СТЕПЕНЬ ОПАСНОСТИ

…Вещи невиданные, скрытые и непознанные порождают в нас и больше веры, и больше страха.

Гай Юлий Цезарь

Любое производство — будь то текстильная фабрика с ее машинами и шумами, металлургический комбинат с повышенной загазованностью воздуха, трактор на пашне — приносит человеку определенную пользу и определенный вред. То же самое можно сказать и по поводу энергетической станции. Если теплоэлектростанция вынуждает нас вдыхать двуокись серы, окислы азота, углекислый газ, аэрозоли и так далее, то на атомной станции вред может приносить облучение, которым сопровождается как процесс деления ядер, так и некоторые продукты, связанные с работой установки.

В каждой отрасли промышленности защите человека от вредного воздействия шумов, газов и т. д. уделяется серьезное внимание. Огромна роль профилактики — предупреждения возможных тяжелых заболеваний и травм. В атомной энергетике защите тоже уделяется большое внимание, точнее сказать, не просто большое, а по сравнению с другими производствами громадное внимание, и тем не менее к атомной энергетике у многих людей особенно настороженное отношение.

Подумайте сами. Самые различные группы населения — научные сотрудники и производственники, пенсионеры и школьники, артисты и педагоги, колхозники и служащие одинаково опасаются атомной энергии. Эта боязнь доходит порою до комизма. Бывает, что мои собеседники, узнав, что я живу невдалеке от Института атомной энергии, спрашивают с опаской: «И… ничего?»

Приходится отвечать, что я проработал там четверть века и уверен, что еще долго буду трудиться в тех стенах, где действуют реакторы и вырабатывается атомная энергия. Кстати, этот московский район по уровню излучений один из самых благополучных.

Лекарства от радиации

Безусловно, основная причина необоснованной тревоги — чистая неосведомленность. Но объяснять только этим было бы большим упрощением. Очень важен и психологический фактор. Излучение — это нечто отличное от того, к чему привык человек. Пламя, например, явление привычное. Пожарные в робе из минерального волокна бесстрашно борются с ним. Сталевары, которых предохраняет от ожогов специальная одежда и обувь, спокойно обслуживают домны, вагранки. А химики, занятые производством вещества, способного взрываться, проникать в легкие, в кровь? Разве не они постоянно рискуют здоровьем? Но все дело в том, что металлурги, химики, строители, врачи и прочие специалисты научились обращаться с явлениями, таящими в себе опасность, и хорошо знают, чего можно от них ожидать.

А вот атомная энергия, излучение — его не видно. Оно не пахнет. Его не почувствуешь. В такой ситуации человек чувствует себя беззащитным.

Первое знакомство людей с атомной энергией было чудовищным знакомством. Ужасы Хиросимы и Нагасаки надолго останутся в человеческой памяти. К сожалению, такое знакомство привело и к тому, что выражения «атомная энергия», «атомный реактор» у многих стало отождествляться с понятием «атомная бомба», хотя из ранее сказанного читатель уже сам может сделать вывод, что это разные вещи. Но «ведь источник энергии, — скажут мне, идентичен! Что может помешать использовать атомную энергию не в мирных, а в военных целях?»

Лучше поставить вопрос так: кто может этому помешать? Ответ последует простой: это совершат народы, готовые сопротивляться всеми силами повторению Хиросимы и Нагасаки. Люди всего мира знают, что Советское государство всячески препятствует применению адского оружия, и это их воодушевляет на борьбу против атомного кошмара.

Конечно, в атомной энергии есть опасность, И бороться против ее вредного воздействия необходимо. Но стоит ли отказываться от колоссального достижения человеческого разума? Не закрываются же химические производства, хотя на некоторых из них готовят взрывчатые и ядовитые вещества.

Не запрещаются же автомобили, самолеты, газовые плиты и электричество. А ведь они тоже могут приводить к гибели человека.

Атомная энергетика родилась в эпоху, когда развитие техники, включая и энергетику, достигло небывалых успехов и масштабов.

Она стала активно влиять на природу и облагораживающе и разрушительно, улучшая и ухудшая ее.

Пришла пора по-настоящему серьезно относиться к проблеме влияния техники и энергетики на природу и человека. Нужно сказать, что атомной энергетике явно повезло в том смысле, что с самого ее зарождения начались тщательные исследования, в частности, по созданию научно обоснованных пределов облучения. Не ошибусь, если скажу, что такого уровня эти исследования не достигли еще ни в одной из других отраслей промышленности.

Тут-то и возникает парадокс. Получилось так, что особое внимание к защите от излучений было воспринято многими как признак особой опасности, а не как показатель действительно научного и государственного подхода к здоровью человека.

За всем сказанным вовсе не скрывается намерение показать, что атомная энергия совершенно безопасна и безвредна. Как и любой вид энергии, этот также имеет свои отрицательные стороны. Важно лишь принять нужные меры защиты.

С точки зрения ученых, действительная специфика опасности атомной энергетики в ее излучениях, и они сильнее каких-либо других явлений вызывают генетические изменения в организме. Правда, эти изменения могут быть и следствием действия некоторых химических веществ и других излучений. Небезопасны, скажем, и рентгеновские лучи. Однако отрицательный эффект от воздействия ядерного излучения может быть большим.

Есть и другая особенность: часть отходов, неизбежных при производстве ядерной энергии, остается опасной иногда на протяжении нескольких тысяч лет.

Исправлю не совсем верное утверждение, сделанное мною выше о том, что для человека радиация — явление совершенно новое и непривычное. На самом деле с момента своего возникновения человечество жило, правда, не зная об этом, в потоках разнообразных лучей. Более 80 лет назад были открыты излучения ядер и началось их изучение. Но, конечно, 80 лет — малый срок для того, чтобы человечество привыкло к ним. К тому же 80 лет назад об этом знали одни лишь ученые. Подавляющее число людей заинтересовалось излучениями совсем недавно, вслед за появлением ядерного оружия и атомной энергии.

Первым ученым, «увидевшим» необыкновенные лучи, еще неизвестные науке, был немецкий физик К. Рентген.

В 1896 году весь научный мир был взбудоражен его открытием. Лучи свободно проходили через непрозрачные предметы. Этим явлением тотчас воспользовались медики. По сей день врачи ставят диагноз, направляя пучок рентгеновских лучей на человеческий организм. Исследователей же в первую очередь интересовала природа излучения. Надо было узнать, что они собой представляют и откуда берутся?

Наряду с исследованиями велся поиск излучающих веществ. В том же году французский ученый А. Беккерель, изучая те вещества, в состав которых входил уран, обнаружил, что они также источники какого-то излучения, проникающего сквозь непрозрачные тела. За открытием А. Беккереля последовали обширные исследования супругов Кюри.

Но вот что выглядело загадочным: излучение урана, делающее воздух электропроводным и зачерняющее эмульсию фотопластинок, невозможно было изменить никаким воздействием. Мария Кюри нагревала и охлаждала его соли, держала их в темноте, направляла на них пучки света. И никакого влияния. Вне зависимости от физического состояния урана, находился или не находился он в магнитном поле, излучение сохраняло прежнюю величину. Значит, шло оно из глубины элемента — из атома. Это новое свойство Мария Кюри предложила назвать радиоактивностью, исходя из латинского слова «радиус» — луч.

Явление радиоактивности, представляющее собой своего рода извержение, было первым сигналом о том, что внутри ядра есть энергия.

Последующие исследования вскрыли природу радиоактивного излучения и позволили определить его состав.

В него входят альфа-лучи, представляющие собой ядра гелия; затем бета-лучи — это электроны; и, наконец, гамма-лучи — это электромагнитное излучение. С электромагнитным излучением мы встречаемся постоянно.

Радиоволны, тепловое излучение, свет, лучи Рентгена, гамма-излучение все это электромагнитное излучение, отличающееся только длиной волны.

Электромагнитное излучение распространяется подобно волнам на воде. Расстояние между двумя близлежащими гребешками называют длиной волны. У радиоволн длина волны лежит примерно в интервале от 10 сантиметров до нескольких десятков километров. Человек их не видит и не ощущает. Но вот волны становятся короче, скажем, их длина уменьшается до одного миллиметра. И они уже ощутимы, ибо человека греет тепло, волнами идущее от солнца и батарей отопления. Если длина волны еще короче — это уже область видимого светового излучения. При длине волны 10-7-10-9 сантиметра излучение носит название рентгеновского. Его человек также не видит и не ощущает. Невидимы и неощутимы и самые короткие волны около 10-11 сантиметра. Это уже гамма-лучи.

Стоит напомнить еще об одном известном факте — о прерывистости потока излучения, о квантовании лучистой энергии. По мере изучения радиоактивности становилось очевидным, что она имеет прерывистый характер и состоит как бы из порций, из пакетов волн электромагнитного излучения. Становилось ясно, что и энергия излучения передается только небольшими порциями, которые назвали квантами. Величина квантов, то- есть количество содержащейся в них энергии, зависит от длины составляющей их волны. Чем она короче, тем больше энергии в кванте.

По-видимому, первейшими исследованиями, посвященными действию рентгеновского облучения на живые организмы, была работа русского академика И. Тарханова. Статья, опубликованная в 1896 году «В известиях Санкт-Петербургской биологической лаборатории», называлась «Опыт под действием рентгеновых Х-лучей на животный организм». Выходит, прошло лишь несколько месяцев после того, как К. Рентген впервые сообщил о своем открытии, а И. Тарханов за это время уже обнаружил, что у облученных лягушек изменяются некоторые физиологические реакции.

Наступил период, когда сами исследователи убедились во вредном действии рентгеновского излучения.

Очень многие пионеры исследования рентгеновских лучей и излучения радиоактивных ядер стали жертвами науки. Одни из них заболевали, а другие погибали.

В 1936 году в Гамбурге был установлен обелиск в память ученых, погибших при исследованиях неизвестных лучей. В момент открытия памятника на нем уже были высечены имена ста десяти ученых.

Долгое время люди не могли понять, чем вызвано губительное действие радиации. «Что тут непонятного? — удивленно воскликнет современный читатель. — Все знают, что энергия рентгеновских и гамма-лучей-наивысшая».

Все это так, но тут есть некоторые тонкости, с которыми полезно ознакомиться. Да, энергия квантов такого излучения максимальна, но даже смертельная доза в тысячу рентген (рентген — единица измерения радиации), принятая организмом, вызовет повышение его температуры лишь на три тысячные градуса, так как это только 20 калорий тепла. Под солнечными лучами мы получаем то же самое за полсекунды-секунду. А ведь многие из нас, хотя это не так уж безопасно для здоровья, лежат на пляже часами. Чаще всего с нами ничего особенного не случается. В чем же тут дело?

В разнице между видами лучей. Световые лучи и радиоволны не могут ионизировать атом — оторвать от него электрон. Для этого недостаточно той порции энергии, которую несут их кванты. А квантов гамма-излучения хватает. Они ионизируют элементы, из которых состоит наш организм. А ионизированное вещество весьма неустойчиво, его атомы легко вступают в химические реакции. Это приводит к изменению химического состава вещества нашего живого организма.

Такое же действие могут оказать и нейтроны. В организме при облучении потоками этих частиц также могут возникнуть необратимые изменения. Правда, сами нейтроны не могут ионизировать атомы. Но они могут поглотиться атомом водорода, в ядре его возникает избыточная энергия, которая и высвечивается в виде гамма-излучения, обладающего не только высокой энергией, но и большой ионизирующей способностью.

Все это так. Однако мы еще не пришли к объяснению биологического эффекта. — Ведь и такого воздействия излучения, при котором возникает ионизация атомов, для него еще недостаточно. Представим себе, что при указанном выше облучении из строя будет выведено несколько молекул белков. Исследования покажут, что это настолько незначительное количество, что такая потеря никак не может привести к тяжелым нарушениям в организме. Клетка не станет смертельно поврежденной, если окажется пораженной молекула воды, какой-либо соли или фермент. Ну исчезнет одна-другая молекула из многих тысяч, что из этого? Другое дело, если будут выведены из строя гены, ответственные за наследственные свойства клетки. Последствием их гибели окажутся мутации — изменения наследственной информации, возникающие под воздействием радиации.

Распространено мнение, что наследственная информация — это передача признаков и свойств от родителей к детям. На самом деле это и передача сведений от одних клеток к другим. Хотя они делятся и гибнут, их свойства наследуются другими клетками. Если нарушить этот механизм передачи информации, то клетки перестанут обновляться. Бывает и так, что начинают нарождаться и размножаться другие клетки, неполноценные, функционирующие не так, как нужно.

Нарушение наследственной информации во многих клетках при воздействии радиации и есть причина некоторых болезней. Правда, не надо думать, что нарушение наследственной информации вызывается только ядерным излучением, в чем до недавнего времени были убеждены многие. Наследственные изменения могут вызываться и химическими веществами. Открыт целый ряд лекарственных препаратов, усиливающих или ослабляющих воздействие излучения на клетки. Одни из них помогают излучению разрушать ненормальные, больные клетки, другие восстанавливают их жизнеспособность.

Восстанавливать клетки — это понятно. Но зачем разрушать? Оказывается, при лечении некоторых раковых опухолей такие препараты как бы помогают организму избавляться от клеток, ставших вредными, концентрируют на них усилия излучения.

Уничтожение раковых опухолей не единственное полезное применение проникающей радиации. Искусственные мутации, например, позволяют во много раз ускорить селекционную работу по созданию новых высокопроизводительных сортов растений и пород животных.

Упрочение материалов, создание температуростойких веществ, использование в различных измерительных системах промышленности, стерилизация медикаментов и продуктов питания, атомные батареи для космических спутников — все это показывает, что излучение проникает буквально во все области нашей жизни: в медицину, в сельское хозяйство, промышленность и науку.

Никто сейчас не станет отрицать пользу излучений.

Нужно только научиться держать их в узде, научиться правильно управлять этой энергией, применять надежную защиту.

Пять барьеров

Атомная энергетика — это не только атомные электростанции, но и комплекс предприятий, потребных для обеспечения их топливом. Это рудники, где добывают урановую руду; заводы по ее переработке и выделению окислов урана; предприятия, в которых разделяют изотопы урана и изготовляют тепловыделяющие элементы. После того как тепловыделяющие элементы с ураном отработают на атомной электростанции положенное время, их транспортируют на завод, где из этого отработанного горючего выделяют осколки деления и невыгоревшее топливо. Этот цикл завершает захоронение отходов — осколков деления и других радиоактивных элементов.

На всех перечисленных этапах, хотя речь идет всего лишь о топливном цикле, также предусматривается защита людей от излучения. Его носители вездесущие радиоактивные элементы. Их можно встретить в воздухе, в шахтах, где добывают уран, в воде; они содержатся в различных растворах, используемых в технологических процессах. Но, где бы с ними ни столкнулся человек, всюду его ограждает надежная защита.

Лучше всего познакомиться с нею на-примере атомной электростанции, где мощность излучения наибольшая. Там она предусмотрена непосредственно у самого источника излучения — тепловыделяющих элементов, внешне представляющих собой, как мы говорили раньше, таблетки из двуокиси урана. Они помещены в герметичные трубочки из циркония, поэтому радиоактивные продукты, образующиеся при делении, никак не могут попасть в воду первого контура, охлаждающую активную зону реактора. Таков первый барьер, стоящий на пути излучения.

За ним следует второй. Дело в том, что у части тепловыделяющих элементов все же может отказать герметичность. В таком случае радиоактивные элементы попадут, правда, в небольшом количестве, в воду. Кроме того, в ней содержатся еще радиоактивные продукты коррозии, А с течением времени накапливаются еще и вещества, образовавшиеся в результате химических реакций водорода и кислорода с материалами, из которых сделан первый контур. Попадая вместе с водой в активную зону, они облучаются нейтронами и превращаются в различные радиоактивные элементы. Так же при облучении нейтронами может активироваться и кислород воды. На пути этой радиоактивности в первом контуре реактора и предусматривается второй барьер — специальный фильтр, постепенно пропускающий через себя всю воду.

Он резко, но не до конца уменьшает количество содержащихся в ней радиоактивных продуктов. Чтобы свести их к минимуму, контур делают совершенно герметичным. Ни одна капля циркулирующей в нем воды не должна проникнуть в помещения с людьми. Это и есть третий барьер.

Если иметь в виду, что давление воды в первом контуре достигает 160 атмосфер и что при этих условиях необходимо приводить во вращение насосы и перемещать стержни, управляющие в активной зоне цепной реакцией, то станет ясно, насколько трудна задача создания полной герметизации.

Сложность представляют насосы, обычно соединенные с электромоторами, которые нельзя погрузить в воду, да еще горячую, ибо нарушится изоляция проводников. Если же поместить насосы внутри, а электромотор вне контура, то связывающий их вал должен будет пройти через стенку первого контура. А при высоком давлении невозможно уплотнить место выхода вала так, чтобы полностью исключить утечку воды и содержащихся в ней газов радиоактивных веществ. Все же инженеры и конструкторы нашли решение. В первый контур вошел не весь электромотор, а только его ротор вместе с валом и подшипниками. Неподвижная же часть электромотора — статор, где находятся проводники, по которым течет ток, остался снаружи. А часть стенки контура, находящуюся под статором, сделали из тонкого нихрома, не представляющего большого препятствия для электромагнитного поля, которое обеспечивает вращение ротора.

Теперь, после принятых мер, радиоактивность, содержащаяся в воде, не будет опасна, так как она не может выйти из контура, и тем не менее на пути воды поставлен еще один — четвертый — барьер. Для этого все оборудование первого контура — реактор, парогенераторы, насосы, трубопроводы, фильтры и т. д. — помещено в герметичные боксы, и даже воздух оттуда не может попадать в помещения, где работают люди. Иногда проектировщики станции размещают оборудование не по отдельным боксам, а окружают его одной большой герметичной железобетонной оболочкой. Специальная служба регистрации ведет непрерывное наблюдение за уровнем излучений вблизи первого контура и в соседних помещениях, где находятся люди. Во всех наиболее опасных местах имеются счетчики гамма-излучения, электронов и нейтронов. Их сигналы позволяют быстро принимать меры к уменьшению активности излучений.

Для этого включают резервные фильтры и отключают парогенераторы, а то и останавливают реактор.

Все же в помещениях, где работают люди, могут в первую очередь появиться газообразные радиоактивные вещества. Это может произойти из-за протечек через уплотнения различных коммуникаций, связывающих герметичную оболочку с другими помещениями станции, иногда радиоактивность появляется по другим разным причинам. Чтобы не допустить ее накапливания, действует непрерывная вентиляция. Аппараты выбрасывают воздух в трубу, высота которой в зависимости от мощности станции достигает 100–200 метров. Это дополнительно уменьшает облучение персонала.

Пока что речь шла о защите работников станции.

Но вот воздух выбрасывается наружу, и радиоактивные элементы, содержащиеся в нем, выпускаются на волю.

Теперь они могут переноситься ветрами за многие сотни километров. Конечно, чем они окажутся дальше от станции, тем ниже будет их концентрация потому, что они сильно разбавятся атмосферой. Если ими и будет облучено население, то в такой слабой степени, что никак не отзовется на здоровье людей.

Мы уже говорили, что любая производственная и другая деятельность человека приносит то неощутимый, а то и заметный вред. В худшем, если можно так выразиться, положении находятся профессиональные работники, обслуживающие атомную станцию. Никуда не деться от того, что они получают существенно большую дозу облучения, чем окружающее население.

Но ведь то же самое имеет место и во многих других отраслях народного хозяйства. Скажем, шахтеры, металлурги, операторы некоторых химических производств, медики-рентгенологи тоже постоянно подвергаются различным вредным воздействиям. Однако то, что допустимо для профессиональных работников вредных производств, не может быть принято для всего остального населения. Ведь профессиональные работники находятся под специальным медицинским контролем, имеют укороченный рабочий день, дополнительные отпуска, особое питание и другие льготы.

Допустимые уровни излучений для работников АЭС, выбранные на основе тщательного изучения степени воздействия их на человека, обеспечиваются описанными четырьмя барьерами защиты. Нужно отметить, что эти барьеры служат эффективным средством защиты не только при нормальной работе атомной установки, но и в случае возникновения различных аварийных ситуаций. Чтобы опасность выброса радиоактивности свести на нет, на пути ее распространения поставлен еще один — пятый — барьер. В чем он выражается?

Если уровень радиоактивности воздуха, направляемого в вентиляционную трубу, превышает допустимый, его пропускают через дополнительные фильтры или выдерживают в специальных газгольдерах. Перечисленные меры являются надежной защитой для всего населения страны.

До сих пор речь шла о защите от вредных излучений, обусловленных радиоактивными элементами, образующимися при делении и затем распространяющимися по атомной станции и вне ее Наиболее мощная часть этого излучения — это нейтроны и гамма-кванты, которые освобождаются непосредственно в процессе деления. Потоки этих частиц колоссальны. С одного квадратного сантиметра поверхности активной зоны мощного реактора каждую секунду вылетает 20 триллионов нейтронов и около 10 триллионов гамма-квантов. Их проникающая способность настолько велика, что прочные стенки первого контура не могут их сдержать. Нейтроны, вылетая из активной зоны, обладают самыми различными энергиями — среди них есть как тепловые (медленные), так и быстрые. С тепловыми бороться довольно легко: достаточно поставить на их пути слой вещества с большим сечением поглощения, и эта преграда для них непреодолима. А как быть с быстрыми? Ведь в любых материалах ядерные сечения поглощения для таких нейтронов малы. Значит, нужно быстрые нейтроны сделать тепловыми и затем уже защищаться от них. Лучше всего нейтроны замедляются элементами с малым массовым числом. Поэтому на пути этих частиц размещают воду, графит, бетон — вещества, содержащие большое количество легких атомов.

Если для защиты от нейтронов используют легкие элементы, то от гамма-излучения надо обороняться материалами, содержащими элементы с большим массовым числом. В этом случае ослабление гамма-квантов происходит как за счет их взаимодействия с электронами атомов преграды, так и с ядрами. Возникает противоречивая ситуация: для ослабления потока нейтронов нужно делать защиту из веществ, содержащих легкие элементы, а для уменьшения потока гамма-квантов — тяжелые. Как тут быть?

Приходится идти на компромисс. Чтобы ослабить суммарное излучение и довести его до допустимой величины, реактор окружают достаточно толстым слоем комбинированной защиты из легких и тяжелых элементов.

За ним человек может находиться совершенно безбоязненно.

Большая толщина и вес защиты — основное принципиальное препятствие в деле создания атомных двигателей для малых транспортных установок типа, допустим, автомобиль. Одна энергетическая установка с защитой весила бы около ста тонн. Это был бы автомобиль-гигант, вряд ли для чего-нибудь полезный. О создании самолета или ракеты можно говорить уже смелее. Морские же транспортные суда с атомными двигателями уже созданы; в нашей стране верно служат народному хозяйству три ледокола с атомными двигателями — «Ленин», «Арктика» и «Сибирь».

Конференция по природным реакторам

В декабре 1977 года в Париже состоялось необычное совещание Технического комитета международного агентства по атомной энергии. Ученые, собравшиеся из разных стран, обсуждали результаты научно-исследовательских работ по природным ядерным реакторам. Природным? Не созданным руками человека?

Да, речь шла именно о таких реакторах. О них люди узнали совсем недавно. Изучая состав урановых руд одного из месторождений Африки, в Габоне, близ Окло, исследователи обнаружили ряд фактов, не поддававшихся простому объяснению. Соотношение изотопов урана в этой руде сильно отличалось от существующих в мире соотношений. Обнаружился ряд аномалий, касающихся содержания в руде редкоземельных элементов.

В этой связи было высказано несколько гипотез. Но ни одна из них не могла полностью объяснить все замеченные отклонения. Тогда и родилась достаточно смелая идея: а не встретились ли исследователи с природным ядерным реактором?

Дальнейшие исследования подтвердили этот необычайный вывод. Оказалось, что около двух миллиардов лет назад в этом урановом месторождении самопроизвольно возникла цепная ядерная реакция. В те давние времена в песчаных урановых рудах случайно создались условия, при которых образовалась критическая масса.

Нельзя не заметить, что содержание урана-235 в природном уране тогда было гораздо выше, нежели сейчас.

Возможно, в месторождение попала вода и стала естественным замедлителем. И пошла цепная реакция.

В глубинах земли заработал природный ядерный реактор и работал в течение миллионов лет. Затем в этом месторождении было обнаружено целое семейство реакторов.

Позже следы еще одного природного ядерного реактора были найдены в Австралии.

Много интереснейших тем возникло у ученых в связи с этим открытием. В нем еще не все объяснено до конца, но исследования позволили вывести одно важное следствие: по результатам измерения аномалий на разных расстояниях от центра природного реактора можно судить о том, как далеко распространились от реактора при миграции в почве продукты деления. Почему это важно?

Ответим на этот вопрос в связи со следующей проблемой атомной энергетики, о которой мы почти не говорили. Ее суть в следующем: методы защиты от ядерных излучений в рудниках, на заводах по переработке топлива, на атомных электростанциях достаточно тщательно отработаны и обеспечивают нормальные и безопасные условия труда работников в атомной промышленности и населения страны. Об этих методах говорилось выше. Что же происходит с ядерным топливом после того, как оно отработает в реакторе? Позволю еще раз напомнить читателю о заводах по переработке этих отходов, от которых отделяют невыгоревшие уран-238 и уран-235. Эти радиоактивные продукты деления и вновь образовавшиеся элементы, более тяжелые, чем уран, также источники вредного излучения и многие из них — долгоживущие.

Пока таких отходов немного, но с ростом масштабов атомной энергетики количество их будет расти: отходы станут накапливаться в заводских хранилищах, и проблема надежной изоляции их станет все громче и громче заявлять о себе.

Вы, наверное, заметили, что, говоря о радиоактивных отходах, мы употребили новый эпитет — долгоживущие. Что он означает?

Радиоактивные элементы — это атомы, ядра которых неустойчивы, или, как говорят чаще, нестабильны. Они могут распадаться, переходя в другие элементы. Их распад, то есть переход в стабильное состояние, сопровождается вылетом электрона, ядра гелия (альфа-частицы) или гамма-кванта. Искусственные радиоактивные элементы получаются не только как осколки деления, но и при поглощении стабильными атомами нейтронов. Существуют и определенные закономерности распада во времени радиоактивных элементов.

Радиоактивный распад — процесс вероятностный.

Одно ядро может распасться сейчас, а другое через сутки или через тысячу лет. Однако в среднем для большого количества атомов каждый радиоактивный изотоп характеризуется одной вполне определенной величиной вероятности распада. В качестве ее характеристики выбран период полураспада. Это время, за которое распадается половина атомов образца, весьма различно для разных радиоактивных ядер. Для осколков деления оно колеблется от секунд и минут до нескольких лет. А вот для искусственных радиоактивных элементов, которые образуются за счет захвата нейтронов ураном и плутонием, оно может быть очень продолжительным. Например, количество ядер америция-241 в результате радиоактивного распада уменьшится вдвое лишь через семье лишним тысяч лет. Сегодняшний, скажем, 1 грамм радия в процессе полураспада через 1,4 тысячи лет оставит на память о себе всего лишь половину.

Для захоронения радиоактивных продуктов прибегают к самым различным ухищрениям — закачивают в глубины земли, бетонируют, заключают в многослойные сосуды и хранят их в шахтах, остекловывают. Предлагаются и такие способы, как захоронение во льдах Антарктиды или удаление с помощью ракет за пределы Земли.

Можно уничтожить радиоактивные элементы тем, что переводить их в стабильные изотопы, облучая нейтронами в самих реакторах.

Способов вроде много, но проблема пока что остается нерешенной, и только потому, что еще не выбран один из предлагаемых способов. Имея в виду время полураспада, исследователи отыскивают способ наиболее оптимальный. Особенно важно надежно захоронить долгоживущие трансурановые (располагающиеся в таблице Менделеева после урана) элементы. Ведь даже через десятки тысяч лет их активность будет оставаться высокой. Контейнеры или стеклоблоки, в которых их захоронят, могут разрушиться и прокорродировать. Тогда радиоактивные отходы начнут распространяться в глубоких слоях земли. Далеко ли? Именно такой вопрос ставили перед собой исследователи по природным ядерным реакторам. Осколки деления этих реакторов как будто бы не ушли далеко от места рождения, говорят первые результаты исследований.

Что же в результате?

После всего плохого и хорошего, что было сказано о ядерных излучениях, стоит подвести итог. Что же нового, необычного вносят ядерные излучения атомной энергетики в человеческий организм, в человеческую жизнь? И еще один вопрос: сколько дополнительного вредного излучения получит человек в результате расширения масштабов использования атомной энергии?

Сначала ответим на первый вопрос. Нет и нельзя ожидать ничего нового и необычного. Известно, что со времени своего образования Земля подвергается воздействию космического излучения. Не только в атмосфере, воде, растениях, но и в человеке есть радиоактивные элементы, например, радиоактивный калий-40 и углерод-14. Они образуются в нашем организме под влиянием космического излучения. Ежеминутно в человеческом теле происходит около полумиллиона распадов этих радиоактивных изотопов. При этих распадах все внутренние органы и, конечно, мозг человека облучаются гамма-квантами и электронами.

Источниками внешнего облучения являются как космическое излучение, так и гамма-лучи естественных радиоактивных веществ, присутствующих в почве, горных породах и строительных материалах.

Облучение, исходящее из естественных источников, не только продолжается на протяжении нашей жизни, но и существовало на протяжении всей предыдущей эволюции человека как биологического вида. В процессе эволюционного развития и естественного отбора человек «привыкал» к тем уровням излучений, которые существуют в природе. В последнее столетие к естественному излучению прибавилось искусственное, обусловленное деятельностью человека, или, как сейчас говорят, техногенное излучение.

Какое же соотношение между тем и другим? Передо мной статья «Уровни естественного и техногенного облучения человека», написанная немецким ученым И. Мель. В качестве единицы измерения автор пользуется одной тысячной долей рентгена, точнее, его биологическим эквивалентом миллибэром. В среднем каждый житель ФРГ ежегодно получает за счет естественного облучения 115 миллибэр. Техногенное облучение за счет рентгено- и радиоизотопной диагностики, радиоактивности строительных материалов, радона и т. п. составляет 225 миллибэр.

Значит, уже сейчас за счет техногенного облучения житель ФРГ получает почти в два раза больше излучения, чем от естественного. А от обоих в сумме 340 миллибэр в год.

Несколько слов относительно того, насколько опасно такое существенное повышение уровня облучения.

Вполне очевидно, что для человека такое повышение не безразлично. Но известно, например, что уровни естественного радиационного облучения в разных районах Земли существенно различны. Так, в Индии около 100 тысяч жителей постоянно проживают на месторождениях монацитовых песков, где максимальная доза почти в десять раз больше, чем в ФРГ. Доза облучения от космического излучения при подъеме на высоту трех тысяч метров возрастает на 100 миллибэр, то есть почти на одну треть по сравнению с облучением на равнине.

Тем не менее ничего катастрофического с горными жителями не происходит. Эти и другие многочисленные факты говорят о том, что колебание уровня излучения в определенных пределах по сравнению со средним уровнем излучения на Земле не оказывает пагубного влияния на жизнь людей.

А, скажем, за счет излучения, инициируемого атомными электрическими станциями ФРГ, если их мощность достигнет 20 миллионов киловатт, каждый житель получит всего 0,25 миллибара. Видно, что по сравнению стой дозой излучения, которую человек уже получает, эта добавка невелика — не более одной десятой процента. Даже полеты на реактивном самолете или просмотры передачи телевизора могут дать большую дозу.

Вклад атомных электростанций в облучение человека незначителен.

Конечно, собственно атомные электростанции или другие атомные энергетические установки, скажем, атомные реакторы на ледоколах или атомные реакторы, вырабатывающие тепло для коммунальных нужд, не единственные источники радиоактивного излучения в атомной энергетике. Ведь это только одно, хотя и самое главное, звено всего топливного цикла атомной энергетики.

Для того чтобы работали ядерные реакторы, в шахтах должна быть добыта руда, содержащая уран. Ее необходимо переработать, выделив из нее окислы урана.

В этих рудах за миллиарды лет существования в результате радиоактивного распада ядер накопились различные радиоактивные элементы. По этой причине все работы по добыче и переработке организованы таким образом, чтобы минимальным было облучение как профессиональных работников, так и окружающего населения.

Еще одно звено топливного цикла атомной энергетики — заводы по переработке ядерного топлива после выгрузки из реактора. Разработанные и осуществленные системы защиты предотвращают попадание освобождающихся при переработке топлива радиоактивных элементов в окружающую среду.

Наконец, завершающий этап топливного цикла — захоронение радиоактивных отходов. О нем мы уже говорили.

Итак, вклад атомных электростанций и других предприятий топливного цикла в облучение человека пренебрежимо мал. Важно, чтобы он остался таким же малым я в будущем.

Многочисленные исследования и разработки в области топливного цикла атомной энергетики и совершенствования атомных энергетических установок направлены именно на то, чтобы при еще более масштабном развитии атомной энергетики облучение людей существенно не возрастало.

Загрузка...