremente, qualquer que fosse a sua velocidade. Isto era verdadeiro para as leis do movimento de Newton, mas agora a ideia alargava-se para incluir a teoria de Maxwell e a velocidade da luz: todos os observadores deviam medir a mesma velocidade da luz, independentemente da velocidade do seu movimento.


(3) As leis da física e não somente as leis da mecânica (cf. princípio da relatividade galilaico). O *fundamental* conteúdo deste postulado passa muitas vezes despercebido ao leitor, que se deixa mais facilmente impressionar pelo postulado da constância da velocidade da luz: este é, de certa forma, *implicado* por aquele! (*N. do R.*).


Esta ideia simples teve algumas consequências notáveis. Talvez as mais conhecidas sejam a equivalência da massa e da energia, resumida na famosa equação de Einstein *E = mcâ2* (em que *E* representa a energia, *m* a massa e *c* a velocidade da luz), e a lei de que nada (4) se pode deslocar mais depressa que a luz. Devido à equivalência entre massa e energia, a energia de um objecto devida ao seu movimento adicionar-se-á à sua massa. Por outras palavras, será mais difícil aumentar a sua velocidade. Este efeito só é realmente significativo para objectos que se movam a velocidades próximas da da luz. Por exemplo, a 10% da velocidade da luz, a massa de um :, objecto é apenas meio por cento superior à normal, ao passo que a 90% da velocidade da luz excederia o dobro da sua massa normal. Quando um objecto se aproxima da velocidade da luz, a sua massa aumenta ainda mais depressa, pelo que é precisa cada vez mais energia para lhe aumentar a velocidade.


(4) Este *nada* refere-se a algo material. É claro que se podem conceber velocidades meramente geométricas (v. g. expansão do espaço) tão grandes quanto se queira (*N. do R.*).


De facto, nunca pode atingir a velocidade da luz porque, nessa altura, a sua massa ter-se-ia tornado infinita e, pela equivalência entre massa e energia, seria precisa uma quantidade infinita de energia para incrementar indefinidamente a massa. Por este motivo, qualquer objecto normal está para sempre confinado pela relatividade a mover-se com velocidades inferiores à da luz. Só esta ou as outras ondas que não possuam massa intrínseca se podem mover à velocidade da luz.


Uma consequência igualmente notável da relatividade é a maneira como revolucionou as nossas concepções de espaço e tempo. Na teoria de Newton, se um impulso de luz for enviado de um local para outro, diferentes observadores estarão de acordo quanto ao tempo que essa viagem demorou (uma vez que o tempo é absoluto), mas não quanto à distância que a luz percorreu (uma vez que o espaço não é absoluto). Como a velocidade da luz é exactamente o quociente da distância percorrida pelo tempo gasto, diferentes observadores mediriam diferentes velocidades para a luz. Em relatividade, por outro lado, todos os observadores *têm* de concordar quanto à velocidade de propagação da luz. Continuam ainda, no entanto, a não concordar quanto à distância que a luz percorreu, pelo que têm também de discordar quanto ao tempo que demorou. O tempo gasto é apenas a distância -- com que os observadores não concordam -- dividida pela velocidade da luz -- valor comum aos observadores (5). Por outras palavras, :, a teoria da relatividade acabou com a ideia do tempo absoluto! Parecia que cada observador obtinha a sua própria medida do tempo, registada pelo relógio que utilizava, e que relógios idênticos utilizados por observadores diferentes nem sempre coincidiam.


(5) No original o tempo vem mal calculado. Limitamo-nos a apresentar a versão correcta (*N. do R.*).


Cada observador podia usar o radar para dizer onde e quando um acontecimento ocorria, enviando um impulso de luz ou de ondas de rádio. Parte do impulso é reflectido no momento do acontecimento e o observador mede o tempo decorrido quando recebe o eco. Diz-se então que o tempo do acontecimento é o que está a meio entre o envio :,do impulso e a recepção do eco; a distância do acontecimento é metade do tempo da viagem de ida e volta multiplicado pela velocidade da luz. (Um acontecimento, neste sentido, é qualquer coisa que ocorre num único ponto do espaço e num momento específico do tempo). Esta ideia está exemplificada na Fig. 2.1 que representa um diagrama espácio-temporal.


Recepção do impulso de radar


tempo

tempo gasto na ida e volta


metade do tempo de ida e volta


lua

acontecimento em que o impulso do radar é reflectido


emissão do impulso do radar


Distância ao observador


Fig. 2.1. O tempo é medido no eixo vertical e a distância ao observador é medida no eixo horizontal. O percurso do observador através do espaço e do tempo é representado pela linha vertical à esquerda. As trajectórias dos raios luminosos em direcção ao acontecimento e provenientes dele são as linhas diagonais.


Utilizando este procedimento, os observadores que se movem em relação uns aos outros podem atribuir ao mesmo acontecimento tempos e posições diferentes. Nenhumas medições de um observador em particular são mais correctas do que as de outro, mas estão todas relacionadas. Qualquer observador pode calcular com precisão o tempo e a posição que outro observador atribuirá a um acontecimento, desde que conheça a velocidade relativa desse outro observador.


Hoje em dia, utilizamos este método para medir com rigor distâncias, porque podemos medir o tempo com maior precisão do que as distâncias. Com efeito, o metro é definido como a distância percorrida pela luz em 0,000000003335640952 segundos medidos por um relógio de césio. (A razão para este número em particular é o facto de corresponder à definição histórica do metro -- em termos de duas marcas numa barra de platina guardada em Paris). Do mesmo modo, pode usar-se uma nova e mais conveniente unidade de comprimento chamada segundo-luz. Este é simplesmente definido como a distância percorrida pela luz num segundo. Na teoria da relatividade, define-se agora a distância em termos de tempo e de velocidade da luz, pelo que se segue automaticamente que cada observador medirá a luz com a mesma velocidade (por definição, um metro por 0,000000003335640952 segundos). Não há necessidade de introduzir a ideia de um éter, cuja presença aliás não pode ser detectada, como mostrou a experiência de Michelson e Morley. A teoria da relatividade :, obriga-nos, contudo, a modificar fundamentalmente as nossas concepções de espaço e tempo. Temos de aceitar que o tempo não está completamente separado nem é independente do espaço, mas sim combinado com ele, para formar um objecto chamado espaço-tempo.


É um dado da experiência comum podermos descrever a posição de um ponto no espaço por três números ou coordenadas. Por exemplo, pode dizer-se que um ponto; numa sala está a dois metros de uma parede, a noventa centímetros de outra e a um metro e meio acima do chão. Ou podemos especificar que um ponto está a determinada latitude e longitude e a determinada altitude acima do nível do mar. É-se livre de utilizar quaisquer coordenadas, embora a sua validade seja limitada. Não é possível especificar a posição da Lua em termos de quilómetros a norte e quilómetros a oeste de Piccadilly Circus e metros acima do nível do mar. Em vez disso, podemos descrevê-la em termos de distância ao Sol, distância ao plano das órbitas dos planetas e do angulo entre a linha que une a Lua ao Sol e a linha que une o Sol a uma estrela próxima como a Alfa Centauro. Mesmo estas coordenadas não teriam grande utilidade para descrever a posição do Sol na nossa galáxia ou a posição da nossa galáxia no grupo local de galáxias. De facto, é possível descrever o Universo em termos de um conjunto de pedaços sobrepostos. Em cada um destes pedaços pode ser utilizado um conjunto diferente de três coordenadas para especificar a posição de um ponto.


Um acontecimento é qualquer coisa que ocorre num determinado ponto no espaço e num determinado momento. Pode, portanto, ser especificado por quatro números ou coordenadas. Mais uma vez, a escolha das coordenadas é arbitrária; podem ser; usadas quaisquer três coordenadas espaciais bem definidas e qualquer medida de tempo. Em relatividade, não há verdadeira distinção :, entre as coordenadas de espaço e de tempo, tal como não existe diferença real entre quaisquer duas coordenadas espaciais. Pode escolher-se um novo conjunto de coordenadas em que, digamos, a primeira coordenada de espaço seja uma combinação das antigas primeira e segunda coordenadas de espaço. Por exemplo, em vez de medirmos a posição de um ponto na Terra em quilómetros a norte de Piccadilly e quilómetros a oeste de Piccadilly, podemos usar quilómetros a nordeste de Piccadilly e a noroeste de Piccadilly. Do mesmo modo, em relatividade, podemos utilizar uma nova coordenada de tempo que é o tempo antigo em segundos mais a distância (em segundos-luz) a norte de Piccadilly.


Muitas vezes é útil pensar nas quatro coordenadas de um acontecimento para especificar a sua posição num espaço quadridimensional chamado espaço-tempo. É impossível imaginar um espaço quadridimensional. Eu próprio já acho suficientemente difícil visualizar um espaço tridimensional! Contudo, é fácil desenhar diagramas de espaços bidimensionais como a superfície da Terra. (A superfície da Terra é bidimensional porque a posição de um ponto pode ser especificada por duas coordenadas: a latitude e a longitude). Usarei geralmente diagramas em que o tempo aumenta no sentido ascendente vertical e uma das dimensões espaciais é indicada horizontalmente. As outras duas dimensões espaciais ou são ignoradas ou, por vezes, uma delas é indicada em perspectiva. (São os diagramas de espaço-tempo como a Fig. 2.1). Por exemplo, na Fig. 2:2, o tempo é medido no sentido vertical ascendente em anos e a distância do Sol a Alfa Centauro é medida horizontalmente em quilómetros. As trajectórias do Sol e de Alfa Centauro através do espaço-tempo são representadas pelas linhas verticais à esquerda e à direita do diagrama. Um raio de luz do Sol segue a linha diagonal e leva quatro anos a chegar a Alfa Centauro. :,


tempo (em anos)


sol

alfa centauro

raio luminoso


distância ao sol (em biliões de quilómetros)


Fig. 2.2


Como vimos, as equações de Maxwell prediziam que a velocidade da luz devia ser a mesma, qualquer que fosse a velocidade da sua fonte, o que foi confirmado por medições rigorosas. Daí que, se um impulso de luz é emitido em determinado momento e em dado ponto do espaço, à medida que o tempo passa, espalhar-se-á como uma esfera de luz cujos tamanho e posição são independentes da velocidade da fonte. Um milionésimo de segundo depois, a luz ter-se-á difundido para formar uma esfera com raio de trezentos metros; dois milionésimos de segundo depois, o raio será de seiscentos metros, etc. Será como a ondulação que se propaga na superfície de um tanque, quando se lhe atira uma pedra. A ondulação propaga-se nun1 círculo que aumenta à medida que o tempo passa. Se pensarmos num :, modelo tridimensional que consista na superfície bidimensional do tanque e numa coordenada de tempo, o círculo de ondulação que se expande representará um cone, cujo topo está no local e no instante em que a pedra atingiu a água (Fig. 2.3). Da mesma maneira, a luz que se propaga a partir de um acontecimento forma um cone tridimensional no espaço-tempo quadridimensional. Este cone chama-se cone de luz do futuro do acontecimento. Podemos, do mesmo modo, desenhar outro cone chamado cone de luz do passado que constitui o conjunto de acontecimentos a partir dos quais um impulso de luz pode alcançar o acontecimento dado.


Os cones de luz do passado e do futuro de um acontecimento *P* dividem o espaço-tempo em três regiões (Fig. 2.5). o futuro absoluto do acontecimento é a região dentro do cone de luz do futuro de *P*. É o conjunto de todos os acontecimentos susceptíveis de serem afectados por aquilo que acontece em *P*. Os acontecimentos fora do cone da luz de *P* não podem ser alcançados por sinais provenientes de *P*, porque nada pode deslocar-se com velocidade superior à da luz. Não podem, assim, ser influenciados por o que acontece em *P*. O passado absoluto de *P* é a região inscrita no cone de luz do passado. É o conjunto de todos os acontecimentos a partir dos quais sinais que se propagam a uma velocidade igual ou inferior à da luz podem alcançar *P*. É, pois, o conjunto de todos os acontecimentos susceptíveis de afectarem o que acontece em *P*. Se soubermos o que está a passar-se em determinado momento em toda a região do espaço inscrita no cone de luz do passado de *P*, podemos predizer o que acontecerá em *P*. O presente condicional é a região do espaço-tempo que não fica nos cones de luz do futuro ou do passado de *P*. Os acontecimentos ocorrentes nessa região não podem afectar nem serem afectados pelos acontecimentos em *P*. Por exemplo, se o Sol deixasse de brilhar neste :, mesmo momento, não afectaria os acontecimentos actuais na Terra porque eles situariam na região do presente condicional do acontecimento quando o Sol deixasse de brilhar (Fig. 2.6). Só saberíamos o que se tinha passado daí a oito minutos, o tempo que a luz do Sol leva a alcançar-nos. Só nessa altura é que os acontecimentos na Terra ficariam no cone de luz do futuro do evento da morte do Sol. Do mesmo modo, não sabemos o que está a passar-se neste momento mais longe no Universo: a luz que nos chega provinda de galáxias distantes deixou-as há milhões de anos; a luz do objecto mais longínquo que conseguimos avistar deixou-o há já cerca de oito mil milhões de anos. Assim, quando observamos o Universo vemo-lo como ele era no passado.


espaço -- tempo


a pedra toca a superfície da água


um segundo depois

dois segundos depois

três segundos depois


ondas em expansão


fig. 2.3


tempo


cone de luz do futuro

cone de luz do passado,


acontecimento

(presente)


espaço


fig. 2.4 :,


espaço e tempo


futuro absoluto


presente condicional


passado absoluto


fig. 2.5


tempo (minutos)


sol


evento de morte do sol


cone de luz do futuro do acontecimento


terra


a morte do sol não nos afecta imediatamente porque não estamos no seu cone de luz do futuro


a terra penetra no cone de luz do futuro da morte do sol cerca de oito minutos depois


fig. 2.6 :,


Se desprezarmos os efeitos da gravitação, como Einstein e Poincaré fizeram em 1905, obtém-se aquilo a que se chama a teoria da relatividade restrita. Para cada acontecimento no espaço-tempo podemos construir um cone de luz (conjunto de todas as trajectórias possíveis da luz, no espaço-tempo, emitida nesse acontecimento) e, uma vez que a velocidade da luz é a mesma para todos os acontecimentos e em todas as direcções, todos os cones de luz serão idênticos e orientados na mesma direcção. A teoria também nos diz que nada pode mover-se com velocidade superior à da luz (6). Isto significa que a trajectória de qualquer objecto através do espaço e do tempo tem de ser representada por uma linha que fique dentro do cone de luz por cada acontecimento no seu interior (Fig. 2.7).


(6) O que está verdadeiramente em causa é a *velocidade* da luz, não a luz. *Acidentalmente*, a luz propaga-se à velocidade da luz, que tanto quanto se sabe também podia chamar-se a velocidade dos neutrinos! (*N. do R.*).


tempo

espaço


não permitida

permitida à luz

utilizável por corpos com massa


fig. 2.7


A teoria da relatividade restrita obteve grande êxito na explicação de que a velocidade da luz parece a mesma para :, todos os observadores (como a experiência de Michelson e Morley demonstrou) e na descrição do que acontece quando os objectos se movem a velocidades próximas da velocidade da luz. Contudo, era inconsistente com a teoria da gravitação de Newton, que afirmava que os objectos se atraíam uns aos outros com uma força que dependia da distância que os separava. Isto significava que, se se deslocasse um dos objectos, a força exercida sobre o outro mudaria instantaneamente. Por outras palavras, os efeitos gravitacionais deslocar-se-iam com velocidade infinita, e não à velocidade da luz ou abaixo dela como a teoria da relatividade restrita exigia. Einstein várias vezes tentou, sem êxito, entre 1904 e 1914, descobrir uma teoria da gravidade que fosse consistente com a relatividade restrita. :, Finalmente, em 1915, propôs o que agora se chama a teoria da relatividade geral.


Einstein apresentou a sugestão revolucionária de que a gravidade não é uma força idêntica às outras, mas sim uma consequência do facto de o espaço-tempo não ser plano, como se pensara: é curvo ou "deformado" pela distribuição de massa e de energia. Corpos como a Terra não são feitos para se moverem em órbitas curvas por acção de uma força chamada gravidade; em vez disso, seguem o que mais se parece com uma trajectória rectilínea num espaço curvo, chamada geodésica. Uma geodésica é o caminho mais curto (ou mais longo) entre dois pontos próximos. Por exemplo, a superfície da Terra é um espaço curvo bidimensional. Uma geodésica na Terra chama-se círculo máximo, e é o caminho mais curto entre dois pontos (Fig. 2.8). Como a geodésica é o caminho mais curto entre quaisquer dois aeroportos, é essa a rota que um navegador aeronáutico indicará ao piloto. Na relatividade geral, os corpos seguem sempre linhas rectas no espaço-tempo quadridimensional, mas, aos nossos olhos, continuam a parecer moverem-se ao longo de trajectórias curvas no espaço tridimensional. (Um bom exemplo é a observação de um voo de avião sobre colinas. Embora siga uma linha recta no espaço tridimensional, a sua sombra segue uma trajectória curva no espaço bidimensional).


Círculo máximo


Fig. 2.8


A massa do Sol encurva o espaço-tempo de tal modo que, embora a Terra siga uma trajectória rectilínea no espaço-tempo quadridimensional, a nós parece-nos mover-se ao longo de uma órbita circular no espaço tridimensional. De facto, as órbitas dos planetas preditas pela relatividade geral são quase exactamente as mesmas que as preditas pela teoria da gravitação de Newton. Contudo, no caso de Mercúrio, que, sendo o planeta mais próximo do Sol, sofre efeitos gravitacionais mais fortes e tem uma órbita bastante alongada, a relatividade geral prediz que :, o eixo maior da elipse devia girar em volta do Sol à razão de cerca de um grau em dez mil anos. Embora este efeito seja pequeno, foi anunciado antes de 1915 e foi uma das primeiras confirmações da teoria de Einstein. Em anos recentes, os desvios ainda mais pequenos das órbitas dos outros planetas relativamente às predições de Newton têm sido medidos por radar, concordando com as predições da relatividade geral.


Também os raios luminosos têm de seguir geodésicas no espaço-tempo. Mais uma vez, o facto de o espaço ser curvo significa que a luz já não parece propagar-se no espaço em linhas rectas. Portanto, a relatividade geral prediz que a luz devia ser encurvada por campos gravitacionais. Por exemplo, a teoria prediz que os cones de luz de pontos perto do Sol serão ligeiramente encurvados para o interior devido à massa do Sol. Isto significa que a luz :, de uma estrela distante que passou perto do Sol deverá ser deflectida de um pequeno angulo, fazendo com que a estrela pareça estar numa posição diferente para um observador na Terra. É evidente que, se a luz da estrela passasse sempre perto do Sol, não poderíamos dizer se a luz estava a ser deflectida ou se, em vez disso, a estrela estava realmente onde a víamos. No entanto, como a Terra orbita em volta do Sol, estrelas diferentes parecem passar por trás deste, tendo consequentemente a sua luz deflectida. Mudam, portanto, as suas posições aparentes em relação às outras estrelas.


Terra

sol

Estrela

Luz proveniente da estrela

Posição aparente da estrela


Fig. 2.9


Normalmente, é muito difícil observar este efeito, porque a luz do Sol torna impossível a observação de estrelas que aparecem perto do Sol. Contudo, é possível fazê-lo durante um eclipse do Sol, quando a sua luz é bloqueada :, pela Lua. A predição de Einstein da deflexão da luz não pôde ser testada imediatamente em 1915, porque se estava em plena Primeira Guerra Mundial; foi só em 1919 que uma expedição britânica, ao observar um eclipse na África Ocidental, mostrou que a luz era realmente deflectida pelo Sol, tal como havia sido predito pela teoria: Esta comprovação de uma teoria alemã por cientistas britânicos foi louvada como um grande acto de reconciliação entre os dois países depois da guerra. É, portanto, irónico que o exame posterior das fotografias tiradas durante essa expedição mostrasse os erros, que eram tão grandes como o efeito que tentavam medir. As medidas tinham sido obtidas por mera sorte ou resultavam do conhecimento prévio do que pretendiam obter, o que não é tão invulgar como isso em ciência. A deflexão da luz tem, contudo, sido confirmada com precisão por numerosas observações posteriores.


Outra predição da relatividade geral é que o tempo devia parecer decorrer mais lentamente perto de um corpo maciço como a Terra. E isto porque há uma relação entre a energia da luz e a sua frequência (ou seja, o número de ondas luminosas por segundo): quanto maior for a energia, mais alta será a frequência. Quando a luz se propaga no sentido ascendente no campo gravitacional da Terra, perde energia e a sua frequência baixa. (Tal significa que o tempo decorrido entre uma crista de onda e a seguinte aumenta). A um observador situado num ponto muito alto parecerá que tudo o que fica por baixo leva mais tempo a acontecer. Esta predição foi testada em 1962, com dois relógios muito precisos, instalados no topo e na base de uma torre de água. Verificou-se que o relógio colocado na parte de baixo, que estava mais perto da Terra, andava mais lentamente, em acordo absoluto com a relatividade geral. A diferença de velocidade dos relógios a alturas diferentes acima do globo é agora de considerável importância prática, com o advento de sistemas de navegação muito :, precisos, baseados em sinais emitidos por satélites. Se se ignorassem as predições da relatividade geral, a posição calculada teria um erro de vários quilómetros!


As leis do movimento de Newton acabaram com a ideia da posição absoluta no espaço. A teoria da relatividade acaba de vez com o tempo absoluto. Consideremos dois gémeos: suponha que um deles vai viver para o cimo de uma montanha e que o outro fica ao nível do mar. O primeiro gémeo envelheceria mais depressa que o segundo. Assim, se voltassem a encontrar-se um seria mais velho que o outro. Neste caso, a diferença de idades seria muito pequena, mas podia ser muito maior se um dos gémeos fosse fazer uma longa viagem numa nave espacial a uma velocidade aproximada à da luz. Quando voltasse, seria muito mais novo do que o que tivesse ficado na Terra. Isto é conhecido por paradoxo dos gémeos, mas só é um paradoxo se tivermos em mente a ideia de tempo absoluto. Na teoria da relatividade não existe qualquer tempo absoluto; cada indivíduo tem a sua medida pessoal de tempo que depende de onde está e da maneira como se está a mover.


Até 1915, pensava-se que o espaço e o tempo eram um palco fixo onde os acontecimentos ocorriam, mas que não era afectado por eles. Tal era verdade mesmo para a teoria da relatividade restrita. Os corpos moviam-se atraídos e repelidos por forças, mas o espaço e o tempo continuavam, sem serem afectados. Era natural pensar que o espaço e o tempo continuassem para sempre.


A situação, no entanto, é completamente diferente na teoria da relatividade geral. O espaço e o tempo são agora quantidades dinâmicas: quando um corpo se move, ou uma força actua, a curvatura do espaço e do tempo é afectada e, por seu lado, a estrutura do espaço-tempo afecta o movimento dos corpos e a actuação das forças. O espaço e o tempo não só afectam como são afectados por tudo o que acontece no Universo. Tal como não podemos falar de :, acontecimentos no Universo sem as noções de espaço e tempo, também na relatividade geral deixou de ter sentido falar sobre o espaço e o tempo fora dos limites do Universo.


Nas décadas seguintes, esta nova compreensão de espaço e tempo iria revolucionar a nossa concepção do Universo. A velha ideia de um Universo essencialmente imutável, que podia ter existido e podia continuar a existir para sempre, foi substituída pela noção de um Universo dinâmico e em expansão, que parecia ter tido início há um tempo finito no passado, e que podia acabar num tempo finito no futuro. Essa revolução constitui o assunto do próximo capítulo. E, anos mais tarde, foi também o ponto de partida para o meu trabalho de física teórica. Roger Penrose e eu mostramos que a teoria da relatividade geral de Einstein implicava que o Universo tinha de ter um princípio e, possivelmente, um fim.


III. O Universo em Expansão


Se olharmos para o céu numa noite de céu limpo e sem luar, os objectos mais brilhantes que podemos ver serão possivelmente os planetas Vénus, Marte, Júpiter e Saturno. Haverá também um grande número de estrelas, que são exactamente como o nosso Sol, mas que se encontram mais distantes de nós. Algumas destas estrelas fixas parecem de facto mudar muito ligeiramente as suas posições umas em relação às outras, enquanto a Terra gira em volta do Sol: não estão absolutamente nada fixas! Isto acontece por estarem comparativamente perto de nós. Como a Terra gira em volta do Sol, vemo-las de diferentes posições no pano de fundo das estrelas mais distantes. É uma sorte, porque nos permite medir directamente a distância a que essas estrelas estão de nós: quanto mais próximas, mais parecem mover-se. A estrela que está mais perto de nós chama-se Próxima Centauro e está, afinal, a cerca de quatro anos-luz de distância (a sua luz leva cerca de quatro anos a alcançar a Terra) ou a cerca de trinta e sete milhões de milhões de quilómetros. A maior parte das outras estrelas visíveis a olho nu está a algumas centenas de anos-luz de nós. O nosso Sol, em comparação, está a uns meros oito minutos-luz de distância! As estrelas visíveis aparecem espalhadas por todo o céu nocturno, mas concentram-se :, particularmente numa faixa a que damos o nome de Via Láctea. Por volta de 1750, alguns astrónomos [entre os quais Thomas Wright (1)], sugeriram que o aspecto da Via Láctea podia ser explicado por a maior parte das estrelas visíveis estar distribuída numa configuração de disco, como aquilo a que agora chamamos galáxia espiral (Fig. 3.1). Só algumas décadas mais tarde, outro astrónomo, Sir William Herschel, confirmou a ideia de Wright, catalogando pacientemente as posições e distâncias de um grande número de estrelas. Mesmo assim, a ideia só obteve aceitação completa no princípio deste século. :,


Fig. 3 .1


(1) Trata-se, por certo, de um lapso da edição americana. Esta informação indispensável (como o leitor verá um pouco adiante) refere-se a Thomas Wright (1711-1786) que imaginou a Via Láctea como um anel de estrelas similar ao de Saturno (*N. do R.*).


A representação moderna do Universo data apenas de 1924, quando o astrónomo americano Edwin Hubble demonstrou que a nossa galáxia não era a única. Havia, na realidade, muitas outras, com vastidões de espaço vazio entre elas. Para o provar, precisa va de determinar as distâncias a que se encontravam essas outras galáxias, que estão tão longe que, ao contrário das estrelas próximas, parecem realmente fixas. Hubble teve de utilizar métodos indirectos para medir as distâncias. O brilho aparente de uma estrela depende de dois factores: da quantidade de luz que radia (a sua luminosidade) e da distância a que se encontra de nós. Para as estrelas próximas, podemos medir o seu brilho aparente e a distância a que se encontram e, assim, determinar a sua luminosidade. Ao contrário, se conhecermos a luminosidade de estrelas de outras galáxias, podemos calcular a sua distância medindo o seu brilho aparente. Hubble notou que certos tipos de estrelas (2) têm sempre a mesma luminosidade quando estão suficientemente perto de nós para que a possamos medir; portanto, argumentou que, se encontrássemos estrelas dessas em outra galáxia, podíamos admitir que teriam a mesma luminosidade e, assim, calcular a distância dessa galáxia. Se o pudéssemos conseguir com várias estrelas da mesma galáxia e os nossos cálculos indicasse m sempre a mesma distância, podíamos confiar razoavelmente neles.


(2) Trata-se das estrelas variáveis *cefeides* (*N. do R.*).


Deste modo, Edwin Hubble calculou as distâncias de nove galáxias diferentes. Sabemos agora que a nossa galáxia é apenas uma de umas centenas de milhar de milhões que podem ser observadas com os telescópios modernos e que cada galáxia contem algumas centenas de milhar de milhões de estrelas. A Fig. 3.1 mostra uma galáxia espiral semelhante ao que pensamos que seja o aspecto da nossa galáxia para alguém que viva noutra. Vivemos numa galáxia :, que tem cerca de uma centena de milhar de anos-luz de diâmetro e roda vagarosamente; as estrelas, nos seus braços em espiral, orbitam em redor do centro cerca de uma vez em cada várias centenas de milhões de anos. O nosso Sol não passa de uma estrela amarela normal, de tamanho médio, perto do limite interior de um dos braços em espiral. Percorremos realmente um longo caminho desde Aristóteles e Ptolomeu, quando se pensava que a Terra era o centro do Universo!


As estrelas estão tão distantes que nos parecem meros pontinhos de luz. Não podemos ver o seu tamanho nem a sua forma. Então como é que podemos distinguir diferentes tipos de estrelas? Na grande maioria das estrelas, há apenas uma característica que podemos observar: a cor da sua luz. Newton descobriu que, se a luz do Sol passa através de um pedaço triangular de vidro, chamado prisma, se decompõe nas cores componentes (o seu espectro), como num arco-íris. Focando uma estrela ou uma galáxia com um telescópio, podemos observar do mesmo modo o espectro da luz dessa estrela ou galáxia. Estrelas diferentes têm espectros diferentes, mas o brilho relativo das diferentes cores é sempre exactamente o que se esperaria encontrar na luz emitida por um objecto incandescente. (Na realidade, a luz emitida por um objecto opaco ao rubro apresenta um espectro característico que depende apenas da sua temperatura -- um espectro térmico. Isto significa que podemos medir a temperatura a partir do espectro da sua luz). Além disso, sabe-se que algumas cores muito específicas estão ausentes dos espectros das estrelas e estas cores que faltam podem variar de estrela para estrela. Como sabemos que cada elemento químico absorve um conjunto característico de cores muito específicas, comparando-as com as que faltam no espectro de uma estrela, podemos determinar exactamente quais são os elementos presentes na atmosfera da estrela. :,


Nos anos 20, quando os astrónomos começaram a observar os espectros de estrelas de outras galáxias, descobriram algo muito estranho: faltavam as mesmas cores encontradas nos espectros das estrelas da nossa galáxia, porque eram todas desviadas na mesma proporção para o extremo vermelho do espectro. Para compreender as implicações deste fenómeno, temos de entender primeiro o efeito de Doppler. Como vimos, a luz visível consiste em flutuações ou ondas no campo electromagnético. A frequência (ou número de ondas por segundo) da luz é extremamente alta, indo de quatro a sete centenas de milhões de milhões de ondas por segundo. As diferentes frequências de luz são o que o olho humano vê como cores diferentes, com as frequências mais baixas junto do extremo vermelho do espectro e as mais altas no extremo azul. Imaginemos agora uma fonte luminosa a uma certa distância de nós, tal como uma estrela, emitindo ondas luminosas com uma frequência constante. É óbvio que a frequência das ondas que recebemos será a mesma a que são emitidas (o campo gravitacional da galáxia não será suficientemente grande para ter um efeito significativo) (3). Suponhamos agora que a fonte começa a mover-se na nossa direcção. Quando a fonte emitir a crista da onda seguinte, estará mais perto de nós; por isso, o tempo que essa crista leva a chegar até nós será menor que quando a estrela estava em repouso relativo. Isto significa que o tempo entre duas cristas de onda que chegam até nós é menor e, portanto, o número de ondas que recebemos por segundo (ou seja, a frequência) é maior do que quando a estrela está em repouso relativo. Da mesma maneira, se a fonte se afastar de nós, a frequência das ondas que recebemos será mais baixa. No :,


(3) Hawking refere aqui *en passant* o *redshift* gravitacional, ou seja, o deslocamento para o vermelho de origem gravitacional e contrapõe ao efeito de Doppler (*N. do R.*).


caso da luz, isto significa que estrelas que se afastam de nós terão os seus espectros desviados para o extremo vermelho do espectro (desvio para o vermelho) e que as que se aproximam de nós terão os seus espectros deslocados para o azul. Esta relação entre a frequência e a velocidade, a que se chama o efeito de Doppler, faz parte da experiência de todos os dias. Basta escutar o ruído de um carro que passa na estrada: à medida que ele se aproxima, o motor soa mais alto (o que corresponde a uma frequência mais alta das ondas sonoras) e, quando passa e se afasta, o som é mais baixo. O comportamento das ondas de luz ou de rádio é semelhante. Na verdade, a Polícia utiliza o efeito de Doppler para medir a velocidade de automóveis, medindo a frequência de impulsos de ondas de rádio por eles reflectidas.


Nos anos que se seguiram à sua prova da existência de outras galáxias, Hubble passou o tempo a catalogar as distâncias entre elas e a observar os seus espectros. Nessa altura, a maior parte das pessoas julgava que as galáxias se movessem completamente ao acaso e, portanto, esperava encontrar tantos espectros desviados para o azul como para o vermelho. Constituiu, portanto, uma autêntica surpresa descobrir que [as "cores" (4) do espectro da] maioria das galáxias (5) surgiam desviadas para o vermelho: quase todas se afastavam de nós! Mais surpreendente ainda foi a descoberta que Hubble publicou em 1929: o valor do desvio para o vermelho de uma galáxia não é casual, mas sim directamente proporcional à distância a que a galáxia está de nós. Ou, por outras palavras, quanto mais longe ela se encontra, mais depressa está a afastar-se! E isso significava que o Universo não podia ser estático, como toda :,


(4 Cores, ou melhor, as riscas espectrais (*N. do R.*).


(5) De facto, a princípio, o número de galáxias catalogadas era bem pequeno! (*N. do R.*).


a gente tinha pensado antes, mas que está, de facto, em expansão; a distância entre as diferentes galáxias aumenta

constantemente.


A descoberta de que o Universo está em expansão foi uma das grandes revoluções intelectuais do século XX. Com a percepção após o acontecimento, é fácil perguntarmo-nos por que motivo ninguém tinha pensado nisso antes. Newton e outros deviam ter compreendido que um universo estático depressa começaria a contrair-se sob influência da gravidade. Mas pensemos, ao invés, num universo em expansão. Se se expandisse bastante devagar, a força da gravidade acabaria por travar a expansão, seguindo-se-lhe inevitavelmente a contracção. Contudo, se estivesse a expandir-se acima de uma certa razão crítica, a gravidade nunca teria força suficiente para travar a expansão, e o Universo continuaria a expandir-se para sempre. É um pouco como o que acontece quando se dispara um foguetão para o espaço. Se tiver uma velocidade bastante lenta, a gravidade acabará por detê-lo e ele cairá. Por outro lado, se o foguetão ultrapassar certa velocidade crítica (cerca de onze quilómetros por segundo) a gravidade não terá força suficiente para o aprisionar, de maneira que continuará a afastar-se da Terra para sempre. Este comportamento do Universo podia ter sido predito a partir da teoria da gravidade de Newton em qualquer altura nos séculos XIX, XVIII ou até no fim do século XVII. Mas era tão forte a crença num universo estático que esta prevaleceu até ao século XX. Até Einstein, quando formulou a teoria da relatividade geral, em 1915, estava tão certo de que o Universo era estático que modificou a sua teoria para o tornar possível, introduzindo nas suas equações a chamada constante cosmológica. Einstein introduziu uma nova força, "antigravitação", que, ao contrário das outras forças, não provinha de qualquer origem especial, mas era construída na própria estrutura do espaço-tempo. Afirmava :, ele que o espaço-tempo tinha uma tendência intrínseca para se expandir, o que poderia levar a equilibrar exactamente a atracção de toda a matéria no universo, de modo a daí resultar um universo estático. Só um homem, segundo parece, estava disposto a tomar a relatividade geral pelo que era e, enquanto Einstein e outros físicos procuravam maneiras de evitar, no contexto da relatividade geral, soluções não estáticas, o físico e matemático russo Alexander Friedmann dedicou-se a explicá-las.


Friedmann tirou duas conclusões muito simples sobre o Universo: que este parece idêntico seja em que direcção se olhe e que tal também seria verdade se observássemos o Universo de qualquer outro lugar. Apenas com estas duas ideias (6), Friedmann mostrou que não deveríamos esperar que o Universo fosse estático. De facto, em 1922, vários anos antes da descoberta de Edwin Hubble, Friedmann previu exactamente o que aquele veio a descobrir!


(6) Isotropia e homogeneidade. As propriedades de isotropia e homogeneidade do Universo encontram-se encerradas no conteúdo do chamado *princípio cosmológico*, talvez o mais importante argumento de toda a cosmologia moderna (*N. do R.*).


Evidentemente, a suposição de que o Universo tem o mesmo aspecto em todas as direcções não é, na realidade, verdadeira. Por exemplo, como já vimos, as outras estrelas da Galáxia formam uma faixa de luz distinta no céu nocturno, chamada Via Láctea. Mas, se olharmos para galáxias distantes, parece haver mais ou menos o mesmo número delas [qualquer que seja a direcção em que se olhe]. Portanto, o Universo, na realidade, parece ser praticamente idêntico em todas as direcções, desde que o observemos numa grande escala em comparação com a distância entre as galáxias e ignoremos as diferenças em pequenas escalas. Durante muito tempo isto constituiu justificação suficiente para a suposição de Friedmann: uma grosseira aproximação :, ao verdadeiro Universo. Mas, mais recentemente, por um acidente feliz, descobriu-se que a suposição de Friedmann é realmente uma notável e precisa descrição do nosso Universo.


Em 1965, dois físicos americanos dos Bell Telephone Laboratories de Nova Jérsia, Arno Penzias e Robert Wilson, efectuavam experiências com um detector de micro-ondas muito sensível. (As micro-ondas são exactamente como ondas luminosas, mas com uma frequência da ordem de apenas dez milhares de milhões de ondas por segundo). Penzias e Wilson ficaram preocupados quando descobriram que o seu detector captava mais ruídos do que devia. Os ruídos não pareciam vir de uma direcção em particular. Primeiro, descobriram excremento de aves no detector e procuraram outros defeitos possíveis, mas depressa abandonaram essa hipótese. Sabiam que qualquer ruído proveniente do interior da atmosfera seria mais forte quando o detector não estivesse apontado verticalmente porque os raios de luz percorrem maior distância na atmosfera quando são recebidos perto do horizonte do que quando são recebidos directamente de cima. Os ruídos extra eram os mesmos qualquer que fosse a direcção para que estivesse apontado o detector; portanto, deviam vir *de fora* da atmosfera. Também eram iguais de dia e de noite e durante todo o ano, embora a Terra rodasse sobre o seu eixo e orbitasse em volta do Sol. Isto mostrava que a radiação devia vir de fora do sistema solar e até de fora da Galáxia, porque, se assim não fosse, variaria quando o movimento da Terra apontasse o detector para direcções diferentes. De facto, sabemos que a radiação deve ter viajado até nós através da maior parte do Universo observável e, uma vez que parece ser a mesma em direcções diferentes, o Universo também deve ser o mesmo em todas as direcções, apenas a uma escala maior. Sabemos agora que, em qualquer direcção que olhemos, estes ruídos nunca :, variam mais do que uma parte em dez mil: de modo que Penzias e Wilson tinham tropeçado sem querer numa confirmação incrivelmente precisa da primeira suposição de Friedmann.


Mais ou menos ao mesmo tempo, dois físicos americanos da Universidade de Princeton, ali perto, Bob Dicke e Jim Peebles, também se interessavam pelas micro-ondas. Estavam a trabalhar uma sugestão de George Gamow (que tinha sido aluno de Friedmann) de que o Universo primordial devia ter sido muito quente e denso, com brilho rubro-branco. Dicke e Peebles achavam que ainda devíamos poder ver esse brilho do Universo primitivo porque a luz proveniente de partes muito distantes do Universo primitivo devia estar agora a chegar até nós. Contudo, a expansão do Universo significava que essa luz devia ser de tal maneira desviada para o vermelho que só podia aparecer-nos agora como uma radiação de micro-ondas. Dicke e Peebles preparavam-se para procurar esta radiação quando Penzias e Wilson ouviram falar do seu trabalho e compreenderam que já a tinham encontrado. Assim, Penzias e Wilson receberam o prémio Nobel em 1978 (o que parece um pouco duro para Dicke e Peebles, para não falar de Gamow!)


Ora, à primeira vista, todas estas provas de que o Universo tem o mesmo aspecto, seja qual for a direcção para que se olhe, podem parecer sugerir que existe algo de especial quanto ao nosso lugar no Universo. Em particular, pode parecer que, se observamos a recessão de todas as outras galáxias, devemos estar no centro do Universo. Há, no entanto, uma explicação alternativa: o Universo pode ter o mesmo aspecto em todas as direcções, se for visto também de outra galáxia. Esta foi, como vimos, a segunda suposição de Friedmann. Não temos qualquer prova científica a favor ou contra ela. Acreditamos apenas por modéstia: seria absolutamente espantoso se o Universo :, tivesse o mesmo aspecto em toda a nossa volta e não à volta de outros pontos! No modelo de Friedmann, todas as galáxias se afastam directamente umas das outras. A situação parece-se muito com a de um balão com várias manchas pintadas a ser enchido sem parar (7). À medida que o balão se expande, a distância entre quaisquer duas manchas aumenta, mas não pode dizer-se que alguma mancha seja o centro da expansão. Além disso, quanto mais afastadas estiverem as manchas, mais depressa se afastam. Do mesmo modo, no modelo de Friedmann, a velocidade a que duas galáxias quaisquer se afastam uma da outra é proporcional à distância entre elas. Portanto, previa que o desvio para o vermelho de uma galáxia devia ser directamente proporcional à distância a que se encontra de nós, exactamente como Hubble descobriu. Apesar do êxito deste modelo e da sua predição das observações de Hubble, o trabalho de Friedmann permaneceu muito tempo desconhecido no Ocidente, até serem descobertos modelos semelhantes em 1935 pelo físico americano Howard Robertson e pelo matemático britânico Arthur Walker, em resposta à descoberta de Hubble da expansão uniforme do Universo.


(7) Com mais verosimilhança um balão na superfície do qual se colam papelinhos representando as galáxias a ser inflado. Tal como as heterogeneidades ou irregularidades do Universo, os papelinhos não sofrem a inflação (*N. do R.*).


Embora Friedmann tenha descoberto apenas um, há de facto três modelos diferentes que obedecem às suas duas suposições fundamentais. O primeiro é um universo que se expande suficientemente devagar para que a atracção gravitacional entre as diferentes galáxias provoque abrandamento e provavelmente paragem da expansão. As galáxias começam então a mover-se umas em direcção às outras e o universo contrai-se. A Fig. 3.2 mostra como a distância :, entre duas galáxias vizinhas se modifica à medida que o tempo aumenta. Começa em zero, aumenta até um máximo' e depois diminui novamente até zero. O segundo modelo descreve um universo que se expande tão rapidamente que a atracção gravitacional nunca pode parar a expansão, embora a faça abrandar um pouco. A Fig. 3.3 mostra a separação entre galáxias vizinhas neste modelo. Começa a zero e depois as galáxias acabam por se afastar a uma velocidade constante. Finalmente, existe uma terceira espécie de solução, na qual o Universo se expande apenas à velocidade suficiente para evitar o colapso. Neste caso, a separação, ilustrada na Fig. 3.4, também começa em zero e vai sempre aumentando. Contudo, a velocidade a que as galáxias se afastam umas das outras torna-se cada vez menor, embora nunca chegue a alcançar zero.


fig. 3.2


fig. 3.3


fig. 3.4


Uma característica notável da primeira espécie de modelo de Friedmann é o facto de o Universo não só ser infinito no espaço, mas o espaço não apresentar quaisquer fronteiras. A gravidade é tão forte que o espaço é encurvado sobre si próprio, o que o torna bastante semelhante à superfície da Terra. Se uma pessoa viajar continuamente em determinada direcção na superfície da Terra, nunca chega a uma barreira intransponível nem cai da extremidade; acaba, sim, por voltar ao ponto de partida. No primeiro modelo de Friedmann, o espaço é exactamente assim, mas com três dimensões em vez das duas da superfície da Terra. A quarta dimensão, o tempo, também é finito em extensão, mas é como uma linha com duas extremidades ou fronteiras, um começo e um fim. Veremos mais tarde que, quando se combina a relatividade geral com o princípio da incerteza da mecânica quântica, é possível que tanto o espaço como o tempo sejam finitos sem quaisquer extremidades ou fronteiras.


A ideia de que se pode andar à volta do Universo e voltar ao ponto de partida originou boa ficção científica, mas :, não tem grande significado prático, porque pode demonstrar-se que o Universo voltaria ao tamanho zero antes de se conseguir dar a volta. Seria preciso viajar mais depressa do que a luz para se voltar ao ponto de partida antes de o Universo terminar, o que não é possível!


Na primeira espécie do modelo de Friedmann, que se expande e depois colapsa, o espaço é curvado sobre si próprio, como a superfície da Terra. É, portanto, finito na sua extensão. Na segunda espécie de modelo, que se expande para sempre, o espaço é encurvado ao contrário, como a superfície de uma sela. Portanto, nesse caso, o espaço é infinito. Finalmente, na terceira espécie de modelo de Friedmann, em que o Universo se expande à taxa crítica, o espaço é plano (e, portanto, também infinito).


Mas qual é o modelo de Friedmann que descreve o nosso Universo? Será que este vai alguma vez parar de se expandir e começar a contrair-se, ou expandir-se-á para sempre? Para responder a esta pergunta, precisamos de saber qual é a taxa actual de expansão (8) do Universo e a sua densidade média. Se a densidade for menor que certo valor crítico, determinado pela taxa de expansão, a atracção gravitacional será demasiado fraca para deter a expansão. Se a densidade for maior do que o valor crítico, a gravidade suspenderá a expansão algures no futuro e reconduzirá o Universo ao colapso.


(8) Optamos por traduzir desta forma, referindo-se o autor, numa linguagem acessível, ao *parâmetro de desaceleração*, isto é, a menos de um sinal, à aceleração do movimento de recessão das partículas do fluido cósmico (*N. do R.*).


Podemos determinar a taxa de expansão actual, medindo as velocidades a que as outras galáxias se estão a afastar de nós, recorrendo ao efeito de Doppler. Isto pode conseguir-se com muita precisão. Contudo, as distâncias das galáxias não se conhecem muito bem, porque só podemos :, medi-las indirectamente. Portanto, tudo o que sabemos é que o Universo está a expandir-se à razão de 5 a 10% em cada milhar de milhões de anos. No entanto, a nossa incerteza quanto à densidade média actual do Universo ainda é maior. Se acrescentarmos as massas de todas as estrelas que podemos ver (9) na nossa galáxia e noutras galáxias, o total é inferior a um centésimo da quantidade necessária para fazer parar a expansão do Universo, mesmo para o cálculo mais baixo da taxa de expansão. A nossa e as outras galáxias devem, porém, conter uma grande quantidade de "matéria escura" que não podemos ver directamente, mas que sabemos que deve existir, por causa da influência da sua atracção gravitacional nas órbitas das estrelas nas galáxias.


(9) Não esqueça o leitor que podemos ver através dos telescópios ópticos ou "ver" através dos radiotelescópios e contar as fontes de rádio (*N. do R.*).


Além disso, a maioria das galáxias encontra-se em aglomerados e podemos, assim, concluir que existe mais matéria escura por entre as galáxias nestes aglomerados pelo seu efeito no movimento das galáxias. Quando somamos toda esta matéria escura, continuamos a não obter mais do que um décimo da quantidade necessária para parar a expansão. Não devemos, porém, excluir a possibilidade da existência de outra forma de matéria, distribuída quase uniformemente através do Universo, que ainda não detectámos e que pode ainda aumentar a densidade média do Universo até ao valor crítico necessário para parar a expansão. A evidência actual sugere portanto que o Universo provavelmente se expandirá para sempre, mas apenas podemos ter a certeza de que, mesmo que venha a contrair-se de novo, tal não acontecerá pelo menos durante os próximos dez mil milhões de anos uma vez que tem estado a expandir-se pelo menos desde há :, outro tanto tempo. O facto não deve preocupar-nos muito: entretanto, a não ser que tenhamos colonizado para lá do sistema solar, a Humanidade há muito que terá desaparecido, extinta juntamente com o nosso Sol!


Todas as soluções de Friedmann têm a característica de, em certo momento no passado (entre dez e vinte mil milhões de anos), a distância entre galáxias vizinhas dever ter sido zero. Nesse momento, a que chamamos **bib bang**, a densidade do Universo e a curvatura do espaço-tempo teriam sido infinitas. Como a matemática não pode realmente lidar com números infinitos, isto significa que a teoria da relatividade geral (em que se baseiam as soluções de Friedmann) prediz que há um ponto do Universo onde a própria teoria falha. Esse ponto é um exemplo daquilo a que os matemáticos chamam uma singularidade. De facto, todas as nossas teorias científicas são formuladas na suposição de que o espaço-tempo deve ser liso e quase plano, de modo que falham na singularidade do **bib bang**, onde a curvatura do espaço-tempo é infinita. Isto significa que, mesmo que tivesse havido acontecimentos anteriores ao **bib bang**, não poderíamos utilizá-los para determinar o que veio a aconteeer depois, porque tudo o que se previsse falharia no momento do **bib bang**. Do mesmo modo, se, como é o caso, sabemos apenas o que aconteceu desde o **bib bang**, não podemos determinar o que aconteceu antes. Tanto quanto sabemos, os acontecimentos antes do **bib bang** não podem ter quaisquer consequências, pelo que não devem fazer parte de um modelo científico do Universo. Devemos, portanto, exclui-los do modelo e dizer que o tempo começou com o **bib bang**.


Muitas pessoas não gostam da ideia de o tempo ter um começo, provavelmente porque isso cheira muito a intervenção divina. (A Igreja Católica, pelo seu lado, agarrou-se ao modelo do **bib bang** e, em 1951, afirmou oficialmente que estava de acordo com a Bíblia). Houve, por isso, algumas :, tentativas para evitar a conclusão de que tinha havido um **bib bang**. A proposta que obteve mais adeptos foi a teoria do estado estacionário. Foi sugerida em 1948 por dois refugiados da Áustria ocupada pelos nazis, Hermann Bondi e Thomas Gold, juntamente com um inglês, Fred Hoyle, que tinha trabalhado com eles no desenvolvimento do radar, durante a guerra. A ideia advogava que, enquanto as galáxias se afastavam umas das outras, novas galáxias estavam constantemente a formar-se nos intervalos, a partir de nova matéria em criação contínua. O Universo, portanto, pareceria mais ou menos sempre igual em todos os momentos do tempo e em todos os pontos do espaço. A teoria do estado estacionário exigia uma modificação da relatividade geral que permitisse a criação contínua de matéria, mas a taxa de criação era tão baixa (cerca de uma partícula por quilómetro cúbico por ano) que não entrava em conflito com a experiência. A teoria era cientificamente boa, no sentido descrito no capítulo primeiro: era simples e permitia predições definidas que podiam ser testadas por observação. Uma dessas predições era que o número de galáxias, ou objectos semelhantes, em dado volume do espaço seria o mesmo donde e quando quer que se olhasse para o Universo. No fim dos anos 50 e no princípio dos anos 60 foi feito um levantamento das fontes de ondas de rádio do espaço exterior, em Cambridge, por um grupo de astrónomos dirigidos por Martin Ryle (que também tinha trabalhado com Bondi, Gold e Hoyle no radar, durante a guerra). O grupo de Cambridge mostrou que a maior parte das fontes de rádio se situava fora da nossa galáxia (na realidade, muitas podiam ser identificadas com outras galáxias) e também que as fontes fracas eram em muito maior número do que as fortes. Interpretaram as fontes fracas como sendo as mais distantes e as fortes como as mais próximas. Além disso, parecia haver menos fontes por unidade de volume de espaço no caso das fontes :, próximas do que no caso das distantes. Isto podia significar que estávamos no centro de uma grande região no Universo em que as fontes são menos do que em outra parte qualquer. Ou, alternativamente, podia significar que as fontes eram mais numerosas no passado, no tempo em que as ondas de rádio partiram na nossa direcção, do que são agora. Qualquer das explicações contradizia as predições da teoria do estado estacionário. Além disso, a descoberta da radiação de micro-ondas por Penzias e Wilson em 1965 também indicava que o Universo devia ter sido muito mais denso no passado. A teoria do estado estacionário teve, portanto, de ser abandonada.


Outra tentativa para evitar a conclusão da existência do *bib bang* e, portanto, um começo do tempo, foi realizada por dois cientistas russos, Evgenii Lifshitz e Isaac Khalatnikov, em 1963. Sugeriram que o *bib bang* podia ser uma peculiaridade apenas dos modelos de Friedmann, que afinal não passavam de aproximações ao Universo. Talvez, de todos os modelos que eram mais ou menos parecidos com o Universo, só o de Friedmann contivesse a singularidade do *bib bang*. Nos modelos de Friedmann, as galáxias movem-se todas afastando-se directamente umas das outras, pelo que não admira que em algum momento no passado estivessem todas no mesmo lugar. Contudo, no Universo, as galáxias não estão apenas a mover-se afastando-se directamente umas das outras: apresentam também pequenas velocidades laterais. De maneira que, na realidade, não precisavam de ter estado todas exactamente no mesmo local, mas apenas muito perto umas das outras. Então, talvez o actual Universo em expansão seja o resultado não de uma singularidade, mas de uma fase inicial de contracção; quando o Universo colapsou as partículas que o constituíam não colidiram todas, mas passaram ao lado para depois se afastarem umas das outras, produzindo a actual expansão. Como é que podemos então afirmar :, que o Universo teria começado com o *bib bang*? O que Lifshitz e Khalatnikov fizeram foi estudar universos que eram mais ou menos parecidos com os de Friedmann, mas consideraram as irregularidades e velocidades aleatórias das galáxias no Universo. Mostraram que tais modelos podiam começar com o *bib bang*, embora as galáxias já não se movessem afastando-se directamente umas das outras, mas afirmaram que esta possibilidade só se verificava em determinados modelos excepcionais em que as galáxias se moviam todas de certa maneira. Argumentaram que, uma vez que pareciam existir infinitamente mais modelos como o de Friedmann sem a singularidade do *bib bang* do que com ela, devíamos concluir que, na realidade, não tinha havido *bib bang*. Mais tarde, contudo, compreenderam que havia também muito mais modelos como o de Friedmann com singularidades e em que as galáxias não precisavam de se mover de uma maneira especial. Por isso, em 1970, acabaram por retirar as suas afirmações.


o trabalho de Lifshitz e Khalatnikov foi válido porque mostrou que o Universo *podia* (10) ter tido uma singularidade, um *bib bang*, se a teoria da relatividade geral estivesse correcta. Contudo, não resolvia a pergunta crucial: a relatividade geral encerra a inevitabilidade do *bib bang*, um início dos tempos? A resposta surgiu de uma abordagem completamente diferente do problema, apresentada por um matemático e físico britânico, Roger Penrose, em 1965.


(10) Isto é, que apesar de os modelos generalizados de Friedmann predizerem com toda a aproximação pretendida o Universo actual, nomeadamente os movimentos laterais das galáxias, outros modelos mais elaborados conduzem-nos também, para trás no tempo, à singularidade inicial (*N. do R.*).


Utilizando a maneira como os cones de luz se comportam na relatividade geral juntamente com o facto de a gravidade ser sempre atractiva, mostrou que uma estrela :, que entra em colapso devido à própria gravidade fica presa numa região cuja superfície acaba eventualmente por contrair-se até zero. E como a superfície da região se contrai até zero, o mesmo se deve passar com o seu volume. Toda a matéria existente na estrela será comprimida numa região de volume nulo, de modo que a densidade da matéria e a curvatura do espaço-tempo se tornam infinitas. Por outras palavras, obtém-se uma singularidade contida numa região de espaço-tempo conhecida por buraco negro.


À primeira vista, o resultado de Penrose aplicava-se apenas às estrelas; nada tinha a ver com a questão de saber se o Universo teve ou não teve uma singularidade no passado. Contudo, na altura em que Penrose apresentou o seu teorema, eu era um estudante de investigação que procurava desesperadamente um problema para completar a minha tese de doutoramento. Dois anos antes tinham-me diagnosticado ALS, vulgarmente conhecida por doença de Gehrig, ou neuropatia motora, e tinham-me dado a entender que só tinha mais um ou dois anos de vida. Nessas circunstâncias, não parecia valer muito a pena trabalhar na minha tese de doutoramento, pois não esperava viver o tempo suficiente. Contudo, passados dois anos, eu não tinha piorado muito. Na realidade, as coisas até me corriam bastante bem e tinha ficado noivo de uma excelente rapariga, Jane Wilde. Mas, para poder casar, tinha de arranjar emprego e, para arranjar emprego, precisava do doutoramento.


Em 1965, tomei conhecimento do teorema de Penrose de que qualquer corpo que entre em colapso gravitacional tem de formar eventualmente uma singularidade. Depressa compreendi que, se se trocasse o sentido do tempo no teorema de Penrose, de modo a transformar o colapso numa expansão, as condições do teorema manter-se-iam, desde que o Universo se comportasse, a grande escala e no tempo actual, mais ou menos como no modelo :, de Friedmann. O teorema de Penrose mostrou que qualquer estrela em colapso devia acabar numa singularidade; o argumento com o tempo ao contrário mostrava que qualquer universo em expansão semelhante ao de Friedmann *devia* ter começado com uma singularidade. Por razões técnicas, o teorema de Penrose requeria que o Universo fosse infinito no espaço. Nestas circunstâncias, pude realmente utilizá-lo para provar que só teria de haver uma singularidade se o Universo estivesse a expandir-se suficientemente depressa para evitar entrar em colapso (uma vez que só aqueles modelos de Friedmann eram infinitos no espaço).


Durante os anos seguintes, desenvolvi novas técnicas matemáticas para remover esta e outras condições técnicas dos teoremas que provavam que tinham de ocorrer singularidades. O resultado final foi um trabalho produzido em conjunto por Penrose e por mim, em 1970, que provou por fim que deve ter havido uma singularidade, contanto que a teoria da relatividade geral esteja correcta e o Universo contenha tanta matéria como a que observamos. Houve grande oposição ao nosso trabalho, em parte dos soviéticos, por causa da sua fé marxista no determinismo científico, e em parte de pessoas que achavam que a própria ideia de singularidade era repugnante e estragava a beleza da teoria de Einstein. No entanto, não se pode discutir realmente com um teorema matemático. Deste modo, no fim, o nosso trabalho foi geralmente aceite e hoje em dia quase toda a gente admite que o Universo começou com a singularidade do *bib bang*. Talvez seja irónico que, tendo eu mudado de ideias, esteja agora a tentar convencer outros físicos que não houve na realidade qualquer singularidade no começo do Universo; como veremos mais tarde, a singularidade pode desaparecer quando tivermos em conta os efeitos quânticos.


Vimos neste capítulo como, em menos de metade de um século, se transformou a ideia que o Homem fazia do Universo, :, ideia formada durante milhares de anos. A descoberta de Hubble de que o Universo estava em expansão e a compreensão da insignificância do nosso planeta na sua vastidão foram apenas o ponto de partida. À medida que aumentavam as provas experimentais e teóricas, tornou-se cada vez mais claro que o Universo deve ter tido um começo no tempo, até que, em 1970, isso foi finalmente provado por Penrose e por mim, com base na teoria da relatividade geral de Einstein. Essa prova mostrou que a relatividade geral é apenas uma teoria incompleta: não pode dizer-nos como surgiu o Universo porque prediz que todas as teorias físicas, incluindo ela própria, falham no começo do Universo. Contudo, a relatividade geral afirma ser apenas uma teoria parcial, de modo que o que os teoremas de singularidade mostram realmente é que deve ter havido um tempo nos primórdios do Universo em que este era tão pequeno que já não podíamos continuar a ignorar os efeitos de pequena escala da outra grande teoria parcial do século XX, a mecânica quântica. No princípio dos anos 70, então, fomos forçados a voltar as nossas investigações para uma compreensão do Universo, da nossa teoria do infinitamente grande para a nossa teoria do infinitamente pequeno. Essa teoria da mecânica quântica será descrita a seguir, antes de passarmos aos esforços para combinar as duas teorias parciais numa única teoria quântica da gravidade.


IV. O Princípio da Incerteza


O êxito das teorias científicas, sobretudo da teoria da gravitação de Newton, levou o cientista francês Marquês de Laplace, no início do século XIX, a argumentar que o Universo era completamente determinista. Laplace sugeriu que devia haver um conjunto de leis científicas que nos permitissem predizer tudo o que aconteceria no Universo, bastando para isso sabermos qual era o seu estado completo num determinado momento. Por exemplo, se conhecêssemos as posições e velocidades do Sol e dos planetas em determinado momento, podíamos usar as leis de Newton para calcular o estado do sistema solar em qualquer outro momento. O determinismo parece bastante óbvio neste caso, mas Laplace foi mais longe, admitindo que havia leis semelhantes que governavam tudo o mais, incluindo o comportamento humano.


A doutrina do determinismo científico recebeu forte oposição de muitas pessoas, que achavam que ela infringia a liberdade de Deus intervir no mundo, mas manteve-se como hipótese padrão da ciência até aos primeiros anos deste século. Uma das primeiras indicações de que esta crença teria de ser abandonada surgiu quando cálculos elaborados pelos cientistas britânicos Lord Rayleigh e Sir James Jeans sugeriram que um objecto ou corpo :, quente, tal como uma estrela, devia radiar energia a uma taxa infinita. Segundo as leis em que acreditávamos na altura, um corpo quente devia emitir ondas electromagnéticas (tais como ondas de rádio, luz visível ou raios X) em quantidades iguais em todas as frequências (1). Por exemplo, um corpo quente devia radiar a mesma quantidade de energia em ondas com frequências compreendidas entre um e dois milhões de milhões de ondas por segundo, assim como em ondas com frequências compreendidas entre dois e três milhões de milhões de ondas por segundo. Ora, como o número de ondas por segundo não tem limite, isso significaria que a energia total radiada seria infinita.


(1) Esta afirmação não é correcta. Hawking procura, por certo, simplificar o discurso (*N. do R.*).


Para evitar este resultado, obviamente ridículo, o cientista alemão Max Planck sugeriu em 1900 que a luz, os raios X e outras ondas [electromagnéticas] não podiam ser emitidas a uma taxa arbitrária, mas apenas em certas quantidades pequenas a que chamou *quanta* (2). Além disso, cada *quantum* teria certa quantidade de energia que seria tanto maior quanto mais alta fosse a frequência das ondas, de modo que a uma frequência suficientemente alta a emissão de um único *quantum* necessitava de mais energia do que a que estava disponível. Assim, a radiação a frequências altas seria reduzida e, portanto, a taxa à qual o corpo perdia energia seria finita.


(2) Plural de *quantum* (*N. do R.*).


A hipótese dos *quanta* explicava muito bem a emissão observada de radiação por corpos quentes, mas as suas implicações no determinismo só foram compreendidas em 1926, quando outro cientista alemão, Werner Heisenberg, formulou o seu famoso princípio da incerteza. Para predizer a posição e a velocidade futuras de uma partícula, :, é necessário poder medir com precisão a sua posição e velocidade actuais. A maneira óbvia para conseguir este resultado é fazer incidir luz na partícula. Algumas das ondas luminosas serão dispersadas pela partícula o que indicará a sua posição. Contudo, não conseguiremos determinar a posição da partícula com maior rigor do que a distância entre as cristas das ondas luminosas (3), de maneira que é preciso utilizar luz de onda curta para medir com precisão a posição da partícula. Agora, segundo a hipótese do *quantum* de Planck, não se pode utilizar uma quantidade arbitrariamente pequena de luz; tem de se utilizar pelo menos um *quantum*. Este *quantum* vai perturbar a partícula e modificar a sua velocidade de um modo que não pode ser predito. Além disso, quanto maior for a precisão com que se mede a posição, menor será o comprimento de onda necessário e daí maior a energia de um único *quantum*. Portanto, a velocidade da partícula será mais perturbada. Por outras palavras, quanto mais rigorosamente tentamos medir a posição da partícula, menos precisa é a medida da sua velocidade, e vice-versa. Heisenberg mostrou que a incerteza quanto à posição da partícula a multiplicar pela incerteza da sua velocidade e pela massa da partícula nunca pode ser menor do que certa quantidade, que é conhecida por constante de Planck. Além disso, este limite não depende da maneira como tentamos medir a posição ou a velocidade da partícula ou do seu tipo: o princípio da incerteza de Heisenberg é uma propriedade fundamental e inevitável do mundo.


(3) Comprimento de onda (*N. do R.*).


O princípio da incerteza teve implicações profundas na maneira como víamos o mundo. Mesmo depois de mais de cinquenta anos, ainda não foram devidamente apreciadas por muitos filósofos e continuam a ser objecto de grande controvérsia. O princípio da incerteza marcou o fim :, do sonho de Laplace de uma teoria científica, um modelo do Universo completamente determinista: certamente que é impossível predizer acontecimentos futuros com exactidão, se nem sequer é possível medir com precisão o estado actual do Universo! Podíamos continuar a imaginar que existe um conjunto de leis que determina completamente os acontecimentos para algum ser sobrenatural, capaz de observar o estado presente do Universo sem o perturbar. Contudo, modelos do Universo como esse não são de grande interesse para nós, vulgares mortais. Parece melhor empregar o princípio da economia, conhecido por navalha de Occam, e cortar todas as características da teoria que não podem ser observadas. Esta ideia levou Heisenberg, Erwin Schrodinger e Paul Dirac a reformular a mecânica, nos anos 20, numa nova teoria chamada mecânica quântica, baseada no princípio da incerteza. Nesta teoria, as partículas deixaram de ter posições e velocidades distintas e definidas, que não podiam ser observadas. Em vez disso tinham um estado quântico resultante da combinação da posição e velocidade.


Em geral, a mecânica quântica não prediz um único resultado definido para cada observação. Em vez disso, prediz um número de resultados possíveis diferentes e informa-nos sobre a probabilidade de cada um. Ou seja, se uma pessoa executar as mesmas medições num grande número de sistemas semelhantes, iniciados da mesma maneira, descobrirá que o resultado das medições será A num certo número de casos, B num número diferente, e por aí fora. Podia predizer-se o número aproximado de vezes em que o resultado seria A ou B, mas não o resultado específico de uma medição individual. A mecânica quântica introduz, portanto, um elemento inevitável de imprevisibilidade ou acaso na ciência. Einstein protestou fortemente contra esta ideia, apesar do papel importante que desempenhou no seu desenvolvimento. Recebeu o prémio :, Nobel pelo seu contributo para a teoria dos *quanta* e, no entanto, nunca aceitou que o Universo fosse governado pelo acaso. Os seus sentimentos ficaram resumidos na sua famosa afirmação: "Deus não joga aos dados". A maior parte dos outros cientistas estava disposta a aceitar a mecânica quântica, porque concordava perfeitamente com as experiências. Na realidade, tem sido uma teoria com um êxito notável, que está na base de quase toda a ciência e tecnologia modernas. Dirige o comportamento de transístores e circuitos integrados, que são componentes essenciais de aparelhos electrónicos como televisões e computadores, e é, ao mesmo tempo, a base da química e da biologia modernas. As únicas áreas da física em que a mecânica quântica ainda não foi devidamente incorporada são a gravidade e a estrutura do Universo em larga escala.


Embora a luz seja composta de ondas, a hipótese do *quantum* de Planck diz-nos que, de alguma maneira, se comporta como se fosse composta de partículas: só pode ser emitida ou absorvida em pequenas quantidades ou *quanta*. Do mesmo modo, o princípio da incerteza de Heisenberg implica que as partículas se comportam, em alguns aspectos, como as ondas: não têm uma posição definida mas estão "espalhadas" com uma certa distribuição de probabilidade. A teoria da mecânica quântica baseia-se num tipo inteiramente novo de matemática que já não descreve o mundo real em termos de partículas e ondas; só as observações do mundo podem ser descritas nesses termos. Há, portanto, uma dualidade entre ondas e partículas na mecânica quântica: para alguns fins, é útil pensar em partículas como ondas, e para outros é melhor pensar em ondas como partículas. Uma consequência importante disto é o facto de podermos observar aquilo a que se chama interferência entre dois conjuntos de ondas ou partículas. Ou seja, as cristas de um conjunto de ondas podem coincidir com :, as depressões de outro conjunto. Os dois conjuntos de ondas anulam-se um ao outro, em vez de se reforçarem para formar uma onda mais intensa, como se poderia esperar (Fig. 4.1). Um exemplo familiar de interferência no caso da luz é o das cores que vemos muitas vezes nas bolas de sabão. São causadas por reflexão da luz nos dois lados da fina película de água que forma a bola. A luz branca consiste em ondas luminosas de comprimentos de onda todos diferentes, ou cores. Para certo comprimento de onda, as cristas das ondas refle tidas de um lado da película de sabão coincidem com as cavas reflectidas do outro lado. As cores correspondentes a esses comprimentos de onda estão ausentes da luz reflectida que, portanto, parece ser colorida.


fig.4.1


A interferência também pode ocorrer com partículas devido à dualidade introduzida pela mecânica quântica. Um exemplo famoso é a chamada experiência das duas fendas (Fig. 4.2). Consideremos uma divisória com duas estreitas fendas paralelas. De um dos lados da divisória, coloca-se uma fonte de luz de uma cor particular (ou seja, de um comprimento de onda determinado). A maior parte da luz atingirá o separador, mas apenas uma pequena quantidade passará pelas fendas. Suponhamos agora que se coloca um alvo do outro lado da divisória, afastado da luz. Qualquer ponto do alvo receberá ondas das duas fendas. Contudo, em geral, a distância que a luz tem de percorrer a partir da fonte até ao alvo através das duas fendas será diferente. Isto significará que as ondas das fendas estarão desfasadas uma da outra quando atingirem o alvo: em alguns pontos, as ondas anular-se-ão mutuamente e em outros reforçar-se-ão. O resultado é o padrão característico de franjas claras e escuras.


fig. 4.2


O que é notável é que se obtém exactamente a mesma espécie de franjas de interferência substituindo a fonte luminosa por uma fonte de partículas como os electrões :, com uma velocidade definida (o que significa que as ondas correspondentes têm um comprimento definido). Parece ainda mais estranho porque, quando há só uma fenda, não obtemos franjas, mas sim uma distribuição uniforme de electrões ao longo do alvo. Poder-se-ia então pensar que a abertura de outra fenda aumentaria apenas o número de electrões que atingem cada ponto do alvo mas, devido à interferência, o que realmente acontece é esse número diminuir em alguns pontos. Se os electrões forem enviados um de cada vez através das fendas, será de esperar que cada um passe por uma ou por outra, e assim se comporte como se a fenda através da qual passou fosse a única, dando uma distribuição uniforme no alvo. Contudo, na realidade, mesmo quando os electrões são enviados um por um, as franjas continuam a aparecer. Portanto, cada electrão deve estar a passar através de *ambas* as fendas ao mesmo tempo!


O fenómeno da interferência entre partículas tem sido crucial para a nossa compreensão da estrutura dos átomos, as unidades fundamentais da química e da biologia e os blocos de construção de que nós e tudo o que nos rodeia somos formados. No começo deste século, pensava-se que os átomos eram bastante parecidos com os planetas em órbita à volta do Sol, com os electrões (partículas de electricidade negativa) em órbita à volta de um núcleo central, com electricidade positiva. Supunha-se que a atracção entre a electricidade positiva e negativa mantinha os electrões nas suas órbita, do mesmo modo que a atracção gravitacional entre o Sol e os planetas os mantém nas suas órbitas. O problema era que as leis da mecânica e da electricidade, antes da mecânica quântica, prediziam que os electrões perderiam energia e mover-se-iam em espiral para dentro até colidirem com o núcleo. Tal significaria que o átomo e, na realidade, toda a matéria, atingiria rapidamente o colapso num estado de densidade muito grande. Em 1913, o cientista dinamarquês Niels Bohr encontrou uma solução parcial para o problema. Bohr sugeriu que talvez os electrões não orbitassem a uma distância qualquer do núcleo central, mas apenas a certas distâncias específicas. Se também supuséssemos que um ou dois electrões podiam orbitar a qualquer uma dessas distâncias, estaria resolvido o problema do colapso do átomo, porque os electrões não poderiam mover-se para dentro em espiral senão para preencher órbitas com menores distâncias e energias.


O modelo explicava bastante bem a estrutura do átomo mais simples, o hidrogénio, que tem apenas um electrão em órbita à volta do núcleo. Mas continuava a não ser claro como aplicá-lo a átomos mais complicados. Além disso, a ideia de um conjunto limitado de órbitas permitidas parecia muito arbitrária. A nova teoria da mecânica quântica resolveu esta dificuldade. Revelou que um electrão em órbita à volta do núcleo podia ser considerado como uma onda, com um comprimento que dependia da sua velocidade. O comprimento de certas órbitas corresponderia a um número inteiro (em oposição a um número fraccionário) de comprimentos de onda do electrão. Para estas órbitas, a crista da onda estaria na mesma posição em cada volta, de modo que as ondas se adicionariam: corresponderiam às órbitas permitidas de Bohr. Contudo, para órbitas cujos comprimentos não eram um número inteiro de comprimentos de onda, cada crista seria eventualmente anulada por uma cava quando os electrões dessem a volta; essas órbitas não seriam permitidas.


Uma boa maneira de visualizar a dualidade onda/partícula é a chamada soma sobre histórias apresentada pelo cientista americano Richard Feynman. Nesta apresentação do problema, a partícula não tem uma única história ou trajectória no espaço-tempo, como teria numa teoria clássica não quântica. Em vez disso, deverá ir de A para B :, por todas as trajectórias possíveis. A cada trajectória estão associados dois números: um representa o tamanho da onda (4) e o outro a sua fase (ou seja, se se trata de uma crista ou de uma cava). A probabilidade de ir de A para B encontra-se somando as ondas para todas as trajectórias. Em geral, se compararmos um conjunto de trajectórias vizinhas, as fases ou posições no ciclo apresentarão grandes diferenças. Isto significa que as ondas associadas a essas trajectórias se anulam umas às outras quase exactamente. Contudo, para alguns conjuntos de trajectórias vizinhas, a fase não varia muito entre elas. As ondas para estas trajectórias não se anulam. São essas as trajectórias que correspondem às órbitas permitidas de Bohr.


(4) O comprimento de onda (*N. do R.*).


Com estas ideias, numa formulação matemática concreta, foi relativamente fácil calcular as órbitas permitidas em átomos mais complicados e até em moléculas, constituídas por um número de átomos unidos por electrões que partilham mais de um núcleo. Uma vez que a estrutura das moléculas e as suas reacções mútuas estão na base de toda a química e de toda a biologia, a mecânica quântica permite-nos, em princípio, predizer quase tudo o que vemos à nossa volta, dentro dos limites impostos pelo princípio da incerteza. (Contudo, na prática, os cálculos necessários para sistemas que contenham mais do que alguns electrões são tão complicados que não podemos fazê-los).


A teoria da relatividade geral de Einstein parece governar a estrutura do Universo a grande escala. É uma teoria clássica, ou seja, não faz caso do princípio da incerteza da mecânica quântica, como devia, para consistência com outras teorias. O motivo pelo qual isto não leva a qualquer discrepância com a observação é que todos os campos gravitacionais que normalmente encontramos são muito fracos. Contudo, os teoremas sobre singularidades :, de que falámos atrás indicam que o campo gravitacional devia tornar-se muito forte em pelo menos duas situações: os buracos negros e o *big bang*. Em campos tão fortes como esses, os efeitos da mecânica quântica deviam ser importantes. Assim, em certo sentido, a relatividade geral clássica, ao predizer pontos de densidade infinita, prediz a sua própria ruína, tal como a mecânica clássica (ou seja, não quântica) predisse a sua ruína, sugerindo que os átomos haviam de colapsar em pontos de densidade infinita. Não temos ainda uma teoria consistente completa que unifique a relatividade geral e a mecânica quântica, mas conhecemos algumas das características que deveria possuir. As consequências que isto teria para os buracos negros e para o *big bang* serão descritas nos capítulos finais. Por agora, porém, volveremos a nossa atenção para as tentativas recentes de compreensão das outras forças da natureza: a teoria quântica unificada.


V. As Partículas Elementares

e as Forças da Natureza


Aristóteles acreditava que toda a matéria do Universo era constituída por quatro elementos fundamentais: terra, ar, fogo e água (1). Estes elementos sofriam o efeito de duas forças: a gravidade (tendência da terra e da água para descerem) e a volatilidade (tendência do ar e do fogo para subirem) (2). Esta divisão do conteúdo do Universo em matéria e forças ainda hoje é utilizada.


(1) Cf. a nota da página 28 (*N. do R.*).


(2) O movimento da oitava esfera, a esfera das fixas, comunicava-se à esfera da Lua. O movimento da Lua, por sua vez, causava, por fricção, a mistura dos quatro elementos que compunham o mundo sublunar. Assim, o movimento da oitava esfera era responsável pelo movimento no sentido lato aristotélico: pela génese e pela corrupção (*N. do R.*).


Aristóteles acreditava também que a matéria era contínua, ou seja, que se podia dividir um pedaço de matéria em bocadinhos cada vez mais pequenos, sem limite: nunca se chegava a um grão de matéria que não pudesse ser dividido mais uma vez. Alguns gregos, no entanto, como Demócrito, asseguravam que a matéria era granulosa e que tudo era constituído por grandes quantidades de várias espécies de átomos. (A palavra *átomo* significa em grego :, "indivisível"). Durante séculos, a discussão manteve-se, sem qualquer prova efectiva para qualquer dos lados, mas em 1803 o químico e físico britânico John Dalton chamou a atenção para o facto de os compostos químicos se combinarem sempre em certas proporções, o que só podia explicar-se pelo agrupamento de átomos em unidades chamadas moléculas. Contudo, a discussão entre as duas escolas só foi resolvida a favor dos atomistas nos primeiros anos do século XX. Uma das provas foi fornecida por Einstein. Num artigo escrito em 1905, algumas semanas antes do famoso trabalho sobre a relatividade restrita, Einstein demonstrou que aquilo a que se chamava o movimento browniano -- o movimento irregular e ocasional de pequenas partículas de poeira suspensas num líquido -- podia ser explicado como o efeito da colisão das partículas (3) do líquido com os grãos de poeira.


(3) Átomos no original (*N. do R.*).


Por essa altura, havia já suspeitas de que os átomos não eram, afinal, indivisíveis. Alguns anos antes, um membro do corpo directivo do Trinity College, de Cambridge, J. J. Thomson, tinha demonstrado a existência de uma partícula de matéria, chamada electrão, que tinha uma massa de cerca de um milionésimo da do átomo mais leve. Utilizou o que se parecia muito com um moderno aparelho de televisão: um filamento de metal aquecido ao rubro emitia electrões e, como estes têm uma carga eléctrica negativa, podia ser usado um campo eléctrico para os acelerar em direcção a um alvo revestido de fósforo. Quando atingiam o alvo produziam clarões de luz. Depressa se compreendeu que esses electrões deviam vir dos próprios átomos, e em 1911 o físico britânico Ernest Rutherford mostrou finalmente que os átomos têm realmente uma estrutura interna: são constituídos por um núcleo incrivelmente pequeno e de carga positiva, em torno do qual orbitam :, os electrões. Chegou a esta dedução analisando a maneira como as partículas alfa, de carga positiva, emitidas por átomos radioactivos, são deflectidas quando colidem com os átomos.


Inicialmente, pensava-se que o núcleo do átomo era constituído por electrões e diferentes quantidades de uma partícula de carga positiva chamada protão (da palavra grega que significa "primeiro"), porque se julgava tratar-se da unidade fundamental da matéria. Contudo, em 1932, um colega de Rutherford, em Cambridge, James Chadwick, descobriu que o núcleo continha outra partícula, chamada neutrão, que tinha praticamente a massa do protão, mas não tinha carga eléctrica. Chadwick recebeu o prémio Nobel pela sua descoberta e foi eleito Reitor da Faculdade de Gonville e Caius da Universidade de Cambridge (faculdade de cujo corpo directivo faço actualmente parte). Mais tarde, pediu a demissão desse cargo, por desentendimentos com os membros da direcção. Tinha havido uma amarga discussão na faculdade desde que um grupo de jovens directores regressados da guerra se tinham juntado para, por votação, retirar muitos dos velhos membros da direcção dos cargos que ocupavam há muito tempo. Isto passou-se antes do meu tempo, pois entrei para a faculdade em 1965, já na recta final de todo o mal-estar, quando desentendimentos semelhantes forçaram outro detentor do prémio Nobel, Sir Nevill Mott, a pedir a demissão.


Até há vinte anos atrás, pensava-se que protões e neutrões eram partículas "elementares", mas experiências em que se fez colidir protões com outros protões ou com electrões, a grandes velocidades, revelaram que eram, de facto, constituídos por partículas mais pequenas. Estas partículas receberam o nome de *quarks*, dado pelo físico do Caltech (4), Murray Gell-Mann, que recebeu o prémio :, Nobel em 1969 por esse seu trabalho. A origem do nome é uma citação enigmática do escritor James Joyce: "Three quarks for Muster Mark!" (5). A palavra *quark* devia pronunciar-se como *quart*, mas com um *k* no fim em vez de *t*, embora seja geralmente utilizada para rimar com lark (6).


(4) Instituto de Tecnologia da Califórnia (*N. do T.*).


(5) "três litros para o patrão mark!" (*n. do t.*)


(6) cotovia ou farsa (*n. do t.*)


Há muitas variedades de quarks: pensa-se que existem pelo menos seis "sabores" a que chamamos "acima" (*up*), "abaixo" (*down*), "estranho" (*strange*), "encantado" (*charmed*), "fundo" (*bottom*) e "cimo" (*top*). Cada sabor surge em três "cores": vermelho, verde e azul. (Deve acentuar-se que estes termos não passam de rótulos; os quarks são muito mais pequenos do que o comprimento de onda da luz visível e, portanto, não têm qualquer cor no sentido normal da palavra. O que acontece é que os físicos modernos parece terem arranjado maneiras mais imaginativas de baptizar novas partículas e fenómenos -- já não ficam agarrados ao grego! Um protão ou um neutrão é constituído por três quarks, um de cada cor. Um protão contém dois quarks *up* e um *down*; um neutrão contém dois *down* e um *up*. Podemos criar partículas constituídas pelos outros quarks (*strange, charmed, bottom* e *top*), mas têm todas uma massa muito maior e decaem muito depressa em protões e neutrões.


Sabemos agora que nem os átomos nem os protões e nem os neutrões são indivisíveis. Portanto, a pergunta que se impõe é: quais são as partículas verdadeiramente elementares, os blocos de construção fundamentais a partir dos quais tudo é feito? Uma vez que o comprimento de onda da luz [visível] é muito maior do que o tamanho de um átomo, não podemos esperar "olhar" para as partes de um átomo no sentido comum. Temos de usar qualquer :, coisa com um comprimento de onda muito mais pequeno. Como vimos no capítulo anterior, a mecânica quântica diz-nos que todas as partículas são na realidade ondas e que, quanto mais elevada for a energia de uma partícula, menor é o comprimento de onda correspondente. Portanto, a melhor resposta que podemos dar à pergunta depende da quantidade de energia de que dispomos, porque é isso que determina a pequenez da escala a que podemos observá-la. As energias destas partículas são geralmente medidas em unidades chamadas electrão-volt. (Nas experiências de Thomson com electrões, vimos que ele utilizou um campo eléctrico para acelerar os electrões. A energia que um electrão ganha num campo eléctrico de um volt é um electrão-volt). No século XIX, quando as ú nicas energias de partículas que as pessoas sabiam utilizar eram as energias fracas de uns meros electrões-volt geradas nas reacções químicas, tais como a reacção que se processa numa chama, pensava-se que os átomos eram as unidades mais pequenas de todas. Na experiência de Rutherford, as partículas tinham energias de milhões de electrões-volt. Mais recentemente, aprendemos como utilizar campos electromagnéticos para dar às partículas energias de, ao princípio, milhões e, depois, milhares de milhões de electrões-volt. E assim sabemos que partículas que há vinte anos pensávamos serem "elementares" são, na realidade, constituídas por partículas mais pequenas. Será que estas, à medida que temos acesso a maiores energias serão, por sua vez, reconhecidas como sendo formadas por partículas ainda mais pequenas? É absolutamente possível, mas há algumas razões teóricas para crer que temos, ou estamos muito perto de ter um conhecimento dos blocos fundamentais de construção da natureza.


Utilizando a dualidade onda/partícula discutida no capítulo anterior, tudo no Universo, incluindo a luz e a gravidade, pode ser descrito em termos de partículas. Estas partículas :, têm uma característica chamada *spin*. Uma maneira de pensar no spin é imaginar as partículas como pequenos piões a girar em torno de um eixo. Contudo, isso pode ser enganador, porquanto a mecânica quântica nos diz que as partículas não têm qualquer eixo bem definido. O que o spin de uma partícula nos diz na realidade é qual o aspecto da partícula de diferentes lados. Uma partícula de spin 0 é como um ponto: tem o mesmo aspecto vista de qualquer lado (Fig. 5.1-i). Por outro lado, uma partícula de spin 1 é como uma seta: parece diferente de todos os lados (Fig. 5.1-ii); só se a fizermos rodar 360 graus é que a partícula retoma o mesmo aspecto. Uma partícula de spin 2 parece-se com uma seta de duas pontas (Fig. 5.1-iii). Tem o mesmo aspecto se a fizermos dar meia volta (180 graus). Do mesmo modo, partículas de spin mais elevado têm o mesmo aspecto se as fizermos girar fracções mais pequenas de um giro de 360 graus. Tudo isto parece muito simples, mas o facto que é notável é existirem partículas que não têm o mesmo aspecto se as fizermos dar apenas uma rotação: temos de as obrigar a executar duas rotações completas! Diz-se que estas partículas têm spin 1/2.


fig. 5.1


Todas as partículas conhecidas no Universo podem ser divididas em dois grupos: partículas de spin 1/2, que constituem a matéria do Universo, e partículas de spin 0, 1 e 2, que, como veremos, dão origem a forças entre as partículas de matéria. As partículas de matéria obedecem ao que se chama o princípio da exclusão de Pauli. Este princípio foi descoberto em 1925 por um físico austríaco, Wolfgang Pauli, pelo que recebeu o prémio Nobel em 1945. Era o arquétipo do físico teórico: dizia-se dele que a sua mera presença numa cidade faria com que todas as experiências aí realizadas resultassem mal! O princípio da exclusão de Pauli diz que duas partículas semelhantes não podem existir no mesmo estado, ou seja, não podem ter ambas a mesma posição e a mesma velocidade, dentro dos :, limites do princípio da incerteza. O princípio da exclusão é crucial porque explica o motivo pelo qual as partículas de matéria não colapsam num estado de densidade muito elevada sob a influência das forças transmitidas pelas partículas de spin 0, 1 e 2: se as partículas de matéria tiverem praticamente as mesmas posições, têm de ter velocidades diferentes, o que significa que não permanecerão na mesma posição durante muito tempo. Se o mundo tivesse sido criado sem o princípio da exclusão, os quarks não formariam protões e neutrões separados e bem definidos. Nem estes, juntamente com os electrões, formariam átomos separados e bem definidos. Sofreriam todos colapso, formando um "caldo" espesso e grosseiramente uniforme.


A verdadeira compreensão do electrão e de outras partículas de spin 1/2 só foi atingida em 1928, quando Paul Dirac, que mais tarde foi eleito professor Lucasiano de Matemática em Cambridge (o mesmo curso que Newton regeu e de que eu agora sou responsável), apresentou uma teoria. A teoria de Dirac foi a primeira no género consistente tanto com a mecânica quântica como com a teoria :, da relatividade restrita. Explicou matematicamente por que motivo o electrão tinha spin 1/2, ou seja, por que é que não tinha o mesmo aspecto se o fizéssemos dar uma rotação completa, mas tinha ao fim de dois giros. Também predisse que o electrão devia ter um companheiro, o anti-electrão ou positrão. A descoberta do positrão, em 1932, confirmou a teoria de Dirac e levou a que fosse galardoado com o prémio Nobel da Física em 1933. Sabemos hoje que toda a partícula tem uma antipartícula, com a qual pode aniquilar-se. (No caso de partículas portadoras de força, as antipartículas coincidem com as próprias partículas). Podia haver antimundos e antipessoas feitos de antipartículas. Contudo, se encontrar o seu anti-eu, não lhe aperte a mão. Desapareceriam ambos num grande clarão de luz. A questão de parecer haver mais partículas do que antipartículas à nossa volta é extremamente importante, e voltarei ao assunto ainda neste capítulo.


Na mecânica quântica, as forças ou interacções entre partículas de matéria devem ser todas transmitidas por partículas de spin inteiro: 0, 1 ou 2. O que acontece é que uma partícula de matéria como um electrão ou um quark emite uma partícula que transmite força. O recuo (7) provocado por esta emissão muda a velocidade da partícula. A partícula portadora de força colide então com outra partícula de matéria e é absorvida. Esta interacção altera [também] :, a velocidade da segunda partícula, como se se tivesse manifestado uma força entre as duas partículas.


(7) O "recuo" ou o "avanço", consoante a força seja repulsiva ou atractiva. Há uma ideia muito intuitiva sobre estas partículas portadoras de força. Imagine-se dois patinadores no gelo que seguem lado a lado e suponha que num dado momento eles decidem arremessar pedras um ao outro: separam-se por efeito do recuo e, para um observador para o qual as pedras fossem invisíveis, tudo se passa como se eles se repelissem por intermédio de uma força. No caso dos patinadores se decidirem a arremessar bumerangues em vez de pedras, o efeito seria inverso, aproximar-se-iam como que sujeitos a uma força atractiva mediada pelos bumerangues (*N. do R.*).


Uma propriedade importante das partículas portadoras de força é não obedecerem ao princípio da exclusão. Isto significa que não há limite para o número que pode ser permutado e, por isso, podem originar uma força intensa. Contudo, se as partículas portadoras de força tiverem uma grande massa, será difícil produzi-las e permutá-las ao longo de um trajecto grande. Portanto, as forças que transmitem terão apenas um alcance limitado. Por outro lado, se as partículas que transmitem força não tiverem massa própria, as forças serão de longo alcance. As partículas que transportam força entre partículas de matéria chamam-se partículas virtuais porque, ao contrário das partículas "reais", não podem ser detectadas directamente por um detector de partículas. Sabemos contudo que existem porque têm um efeito mensurável: originam forças entre partículas de matéria. Partículas de spin 0, 1 ou 2 também existem em algumas circunstancias como partículas reais, quando podem ser detectadas directamente. Surgem-nos então como o que um físico clássico chamaria ondas, tais como ondas de luz ou de gravitação. Podem, por vezes, ser emitidas quando as partículas de matéria interagem trocando partículas virtuais que transportam força. (Por exemplo, a força de repulsão eléctrica entre dois electrões (8) é devida à troca de fotões virtuais, que nunca podem ser detectados directamente; mas, se um electrão passa por outro, podem ser emitidos fotões reais que detectamos como ondas luminosas.


(8) Electrões estacionários (*N. do R.*).


As partículas que transportam força (9) podem ser agrupadas em quatro categorias, de acordo com a intensidade :, da força e as partículas alvo. Deve acentuar-se que esta divisão em quatro classes é elaborada pelo Homem, por ser conveniente para a construção de teorias parciais, mas não pode corresponder a qualquer coisa de mais profundo.


(9) Partículas que transmitem ou transportam força também são designadas por mediadoras (*N. do R.*).


O que a maior parte dos físicos espera encontrar é uma teoria unificada que explique as quatro forças como diferentes manifestações de uma única força. Na realidade, muitos diriam que actualmente é esse o objectivo principal da física. Recentemente, foram efectuadas tentativas coroadas de êxito para unificar três das quatro categorias de forças -- que descreverei neste capítulo. A questão da unificação da outra categoria, a gravitação, será deixada para mais tarde.


A primeira categoria é a força de gravitação. Esta força é universal, ou seja, todas as partículas a sentem, conforme a sua massa ou energia. A gravidade é, de longe, a mais fraca das quatro forças; é tão fraca que nem daríamos por ela, se não fossem duas propriedades especiais: pode agir a grandes distâncias e é sempre atractiva, o que significa que as forças de gravitação fraquíssimas que actuam entre as partículas individuais em dois corpos grandes, como a Terra e o Sol, podem somar-se para produzir uma força significativa. As outras três forças são ou de curto alcance, ou por vezes atractivas e por vezes repulsivas, tendendo a anular-se. Segundo a maneira como a mecânica quântica encara o campo gravitacional, a força entre duas partículas de matéria é representada como sendo transportada por uma partícula de spin 2, chamada gravitão. Este não tem massa própria, de modo que a força que transmite é de longo alcance. A força gravitacional entre o Sol e a Terra é atribuída à troca de gravitões entre as partículas que constituem estes dois corpos. Embora as partículas permutadas sejam virtuais, produzem realmente um efeito mensurável: fazem com que a Terra orbite em torno do Sol! Os gravitões reais provocam aquilo a que os físicos :, clássicos chamariam ondas gravitacionais que são muito fracas e tão difíceis de detectar que nunca foram observadas.


A categoria seguinte é a força electromagnética, que interactua com partículas carregadas de electricidade como os electrões e os quarks, mas não com partículas sem carga, como os gravitões. É muito mais forte que a força de gravitação: a força electromagnética entre dois electrões é de cerca de um milhão de milhões de milhões de milhões de milhões de milhões de milhões (1 seguido de quarenta e dois zeros) de vezes maior do que a força de gravitação. Contudo, há duas espécies de carga eléctrica: positiva e negativa. A força entre duas cargas positivas é repulsiva, tal como a força entre duas cargas negativas, mas entre uma carga negativa e uma carga positiva a força é atractiva. Um corpo grande, como a Terra ou o Sol, contém quase o mesmo número de cargas positivas e negativas. Assim, as forças atractivas e repulsivas entre partículas individuais quase que se anulam e há pouquíssima força electromagnética disponível. No entanto, nas pequenas escalas dos átomos e das moléculas, as forças electromagnéticas dominam. A atracção electromagnética entre electrões de carga negativa e protões de carga positiva no núcleo obriga os electrões a orbitarem em torno do núcleo do átomo, tal como a atracção gravitacional obriga a Terra a girar à volta do Sol. A atracção electromagnética é vista como sendo causada pela troca de grande número de partículas virtuais sem massa, de spin 1, chamadas fotões. De novo, os fotões trocados são partículas virtuais. Contudo, quando um electrão transita de uma órbita possível para outra [também permitida] mais próxima do núcleo, é libertada energia e é emitido um fotão real que pode ser observado pela vista humana como luz visível, se tiver o comprimento de onda certo, ou por um detector de fotões como um filme fotográfico. Da mesma maneira, se um :, fotão real colidir com um átomo, pode deslocar um electrão de uma órbita mais próxima do núcleo para outra mais afastada. Isto gasta a energia do fotão, que é absorvido.


A terceira categoria chama-se força nuclear fraca e é responsável pela radioactividade, agindo sobre todas as partículas de matéria de spin 1/2 mas não sobre partículas de spin 0, 1 ou 2, como os fotões ou os gravitões. A força nuclear fraca não foi bem compreendida antes de 1967, quando Abdus Salam, no Imperial College de Londres, e Steven Weinberg, em Harvard, propuseram teorias que unificavam esta interacção com a força electromagnética, tal como Maxwell tinha unificado a electricidade e o magnetismo cerca de cem anos antes. Sugeriram que, para além do fotão, havia outras três partículas de spin 1, conhecidas colectivamente por bosões vectoriais maciços que transmitiam a força fraca. Foram chamados W+ (pronuncia-se W mais), W- (pronuncia-se W menos) e Z0 (pronuncia-se Z zero), e cada um tinha uma massa de cerca de 100 GeV (GeV significa giga-electrão-volt, ou mil milhões de electrões-volt). A teoria de Weinberg e Salam exibe uma propriedade conhecida por quebra espontânea de simetria. Significa que aquilo que parece ser um número de partículas completamente diferentes a baixas energias não passa do mesmo tipo de partícula, mas em estados diferentes. A altas energias todas estas partículas se comportam de modo semelhante. O efeito é muito parecido com o de uma bolinha de roleta a girar. A altas energias (quando a roleta gira rapidamente), a bolinha tem o mesmo comportamento: não pára de girar. Mas, quando a roleta vai abrandando, a energia da bolinha diminui e acaba por fazê-la cair numa das trinta e sete depressões da roleta. Por outras palavras, a energias baixas há trinta e sete estados diferentes em que a bolinha pode existir. Se, por qualquer razão, só pudéssemos observar a bolinha a baixas :, energias, pensaríamos que havia trinta e sete tipos diferentes de bolinhas!


Na teoria de Weinberg e Salam, a energias muito maiores que 100 GeV, as três novas partículas e o fotão comportar-se-iam todos da mesma maneira. Mas às energias mais baixas que ocorrem na maioria das situações normais, esta simetria entre as partículas seria desfeita. W+, W- e Z0 ficariam com grandes massas, fazendo com que as forças que transportam tivessem um alcance muito curto. Na altura em que Weinberg e Salam propuseram a sua teoria, poucas pessoas acreditaram neles, e os aceleradores de partículas não eram suficientemente potentes para alcançar energias de 100 GeV necessárias para produzir partículas W+, W- ou Z0 reais. Contudo, durante os dez anos seguintes, mais ou menos, as outras predições da teoria a energias mais baixas coincidiam de tal maneira com as experiências que, em 1979, Weinberg e Salam receberam o prémio Nobel da Física, juntamente com Sheldon Glashow, de Harvard, que tinha sugerido teorias unificadas semelhantes para as forças electromagnética e nuclear fraca. A comissão Nobel foi poupada a um erro embaraçoso com a descoberta, em 1983, no CERN (Centro Europeu de Pesquisa Nuclear) dos três parceiros maciços do fotão, com massas e outras propriedades correctamente preditas. Carlo Rubbia, que dirigiu a equipa de várias centenas de físicos que fizeram a descoberta, recebeu o prémio Nobel em 1984, juntamente com Simon Van der Meer, o engenheiro do CERN que tinha desenvolvido o sistema utilizado para armazenar antimatéria. (É muito difícil hoje em dia marcar pontos em física experimental, a não ser que já se esteja no topo!)


A quarta categoria é a força nuclear forte, que mantém os quarks unidos no protão e no neutrão, e mantém os protões e os neutrões juntos no núcleo de um átomo. Crê-se que esta força é transmitida por uma outra partícula de :, spin 1, chamada gluão, que interactua só consigo própria e com os quarks. A força nuclear forte tem uma propriedade curiosa chamada confinamento que mantém as partículas sempre unidas em combinações sem cor. Não se pode ter um quark isolado, porque teria cor (vermelho, verde ou azul). Em vez disso, um quark vermelho tem de estar junto a um verde e a um azul por uma "corda" de gluões (vermelho + verde + azul = branco). Este tripleto constitui um protão ou um neutrão. Outra possibilidade e um par formado por um quark e um antiquark (vermelho + antivermelho, ou verde + antiverde, ou azul + anti-azul = branco). Estas combinações constituem as partículas conhecidas por mesões, que são instáveis porque um quark e um antiquark podem aniquilar-se originando electrões ou outras partículas. Do mesmo modo, o confinamento evita que se tenha um único gluão, porque os gluões também têm cor. Em vez disso, é preciso ter um conjunto de gluões, cujas cores juntas produzam o branco. Esse conjunto forma uma partícula instável ehamada *glueball (10).


(10) Bola de grude (*N. do T.*).


O facto de o confinamento não permitir que se observe um quark ou um gluão isolados podia fazer crer que os quarks e os gluões são partículas um tanto metafísicas. No entanto, há outra propriedade da força nuclear forte, chamada liberdade assimptótica, que torna o conceito de quark e gluão bem definido. A energias normais, a força nuclear forte é realmente forte e mantém os quarks unidos. Contudo, experiências com grandes aceleradores de partículas indicam que a energias elevadas a força forte se torna muito mais fraca, e os quarks e os gluões comportam-se quase como partículas livres. A Fig. 5.2 mostra uma fotografia de uma colisão entre um protão e um antiprotão a alta energia. Foram produzidos vários :, quarks quase livres que deram origem aos "jactos" de trajectórias vistos na fotografia.


Fig. 5.2. Um protão e um antiprotão colidem com energia elevada e produzem um par de *quarks* quase livres


O êxito da unificação das forças electromagnética e nuclear fraca levou a várias tentativas para combinar estas duas forças com a força nuclear forte naquilo a que se chamou teoria da grande unificação ou GUT (11). Este título é um tanto exagerado: as teorias resultantes não são assim tão grandes, nem completamente unificadas, porque não incluem a gravidade. Nem são teorias realmente completas, porque contêm um número de parâmetros cujos valores não podem ser preditos a partir da teoria, mas têm de ser escolhidos para se harmonizarem com as experiências. Apesar disso, podem ser um passo no sentido de uma teoria completa, totalmente unificada.


(11) *Grand Unification Theories* (*N. do T.*).


A ideia fundamental das :, GUTs é a seguinte: como já foi mencionado, a força nuclear forte torna-se mais fraca a altas energias. Por outro lado, as forças electromagnéticas e nuclear fraca, que não são assimptoticamente livres, tornam-se mais fortes a energias altas. A determinada energia muito alta, chamada a energia da grande unificação, essas três forças teriam todas a mesma intensidade e poderiam, portanto, ser apenas diferentes aspectos de uma única força. As GUTs predizem também que, a essa energia, as diferentes partículas de matéria de spin 1/2, como os quarks e os electrões, seriam essencialmente as mesmas, obtendo-se assim outra unificação.


O valor da energia da grande unificação não se conhece muito bem, mas teria provavelmente de ser pelo menos mil milhões de milhões de GeV. Os actuais aceleradores de partículas podem fazer colidir partículas a energias de cerca de algumas centenas de GeV e estão planeadas máquinas que elevarão esta energia a alguns milhares de GeV. Mas uma máquina suficientemente potente para acelerar partículas até à energia da grande unificação teria de ser tão grande como o sistema solar -- e seria pouco provável haver fundos para ela no actual contexto económico. Portanto, é impossível testar directamente em laboratório teorias da grande unificação. No entanto, tal como no caso da teoria da unificação electromagnética e fraca, há consequências a baixas energias que podem ser testadas.


A mais interessante é a predição de que os protões, que constituem grande parte da massa da matéria vulgar, podem decair espontaneamente em partículas mais leves como os positrões. Tal é possível porque na energia da grande unificação não há qualquer diferença essencial entre um quark e um electrão. Os três quarks dentro de um protão não têm normalmente energia suficiente para se transformarem em positrões mas muito ocasionalmente um :, deles pode adquirir energia suficiente para provocar a transição, porque o princípio da incerteza significa que a energia dos quarks dentro do protão não pode ser exactamente fixada. O protão decairia. A probabilidade de um quark adquirir energia suficiente é tão pequena que o mais provável é termos de esperar pelo menos um milhão de milhões de milhões de milhões de milhões de anos (1 seguido de trinta zeros), o que é muito superior ao tempo que passou desde o *bib bang*, que aconteceu mais ou menos há uns meros dez mil milhões de anos (1 seguido de dez zeros). Portanto, poderíamos pensar que a possibilidade de decaimento espontâneo do protão não poderia ser testada através de experiências. Contudo, podemos aumentar as nossas hipóteses de detectar um decaimento observando uma grande porção de matéria que contenha um grande número de protões. (Se, por exemplo, se observar um número de protões igual a 1 seguido de trinta e um zeros, durante o período de um ano, será de esperar, segundo a mais simples GUT, poder observar-se mais do que o decaimento de um protão).


Várias experiências deste género têm sido feitas, mas nenhuma forneceu ainda provas convincentes do decaimento de protões ou neutrões. Uma experiência com oito mil toneladas de água foi realizada na Mina de Sal Morton, no Ohio (para evitar que acontecessem outros fenómenos causados por raios cósmicos, que podiam ser confundidos com o decaimento dos protões). Uma vez que não foi observado qualquer decaimento espontâneo durante a experiência, podemos calcular que a vida provável do protão deve ser maior que dez milhões de milhões de milhões de milhões de milhões de anos (1 seguido de trinta e um zeros). Este número é superior ao tempo de vida previsto pela teoria da grande unificação mais simples, mas existem teorias mais elaboradas, nas quais os tempos de vida previstos são mais longos. Serão precisas experiências ainda :, mais sensíveis, com quantidades ainda maiores de matéria para as testar.


Embora seja muito difícil observar o decaimento espontâneo do protão, pode ser que a nossa própria existência seja uma consequência do processo contrário, a produção de protões, ou mais simplesmente de quarks a partir de uma situação inicial em que não havia mais quarks do que antiquarks que é a maneira mais natural de imaginar o começo do Universo. A matéria na Terra é constituída principalmente por protões e neutrões, que, por seu turno, são constituídos por quarks. Não há antiprotões, nem antineutrões, constituídos a partir de antiquarks, excepto aqueles que são produzidos pelos físicos em grandes aceleradores de partículas. Temos provas, a partir de raios cósmicos, de que o mesmo se passa com a matéria da Galáxia: não estão presentes antiprotões ou antineutrões, para além de um pequeno número de pares de partícula/antipartícula obtidos em colisões de alta energia. Se houvesse grandes regiões de antimatéria na Galáxia, esperaríamos ver grandes quantidades de radiação provenientes do contacto entre as regiões de matéria e antimatéria, onde muitas partículas estariam a colidir com as suas antipartículas, aniquilando-se mutuamente e emitindo radiação de alta energia.


Não temos qualquer prova directa sobre se a matéria nas outras galáxias é constituída por protões e neutrões ou antiprotões e antineutrões, mas tem de ser uma coisa ou outra: não pode haver uma mistura numa única galáxia porque nesse caso observaríamos uma grande quantidade de radiação proveniente de aniquilações. Além disso, cremos que todas as galáxias são compostas de quarks e não de antiquarks; não parece plausível que algumas galáxias sejam de matéria e outras de antimatéria.


Por que haverá mais quarks que antiquarks? Por que não há um número igual de cada? É certamente uma sorte :, para nós os números não serem iguais porque, se fossem, quase todos os quarks e antiquarks se teriam aniquilado mutuamente no princípio do Universo, deixando-o cheio de radiação mas com muito pouca matéria. Não teria então havido galáxias, estrelas ou planetas onde a vida humana se viesse a desenvolver. Felizmente, as teorias da grande unificacão podem dar uma explicação do motivo pelo qual o Universo deve conter agora mais quarks do que antiquarks, mesmo que tenha começado com um número igual de ambos. Como vimos, as GUTs admitem a mudança de quarks em positrões a altas energias. E também admitem o processo contrário, antiquarks a transformarem-se em electrões, e electrões e positrões a transformarem-se em antiquarks e quarks. Houve um tempo, logo no princípio do Universo, em que havia tanto calor que as energias das partículas seriam suficientemente elevadas para estas transformações ocorrerem. Mas por que havia isso de produzir mais quarks do que antiquarks? A razão está em que as leis da física não são exactamente as mesmas para as partículas e para as antipartículas.


Até 1956, acreditava-se que as leis da física obedeciam a três simetrias separadas, designadas C, P e T. A simetria C significa que as leis são as mesmas para partículas e antipartículas. A simetria P significa que as leis são as mesmas para qualquer situação e a sua imagem num espelho (a imagem num espelho de uma partícula rodando sobre si mesma num sentido é a de uma partícula que gira no outro sentido). A simetria T significa que, se invertermos o sentido do movimento de todas as partículas e antipartículas, o sistema deveria voltar a ser o que era nos seus primórdios; por outras palavras, as leis são as mesmas para diante e para trás no tempo.


Em 1956, dois físicos americanos, Tsung-Dao Lee e Chen Ning Yang, sugeriram que a força fraca não obedece :, à simetria P. Por outras palavras, a força fraca faria com que o universo se desenvolvesse de um modo diferente da sua imagem no espelho. No mesmo ano, uma colega, Chien-Shiung Wu, provou que esta teoria estava correcta. Ela conseguiu-o alinhando núcleos de átomos radioactivos num campo magnético de modo a ficarem todos a girar sobre si mesmos no mesmo sentido, e mostrou que os electrões eram produzidos mais num sentido do que no outro. No ano seguinte, Lee e Yang receberam o prémio Nobel. Descobriu-se também que a força fraca não obedecia à simetria C. Ou seja, originaria um universo composto de antipartículas que se comportaria de maneira diferente da do nosso Universo. Não obstante, parecia que a força fraca obedecia realmente à simetria composta CP. Ou seja, o universo desenvolver-se-ia da mesma maneira que a sua imagem num espelho se, além disso, cada partícula fosse trocada pela sua antipartícula! Contudo, em 1964, mais dois americanos, J. W. Cronin e Val Fitch, descobriram que mesmo a simetria CP não se verificava no decaimento de certas partículas chamadas mesões K. Cronin e Fitch acabaram por receber o prémio Nobel em 1980. (Muitos prémios têm sido concedidos por se mostrar que o Universo não é tão simples como poderia pensar-se! )


Há um teorema matemático que afirma que qualquer teoria que obedeça à mecânica quântica e à relatividade tem sempre de obedecer à simetria composta CPT. Por outras palavras, o universo teria de comportar-se da mesma maneira, se substituíssemos as partículas por antipartículas, tomássemos a sua imagem no espelho e ainda se invertêssemos o sentido do tempo. Mas Cronin e Fitch demonstraram que, se substituíssemos partículas por antipartículas e se considerássemos a imagem no espelho, mas não invertêssemos o sentido do tempo, o universo *não* se comportaria da mesma maneira. As leis da física, portanto, devem :, alterar-se quando se inverte o sentido do tempo -- não obedecem à simetria T.


Certamente que o Universo primitivo não obedece à simetria T: à medida que o tempo passa, o Universo expande-se; se andasse para trás, o Universo ter-se-ia contraído. E, como existem forças que não obedecem à simetria T, segue-se que, enquanto o Universo se expande, essas forças podem provocar que mais positrões se transformem em quarks do que electrões em antiquarks. Como o Universo se expandiu e arrefeceu, os antiquarks e os quarks aniquilaram-se e como havia mais quarks do que antiquarks, restou um pequeno excesso de quarks. São eles que constituem a matéria que hoje vemos e da qual nós próprios somos feitos. Assim, a nossa existência real podia ser considerada como confirmação das teorias da grande unificação embora apenas de uma forma qualitativa; as incertezas são tais que é impossível predizer o número de quarks que sobreviveriam à aniquilação ou até se o que restaria seriam quarks ou antiquarks. (Se, no entanto, o excesso fosse de antiquarks, teríamos muito simplesmente chamado quarks aos antiquarks e vice-versa).


As teorias da grande unificação não incluem a força da gravidade. Isto não tem muita importância, porque a gravidade é uma força tão fraca que os seus efeitos podem geralmente ser desprezados quando lidamos com partículas elementares ou átomos. Contudo, o facto de ser de longo alcance e sempre atractiva significa que todos os seus efeitos se juntam. Portanto, pata um número suficientemente grande de partículas de matéria, as forças gravitacionais podem dominar todas as outras forças. É por isso que a gravidade determina a evolução do Universo. Mesmo para objectos do tamanho de estrelas, a força atractiva da gravidade pode vencer todas as outras forças e fazer com que a estrela sofra um colapso. O meu trabalho nos anos 70 incidiu nos buracos negros que podem resultar desses :, colapsos estelares e dos campos gravitacionais que os rodeiam. Foi isso que levou aos primeiros indícios de como as teorias da mecânica quântica e da relatividade geral podiam influenciar-se uma à outra um vislumbre de uma teoria quântica da gravidade ainda por encontrar.


A primeira categoria é a força de gravitação. Esta força é universal, ou seja, todas as partículas a sentem, conforme a sua massa ou energia. A gravidade é, de longe, a mais fraca das quatro forças; é tão fraca que nem daríamos por ela, se não fossem duas propriedades especiais: pode agir a grandes distâncias e é sempre atractiva, o que significa que as forças de gravitação fraquíssimas que actuam entre as partículas individuais em dois corpos grandes, como a Terra e o Sol, podem somar-se para produzir uma força significativa. As outras três forças são ou de curto alcance, ou por vezes atractivas e por vezes repulsivas, tendendo a anular-se. Segundo a maneira como a mecânica quântica encara o campo gravitacional, a força entre duas partículas de matéria é representada como sendo transportada por uma partícula de spin 2, chamada gravitão. Este não tem massa própria, de modo que a força que transmite é de longo alcance. A força gravitacional entre o Sol e a Terra é atribuída à troca de gravitões entre as partículas que constituem estes dois corpos. Embora as partículas permutadas sejam virtuais, produzem realmente um efeito mensurável: fazem com que a Terra orbite em torno do Sol! Os gravitões reais provocam aquilo a que os físicos :, clássicos chamariam ondas gravitacionais que são muito fracas e tão difíceis de detectar que nunca foram observadas.


A categoria seguinte é a força electromagnética, que interactua com partículas carregadas de electricidade como os electrões e os quarks, mas não com partículas sem carga, como os gravitões. É muito mais forte que a força de gravitação: a força electromagnética entre dois electrões é de cerca de um milhão de milhões de milhões de milhões de milhões de milhões de milhões (1 seguido de quarenta e dois zeros) de vezes maior do que a força de gravitação. Contudo, há duas espécies de carga eléctrica: positiva e negativa. A força entre duas cargas positivas é repulsiva, tal como a força entre duas cargas negativas, mas entre uma carga negativa e uma carga positiva a força é atractiva. Um corpo grande, como a Terra ou o Sol, contém quase o mesmo número de cargas positivas e negativas. Assim, as forças atractivas e repulsivas entre partículas individuais quase que se anulam e há pouquíssima força electromagnética disponível. No entanto, nas pequenas escalas dos átomos e das moléculas, as forças electromagnéticas dominam. A atracção electromagnética entre electrões de carga negativa e protões de carga positiva no núcleo obriga os electrões a orbitarem em torno do núcleo do átomo, tal como a atracção gravitacional obriga a Terra a girar à volta do Sol. A atracção electromagnética é vista como sendo causada pela troca de grande número de partículas virtuais sem massa, de spin 1, chamadas fotões. De novo, os fotões trocados são partículas virtuais. Contudo, quando um electrão transita de uma órbita possível para outra [também permitida] mais próxima do núcleo, é libertada energia e é emitido um fotão real que pode ser observado pela vista humana como luz visível, se tiver o comprimento de onda certo, ou por um detector de fotões como um filme fotográfico. Da mesma maneira, se um :, fotão real colidir com um átomo, pode deslocar um electrão de uma órbita mais próxima do núcleo para outra mais afastada. Isto gasta a energia do fotão, que é absorvido.


A terceira categoria chama-se força nuclear fraca e é responsável pela radioactividade, agindo sobre todas as partículas de matéria de spin 1/2 mas não sobre partículas de spin 0, 1 ou 2, como os fotões ou os gravitões. A força nuclear fraca não foi bem compreendida antes de 1967, quando Abdus Salam, no Imperial College de Londres, e Steven Weinberg, em Harvard, propuseram teorias que unificavam esta interacção com a força electromagnética, tal como Maxwell tinha unificado a electricidade e o magnetismo cerca de cem anos antes. Sugeriram que, para além do fotão, havia outras três partículas de spin 1, conhecidas colectivamente por bosões vectoriais maciços que transmitiam a força fraca. Foram chamados W+ (pronuncia-se W mais), W- (pronuncia-se W menos) e Z0 (pronuncia-se Z zero), e cada um tinha uma massa de cerca de 100 GeV (GeV significa giga-electrão-volt, ou mil milhões de electrões-volt). A teoria de Weinberg e Salam exibe uma propriedade conhecida por quebra espontânea de simetria. Significa que aquilo que parece ser um número de partículas completamente diferentes a baixas energias não passa do mesmo tipo de partícula, mas em estados diferentes. A altas energias todas estas partículas se comportam de modo semelhante. O efeito é muito parecido com o de uma bolinha de roleta a girar. A altas energias (quando a roleta gira rapidamente), a bolinha tem o mesmo comportamento: não pára de girar. Mas, quando a roleta vai abrandando, a energia da bolinha diminui e acaba por fazê-la cair numa das trinta e sete depressões da roleta. Por outras palavras, a energias baixas há trinta e sete estados diferentes em que a bolinha pode existir. Se, por qualquer razão, só pudéssemos observar a bolinha a baixas :, energias, pensaríamos que havia trinta e sete tipos diferentes de bolinhas!


Na teoria de Weinberg e Salam, a energias muito maiores que 100 GeV, as três novas partículas e o fotão comportar-se-iam todos da mesma maneira. Mas às energias mais baixas que ocorrem na maioria das situações normais, esta simetria entre as partículas seria desfeita. W+, W- e Z0 ficariam com grandes massas, fazendo com que as forças que transportam tivessem um alcance muito curto. Na altura em que Weinberg e Salam propuseram a sua teoria, poucas pessoas acreditaram neles, e os aceleradores de partículas não eram suficientemente potentes para alcançar energias de 100 GeV necessárias para produzir partículas W+, W- ou Z0 reais. Contudo, durante os dez anos seguintes, mais ou menos, as outras predições da teoria a energias mais baixas coincidiam de tal maneira com as experiências que, em 1979, Weinberg e Salam receberam o prémio Nobel da Física, juntamente com Sheldon Glashow, de Harvard, que tinha sugerido teorias unificadas semelhantes para as forças electromagnética e nuclear fraca. A comissão Nobel foi poupada a um erro embaraçoso com a descoberta, em 1983, no CERN (Centro Europeu de Pesquisa Nuclear) dos três parceiros maciços do fotão, com massas e outras propriedades correctamente preditas. Carlo Rubbia, que dirigiu a equipa de várias centenas de físicos que fizeram a descoberta, recebeu o prémio Nobel em 1984, juntamente com Simon Van der Meer, o engenheiro do CERN que tinha desenvolvido o sistema utilizado para armazenar antimatéria. (É muito difícil hoje em dia marcar pontos em física experimental, a não ser que já se esteja no topo!)


A quarta categoria é a força nuclear forte, que mantém os quarks unidos no protão e no neutrão, e mantém os protões e os neutrões juntos no núcleo de um átomo. Crê-se que esta força é transmitida por uma outra partícula de :, spin 1, chamada gluão, que interactua só consigo própria e com os quarks. A força nuclear forte tem uma propriedade curiosa chamada confinamento que mantém as partículas sempre unidas em combinações sem cor. Não se pode ter um quark isolado, porque teria cor (vermelho, verde ou azul). Em vez disso, um quark vermelho tem de estar junto a um verde e a um azul por uma "corda" de gluões (vermelho + verde + azul = branco). Este tripleto constitui um protão ou um neutrão. Outra possibilidade e um par formado por um quark e um antiquark (vermelho + antivermelho, ou verde + antiverde, ou azul + anti-azul = branco). Estas combinações constituem as partículas conhecidas por mesões, que são instáveis porque um quark e um antiquark podem aniquilar-se originando electrões ou outras partículas. Do mesmo modo, o confinamento evita que se tenha um único gluão, porque os gluões também têm cor. Em vez disso, é preciso ter um conjunto de gluões, cujas cores juntas produzam o branco. Esse conjunto forma uma partícula instável ehamada *glueball (10).


(10) Bola de grude (*N. do T.*).


O facto de o confinamento não permitir que se observe um quark ou um gluão isolados podia fazer crer que os quarks e os gluões são partículas um tanto metafísicas. No entanto, há outra propriedade da força nuclear forte, chamada liberdade assimptótica, que torna o conceito de quark e gluão bem definido. A energias normais, a força nuclear forte é realmente forte e mantém os quarks unidos. Contudo, experiências com grandes aceleradores de partículas indicam que a energias elevadas a força forte se torna muito mais fraca, e os quarks e os gluões comportam-se quase como partículas livres. A Fig. 5.2 mostra uma fotografia de uma colisão entre um protão e um antiprotão a alta energia. Foram produzidos vários :, quarks quase livres que deram origem aos "jactos" de trajectórias vistos na fotografia.


Fig. 5.2. Um protão e um antiprotão colidem com energia elevada e produzem um par de *quarks* quase livres


O êxito da unificação das forças electromagnética e nuclear fraca levou a várias tentativas para combinar estas duas forças com a força nuclear forte naquilo a que se chamou teoria da grande unificação ou GUT (11). Este título é um tanto exagerado: as teorias resultantes não são assim tão grandes, nem completamente unificadas, porque não incluem a gravidade. Nem são teorias realmente completas, porque contêm um número de parâmetros cujos valores não podem ser preditos a partir da teoria, mas têm de ser escolhidos para se harmonizarem com as experiências. Apesar disso, podem ser um passo no sentido de uma teoria completa, totalmente unificada.


(11) *Grand Unification Theories* (*N. do T.*).


A ideia fundamental das :, GUTs é a seguinte: como já foi mencionado, a força nuclear forte torna-se mais fraca a altas energias. Por outro lado, as forças electromagnéticas e nuclear fraca, que não são assimptoticamente livres, tornam-se mais fortes a energias altas. A determinada energia muito alta, chamada a energia da grande unificação, essas três forças teriam todas a mesma intensidade e poderiam, portanto, ser apenas diferentes aspectos de uma única força. As GUTs predizem também que, a essa energia, as diferentes partículas de matéria de spin 1/2, como os quarks e os electrões, seriam essencialmente as mesmas, obtendo-se assim outra unificação.


O valor da energia da grande unificação não se conhece muito bem, mas teria provavelmente de ser pelo menos mil milhões de milhões de GeV. Os actuais aceleradores de partículas podem fazer colidir partículas a energias de cerca de algumas centenas de GeV e estão planeadas máquinas que elevarão esta energia a alguns milhares de GeV. Mas uma máquina suficientemente potente para acelerar partículas até à energia da grande unificação teria de ser tão grande como o sistema solar -- e seria pouco provável haver fundos para ela no actual contexto económico. Portanto, é impossível testar directamente em laboratório teorias da grande unificação. No entanto, tal como no caso da teoria da unificação electromagnética e fraca, há consequências a baixas energias que podem ser testadas.


A mais interessante é a predição de que os protões, que constituem grande parte da massa da matéria vulgar, podem decair espontaneamente em partículas mais leves como os positrões. Tal é possível porque na energia da grande unificação não há qualquer diferença essencial entre um quark e um electrão. Os três quarks dentro de um protão não têm normalmente energia suficiente para se transformarem em positrões mas muito ocasionalmente um :, deles pode adquirir energia suficiente para provocar a transição, porque o princípio da incerteza significa que a energia dos quarks dentro do protão não pode ser exactamente fixada. O protão decairia. A probabilidade de um quark adquirir energia suficiente é tão pequena que o mais provável é termos de esperar pelo menos um milhão de milhões de milhões de milhões de milhões de anos (1 seguido de trinta zeros), o que é muito superior ao tempo que passou desde o *bib bang*, que aconteceu mais ou menos há uns meros dez mil milhões de anos (1 seguido de dez zeros). Portanto, poderíamos pensar que a possibilidade de decaimento espontâneo do protão não poderia ser testada através de experiências. Contudo, podemos aumentar as nossas hipóteses de detectar um decaimento observando uma grande porção de matéria que contenha um grande número de protões. (Se, por exemplo, se observar um número de protões igual a 1 seguido de trinta e um zeros, durante o período de um ano, será de esperar, segundo a mais simples GUT, poder observar-se mais do que o decaimento de um protão).


Várias experiências deste género têm sido feitas, mas nenhuma forneceu ainda provas convincentes do decaimento de protões ou neutrões. Uma experiência com oito mil toneladas de água foi realizada na Mina de Sal Morton, no Ohio (para evitar que acontecessem outros fenómenos causados por raios cósmicos, que podiam ser confundidos com o decaimento dos protões). Uma vez que não foi observado qualquer decaimento espontâneo durante a experiência, podemos calcular que a vida provável do protão deve ser maior que dez milhões de milhões de milhões de milhões de milhões de anos (1 seguido de trinta e um zeros). Este número é superior ao tempo de vida previsto pela teoria da grande unificação mais simples, mas existem teorias mais elaboradas, nas quais os tempos de vida previstos são mais longos. Serão precisas experiências ainda :, mais sensíveis, com quantidades ainda maiores de matéria para as testar.


Embora seja muito difícil observar o decaimento espontâneo do protão, pode ser que a nossa própria existência seja uma consequência do processo contrário, a produção de protões, ou mais simplesmente de quarks a partir de uma situação inicial em que não havia mais quarks do que antiquarks que é a maneira mais natural de imaginar o começo do Universo. A matéria na Terra é constituída principalmente por protões e neutrões, que, por seu turno, são constituídos por quarks. Não há antiprotões, nem antineutrões, constituídos a partir de antiquarks, excepto aqueles que são produzidos pelos físicos em grandes aceleradores de partículas. Temos provas, a partir de raios cósmicos, de que o mesmo se passa com a matéria da Galáxia: não estão presentes antiprotões ou antineutrões, para além de um pequeno número de pares de partícula/antipartícula obtidos em colisões de alta energia. Se houvesse grandes regiões de antimatéria na Galáxia, esperaríamos ver grandes quantidades de radiação provenientes do contacto entre as regiões de matéria e antimatéria, onde muitas partículas estariam a colidir com as suas antipartículas, aniquilando-se mutuamente e emitindo radiação de alta energia.


Não temos qualquer prova directa sobre se a matéria nas outras galáxias é constituída por protões e neutrões ou antiprotões e antineutrões, mas tem de ser uma coisa ou outra: não pode haver uma mistura numa única galáxia porque nesse caso observaríamos uma grande quantidade de radiação proveniente de aniquilações. Além disso, cremos que todas as galáxias são compostas de quarks e não de antiquarks; não parece plausível que algumas galáxias sejam de matéria e outras de antimatéria.


Por que haverá mais quarks que antiquarks? Por que não há um número igual de cada? É certamente uma sorte :, para nós os números não serem iguais porque, se fossem, quase todos os quarks e antiquarks se teriam aniquilado mutuamente no princípio do Universo, deixando-o cheio de radiação mas com muito pouca matéria. Não teria então havido galáxias, estrelas ou planetas onde a vida humana se viesse a desenvolver. Felizmente, as teorias da grande unificacão podem dar uma explicação do motivo pelo qual o Universo deve conter agora mais quarks do que antiquarks, mesmo que tenha começado com um número igual de ambos. Como vimos, as GUTs admitem a mudança de quarks em positrões a altas energias. E também admitem o processo contrário, antiquarks a transformarem-se em electrões, e electrões e positrões a transformarem-se em antiquarks e quarks. Houve um tempo, logo no princípio do Universo, em que havia tanto calor que as energias das partículas seriam suficientemente elevadas para estas transformações ocorrerem. Mas por que havia isso de produzir mais quarks do que antiquarks? A razão está em que as leis da física não são exactamente as mesmas para as partículas e para as antipartículas.


Até 1956, acreditava-se que as leis da física obedeciam a três simetrias separadas, designadas C, P e T. A simetria C significa que as leis são as mesmas para partículas e antipartículas. A simetria P significa que as leis são as mesmas para qualquer situação e a sua imagem num espelho (a imagem num espelho de uma partícula rodando sobre si mesma num sentido é a de uma partícula que gira no outro sentido). A simetria T significa que, se invertermos o sentido do movimento de todas as partículas e antipartículas, o sistema deveria voltar a ser o que era nos seus primórdios; por outras palavras, as leis são as mesmas para diante e para trás no tempo.


Em 1956, dois físicos americanos, Tsung-Dao Lee e Chen Ning Yang, sugeriram que a força fraca não obedece :, à simetria P. Por outras palavras, a força fraca faria com que o universo se desenvolvesse de um modo diferente da sua imagem no espelho. No mesmo ano, uma colega, Chien-Shiung Wu, provou que esta teoria estava correcta. Ela conseguiu-o alinhando núcleos de átomos radioactivos num campo magnético de modo a ficarem todos a girar sobre si mesmos no mesmo sentido, e mostrou que os electrões eram produzidos mais num sentido do que no outro. No ano seguinte, Lee e Yang receberam o prémio Nobel. Descobriu-se também que a força fraca não obedecia à simetria C. Ou seja, originaria um universo composto de antipartículas que se comportaria de maneira diferente da do nosso Universo. Não obstante, parecia que a força fraca obedecia realmente à simetria composta CP. Ou seja, o universo desenvolver-se-ia da mesma maneira que a sua imagem num espelho se, além disso, cada partícula fosse trocada pela sua antipartícula! Contudo, em 1964, mais dois americanos, J. W. Cronin e Val Fitch, descobriram que mesmo a simetria CP não se verificava no decaimento de certas partículas chamadas mesões K. Cronin e Fitch acabaram por receber o prémio Nobel em 1980. (Muitos prémios têm sido concedidos por se mostrar que o Universo não é tão simples como poderia pensar-se! )


Há um teorema matemático que afirma que qualquer teoria que obedeça à mecânica quântica e à relatividade tem sempre de obedecer à simetria composta CPT. Por outras palavras, o universo teria de comportar-se da mesma maneira, se substituíssemos as partículas por antipartículas, tomássemos a sua imagem no espelho e ainda se invertêssemos o sentido do tempo. Mas Cronin e Fitch demonstraram que, se substituíssemos partículas por antipartículas e se considerássemos a imagem no espelho, mas não invertêssemos o sentido do tempo, o universo *não* se comportaria da mesma maneira. As leis da física, portanto, devem :, alterar-se quando se inverte o sentido do tempo -- não obedecem à simetria T.


Certamente que o Universo primitivo não obedece à simetria T: à medida que o tempo passa, o Universo expande-se; se andasse para trás, o Universo ter-se-ia contraído. E, como existem forças que não obedecem à simetria T, segue-se que, enquanto o Universo se expande, essas forças podem provocar que mais positrões se transformem em quarks do que electrões em antiquarks. Como o Universo se expandiu e arrefeceu, os antiquarks e os quarks aniquilaram-se e como havia mais quarks do que antiquarks, restou um pequeno excesso de quarks. São eles que constituem a matéria que hoje vemos e da qual nós próprios somos feitos. Assim, a nossa existência real podia ser considerada como confirmação das teorias da grande unificação embora apenas de uma forma qualitativa; as incertezas são tais que é impossível predizer o número de quarks que sobreviveriam à aniquilação ou até se o que restaria seriam quarks ou antiquarks. (Se, no entanto, o excesso fosse de antiquarks, teríamos muito simplesmente chamado quarks aos antiquarks e vice-versa).

Загрузка...