Глава 3. Генные заболевания у человека

Генная программа человека

Сколько генов у человека? Теоретические расчеты показывают, что у человека вся генетическая программа состоит примерно из 3,5 миллионов пар генов. К 1978 году описано около 3 тыс. генов и изучен характер их наследования. Оказалось, что 1489 генов — аутосомно-доминантные, 1117 — аутосомно-рецессивные и более 200 генов локализовано в Х-хромосоме (табл. 6). Конечно, изучено еще мало. Но в настоящее время ежегодно описывается до десяти новых генов.

Для реализации свойств и функций организма «работают» все гены, но не одновременно. Здесь существует определенный жесткий порядок, последовательность, которая также находится под генетическим контролем. О том, что не все гены начинают «работать» сразу после рождения, свидетельствует следующий факт: примерно 1,5% новорожденных имеют генную отягощенность (неполноценность). В процессе жизни (онтогенеза) обнаружится еще довольно много заболеваний, связанных с неполноценностью генов, которые начинают «работать», «выйдя на фенотип» через генные продукты — информационные РНК, неполноценные ферменты и т. д.

Откуда у человека появляются неполноценные, или так называемые летальные и полулетальные, гены?

Человек прошел длительную эволюцию, прежде чем из одной клетки появился разумный, самый совершенный вид живой материи, могущий думать и изучать окружающий мир и себя. Естественно, что раньше появления биологической материи как новой формы в природе должны были возникнуть основания ДНК, из которых затем образовались матрицы, способные записать и передать следующему поколению признаки и свойства. Для всего этого потребовалось очень и очень много времени.


Таблица 6. Динамика обнаружения наследственных (менделирующих) признаков у человека

Тип наследования генов 1958 г. 1966 г. 1968 г. 1971 г. 1975 г. 1978 г.
Аутосомно-доминантный 285 837 793 943 1218 1489
Аутосомно-рецессивный 89 531 629 783 947 1117
Сцепленный с Х-хромосомой 38 119 123 150 171 205
Всего... 412 1487 1545 1876 2336 2811

Пройдя длительный путь развития, исчисляемый миллионами лет, совершенствуясь через отбор более приспособленного к окружающей среде, генетический материал не мог сохраниться в неизмененном виде и дойти до наших дней, не неся в себе ряд «ошибок» в виде летальных и полулетальных генов, которые реализуются и «выходят на фенотип» при условии совпадения их как в отцовской, так и в материнской матрице. В последнем случае возникает явление гомозиготности (одинаковости) по тому или иному гену. В табл. 7 приведены частоты встречаемости аутосомно-рецессивных и доминантных заболеваний в Европе. Несколько ранее мы упоминали, что генетическая программа у человека дублирована.

Сохранил ли человек свое «родство» в эволюции и реальны ли «следы» доказательства этого на эволюционной лестнице? Да, такие доказательства ученые обнаружили.

Современные методы молекулярной генетики позволяют проследить за генетическим родством человека с другими видами живой материи, например с обезьянами, грызунами, рыбами и даже микроорганизмами. Такое родство обнаруживается следующим образом. Молекула ДНК человека, как и других организмов, способна при помещении ее в воду с последующим подогревом до 82,5 °С денатурироваться и из двух нитей (двуспиральной ДНК) образовывать две отдельные цепочки — две односпиральные ДНК. Последнее происходит в силу того, что водородные связи между основаниями при. указанной температуре разрываются. Если затем такой раствор постепенно охладить до комнатной температуры, то две отделенные друг от друга нити ДНК могут соединяться опять. Это соединение будет происходить в тех местах, где комплементарность оснований совпадает, то есть аденин соединится с тимином (А—Т), а гуанин — с цитозином (Г—Ц). Образование двух отдельных нитей из двуспиральной ДНК и затем вновь восстановление двуспиральной молекулы из двух отдельных нитей получили название соответственно денатурации и ренатурации. Этими явлениями и воспользовались ученые, чтобы выяснить наличие генетического (на уровне молекул ДНК) родства человека и других видов живой материи.


Таблица 7. Распространенность доминантных и аутосомно-рецессивных заболеваний в Европе (на 1000 новорожденных)

Доминантные заболевания
Наименование болезни Частота, %
Хорея Гантингтона 0,5
Нейрофиброматоз 0,4
Миотоническая дистрофия 0,2
Множественный полипоз кишечника 0,8
Аплазия диафизов 0,5
Доминантная форма слепоты 0,1
Доминантный отосклероз (тип взрослых) 1,0
Гиперхолестеринемия моногенная 2,0
Несовершенный дентиногенез 0,2
Поликистоз почек (тип взрослых) 1,0
Туберкулезный склероз 0,01
Базилярные вдавления 0,03
Тинатоформная карликовость 0,08
Синдром Марфана 0,04
Ахондроплазия 0,02
Синдром Элерса — Даплоса 0,01
Остеопетроз 0,01
Ретинобластома 0,03
Расщепление губы и (или) неба со слизистыми ямками у губ 0,01
Несовершенный остеогенез 0,02
Аутосомно-рецессивные заболевания
Наименование болезни Частота, %
Муковисцидоз 0,5
Фенилкетонурия классическая 0,1
Нейрогенные мышечные атрофии 0,1
Серповидно-клеточная анемия 0,1
Гиперплазия надпочечников 0,1
Глухота врожденная 0,2
Слепота, рецессивные формы 0,2
Умственная отсталость неспецифическая 0,5
Болезнь Тея — Сакса 0,04
Мукополисахаридоз, тип I 002
Мукополисахаридоз, тип II 0,01
Метахроматическая лейкодистрофия 0,02
Галактоземия 0,02
Гомоцистинурия 0,01
Цистинурия 0,06
Цистиноз 0,01
Синдром Синта — Ленли — Опитца 0,01

Первая серия таких работ была проделана с ДНК человека и человекообразной обезьяны. В том, что они родственники, никто не сомневался, однако оставалась неясной степень родства, ведь по хромосомным наборам эти два организма мало различимы — у человека 46 хромосом, а у обезьяны — 48.

В результате анализа степени гибридизации на уровне молекул ДНК человека и человекообразной обезьяны оказалось, что образование гибридов — то есть формирование из двух однониточных ДНК одной двуниточной — происходит в 85 % случаев, и только 15 % генетического материала человека резко отличается от такового у обезьяны. Таким образом, человекообразная обезьяна генетически родственна человеку на 85 %.

Читатель знает высказывание Ф. Энгельса о том, что человек произошел от обезьяны в результате длительной «шлифовки» трудом (его знаменитое — «труд создал человека»). Однако с учетом всей суммы современных знаний, накопленных человечеством на сегодняшний день, к этому следует прибавить, что еще перед «шлифовкой» должен был произойти очень сложный процесс дивергенции (расхождения), в результате которого у человека стало 46 хромосом, а у обезьяны осталось 48 (или повысилось до 48). В настоящее время наука не может точно ответить на вопрос — когда и каким образом появился разумный человек — Homo sapiens.

Конечно, труд был основным фактором формирования современного человека, но крайне сомнительно, что труд повлиял на изменение числа хромосом. Необходимо было искать промежуточный организм между человеком и человекообразной обезьяной. И такой организм недавно обнаружили. Изотопным анализом установлено, что ему 1,5 млн лет.

Если упомянутую выше процедуру проделать с ДНК домашней мыши и человека, то выясняется, что мышь нам родственна на 25%, а остальной генетический материал не дает гибридов между ДНК человека и мыши.

Итак, идентичный генетический материал содержит общие гены, а общность последних, в свою очередь, определяется идентичной последовательностью оснований в нити ДНК, которые сохранились неизменными в течение длительного, исчисляемого миллионами лет, времени.

Можно удивляться логике ученых, которые еще задолго до генетических открытий отнесли человека и мышь за их характерные одинаковые черты к одному классу — млекопитающим.

Гибриды на уровне молекул ДНК человека и рыб дают только 5 % гибридного генетического материала. Это означает, что генетический материал человека разошелся (произошла дивергенция, расхождение) с генетическим материалом рыб очень и очень давно.

При исследовании генетического материала человека и бактерии, например с кишечной палочкой, которая живет в кишечнике человека и помогает ему перерабатывать пищу, оказалось, что у этой бактерии также имеются гены, которые позволяют получать гибриды между молекулами ДНК человека и бактерий. Более того, еще в конце 1960-х годов проделана очень тонкая работа по щадящему выделению конкретных генов из генетического материала кишечной палочки и введению их в культуру клеток тканей, взятых у ребенка с наследственным заболеванием галактоземией (неспособность перерабатывать один из многих сахаров — галактозу).

Направление генетики, основанное на лечении наследственных болезней воздействием на генный материал, получило название генной инженерии. В будущем это направление генетики, возможно, станет одним из методов лечения или исправления наследственных (генных) заболеваний у человека.

Из довольно беглого рассмотрения вопросов генетического родства человека и других организмов ясно, что генетический материал человека за свою длительную эволюцию накопил и продолжает накапливать «ошибки», то есть летальные и полулетальные гены, которые передаются следующим поколениям. Известно, что каждый высший организм, в том числе и человек, имеет в среднем 12—15 летальных генов, которые приводят к летальным исходам в случае их гомозиготности. В среднем по ряду стран каждые 2—3 ребенка из 200 новорожденных (то есть 1,5 — 2,0%) наследственно отягощены (неполноценны) по генным, матричным, болезням. К началу 1960-х годов описано более 1500 видов генных заболеваний у человека.

Установлено, что однажды появившись, летальный ген уже не исчезает из популяции людей. Возникает вопрос — а всегда ли этот ген нежелателен?

Рассмотрим следующий пример. Такая болезнь, как серповидно-клеточная анемия широко распространена в тех странах Африки и Азии, где высока частота заболеваний малярией. Гомозиготы по летальному гену серповидно-клеточной анемии погибают в раннем детстве из-за недостатка кислорода, так как их эритроциты имеют измененную форму (вследствие чего не могут удерживать и переносить кислород). Гетерозиготы же по данному гену более устойчивы к заболеванию малярией, чем гомозиготы по нелетальному гену. Поэтому обладатели летального гена серповидно-клеточной анемии, благодаря именно этому гену, защищены от заболевания малярией.

Итак, и здесь природа оказалась мудра. Летальные гены не только передают наследственные заболевания, но и могут защищать организм приобретенных заболеваний. Иными словами, генетические «ошибки» человека играют в его жизни двойную роль — и отрицательную, и положительную. И бывают случаи (вышеприведенный пример с малярией в Африке), когда от «ошибок» больше пользы, чем вреда.

Как обнаруживают генные заболевания?

Для установления наследственной природы заболевания используется клинико-генеалогический метод (генеалогия — родословная). Один из первых этапов изучения генетики наследственного заболевания — выявление больного и составление его родословной. При составлении родословных используются определенные символы (рис. 13). (Далее этими символами будем пользоваться при изложении графического материала.) Ученого-генетика интересует, имел ли кто-либо из родственников больного данное заболевание или оно появилось впервые? Такая постановка вопроса — не праздное любопытство. Ученому необходимо выяснить, что проявилось у больного — новая мутация или старый ген? В зависимости от того или другого прогнозируется риск заболевания потомства не только у пораженного члена семьи, но и у его родственников. Если установлена мутация, то генетик пытается выявить факторы, обусловливающие ее возникновение, для профилактики появления данного заболевания у других членов семьи.

Однако что же проявляется чаще при наследственном заболевании — новая мутация или старый ген? Академик АМН СССР Н. П. Бочков писал по этому поводу: «Чем ниже уровень здравоохранения, тем большая доля из общего числа наследственных больных будет определяться новыми мутациями» [1983, с. 55].

Рис. 13. Символы, используемые в генетике человека.


Установлено, что наследственные заболевания могут иметь аутосомно-доминантный, аутосомно-рецессивный и сцепленный с полом типы наследования. Рассмотрим их подробнее.

Аутосомно-доминантные наследования

При изучении родословных, составленных для некоторых заболеваний, можно установить, что болезнь передается от одного из родителей к детям на протяжении нескольких поколений. Одним из первых наследственных заболеваний человека, описанных в литературе, были брахидактилия (короткие пальцы), синдактилия (сросшиеся пальцы) и полидактилия (добавочные пальцы) (рис. 14—16). Эти признаки имеют аутосомно-доминантный характер наследования.

Рис. 14. Брахидактилия у человека.


Рис. 15. Родословная больного с синдактилией.


Рис. 16. Родословная больного с полидактилией.


Проследим родословную, в которой полидактилия наблюдалась в трех поколениях (рис. 16). В первом поколении у матери были дополнительные пальцы. Первый ее сын (II-1) не получил аномального гена, и его дети не страдали этим заболеванием. Второй же сын (II-2) и его двое детей (III-4 и III-5) имели дополнительные пальцы.

Брахидактилию, синдактилию и полидактилию можно обнаружить уже при рождении ребенка по соответствующему изменению фаланг пальцев рук и ног. Отклонения от нормы в данном случае не угрожают жизни человека, не делают его неполноценным членом общества. Однако существует ряд других аутосомно-доминантных признаков, характеризующихся болезненными проявлениями или даже летальным исходом.

Очень тяжелой болезнью является хорея Гантингтона, которая неминуемо вызывает смерть носителя ее гена. Эта болезнь поражает людей после 30 лет, то есть когда у больного, как правило, есть дети. Необходимо отметить, что в нашей стране хорея Гантингтона пока не описана.

На рис. 17, 18 показан внешний вид страдающих такими наследственными заболеваниями, как ахондроплазия и микроцифалия.


Для многих известных аутосомно-доминантных генов характерна разная степень их выражения. Это явление открыто генетиком Н. В. Тимофеевым-Ресовским и получило название экспрессивности (степень выражения) генов. С именем Тимофеева-Ресовского связано и другое открытие — явления пенетрантности (частота проявления) генов. С этих позиций вероятность наследственного заболевания определяется степенью выражения и частотой проявления летальных исходов по данному гену (напр., при 100%-й пенетрантности эффект гена проявляется у всех особей, его имеющих, при 50%-й — только у половины). И появляется оптимистический прогноз — не каждый носитель аутосомно-доминантных генов обязательно должен заболеть. Подтверждением этого является следующий пример.

Экспрессивностью и пенетрантностью генов можно объяснить передачу по наследству аутосомно-доминантных генов, вызывающих у части обладателей их тяжелейшие заболевания (см. рис. 17, 18).

Рис. 17. Доминантная карликовость у человека (ахондроплазия).


Рис. 18. Проявление доминантной мутации микроцефалии, связанной со слабоумием.


М. В. Волковым и Е. М. Меерсон в 1973 году описано наследование тяжелого аутосомно-доминантного заболевания — несовершенный остеогенез — в одной семье. Болезнь проявилась у ребенка. Его родители не были поражены таким заболеванием. Однако после детального рентгеновского обследования родственников (выделено восклицательным знаком) стало ясно, что летальный ген, обусловливающий болезнь, передается от отца (рис. 19), у которого, в отличие от сына, получившего наследственный дефект от своих предков, это тяжелейшее заболевание не проявилось. Такое поколение, обладающее нереализованным летальным геном, называется проскакивающим.

Рис. 19. Родословная больного с несовершенным остеогенезом.


Аутосомно-рецессивные заболевания

При аутосомно-рецессивных заболеваниях у здоровых родителей некоторые дети оказываются больными. Это связано с тем, что оба родителя являются носителями аномального аутосомно-рецессивного гена. Обычно этот ген обозначается буквой «а». С учетом последнего генотип больного по данному гену можно записать как аа, а его родителей (каждого) — как Аа:

Как видно из схемы, в потомстве двух гетерозигот могут быть как здоровые, так и больные дети. Среди здоровых также встречаются гетерозиготы. Чаще всего в семье бывает два ребенка. Семьи с двумя детьми от родителей-гетерозигот можно разделить на три группы: 1 — нет больных детей (такие случаи редки); 2 — болен один ребенок; 3 — больны оба ребенка.

Однако у родителей-гетерозигот, так же как и у всех, могут рождаться близнецы. Если последние однояйцевые, то оба будут либо больными (гомозиготы), либо здоровыми (гетерозиготы или не имеющие вообще аномального гена). В случае же разнояйцевых близнецов один из них может быть здоровым, а другой — больным.


Таблица 8. Частота встречаемости фенилкетонурии и галактоземии среди новорожденных в разных странах

Страна Число обследованных новорожденных Частота встречаемости фенилкетонурии
Польша 894 891 1 : 7 782
Чехословакия 132 392 1 : 6 618
Австрия 666 383 1 : 12 340
Швейцария 699 089 1 : 16 644
Франция 1 882 734 1 : 13 715
ФРГ 359 875 1 : 10 935
Дания 285 535 1 : 11 898
Швеция 907 746 1 : 43 226
Финляндия 71 111 1 : 71 111
Англия 112 362 1 : 10 215
Ирландия
западные области 825 935 1 : 5 343
восточные // 206 011 1 : 7 924
США 1408 425 1 : 13 630
Канада 277 769 1 : 39 681
Новая Зеландия 381 536 1 : 18 168
Австралия 353 458 1 : 9 818
Япония 210 851 1 : 210 851
Израиль
евреи ашкенази 180 000 1 : 180 000
другие евреи, арабы 320 000 1 : 8 648
Страна Число обследованных новорожденных Частота встречаемости галактоземии
Польша 307 947 1 : 12 317
Чехословакия 132 392 1 : 44 130
Австрия 664 966 1 : 39 116
Швейцария 520 456 1 : 65 057
Бельгия 106 511 1 : 10 651
ФРГ
северные области 119 024 1 : 29 756
западные // 300 355 1 : 42 883
Швеция 907 746 1 : 49 000
Ирландия 144 842 1 : 482 188
США 732 911 1 : 104 701
Канада 148 872 1 : 148 872
Новая Зеландия 292 626 1 : 32 514

По внешнему виду нельзя отличить гетерозиготу по аутосомно-рецессивному гену от нормального индивида, Однако на биохимическом уровне летальный ген будучи в гетерозиготном состоянии проявляет свое действие. Если у гомозигот (аа) аутосомно-рецессивный ген обусловливает полное отсутствие активности какого-либо фермента и у индивида с таким генотипом диагностируется наследственное заболевание, то у гетерозигот (Аа) активность этого фермента не достигает 100 % (как у нормальных индивидов (Аа)), однако и наследственное заболевание у них не диагностируется. При тщательном клиническом обследовании у гетерозигот можно обнаружить небольшие отклонения от нормы.

Описано много наследственных болезней с аутосомно-рецессивным характером (типом) наследования, однако далеко не для всех из них известно место дефекта в цепи химических превращений, протекающих в клетке.

Среди аутосомно-рецессивных заболеваний самыми распространенными являются фенилкетонурия, галактоземия, цистинурия, гистидинемия, болезнь Тей-Сакса, мукополисахаридозы, муковисцидоз и др. Наиболее хорошо изучены фенилкетонурия (фенилпиро-виноградная олигофрения) и галактоземия (табл. 8).

Впервые фенилкетонурия описана в 1934 году ученым-генетиком Феллингом. Эта болезнь характеризуется тяжелыми поражениями нервной системы и выражается в умственной отсталости. По данным разных авторов, во всех странах мира до 3 % населения являются умственно неполноценными. Известно несколько сот наследственных болезней, сопровождающихся умственной отсталостью или ведущих к ней. Особенность фенилкетонурии в том, что она проявляется на первом году жизни ребенка и медленно прогрессирует. Без рано начатого лечения это заболевание делает ребенка инвалидом на всю жизнь, так как вызывает отравление клеток мозга (интоксикация мозга). Раннее выявление фенилкетонурии возможно только методом массового скринирования (обследования) новорожденных.

В нашей стране массовый скрининг новорожденных проводился впервые в 1975 году К. Д. Краснопольской в Москве и Ленинграде. Для фенилкетонурии известно, что аминокислота фенилаланин, поступающая в организм с молоком матери или детским питанием, не превращается в тирозин (следующую аминокислоту в цепи аминокислотного обмена) из-за недостаточной активности фермента фенилаланингидроксилазы (всего от 0 до 5 % активности нормы) (рис. 20). Частота, встречаемости фенилкетонурии оказалась высокой — 1 : 10 000 новорожденных, хотя в относительных цифрах и уступала таковой ряда стран (см. табл. 8).

Не останавливаясь более подробно на этом заболевании, отметим, лишь, что вскармливанием детей на специальной диете можно предотвратить интоксикацию мозга и последующую инвалидность и вырастить нормального гражданина общества. Очень важно, чтобы лечение было начато в первые два месяца жизни (и чем раньше, тем лучше). Только в этом случае оно будет эффективным. С чем это связано? М. Д. Армстронг и другие ученые-генетики показали, что у детей, больных фенилкетонурией, количество фенилаланина в крови изменяется с возрастом — а именно: у Детей до трех лет его примерно в 2 раза выше, чем у детей более старшего возраста. Выделение же фенилпировиноградной кислоты, отравляющей мозг, прямо коррелирует о количеством фенилаланина. Иными словами, в период наибольшего насыщения крови фенилаланином (в возрасте двух-трех лет) происходит наибольшая интоксикация мозга, и именно в этом возрасте ребенок наиболее остро нуждается в лечении.

«Лечение» фенилкетонурии начало проводиться в ряде стран с 1957—1958 годов. К настоящему времени из этих леченых детей выросли уже женихи и невесты. Однако слово «лечение» взято в кавычки не случайно, потому что дефект гена не исчез, не исправлен, он остался, но больному создана такая пищевая среда, что гену нет возможности проявиться, реализоваться, то есть, как говорят генетики, выйти на фенотип.

Рис. 20. Локализация генетического блока при фенилкетонурии. а, б — путь метаболизма фенилаланина соответственно у больных и здоровых.


Рассмотрим случай: жених здоров, у него нет слабоумия, однако гены в обеих матрицах остались гомозиготными — аа. Он собирается организовать семью. Если окажется, что у невесты нет ни одного гена, обусловливающего появление фенилкетонурии, то все их дети будут гетерозиготы (Аа) — то есть здоровы. Если же он полюбит девушку, гетерозиготную по гену фенилкетонурии (Аа), то в 50 % случаев можно ожидать рождения больного ребенка.

Теперь рассмотрим случай, когда «вылеченная» девушка стала невестой и собирается выйти замуж. Будет ли картина аналогичной предыдущей? Здесь все оказалось сложнее. «Вылеченная» девушка собирается стать матерью. Генетический дефект же у нее остался. Аминокислота фенилаланин в повышенной концентрации уже не может повлиять на ее мозговые клетки, однако будет губительно действовать на мозговое вещество ребенка, находящегося в утробном развитии.

Каролин и Стивенсон в 1969 году описали течение беременности у двух женщин, больных фенилкетонурией. 26 беременностей у пациенток закончились 16 спонтанными абортами в первые три месяца и 10 живорожденными детьми. Уровень фенилаланина в крови детей был выше, чем в крови матери. Живорожденные дети имели следующие пороки развития: микроцефалию, врожденные пороки сердца, умственную отсталость и др.

По логике, фенилаланин должен быть в повышенных концентрациях и у женщин, гетерозиготных из-за недостаточной активности фермента. Медики-генетики стали искать женщин-гетерозигот по фенилкетонурии среди населения и наблюдать за течением беременностей у них. Оказалось, что только у 6 из 46 таких женщин беременность и роды протекали нормально.

Из сказанного ясно, что гетерозиготное носительство гена фенилкетонурии со стороны матери, не говоря уже о гомозиготном (больная мать),— чрезвычайно неблагоприятное явление для беременности и родов.

Несколько слов о гениальности и таланте. Гениальность, как и талант человека, является результатом взаимодействия генотипа (со всем комплексом его врожденных данных) и окружающей среды. Соотношение этих двух слагаемых для каждого конкретного признака (свойства) разное, однако оба они в развитии вышеуказанных качеств необходимы. При благоприятной среде и отсутствии необходимого комплекса генов эти качества не разовьются. И, напротив, при предрасположенности к тому или иному дарованию, не подкрепленной необходимой социальной средой, результат будет аналогичным. Однако, опираясь на данные современной науки, можно констатировать, что в гениальности ученого, поэта, писателя, художника и т. д. вклад генотипа преобладает.

Но здесь нет места для пессимизма. Каждый здоровый человек талантлив по-своему и представляет для общества громадную ценность, и задача общества (и семьи) в том, чтобы это качество выявить и развить.

Современная генетика доказала, что человек является продуктом биосоциальным, а не «чисто социальным», как утверждали классики, и что его биологическая компонента составляет около 70%, а такие властные инстинкты, как размножение, самосохранение, забота о потомстве и т. д.,— все 100 %.

Гены, сцепленные с половыми хромосомами

К настоящему времени известно более 200 генов (доминантных и рецессивных), сцепленных с Х-хромосомой, то есть локализованных в ней. Многие из них обусловливают появление наследственных болезней (гемофилия, мышечная дистрофия и др.) (рис. 21).

У женщин аномальный ген может находиться в одной (гетерозигота) или обеих (гомозигота) Х-хромосомах, у мужчин — только в одной Х-хромосоме. Наиболее широко распространено заболевание, обусловленное геном, сцепленным с Х-хромосомой и имеющим рецессивный характер наследования,— гемофилия (несвертываемость крови) (рис. 22). В данном случае ген имеет полулетальное значение, что, как правило, приводит к гибели ребенка в раннем возрасте. Долгое время считалось, что этим заболеванием страдают только мужчины. Однако оно встречается и у женщин, хотя и крайне редко, и обусловлено наличием аномальных генов в обеих Х-хромосомах.

Рис. 21. Наследование рецессивного гена мышечной дистрофии Дюшена, локализованного в Х-хромосоме.

а — родословная трех поколений с мышечной дистрофией только среди мужчин; б — родословная трех больных мальчиков, имеющих одну мать, но двух отцов.


Рассмотрим случай — мать здорова, отец болен гемофилией (рис. 23, а). Их дочери будут здоровыми, так как получат лишь одну Х-хромосому с аномальным геном (от отца). Сыновья также будут здоровы, так как им от отца перейдет Y-хромосома (без аномального гена).

При больной матери и здоровом отце, ситуация иная (рис. 23, б). В этом случае их дочери будут всегда здоровы, сыновья же могут быть и больными, и здоровыми в зависимости от того, перейдет или не перейдет к ним от матери аномальный ген.

Третий случай — больные и мать, и отец (рис. 23, в). Здесь страдают болезнью и сыновья, и дочери. Первые обязательно получат аномальную Х-хромосому от матери, а вторым обязательно перейдут по одной аномальной Х-хромосоме от отца и матери, а гомозиготность обусловит болезнь. Как упоминалось выше, этот случай встречается крайне редко,

Рис. 22. Генеалогическое древо царствовавших семей в Европе, иллюстрирующее наследование гена с гемофилией, локализованного в X-хромосоме. Усл. обозн., см. на рис. 13.


Рис. 23. Наследование гена гемофилии, а — мать здорова, отец болен гемофилией; б — отец здоров, мать больна гемофилией; в — больные и мать, и отец.


Болезнь мышечной дистрофии Дюшена поражает мальчиков в возрасте от 2 до 6 лет, начинаясь с атрофии мышц грудной клетки и поясничной области, позже охватывающей мускулатуру конечностей. Это заболевание известно давно, однако только в последний годы ученые выяснили механизм действия аномального гена. Болезнь имеет рецессивный тип наследования и ген локализован в Х-хромосоме. Был обнаружен белок, названный дистрофином, на долю которого приходится 0,002 % общего количества белка в нормальных скелетных мышцах. Отсутствие дистрофина у больных мышечной дистрофией ученые связывают с дефектом гена. Несмотря на малые количества этот белок является важным компонентом мышечной ткани и отсутствие его в последней приводит к распаду мышц.

Считается, что дистрофия играет основную роль в контроле над внутренней средой мышечной клетки, предотвращая бесконтрольное повышение концентрации кальция в клетке. При нарушении кальциевого равновесия активируется фермент фосфолипаза А, растворяющий мышечные волокна. Мышцы скелета, пытаясь восстановить это нарушение, подвергаются фиброзу (процессу затвердевания), который и нарушает мышечную функцию. Явление фиброза пока изучено недостаточно. Имеется гипотеза, что даже при отсутствии дистрофина мышечные клетки могли бы восстанавливаться, но вторичная патология — фиброз — препятствует этому. Последнее подтверждается тем, что в организме известны мышцы, в которых дистрофии отсутствует, однако дистрофии в них не наблюдается. В этих случаях, очевидно, мышцы не подвергаются фиброзу.

Загрузка...