Глава 6. Любовь, инстинкт, рассудок, семья

Печальный факт свидетельствует, что дети есть далеко не во всех семьях. Установлено, что около 10 % браков в мире бесплодны. Еще около 20 % семей не могут иметь детей из-за спонтанных абортов и выкидышей. «Виновниками» бездетности в одинаковой мере могут быть и мужчины, и женщины, однако причины их бесплодия (как клинические, так и генетические) различны. В настоящее время описано несколько десятков наследственных болезней, или синдромов, сопровождающихся мужским или женским бесплодием. Спонтанные аборты у женщин могут быть вызваны целым рядом причин: нарушением хромосом плода или матери, несовместимостью плода и матери по системе групп крови АВ0, гетеро- или гомозиготностью по ряду заболеваний, влияющих на функции воспроизводства, многими наследственными болезнями матери, затрудняющими вынашивание плода в течение беременности и, наконец, различными клиническими нарушениями роженицы. Изучение спонтанных абортов показало, что около 20 % их связано с изменением кариотипа плода, а 5 % — с несовместимостью по системе групп крови АВ0 [Кулиев, 1974].

Выбираем ли мы гены для своих детей?

Гены, которые имеются у родителей, могут перейти к детям только в половинном количестве (из 46 хромосом в половые гаметы попадают только 23). С этих позиций, если оба родителя гетерозиготны по фенилкетонурии, то в такой супружеской паре с вероятностью 25 % может родиться больной ребенок.

Рассмотрим другую ситуацию. У одного из родителей 45 хромосом, но одна из двух 21-х хромосом присоединена к хромосоме 15-й. В этом случае с большой вероятностью может родиться ребенок с транслоцированным синдромом Дауна.

Ни одна семейная пара не хотела бы иметь ребенка с наследственным заболеванием. Может ли генетика помочь таким родителям? Да, может. В разработке методов профилактики генных и хромосомных заболеваний (аномалий) современная генетика достигла больших успехов. В ее арсенале имеется метод амниоцентеза (рис. 24), с помощью которого благодаря биохимическим анализам и изучению хромосомного набора у клеток, которые слущиваются с плода и находятся в околоплодной жидкости, можно идентифицировать около 100 генных и практически все хромосомные отклонения, отягощенности у развивающегося эмбриона в период до 18 недель беременности.

Метод амниоцентеза успешно используется в Японии. В этой стране в обязательном порядке и бесплатно для забеременевших пациенток старше 35 лет (читателю уже ясно, почему старше 35), а также для женщин, уже имеющих детей с отклонениями либо происходящих из семей с наследственно неполноценными родственниками, делается анализ околоплодной жидкости и находящихся в ней клеток от плода. При наличии наследственного заболевания у эмбриона пациенткам представляется возможность самим решать, рожать ребенка или нет. Такой подход позволяет в значительной степени снизить рождаемость наследственна неполноценных детей и в итоге ограждает семью от трагедии, а общество от необходимости организации специальных домов для детей-инвалидов.

Метод амниоцентеза — относительно трудоемкая и дорогостоящая процедура. Однако экономисты США подсчитали, что стоимость анализа для 900 женщин намного ниже стоимости прижизненной госпитализации одного больного, которая оценивается более чем в 100 тыс. долларов. Ежегодно в США рождается около 4 тыс. детей с наследственными болезнями и их госпитализация обходится в 1,5 млрд. долларов в год.

Рис. 24. Схема проведения амниоцентеза.


Из вышесказанного ясно, что родители должны тщательно следить за своим генеалогическим древом. Однако как узнать, гетерозиготен ли человек по данному летальному гену? Является ли он носителем транслокации? Наконец, кому делать амниоцентез? Ведь всем роженицам сделать такой анализ невозможно, да в этом и нет необходимости. Рождение ребенка с наследственным заболеванием возможно в тех супружеских парах, в родословных которых (одного или обоих супругов) уже встречались наследственные заболевания. Таким семьям следует обращаться в медико-генетическую консультацию, где врач по генеалогии родителей подтвердит вероятность рождения больного ребенка и при необходимости направит на цитогенетический (определение числа и формы хромосом) или биохимический анализ. Такие консультации в СССР открыты в Москве, Ленинграде, Киеве, Донецке, Минске, Алма-Ате, Ташкенте, Фрунзе, Ашхабаде, Риге, Вильнюсе, Тарту, Ереване, Кишиневе, Кемерове, Новосибирске и других городах.

Анализ работы медико-генетической консультации при Институте медицинской генетики АМН СССР в Москве, проведенный Р. С. Патютко [1975], показал, что за 1973—1974 годы у 77 % семей, обратившихся в медико-генетическую консультацию, родились больные дети. Естественно, что родители не хотели и не ожидали появления больного ребенка и, обратись они в консультацию до зачатия плода, такого несчастья могло бы не произойти.

Ученые США подсчитали, что более 5 % населения страны имеют наследственные отклонения и нуждаются в генетической консультации.

Выявление гетерозиготного носительства и гена фенилкетонурии медико-генетическая служба проводит специальным тестом с пищевой нагрузкой фенилаланином (одной из аминокислот).

А что же делать, если больной ребенок все-таки родился? Здесь на помощь приходит генетика. Установлено, что некоторые наследственные заболевания можно «лечить» на уровне фенотипа. В настоящее время возникло целое направление в генетике — «лечение» фенилкетонурии. Но как провести раннюю диагностику наследственного заболевания у новорожденного, если внешне у него не видно никаких отклонений от нормы? В этом случае медико-генетическая служба предлагает ряд скринирующих (скрининг — просеивание) методик. В настоящее время скринингу поддаются около 20 наследственных заболеваний у новорожденных. С этой целью у последних берется моча или кровь (из пятки) . Современное состояние генетики позволяет проводить скрининг одной пробы на разные наследственные заболевания в разных центрах, при этом для анализа высылается капля крови на бумаге в конверте.

Какая у вас группа крови?

Группа крови — врожденное свойство человека и неизменна в течение всей его жизни (онтогенеза).

К настоящему времени известно несколько систем группы крови (табл. 11). Каждая из этих систем наследственно обусловлена. Невозможно найти двух людей (кроме однояйцевых близнецов), которые имели бы одинаковые группы крови по всем системам. Это явление используется в судебной медицине. В клинической медицине для переливания крови необходимо знание группы крови системы АВ0 (I—IV группы крови) и резус-фактора.

Система групп крови АВ0 открыта в начале XX века австралийским ученым К. Ландштейнером при изучении поведения эритроцитов (красных кровяных телец) в сыворотке (жидкой части) крови разных людей. Ученый обратил внимание на тот факт, что эритроциты в сыворотке крови одних людей распределяются равномерно, а других — склеиваются. Используя разные комбинации эритроцитов и сывороток, он обнаружил три группы крови (I—III), а существование IV группы (более редкой) было установлено позднее. Частота встречаемости групп крови системы АВ0 в разных популяциях человека различна (табл. 12).

Обладание одной из четырех групп крови определяется парой генов, пришедших по одному от каждого из родителей. Каждый ген может быть в одной из трех аллелей (функциональных состояний) — А, В, 0. Аллели А и В доминируют над 0, но, оказавшись вместе в одном организме, А и В проявляют совместное действие (кодоминирование) и обусловливают наличие IV группы крови (табл. 13).

Многие считают, что у родителей и детей группа крови всегда одна и та же. Это заблуждение. Установлено, что совпадение здесь имеет место далеко не во всех случаях.

Фенотипически (то есть биохимически, морфологически или другими методами) можно определить четыре группы крови: I(0), II(А), III(В) и IV(АВ). Фенотипы I и IV групп совпадают с их генотипами. Генотипы же ВВ и В0 (для III группы крови), АА и А0 (для II группы) без знания групп крови родителей различать невозможно.

Таблица 11. Основные системы эритроцитарных антигенов *

Система Год открытия Основные аллели Число аллелей в системе
АВ0 1900 А, А1, В, Н 8
MNSs 1927 М, N, S, s, U 18
Р 1927 P1, P2, p, pK 4
Rhesus 1940 D, С, Е, с, е 35
Lutheran 1945 Lua, LuB 17
Keff 1946 К, k 18
Lewis 1946 Lea, LeB 2
Duffy 1950 Fya, FyB 6
Kidd 1951 Jka, Jkb 3
Diego 1955 Dia, Dib 2
Ii 1956 T, i 3
Xg 1962 X, ga 1

* Цитируется по: [В. H. Шабалин, Л. Д. Серова, 1988]


Таблица 12. Частота встречаемости эритроцитарных антигенов системы АВ0 в разных популяциях человека, %

Популяция Число изученных людей I(0) II(A) III(В) IV(AB)
Коренное население Австралии 603 54,3 40,9 3,8 1,0
Голландцы 14 483 46,3 42,1 8,5 3,1
Население Южной Англии 3 449 43,5 44,7 8,6 3,2
Голландские евреи 705 42,5 39,4 13,4 4,5
Русские евреи 1 475 36,6 41,7 15,5 6,1
Бушмены 336 83,0 17,0
Венгры 1 041 29,9 45,2 17,0 7,9
Арабы 2 917 44,0 33,0 17,7 4,1
Японцы 24 572 31,1 36,7 22,7 9,5
Русские 57 122 32,9 35,6 23,2 8,1
Африканцы (Конго) 500 45,6 22,2 24,2 8,9
Китайцы (Кантон) 500 45,5 22,6 25,0 6,1
Венгерские цыгане 925 28,5 26,6 35,3 9,6
Индийцы 2 357 30,2 24,5 37,2 8,1

Таблица 13. Наследование групп крови у человека

Мать Отец
Группа крови
I(0) II(A) * III(В) * IV(AB)
Группа крови Генотип Генотип
10 10 1А 1А 1А 10 1B 1B 1B 10 1A 1В
I(0) 10 10 10 10 1А 10 1А 10 1B 10 1B 10 1A 10
10 10 10 10 1В 10
II(А)* 1А 1A 1А 10 1А 1А 1А 1А 1А 1B 1А 1B 1А 1А
1А 10 1А 10 1A 1B
1А 10 1А 10 1A 1A 1А 1А 1А 1B 1A 1A
10 10 1A 10 1А 10 1А 1B 1А 10 1A 1B
10 10 1А 10 10 10 1A 10
1А 10 1A 10
III(B)* 1В 1B 1B 10 1A 1В 1A 1B 1B 1B 1B 1B 1A 1B
1B 10 1B 10 1B 1B
1B 10 1B 10 1A 1B 1A 1B 1B 1B 1B 1B
10 10 1A 10 1B 10 1B 1B 1B 10 1A 1B
10 10 1B 10 10 10 1А 10
1А 10 1B 10
IV(AB) 1А 1В 1А 10 1А 1А 1A 1A 1B 1B 1А 10
1B 10 1А 1В 1A 10 1А 1B 1B 1B 1А 1A
1В 10 1B 10 1В 1В
1А 1В 1A 1B 1A 1B

* Группа имеет два генотипа.


Таблица 14. Связь групп крови с антителами и антигенами

Группа крови Антигены, содержащиеся в эритроцитах Антитела, содержащиеся в сыворотке крови
I(0) _ Анти А, анти В
II(A) А Анти В
III(В) В Анти А
IV(AB) АВ

Таблица 15. Варианты несовместимости матери и ребенка (по группам крови системы АВ0)

Мать Ребенок
Группа крови Генотип Группа крови Генотип
I 10 10 II 1А 10
III 1В 10
II 1А 10 III 1В 10
IV 1А 1В
III 1B 10 II 1А 10
IV 1А 1В

Рассмотрим такой пример. Двое мужчин имеют II группу крови, а их жены — I. В этом случае у одной супружеской пары могут родиться двое детей со II (или с I) группой крови, а у другой пары возможен один ребенок с I, а другой — со II группой крови. I группа крови новорожденному гарантирована только в том случае, если оба родителя имеют эту группу. Если же у обоих родителей II или III группа крови, то их дети, кроме родительской, могут иметь и I группу крови. В случае, когда у родителей II и III группы крови (например, у матери — II, у отца —III), их дети могут обладать I—IV группами. У родителей с I и IV группами крови (например, у матери — I, у отца — IV) дети будут иметь II или III группу (см. табл. 13). Правда, недавно в специальной литературе появилось описание нескольких японских семей, у которых родители имели I и IV группы крови, а дети — IV. Такие семьи представляют большой научный интерес, а «неправильное» наследование IV группы крови тщательно исследуется.

Присутствие генов А и В обусловливает наличие в эритроцитах антигенов А и В, а их отсутствие приводит к появлению антител А и В в сыворотке крови (табл. 14). Если антиген А, содержащийся в эритроцитах, встречается с антигеном А, содержащимся в сыворотке, то происходит склеивание эритроцитов. В норме такого не происходит, так как в крови нет антител, способных склеивать собственные эритроциты (антигены). Но около 5% зигот (оплодотворенных яйцеклеток) погибает, а в среднем 1 % новорожденных имеют гемолитическую болезнь из-за несовместимости матери и ребенка по группам крови системы АВ0. Возможные варианты такого несовмещения показаны в табл. 15, Если, например, ребенок имеет генотип 1А10, а мать 1В10, то у ребенка есть антиген А, а у матери — антитело А. Последние проникают в кровь плода и склеивают, а затем и разрушают эритроциты, обусловливая этим гемолитическую болезнь. Ученые предполагают, что существует специальная генетическая система защиты плаценты, которая нейтрализует антитела матери до их попадания в кровь плода.

Резус-фактор (Rh)

Система групп крови резус открыта в 1940 году К. Ландштейнером. Изучая кровь человека и животных, ученый обнаружил, что кровь примерно 85 % обследованных людей подобна крови обезьян резус. Было доказано, Что кровь этих людей содержит антиген, идентичный имеющемуся у резуса. Обнаруженный антиген был назван резус-фактором (Rh). Вскоре было показано, что присутствие (или отсутствие) этого гена наследуется.

Рис. 25. Несовместимость по резус-фактору. Отец Rh+, мать Rh-, ребенок Rh+.


Резус-фактор может быть положительным или отрицательным. В первом случае он обусловливается доминантным (более сильным), во втором — рецессивным (менее сильным) геном. Если оба родителя имеют одинаковый резус-фактор (положительный или отрицательный), то иммунологического конфликта между организмом матери и плодом не происходит. Конфликт возникает, если отец имеет положительный, а мать — отрицательный резус-фактор. В этом случае плод будет иметь отцовский положительный (доминантный) резус-фактор, который вступит в иммунологический конфликт с материнским — отрицательным. Если же, напротив, у матери положительный резус-фактор, а у отца — отрицательный, то плод будет иметь материнский положительный (доминантный) резус-фактор, и в этом случае иммунологический конфликт не проявится.

При иммунологическом конфликте между организмом матери и плодом первый ведет себя так, как будто это не его ребенок, а инородное тело. Антигены плода вызывают появление в организме матери антител, способных при высоких концентрациях (титрах) нейтрализовать развитие плода и освободить организм матери от «чужеродного» тела. Однако при первой беременности количество антител в организме матери не повышается до такого уровня, чтобы существенно повредить (или убить) плод: исход, как правило, бывает благополучным. Но при второй беременности к антителам, которые остались в крови матери от первого ребенка, добавляется еще определенное их количество. В этом случае эритроциты ребенка будут уже частично повреждаться. Если между первой и второй беременностями не было прерванных беременностей, то и второй ребенок рождается вполне здоровым. Но если до беременности производились переливания крови без учета резус-фактора, которые могут быть приравнены (в зависимости от количества прилитой крови) к беременности, то второй ребенок будет неполноценным (рис. 25).

В Новосибирске и в других городах Западной Сибири отмечено несколько случаев, когда врачи делали (и неоднократно) переливание крови при тяжелых заболеваниях девочкам без учета резус-фактора (который был детально изучен лишь около 20 лет назад), В результате, когда девочки стали взрослыми, все беременности у них заканчивались гибелью эмбриона или спонтанным абортом.

Однако современная медицина может помочь таким семьям иметь детей. Созданный в Ленинграде Институт переливания крови производит частичную замену крови матери с целью снижения титра антител до неопасных уровней для будущего плода.

Антигены лейкоцитов

Изучение системы антигенов HLA началось в 1954 году, когда был открыт первый антиген этой системы. К настоящему времени их уже установлено более 100. Широкий интерес специалистов к названной системе связан с тем, что она ответственна за явление гистосовместимости тканей. Более того, в 70-х годах была установлена связь между предрасположенностью к некоторым заболеваниям у человека и системой антигенов HLA. Выдвинуто несколько гипотез, объясняющих эту связь. В настоящее время доказана корреляция HLA со следующими заболеваниями: вирусным гепатитом В, хроническим гломерулонефритом, сахарным инсулинзависимым диабетом, диффузным токсическим зобом, рассеянным склерозом, раком, ишемической болезнью сердца и др. (табл. 16). Иными словами, HLA-антигены являются генетическими факторами риска. Следовательно, типирование населения по системе антигенов HLA способствует выявлению лиц с повышенным риском к какому-либо заболеванию. При этом представляется возможность проведения современных мер профилактики, а при необходимости и своевременного лечения.


Таблица 16. Распределение антигенов (в %) системы HLA у больных с различной локализацией рака (I) и с ишемической болезнью сердца (II)

I II
HLA-антиген Здоровые (845) Больные (124) HLA-антиген Здоровые (619) Больные (202)
А10 19,64 29,03 ** By 18,1 52,2
Aw19 12,78 7,25 Ах 17,24 16,83
А28 8,04 3,22 * В5 21 17,33
Ах 17,4 29,0 В7 27,78 40,59 **
В12 19,76 12,06 В12 20,51 14,85
В13 6,86 8,87 В14 7,43 14,85 **
В14 7,33 5,64 В15 11,41 20,79
В15 11,71 14,51 В18 10,0 6,93
В16 5,91 8,06 В22 5,16 2,48
В18 10,53 0,8 ** Ву 17,72 4,95 **
В21 3,55 0 Cw1 12,23 9,44
Bw22 4,61 10,48 ** Cw2 8,33 13,33
В35 12,3 4,83 ** Cw3 12,23 19,44
В40 17,63 1,61 ** Cw4 18,75 35,56 **

* По Шабалину [1988].

** Разница достоверна по сравнению со здоровыми.

Примечание. В скобках — количество пациентов.

Генетический регистр

В практической медицинской службе на обращающихся за помощью к врачу принято заводить амбулаторную карточку, с которой, пожалуй, все знакомы.

А вот что такое генетический регистр? Медико-генетическая служба, которая создана (и создается) в ряде стран, приходит к необходимости создания специальной карты — генетического регистра, содержащего объективные, постоянно дополняющиеся данные о лицах, имеющих генетические аномалии. Генетический регистр в каждом конкретном случае позволит судить о степени генетического риска.

Создание генетического регистра диктуется прежде всего происходящими демографическими изменениями — снижением рождаемости, увеличением числа лиц среднего и пожилого возраста, уменьшением числа лиц детородного возраста, увеличением количества новорожденных с генетическими отклонениями и т. д. Ученые считают, что использование генетического регистра облегчит применение различного рода профилактических мер и позволит проводить учет их эффективности. Генетический регистр может быть полезен для целей планирования материальных средств на лечение, пенсионное обеспечение, содержание больных.

Рассмотренный медицинский документ является своеобразной генеалогической картой родословной и особенно необходим врачу-генетику при консультировании молодежи, вступающей в брак.

Генотип, болезнь, лекарство

Практически каждое пятилетие в мире издается каталог аутосомно-доминантных, аутосомно-рецессивных и сцепленных с полом (в половых хромосомах) наследственных признаков человека. И каждый раз список наследственных болезней человека увеличивается. С чем это связано?

Новые болезни появляются в силу продолжающегося изменения генетического материала (мутационного процесса генов). Повышение наших знаний о биологии человека и совершенствование методов диагностики современной медицины также способствуют «расширению» спектра наследственных недугов.

Клиническое описание многих наследственных заболеваний было дано в давние времена. Однако нельзя забывать, что в окружающей нас среде происходит постоянное увеличение таких мутагенных факторов, как радиация и различные химические вещества. Мутагенное действие радиации открыто еще в 1927 году, а химических веществ гораздо позже — в 1944 году, причем последние представляют даже большую опасность в связи с их огромным разнообразием и количеством, а также в силу повседневного и, казалось бы, незаметного действия этих веществ на целые популяции через окружающую среду — воду, пищу, воздух. Химические вещества действуют через изменение генетического материала (мутации) и экспрессии (степени выражения) существующих генов.

Научно-техническая революция, расширяя производственную сферу человеческой деятельности и изменяя условия окружающей среды, поставила перед генетикой задачу определить оптимальные условия среды для определенного генотипа. К настоящему времени установлено более трех тысяч типов профессиональных заболеваний. Многие из них имеют генетическое предрасположение, поэтому описание генотипа полезно для профилактики профессиональных заболеваний.

Знание генотипа имеет большое значение и для лечения больных. Например, не всем людям можно принимать некоторые лекарства в обычных терапевтических дозах, так как даже однократный их прием может вызвать тяжелые осложнения.

Широкое применение различных средств лечения позволило выявить большое число наследственных изменений в активности ферментов (наследственных энзимо- и ферментопатий), участвующих в метаболизме лекарств и значительно изменяющих реакцию организма на лекарство: в одних случаях лекарство в обычных терапевтических дозах вызывает, в других — не вызывает лечебного эффекта (то есть бесполезно в процессе лечения). При отсутствии наследственных энзимопатий врачи довольно часто не отмечают терапевтического эффекта ряда лекарств, особенно при длительном их введении. Одна из причин здесь та, что многие лекарственные средства являются индукторами микросомальных ферментов печени, которые осуществляют инактивацию большинства поступающих в организм чужеродных соединений, в том числе и лекарств. При повышенной активности микросомальных ферментов печени некоторые лекарственные препараты в терапевтических дозах не оказывают нужного эффекта из-за быстрого выведения их из организма.

Индукционный эффект лекарственных средств применяют в лечебной практике. Так, стимуляцию активности микросомальных ферментов печени используют с антитоксической целью для ускорения выведения канцерогенных полициклических углеводородов, азотистых красителей и многих других чужеродных для организма соединений. При лечении синдрома Кушинга активизирующее воздействие на микросомальные ферменты печени оказывает выраженный терапевтический эффект. Фенобарбитал как индуктор микросомальных ферментов печени используется при лечении физиологической желтухи новорожденных и болезни Жильбера. Пониженная активность микросомальных ферментов печени обусловливает замедленное выделение некоторых лекарств из организма и пролонгирует их действие. Активность микросомальных ферментов печени детерминируется генетически. Установлено, что по скорости метаболической элиминации людей можно разделить на три труппы: быстро, средне и медленно окисляющие лекарственные препараты.

Естественно, что при назначении больному лекарственного средства, метаболирующегося микросомальными ферментами печени, врачи хотели бы учитывать активность этих ферментов. В настоящее время показано, что активность микросомальных ферментов печени у детей выше, чем у взрослых, то есть лекарственные средства у последних выводятся в 2,5 раза быстрее, чем у первых. У пожилых людей (60—85 лет) отмечается снижение активности названных ферментов.

Некоторые лекарственные препараты противопоказано применять в определенных возрастных группах. Так, антибиотик тетрациклин Комитет по лекарствам Академии педиатров США не рекомендует назначать детям до 8 лет. Использование этого лекарства детьми до указанного возраста вызывает желтое окрашивание эмали зубов, ингибирование роста костей, гастероэнтериты и другие негативные для организма явления. Комитет по лекарствам Академии педиатров США подробно рассмотрел заболевания, при которых назначается тетрациклин, и пришел к выводу, что в 80 % случаев это средство можно заменить не только менее токсичным, но и более эффективным лекарственным препаратом.

В связи с тем что в СССР в 1975 году издан перевод книги Л. Полинга «Витамин С и здоровье», а также напечатано несколько статей на эту тему, употребление витамина С (аскорбиновой кислоты) в стране получило широкое распространение для предупреждения простудных заболеваний. Однако хорошо известно, что чрезмерные дозы витамина С обусловливают образование оксалатных камней.

Благодаря достижениям медицины в СССР ликвидированы многие болезни. И все-таки в среднем каждый человек один раз в два года болеет гриппом, а дети поражаются простудными заболеваниями гораздо чаще. Каждый ребенок переносит хотя бы одно инфекционное заболевание: корь, ветряную оспу, паротит (свинку), скарлатину.

В то же время некоторые люди вообще не болеют гриппом. В детских коллективах можно встретить крепышей, вызывающих зависть у большинства мам — эти дети при прямом контакте с носителями инфекции не заболевают. Что это? Устойчивость некоторых генотипов к определенным инфекционным заболеваниям?

Генетики считают, что такая устойчивость, действительно, возможна. Иммунная система человека «начинает работать» при инфицировании его вирусами или микроорганизмами. Оказалось, что иммунная ответная реакция организма на инфицирование контролируется генетически и в определенной мере связана с HLA-фенотипом. Однако здесь необходимо учитывать и средовой (главным образом пищевой) фактор. Недостаточное или несбалансированное поступление в организм белков, витаминов и микроэлементов приводит к повышенной чувствительности его к инфекции. В специально поставленных опытах по заражению животных вирусом ньюкаслской болезни отмечалось увеличение смертности среди животных, получавших пищу как с недостаточным, так и с избыточным количеством белка по сравнению о таковой среди животных с нормальным содержанием белка в рационе.

Таким образом, в настоящее время перед медицинской генетикой наряду с исследованием факторов, присущих специфическому возбудителю, со всей остротой встала задача изучения наследственной и средовой компонент (сторон) возникновения инфекционных заболеваний.

Генная инженерия — человеку

Заканчивая рассказ об основах генетики человека, наследственных заболеваниях и профилактике их, следует сказать о новых направлениях в лечении генных заболеваний с использованием методов генной инженерии. Это направление медицинской генетики возникло совсем недавно, однако его перспективность не вызывает сомнений. Так, исследования последних лет продемонстрировали возможность эффективной работы генов человека в бактериальной клетке. Генноинженерные работы позволили создать бактерии, которые вырабатывают интерферон — блокатор вирусов, гормон роста, инсулин и многие другие препараты. Эти исследования позволили в ряде стран начать широкую практическую наработку новых лекарств.

С помощью генной инженерии получен целый ряд биологически активных веществ для медицинских целей. Так, синтезированы белки, регулирующие иммунный ответ, вещества с антивоспалительным эффектом или стимулирующие рост и развитие кровеносных сосудов и др. В настоящее время выделены несколько сот белков и установлена их первичная структура — последовательность аминокислот, а через генетический код синтезированы (собраны) их генетические матрицы. И нет сомнений, что в ближайшие годы с помощью генной инженерии будут получены многие лекарства направленного действия.

Конечно, нельзя забывать, что «исправление», или «ремонт», генов у человека имеет два аспекта — технический и этический. Пока приоритет в развитии принадлежит первому. Специалисты доказали, что технически работы по генной инженерии реально выполнимы. В качестве убедительных доказательств последнего приводятся примеры успешных экспериментов на животных — мышах, крысах, коровах, овцах и обезьянах. Показано, что у этих животных в части клеток могут работать «отремонтированные» гены. Технология получения последних такова: на стадии, когда зародыш состоит всего из нескольких клеток, его извлекают (чаще всего вымывают) из организма матери; затем клетки разъединяют и в ядра каждой изолированной клетки вводят гены-матрицы, ответственные за синтез нужного признака или свойства. В результате получаются клетки с направленно измененным геном. Такие клетки возвращают в организм матери, и зародыш продолжает развиваться по обычной схеме, однако на свет появляется животное с «запланированными» свойствами.

Уже сейчас в ряде лабораторий ученые получили мышей размером с крысу. В этих экспериментально созданных особях «работает» ген, синтезирующий крысиный гормон роста. Выведены такие коровы и овцы, в молоке которых содержится большое количество интерферона — блокатора вирусов, ингибитора трипсина — вещества, необходимого для хирургии, активатора плазмогена и многие другие ценные лекарственные препараты. И хотя этическая сторона генной инженерии пока остается проблематичной, практически это направление генетики вплотную подошло к медицине.

Загрузка...