Ваша идея, конечно, безумна. Весь вопрос в том, достаточно ли она безумна, чтобы оказаться верной.
После экспериментов, проведенных с импульсными разрядами, стало ясно, что получение термоядерной реакции в таких системах неперспективно. Проблему нельзя было взять прямой лобовой атакой. Мечту о быстром овладении термоядерной энергией пришлось отложить. Исследования по магнитному удержанию плазмы на многие годы перешли в русло физических исследований ее свойств в различных конфигурациях магнитного поля.
Несколько лет спустя академик Л. Арцимович так говорил об этом периоде: «И все же вряд ли могут быть какие-нибудь сомнения в том, что проблема управляемого термоядерного синтеза будет решена. Неизвестно только, насколько затянется наше пребывание в „чистилище“. Из него мы должны будем выйти… неся в руках спокойную, устойчивую высокотемпературную плазму, чистую как мысль физика-теоретика, когда она еще не запятнана соприкосновением с экспериментальными фактами».
Физики перешли к планомерной осаде термоядерной крепости. Как из рога изобилия посыпались различные предложения по новым методам решения проблемы, методам изучения физики плазмы. Изобилие требовало отсеять идеи малоперспективные и выбрать самые интересные.
С этой целью И. Курчатов в 1955 году собрал в Институте атомной энергии историческое для физиков-термоядерщиков совещание, на котором были оценены результаты четырехлетней работы и обсуждены перспективные направления.
Для очень многих участников этого совещания сообщения ученых о работах по управляемым термоядерным реакциям были подлинным сюрпризом. Мало кто ожидал, что исследования ведутся с такой широтой и размахом. И. Курчатов был одним из первых, сумевших оценить и понять объем и круг предстоящих исследований: он неоднократно подчеркивал необходимость широкого развертывания работ в других институтах и их открытых обсуждений. «Надо не засекречивать эти работы, — настаивал он, — а развивать международное сотрудничество».
В апреле 1956 года в газетах Англии, США и Франции запестрели заголовки: «Работы по термоядерному синтезу раскрыты!», «Русские впереди!», «Курчатов раскрыл секреты!»
На этот раз эти сенсационные газетные заявления не были беспочвенными. В английском атомном центре Харуэлле И. Курчатов сделал научный доклад о проведенных в СССР исследованиях импульсных разрядов в прямых трубах. Причем это было не тривиальное сообщение общего характера о том, что в СССР, мол, ведутся такие-то работы. Нет, это был действительно обстоятельный научный доклад с результатами экспериментальных исследований, их обсуждением и анализом.
Вернувшись тогда из Англии, И. Курчатов занялся налаживанием международных научно-технических связей. Были полностью рассекречены работы по термоядерному синтезу в возглавляемой им лаборатории № 2, которая с того времени получила современное название — Институт атомной энергии. Но ученые США и Англии отреагировали не сразу.
В том же 1956 году в американском городке Гетлинберге собрались на конференцию американские исследователи термоядерного синтеза. Перед участниками конференции лежал размноженный перевод доклада И. Курчатова в Харуэлле: «Термоядерные исследования в СССР». Нужно было дать ответ на эту инициативу.
Среди многих обсуждавшихся вопросов был и такой: продолжать ли хранить свои исследования в секрете или опубликовать результаты работ, как это сделали русские?
Обсуждение было достаточно горячим. Несмотря на разумные доводы сторонников широкого международного сотрудничества, большинство склонилось к тому, чтобы не отвечать на обращение советских ученых, сделать вид, что доклад И. Курчатова не был замечен. Все же в конце концов инициатива СССР заставила ученых многих стран принять активное участие в исследованиях в области, которой был посвящен знаменитый доклад.
Начались работы во Франции. Более энергично стали проводиться исследования в Англии. В печати о них стала появляться информация. В 1957 году на конференции, состоявшейся в Венеции, о своих экспериментах доложили ученые США, Франции, Англии и ФРГ.
В начале 1958 года появилась статья английских ученых о результатах работ на установке ЗЭТА, а в сентябре в Женеве состоялась вторая международная конференция по мирному использованию атомной энергии.
Наряду с результатами работ по ядерным реакторам деления на ней было представлено много работ по термоядерным исследованиям.
Оживленная дискуссия происходила на нескольких языках, и впервые эта тема стала приобретать истинно международный характер. В последующем были опубликованы многие статьи и сообщения, а также обнародованы сведения по стеллараторам, ловушкам с магнитными зеркалами, устройствам с молекулярными пучками ионов, тороидальным камерам и другим различным установкам.
Я намеренно привел здесь несколько не очень понятных наименований исследований и устройств, чтобы можно было почувствовать атмосферу новых понятий и различных направлений развития, возникшую в результате шагов, предпринятых советскими учеными.
Хотя наметившийся широкий размах исследований радовал ученых, занимавшихся термоядерным синтезом, однако настораживал излишек всевозможных направлений. На каком из них следует сосредоточить внимание? Какое даст нужный результат, а не заведет в тупик?
Перед физиками-теоретиками и экспериментаторами стоял, казалось бы, бесконечный набор серьезных научных проблем и более простых, но также требующих экспериментального исследования. Как удержать плазму в термоядерной установке? Каким образом ее нагреть? Откуда брать тритий, необходимый для проведения реакции? Какие материалы наиболее пригодны для установок? Наконец, совсем будто бы простой вопрос: как измерить температуру плазмы?
Можно было утонуть в этом море проблем. За что взяться в первую очередь? И как взяться?
Поучительна история, происшедшая в те годы в Институте атомной энергии. И. Курчатов поручил коллективу одного из отделов составить развернутый план работ. После многодневных бурных дебатов молодые исследователи принесли результат своих трудов в «хижину лесника» — домик на территории института, где жил И. Курчатов. Это был лист ватмана, расчерченный на клетки с записанными в них десятками задач. Не забыли и последовательность их решения.
«Игорь Васильевич посмотрел на клетки, — пишет в своих воспоминаниях его соратник И. Головин, — весело взглянул на присмиревшую взволнованную молодежь, посвистел…
— Шорох орехов, шорох орехов, — сказал он нараспев, — а не план! Знаете, что такое шорох орехов? Нет?
Молодой грузин торгует орехами на базаре и продает их за ту же цену, что платил при покупке. „Зачем так делаешь, что ты от этого имеешь?“ спрашивают его. „Люблю шорох орехов“, — отвечает незадачливый бизнесмен. Так и вы. Десятки задач, видимость большой работы. А где цель? Где этапы пути к горячей плотной плазме?
— Что вы, Игорь Васильевич, все это нужно, здесь нет ничего лишнего.
— В том и беда этого плана, что в нем все есть.
А в любом деле, как и в жизни, надо выбирать только самое главное. Иначе второстепенное, хотя и нужное, отнимет все силы и не даст дойти до главного. Какой сейчас самый важный этап?.. Вы считаете, что это решение проблемы устойчивости плазмы. Так и исследуйте ее! И не вообще, а в тех условиях, которые, как вы предполагаете, необходимы для достижения цели… Идите, подумайте еще над планом. Встретимся завтра, и я посмотрю, поняли ли вы, что такое шорох орехов».
Удержание плазмы было самым главным. Этому мешала ее неустойчивость, почему и большинство предложений, рожденных в те далекие годы, было направлено на решение этой основной проблемы. Поясним, что это такое.
Чтобы в плазме, разогретой посредством электрического тока, поддерживалась температура, необходимая для протекания термоядерной реакции, нужно исключить ее растекание и контакты со стенками камеры. Пытаться нагреть плазму, соприкасающуюся с ними, все равно что стараться вскипятить воду в сосуде из льда.
Одной идеи сжатия плазмы в шнур магнитным полем, возникающим при течении тока, как это делалось в первых опытах, оказалась недостаточно. Плазма утекала через торцы такого устройства, а неустойчивости приводили к тому, что плазменный шнур распадался. Что же такое неустойчивости и отчего они зависят?
Перетяжка плазменного шнура и сжимание его в нить в одном из мест — явление, с которым столкнулись физики-экспериментаторы, — это лишь один пример неустойчивости. Причиной его является неустойчивое равновесие плазмы. Обычно события развиваются так. Из-за случайного малого возмущения в плазме толщина шнура в каком-либо месте становится чуть-чуть меньше. Сразу же в этом месте кольцевые магнитные силовые линии, охватывающие шнур, сгущаются, сила их сжатия возрастает, шнур, снова несколько утончается, сила магнитного поля в этом месте снова возрастает и т. д. В конце концов шнур перетягивается полностью и плазма рвется на отдельные «сосиски» (эта неустойчивость иногда и именуется «сосисочной»), отбрасывается к стенкам и гаснет. Как же упрочнить плазменный шнур и продлить жизнь плазмы?
Теоретики предложили ввести внутрь плазмы продольное магнитное поле. По их замыслу, оно создаст жесткий каркас — стержень, противостоящий кольцевому магнитному полю, охватывающему плазму. В такой системе кольцевые магнитные линии, сжимающие плазменный шнур, встретят на своем пути не только собственно плазму, но и пружинящие продольные магнитные силовые линии, препятствующие перетяжкам.
Получить продольное магнитное поле просто. На камеру наматывают витки проводника и пропускают через него ток, который и создает магнитное поле вдоль плазменного шнура. Применение этого несложного способа резко повысило устойчивость плазмы. Оказалось, что осевое магнитное поле эффективно противостоит и другому виду неустойчивости — изгибу плазменного шнура. А ведь было так, что небольшой его изгиб увеличивался до тех пор, пока шнур не соприкасался со стенкой, что и служило причиной его уничтожения.
Предложенное продольное осевое поле изменило картину: действуя как стержень, вставленный в плазму, оно не допускает ее изгиба.
Мы привели только два примера неустойчивости плазмы и рассказали о некоторых способах повышения ее устойчивости. Неустойчивостей же много, очень много, и они сдаются, уступая настойчивости и изобретательности теоретиков и экспериментаторов.
К сожалению, управление термоядерной реакцией связано не только с устойчивостью плазменного шнура.
Заряженные частицы плазмы способны изменять свою траекторию и убегать из термоядерного реактора. Картина эта выглядит так. Заряженная частица плазмы, пытающаяся двигаться перпендикулярно магнитным силовым линиям, под действием поля изменяет свою траекторию на круговую. При достаточно сильном магнитном поле она начинает двигаться по спирали вдоль магнитной силовой линии. Но если поперек магнитных линий ей путь закрыт, то вдоль линии она может двигаться и через торцы объема покидать реактор. Как же удержать этих беглецов?
Для этого есть две возможности. Во-первых, можно буквально свернуть магнитные силовые линии и саму камеру в виде бублика, образовав тем самым тороидальную систему, у которой нет концов.
Второй путь — усиление на концах (торцах) камеры магнитного поля. Резкие всплески напряженности этого магнитного поля на торцах как магнитные пробки закроют концы камеры и не пустят или, если быть более точным, почти не выпустят беглецов. Эти магнитные пробки американские ученые назвали магнитными зеркалами.
Так был преодолен еще один рубеж, позади осталась еще одна трудность. Но, как это часто бывает, сразу же появилась новая Оказывается, частицы плазмы могут все же перемещаться не только вдоль линий магнитного поля, но и, к сожалению, поперек их.
Хотя они в основном и «привязаны» к магнитным силовым линиям, тем не менее могут переходить от одной из них к другой, перемещаясь постепенно к границе плазмы — к стенкам камеры. А происходит это по разным причинам: при столкновении частиц одна из них может перескочить со своей спирали на соседнюю и передвинуться так поближе к стенке камеры. Есть и еще одна причина: в неоднородном магнитном поле (а в тороидальной установке магнитные силовые линии гуще с внутренней стороны баранки и реже с внешней) происходит разделение электрических зарядов. Под действием возникающего электрического поля плазма медленно движется (дрейфует) в направлении, перпендикулярном магнитному полю и в конце концов соприкасается со стенками камеры. Найдены эффективные методы борьбы и против такого явления.
Для проверки теоретических представлений о поведении плазмы в магнитных полях в СССР, США, ФРГ, Англии, Франции и Италии создана целая серия различных экспериментальных установок. Невозможно даже бегло рассмотреть их все. Но с отдельными познакомиться полезно.
Больше всего собралось различных установок по изучению УТС в Институте атомной энергии. Если с площади И. Курчатова посетитель пройдет на территорию института, то окажется в большом сосновом бору.
Одна из дорог приведет к домику И. Курчатова — «хижине лесника», а в 200 метрах он увидит здание первого в Европе реактора Ф-1, пущенного в 1946 году.
О нем и шла раньше речь. Если пройти еще 200–300 метров, взору откроется постройка, на фронтоне которой эмблема — рука, держащая солнце. В ней и расположена одна из первых, наиболее крупных термоядерных установок с магнитными зеркалами — ОГРА, разработанная коллективом под руководством советского физика И. Головина. Каков же принцип ее устройства?
В прямой трубе (ее диаметр полтора метра, а длина около 10) создано продольное — постоянное во времени магнитное поле. Для разогрева плазмы в трубу-камеру с помощью специального устройства впрыскиваются ионы молекулярного водорода с энергией, которой соответствовала бы температура в камере около 900 миллионов градусов. Казалось бы, температура более чем достаточная! Однако плотность частиц в камере оказывается очень низкой — в 10 миллионов раз меньше, чем нужно, и столкновения частиц здесь происходят очень редко — термоядерная реакция не развивается.
Многое в этой установке, да и в ее модификации ОГРА-П не удовлетворяло ученых. Тем не менее они шаг за шагом двигались к пониманию тайн плазмы.
Создатели ОГРА, самой крупной в те времена установки, наперед знали, что на полный успех им рассчитывать не стоит. Но жизнь требовала строить и испытывать подобные установки, изучать свои ошибки и идти вперед. «Не делая этого, — писал И. Курчатов, — мы напоминали бы, пользуясь образным сравнением Гегеля, того софиста, который утверждал, что он не войдет в воду, пока не научится плавать».
Примерно таким же путем двигались американские и английские ученые, создавшие несколько установок с магнитными зеркалами — ДСХ, Алиса, Феникс. Несмотря на то, что до сих пор введено и исследовано несколько десятков установок подобного типа, еще не удается достигнуть нужных параметров плазмы. Сейчас ближе других к цели продвинулись установки типа Токамак.
Первые их успехи и международное признание пришли, пожалуй, в 1969 году. Тогда в Институт атомной энергии для совместной работы на советской установке Токамак-3 приехали английские ученые. Вот что писала о результатах этой работы парижская газета «Интернэйшнл геральд трибюн»:
«Английские ученые с помощью доставленного в Москву оборудования, весящего пять тонн, проверили сообщение советских специалистов, встреченное на Западе с недоверием, и установили, что русские недооценили свой успех в попытке обуздать „энергию водородной бомбы“. Они наглядно доказали, что советская установка, известная под названием „Токамак-3“, вырабатывает „нагретый газ“, или плазму, которая даже больше отвечает необходимым условиям, чем об этом сообщали русские…»
Чтобы познакомиться с такой установкой, пройдем дальше по территории института. Через несколько минут остановимся у здания с надписью: «Отделение физики плазмы». Рядом с ним большая электрическая подстанция, способная снабжать энергией солидное промышленное предприятие. Здесь она для Токамака.
Да! Сегодняшний физический (заметьте, только физический, а не промышленный и даже не опытно-промышленный) эксперимент по термоядерному синтезу требует для своего проведения больших и сложных установок и огромного количества энергии. Эксперименты стали масштабными и, к сожалению, дорогими.
Откроем дверь в зал: здесь расположена одна из самых современных мощных термоядерных установок — Токамак-10. С галереи зала хорошо видна ее основная часть: внушительный «бублик» диаметром 3 метра является вторичной обмоткой огромного трансформатора.
При пропускании тока через первичную обмотку трансформатора внутри бублика начинается разогрев плазмы. Кроме того, и бублик имеет свои обмотки, создающие в нем продольное магнитное поле.
Под Токамаком еще один зал, невидимый с галереи.
В нем различные вспомогательные системы и оборудование для регулирования и управления токами обмоток, а также вакуумные насосы… В соседнем зале пульты управления экспериментаторов и измерительные приборы. Сейчас основные эксперименты на Т-10, так в ИАЭ называют эту установку, закончены. Взамен нее на том же месте должна быть создана новая — Т-15, с более высокими параметрами плазмы.
Чего же достигли экспериментаторы и теоретики на установке Т-10? Насколько близко подошли они к заветной цели — управляемой термоядерной реакции?
Чем измерить степень этого приближения? Да и существует ли такой критерий, пользуясь которым можно было бы оценить, сколько еще осталось пройти до момента, когда будет продемонстрирована термоядерная реакция, дающая полезную энергию?
Конечно, в общем случае такого критерия, определяющего, насколько та или иная экспериментальная установка близка к промышленному реактору, в котором идет реакция синтеза, не существует, хотя критерий, носящий частный характер, есть. Он определяет, насколько параметры физических процессов, происходящих в установке, близки к тем, которых нужно достигнуть.
Вот как он формулируется: «Для того чтобы энергия, выделяемая в процессе термоядерной реакции, была больше, чем энергия, затраченная на инициирование этой реакции, необходимо, чтобы произведение плотности плазмы на время ее удержания было не меньшим, 1014».
Смысл его, как видите, достаточно ясен. Чем больше плотность плазмы, тем больше актов слияния ядер дейтерия и трития происходит в единице объема плазмы и тем больше выделяется энергии. Если плотность частиц в плазме очень большая, то выделяемая энергия с избытком покроет затраты на осуществление реакции даже в том случае, если утечка энергии из объема плазмы будет велика, то есть если время удержания плазмы малое.
Другой сомножитель характеризует степень совершенства методов и устройств, использованных для удержания энергии плазмы в объеме. Численно он равен времени, в течение которого вся энергия, запасенная в плазме (конечно, без учета энергии нейтронов), уйдет из ее объема. Если этот показатель велик и энергия из объема плазмы почти не теряется, то даже при малой величине энерговыделения, то есть малой плотности плазмы, этой энергии будет достаточно для поддержания необходимой температуры плазмы в 100–150 миллионов градусов. Очевидно, чтобы термоядерная установка служила для производства полезной энергии, в объеме ее плазмы должно «вырабатываться» энергии в 4–5 раз больше потерь и затрат. В этом случае критерий Лоусона должен быть равен, скажем, 5*10^14. Так чего же достигли термоядерщики в своих установках?
За годы, прошедшие с дней первых экспериментов, почти в каждой новой установке типа Токамак удавалось повысить температуру плазмы. Сейчас она уже около 60 миллионов градусов.
Каждая новая установка была и новым шагом в познании тайн плазмы, и шагом по пути достижения критерия Лоусона. Сначала 10^10, затем рост в 10 раз, затем еще в 10, и вот уже получена величина 2*10^13.
Ученые все ближе и ближе подбираются к желанной цели, к величине 10^14, хотя каждый последующий шаг становится все труднее и труднее.
Когда же придет победа?
Директор отделения физики плазмы академик Б. Кадомцев считает, что в начале 80-х годов на установках типа Токамак будет достигнута минимально необходимая величина критерия Лоусона и мы получим плазму с необходимыми параметрами. К этому времени в Принстонском университете в США будет запущена система ТФТР — установка типа Токамак. В Японии надеются получить желаемое на «Джи-ти-60». В организации Евратом будет запущен Токамак «Джет».
Все эти установки похожи друг на друга и в то же время различны, и задачи на них будут выполняться разные. На японской, например, будут проводиться в основном физические исследования плазмы; у американцев главная цель — получить интенсивную термоядерную реакцию. «У нас в ИАЭ, говорит Б. Кадомцев, — плазма с необходимыми параметрами будет получена на следующей физической модели, Т-15».
Кстати, для нее будет использована система энергоснабжения от Т-10. Чтобы на установке Т-15 получить магнитные поля необходимой величины, будут использованы катушки со сверхпроводниками, охлаждаемыми жидким гелием. Такая система уже проверена в ИАЭ на модели Т-7 меньшего объема. Значит, следующий шаг ясен. Через несколько лет будет осуществлена физическая демонстрация управляемой термоядерной реакции.
Но это еще не все. Впереди основная цель — первый энергетический термоядерный реактор. Когда он будет создан?
Не будем спешить с ответом. Сначала посмотрим, как он может выглядеть.
К нынешним дням разработано несколько проектов реакторов, проектов, во многом основанных на еще не проверенных идеях. Им придумано даже специальное название: «концептуальные проекты». Действительно, пока еще невозможно с достаточной точностью определить, при каких условиях будет осуществлена даже их физическая демонстрация. Между тем для правильного выбора пути в дальнейших исследованиях, оценки проблем, которые возникнут впереди, и, конечно, экономики, необходимо понять, как будут выглядеть будущие станции. Именно поэтому такие проекты-схемы, во многом основанные на еще не проверенных идеях и предположениях, и получили название концептуальных.
Вот передо мной один из таких проектов: UWMAK-II. Выполнен он в отделении энергетики Висконсинского университета. Начальные буквы его названия из названия университета; МАК — это конец слова «Токамак», дань советскому проекту. Римская цифра «два» означает, что это вторая версия.
Перевернем несколько страниц этого солидного тома и ознакомимся с основными параметрами установки.
Сердце ее, электрической мощностью 1700 мВт, — камера-бублик, в которой находится плазма. Внешний диаметр камеры — 35 метров, высота — 12. Только при таких размерах получается необходимая мощность термоядерной реакции и существенно возрастает время удержания энергии.
При термоядерной реакции в плазме, состоящей из дейтерия и трития, развивается температура 100–120 миллионов градусов и выделяется энергия термоядерного синтеза в виде кинетической энергии ядер гелия и нейтронов. В последних — основная ее часть. Чтобы удержать нейтроны, камера-бублик окружена бланкетом — слоями графита, бериллия, лигия. Пролетая через стенку камеры, нейтроны соударяются с ядрами вещества бланкета и отдают им свою энергию, которая переходит в тепловую форму. Гелий, циркулирующий между слоями бланкета, переносит тепло в парогенератор, затем энергия пара в турбогенераторе преобразуется в электроэнергию.
Перевернув еще несколько страниц проекта, увидим главу, посвященную режимам пуска и работы реактора.
При пуске в камеру вводят почти в равном соотношении дейтерий и тритий. Для их разогрева используется омический нагрев. При подаче напряжения во вторичную обмотку трансформатора в первичной, роль которой выполняет плазма бублика, возникает ток, разогревающий эту плазму. Хотя на этот способ разогрева возлагались большие надежды, необходимую температуру получить оказалось невозможно: выше 10–15 миллионов градусов она не поднималась. При дальнейшем разогреве омическое сопротивление плазмы падало настолько, что никакое увеличение тока не помогало: температура плазмы не увеличивалась.
Множество идей и исследований было посвящено проблеме догрева плазмы до термоядерной температуры. По-видимому, наиболее удобным и эффективным способом является впрыскивание в плазму потока ускоренных нейтральных атомов дейтерия. Именно на нем остановились проектанты UWMAK-II. Вот принцип его работы.
На ускорителе-инжекторе мощностью 100 тысяч киловатт ионы дейтерия разгоняются до энергии в 750 тысяч электронвольт, затем в специальном устройстве инжектора они нейтрализуются и в течение 10 секунд впрыскиваются в камеру-бублик. При этом плазма в бублике разогревается до 80 миллионов градусов. Дальнейший ее разогрев до 100–120 миллионов градусов идет за счет термоядерной реакции, и реактор развивает полную тепловую мощность 5 тысяч мВт. В таком режиме его работа продолжается около 90 минут, за которые выгорают атомы дейтерия и трития. Вследствие появившихся в камере атомов гелия, а также частично атомов других элементов, выбитых из стенок камеры, реакция затухает, реактор останавливается, и начинается пятиминутный цикл перегрузки топлива и очистки камеры. В течение этих пяти минут парогенератор продолжает работать, а турбогенератор вырабатывать электроэнергию. Происходит это потому, что в течение 90 минут работы установки часть энергии не превращали в электричество, а накапливали в виде тепла в специальных натриевых аккумуляторах. В пятиминутный перерыв разогретый в аккумуляторах теплоноситель натрий отдает свою энергию паровому контуру.
Итак, за пять минут нужно очистить камеру реактора от загрязняющих плазму веществ, заполнить ее свежей смесью дейтерия и трития и вновь его запустить.
Делается это так.
В действие включаются все 96 вакуумных насосов и создают в камере нужной степени вакуум. Теперь нужно ввести смесь горючего. В отношении дейтерия проблем особых нет. Его запасы практически безграничны.
В составе обычной воды имеется 0,016 процента тяжелой, а в ней и содержится дейтерий. Трития же в природе не существует. Его нужно всякий раз производить.
Наиболее удобный способ — облучение лития нейтронами. В этой реакции образуются гелий и тритий.
На первый взгляд кажется, что в термоядерном реакторе сделать это очень просто, использовав высвобождающиеся при синтезе нейтроны. Но проделать это очень не легко. Ведь на каждый нейтрон обязательно нужно получить не менее одного атома трития, а с учетом потерь- даже несколько больше одного. Однако беда в том, что не все нейтроны поглотятся литием, ибо он располагается за стенкой камеры, значит, часть нейтронов поглотится самой стенкой, часть, кроме того, в различных других конструкциях, а часть вообще вылетит из реактора. Короче, нужного количества трития в самом реакторе не получить. Как же быть?
Выход все же был найден. В бланкете реактора, кроме лития, поместили бериллий. Он и помог размножать нейтроны. Ведь если нейтрон, обладающий большой энергией, попадает в ядро бериллия, то в нем возможен и такой ход реакции, при которой из ядра вылетают два нейтрона; два — вместо одного! А это то, что и надо.
Так удается получать в реакторе достаточное количество трития. Дальше дело проще.
Из бланкета тритий поступает на очистку. А затем вместе с дейтерием направляется в камеру. На этом завершается полный цикл работы реактора. Для разогрева плазмы вновь подается ток, и цикл повторяется.
Мы с вами благополучно завершили мысленное путешествие по рабочему циклу. Но чтобы реактор действительно заработал и задействовал описанный здесь цикл, необходимо осуществить большую и длительную программу научных исследований, провести комплекс работ по созданию и изучению различных систем и устройств. Среди них специальные камеры с вакуумной откачкой диверторы. С помощью особым образом сформированных магнитных полей этими устройствами улавливают гелий, а также атомы с большим зарядом, которые глушат термоядерную реакцию. Это и системы с жидким гелием, охлаждающим катушки из сверхпроводящих материалов. Это и устройства, защищающие стенки камеры от постепенно разрушающего их потока нейтронов. Это и… Но, наверное, довольно. Путешествие по проекту может стать слишком долгим. Прервем его на этом месте, чтобы задаться вопросом: когда же можно создать такой реактор?
Вопрос этот не из легких. Разные ученые называют и различные сроки: одни называют 15 лет, другие — 20, третьи — 25. И трудно сейчас назвать более точную дату.
По мнению научного руководителя по проблеме управляемого термоядерного синтеза вице-президента Академии наук СССР Е. Велихова, создания первого опытно-промышленного термоядерного реактора можно ожидать в конце 90-х годов или в начале следующего века.
Промежуточный этап на этом пути — создание энергетического реактора. В нем можно будет не только осуществить научную демонстрацию термоядерной реакции, как в упомянутых здесь проектах Т-15, ТФТР или Джет-60, но и проверить работу отдельных важных систем реактора.
Ученые Советского Союза предложили разрабатывать и строить такой реактор совместными усилиями нескольких стран. При международном агентстве по атомной энергии сейчас создана рабочая группа, в которую вошли представители ряда стран Западной Европы, США, СССР, Англии, Японии.
Для этого международного проекта уже есть название — ИНТОР интернациональный Токамак реактор.
Задача группы — выработка предложений по целям, срокам и основным параметрам нового реактора. Группа должна в конце 80-х — начале 90-х годов дать рекомендации по научно-технической осуществимости ИНТОРа. Как видите, дело не такое уж далекое.
Попробуем подытожить все прогнозы. Начнем с демонстрационного физического реактора. Его намечено создать в начале 80-х годов.
Демонстрационный энергетический реактор — начало 90-х годов.
Первый опытно-промышленный согласно предположению ученых начнет «жить» в конце текущего — начале следующего века.
Что же касается ощутимого вклада в энергетику, то термоядерные реакторы смогут внести его лишь в 20- 30-е годы следующего столетия!
Не слишком ли долго ждать? Пожалуй, да! Нельзя ли побыстрей?
Такой вопрос задаем не только мы с вами, дорогой читатель.
По-видимому, не будет преувеличением сказать, что, начав работы, связанные с осуществлением термоядерного синтеза, человек приступил к реализации одной из наиболее важных и смелых программ научного исследования, которые никогда еще не предпринимались. Эта программа во многих разделах превосходит даже грандиозную программу космических исследований.
По этому пути ученые идут уже почти три десятилетия. Срок не такой уж большой, но эта целая эпоха За этот период много понято, открыто, изобретено, создано. И все же… цель еще не близка.
Чем же привлекательна эта цель? Что обещает термоядерный реактор? Среди его многочисленных достоинств перечислим некоторые, чтобы читателю передалась хотя бы малая доля уверенности исследователей и инженеров, занимающихся этой проблемой.
Прежде всего термоядерный синтез открывает доступ к новому, практически неисчерпаемому источнику энергии — ядерной энергии легких элементов. Дейтерий широко распространен в природе: его всего в 6 тысяч раз меньше водорода. Общее количество дейтерия в океанских водах достигает 5∙10-16 килограммов.
Для первых термоядерных реакторов, основанных на слиянии дейтерия с тритием, нужен литий. Этот элемент присутствует в доступной для нас части земной коры с концентрацией около 0,002 процента. Общее же его количество — около 100 миллионов тонн (вспемните: всего 0,1 грамма термоядерного топлива дает энергию, эквивалентную 500 литрам бензина).
Важным свойством установки управляемого термоядерного синтеза является ее безопасность. Это очень большое достоинство. И еще: поскольку в реакторе всегда будет находиться небольшое количество топлива, невозможна самопроизвольно разгоняющаяся ядерная реакция. По сравнению с реакторами деления термоядерные производят меньше радиоактивных отходов.
Другое интересное свойство, имеющее большое значение, — это возможность, по крайней мере в принципе, реализовать в установке прямое генерирование электроэнергии. Слово «в принципе» употреблено не случайно, поскольку пока неясно, как технически воплотить его в жизнь. Но основная идея процесса может выглядеть так: если в качестве горючего использовать только дейтерий, а не дейтерий и тритий, то при существенном увеличении температуры реакции только около одной трети освобождаемой энергии будут уносить нейтроны, а остальные две трети останутся в заряженных продуктах реакции. Кинетическая энергия этих заряженных частиц может быть преобразована непосредственно в электрическую. Например, если слегка увеличить напряженность магнитного поля, то увеличится плотность плазмы, это приведет к увеличению выработки в ней энергии, следовательно, возрастут температура и давление плазмы, вызывая ее расширение, преодолевающее магнитное поле. Изменение же магнитного поля, которое происходит при этом, в свою очередь, может вызвать появление наведенного напряжения в электрических цепях. Таким может быть процесс прямого получения электрической энергии. Однако не надо забывать, что это только идея, правда, очень привлекательная в принципе, но на деле может оказаться очень трудной и невыгодной.
Задача овладения управляемым термоядерным синтезом настолько заманчива, что породила очень много различных вариантов соответствующих установок.
Мы познакомились только с двумя из них.
Одно из увлекательных занятий в области термоядерных реакций придумывание новых подходов к проблеме. Но специалисты подтвердят, что и это нелегкая- задача. Из числа предложений, выдвинутых за многие годы, одни были красивыми и остроумными, другие хотя и многообещающими, но трудными и неспособными удовлетворить основным требованиям, предъявляемым к термоядерному реактору. В своей книге по управляемому термоядерному синтезу американский ученый А. Бишоп ввел специальное приложение № 4, которое озаглавил «Бесперспективные методы».
Среди идей, заслуживающих внимания и получивших дальнейшее развитие, в первую очередь стоит упомянуть предложение физиков Е. Завойского и Л. Рудакова об использовании для возбуждения термоядерных реакций мощных пучков релятивистских (сверхскоростных) электронов (Институт атомной энергии).
Основные идеи, касающиеся мишени и ее взаимодействия с электронным пучком, не отличаются от применения лазеров. Правда, здесь проще решается проблема затраты энергии. Ведь получить электронный пучок значительно проще и экономнее, нежели лазерный импульс такой же мощности. Имеющиеся здесь трудности связаны в основном с необходимостью создания системы очень точной фокусировки. пучка: расталкивание одноименно заряженных электронов этому очень мешает…
Что же дают обширные программы проводящихся и уже завершенных исследований? Как и в случае с программой космических исследований (она также имела своих критиков), она позволила повысить уровень ряда разделов науки не только собственно о плазме, но и в смежных с нею областях.
К примеру, очень важной проблемой для науки и человечества является понимание процессов, происходящих на Солнце, и прогнозирование поведения солнечной активности. Решение этой проблемы важно не только как еще один шаг в понимании деталей картины мира, ведь изменение активности Солнца сказывается на растительности, животном мире, погоде, жизнедеятельности человека.
Какое сверхтопливо обеспечивает долгое горение Солнца, каковы закономерности его горения? Две с половиной тысячи лет назад появилось первое физическое объяснение: древнегреческий философ Анаксагор утверждал, что Солнце — это не бог Аполлон, а просто большой раскаленный камень. Потом появились другие гипотезы: падение метеоритов на поверхность Солнца, сжимание его гравитационными силами…
Однако только после того, как было достигнуто достаточное знание о ядерных реакциях и их энергетическом балансе, пришло время главной гипотезы сегодняшнего времени: источник энергии на Солнце — термоядерные реакции.
Проведенные в последние десятилетия исследования по условиям протекания термоядерных реакций помогли несколько прояснить этот вопрос. Изучение состава Солнца показало, что солнечное вещество — это практически только водород и гелий. Отсюда как будто бы автоматически напрашивался вывод: водород превращается в гелий. Однако четыре ядра водорода не могут сразу слиться в одно ядро гелия.
Значит, возможно, это осуществляется не непосредственно, а через промежуточные реакции. Сейчас наиболее вероятными считаются два таких цикла: углеродно-азотно-кислородный и водородный, развивающийся через литиевую, борную, бериллиевую ветви.
Какие реакции и в какой пропорции действительно осуществляются в недрах Солнца, сказать трудно.
Не хватает многих данных об условиях и скорости их протекания Но часть этих данных как раз и появляется при изучении плазмы в процессе осуществления управляемого термоядерного синтеза.
К сожалению, очень многое в тайнах термоядерного синтеза на Солнце понять еще не удается, хотя для объяснения тех или иных несоответствий предложено достаточно много гипотез. Вот, например, одно из таких несоответствий. Сейчас роль главного источника энергии отводится водородному циклу. Он начинается в реакции слияния двух ядер водорода и образования ядра дейтерия с выделением при реакции позитрона и нейтрино.
Нейтрино! Всепроникающие частицы, потоки которых мы должны обнаружить на Земле! Вот мы и столкнулись с первым противоречием. Дело в том, что пока в проведенных экспериментах солнечные нейтрино не обнаружены. Есть ряд объяснений, которые, в свою очередь, требуют дополнительных исследований. И эти исследования ведутся наряду с продолжающимися работали по управляемому термоядерному синтезу.
Мы привели лишь один пример влияния программы УТС на исследования в других отраслях знаний. Осуществление программы оказало влияние и на другие области человеческой деятельности.
Термоядерный реактор еще не работает, но проведенные для него исследования и разработки позволили создать ионные двигатели на космических кораблях, используемые для систем ориентации. Внедряется технология магнитно-импульсной сварки. Изучение плазмы двинуло вперед проблему создания магнитогидродинамических генераторов электроэнергии. Мощные импульсные МГД-генераторы уже используются геологами для разведки природных ископаемых.
Проблема УТС еще не решена, однако наука и промышленность уже начинают ощущать отдачу от приложенных к ней усилий.