Это тепло подогревает воздушные потоки, приносимые воронкой, и они остаются всегда теплее окружающего воздуха, что придает им подъемную силу и ускорение. Чем больше воды будет доставлено на высоту 2-3 километра, где находится "кухня" фазового перехода, тем более мощные восходящие потоки возникнут в мезоциклоне, тем мощнее станет воронка смерча.

Иными словами, подобно мифическому Антею, смерч черпает свои силы при контакте с землей (вернее, водой на ее поверхности). Он становится катастрофическим, если проносится по местам, где может всосать в себя воду озер, рек и других водоемов. Поэтому столь причудлив бывает путь смерча, рыскающего в поисках воды - своего топлива.

Справедливости ради отметим: воду он засасывает весьма рационально ровно столько, чтобы вдохнуть в себя новые силы и не потерять вращение при контакте с землей. Этот оптимум - примерно 1 килограмм воды на 1 кубометр воздуха - позволяет поддерживать плотность стенок воронки и создавать мощные восходящие потоки в мезоциклоне. Если воронка встречается с глубоким водоемом и захватывает слишком много воды (например, в море плотность "добычи" может оказаться 10 и более килограммов на кубометр), то такой поток не способен подняться выше 500-1000 метров и оказывается балластом для смерча.

Поэтому смерчи в море слабы. Наоборот, если воды окажется мало (меньше 200-300 граммов на кубический сантиметр), то вихрь сможет поднять ее до высот 5-8 километров. Однако запасов тепла, выделенного фазовым переходом, будет недостаточно для создания "тяги", и смерч погибнет. Поэтому в пустынях и полярных широтах, где в атмосфере влаги мало, эти катастрофические явления не наблюдаются.

Обещает ли теория Кушина решить наконец проблему прогнозирования смерчей - торнадо?

Ясно уже хотя бы одно: чтобы предвидеть возможность смерча, надо знать, где возникает мезоциклон и может ли он встретиться с областью скопления влаги. Оба эти явления в атмосфере весьма быстротечны, и обнаружить их существующими системами наблюдений не удается. Поэтому, по мнению директора Гидрометцентра СССР Александра Васильева, основанное на теории Кушина прогнозирование этих опасных стихийных явлений требует создания новых систем наблюдений и резкого увеличения мощностей вычислительной техники.

Искусственный смерч - даровая энергомашина1

Подведем итог. Смерч напоминает собой газовую горелку высотой 5- 10 километров, только в этой горелке сгорает не газ, мазут или уголь, а обычная вода, причем роль шлака, золы играет образующийся лед. Воронка смерча - "газопровод" этой горелки.

Раскрытие физической природы смерча позволяет задаться вопросом: а не стоим ли мы перед возможностью принципиально новой энергетики?

В природе имеются практически неисчерпаемые запасы тепловой энергии на поверхности земли в виде воды. И столь же безграничен океан холода с температурой минус 40-60 градусов Цельсия в тропосфере, созданный полем тяготения Земли. Природа с помощью смерчей использует эту даровую энергию.

Очевидно, если бы смерч стоял на одном месте, то часть его восходящего воздушного или падающего дождевого потока можно было бы направить на турбину и получать электроэнергию.

Виктор Кушин убежден в возможности создания искусственного смерча как практически даровой энергетической машины. Для этого, говорит он, на поверхности земли надо по касательной к окружности (диаметром 200- 300 метров) расположить специальные воздуховоды. В них будет подаваться воздушно-водная смесь. Затем над этой площадкой на максимальной высоте надо распылить, скажем, 500 тонн нефти и сжечь ее. Возникающий при этом мощный восходящий воздушный поток, закрученный воздуховодами, поднимет смесь на "кухню". Там вода превратится в лед, и за счет выделен

ного при этом тепла создастся тяга, необходимая для поддержания восходящего воздушно-водяного потока.

Образующийся там же наверху поток дождя обрушится вниз и создаст стенки воронки смерча. В основании воронки можно расположить турбину с электрогенератором, которая будет вращаться либо от восходящего воздушного потока, либо от падающего, скрученного дождя. Такой искусственный смерч можно поддерживать и удерживать на месте столько, сколько нужно, питая только по воздуховодам смесью из воды и воздуха в оптимальной концентрации.

В этом случае мощная турбина могла бы производить 2 тысячи мегаватт при расходе воды 60 тонн в секунду.

Что может дать искусственный смерч мировой энергетике?

Сегодня для удовлетворения потребностей человечества в энергии необходимо сжигать около 5 миллиардов тонн условного топлива ежегодно.

Такое потребление стремительно сокращает запасы ископаемого топлива.

Между тем аналогичное количество тепла можно получить... замораживая воду. Правда, ее придется расходовать в 100 раз больше, однако в отличие от ископаемого топлива ее запасы на планете практически неисчерпаемы.

Кислотные дожди и межгосударственные конфликты

Когда затрагивают тему кислотных дождей, обычно вспоминают случай, происшедший в США в конце 70-х годов в небольшом городке Уилинге в штате Западная Виргиния. Моросивший там в течение трех дней дождь был более кислым, чем лимонный сок.

Специалисты констатировали, что кислотность выпавших в Уилинге осадков превысила нормальную кислотность дождя в 5 тысяч раз.

Ущерб, причиняемый такими дождями, невероятно велик. Страдает здоровье людей, наносится урон лесам, почвам, рекам и озерам, сельскохозяйственным культурам, зданиям.

В Канаде, например, из-за частых кислотных дождей более 4 тысяч озер объявлены мертвыми, еще 12 тысяч - на грани гибели. Нарушено биологическое равновесие 18 тысяч озер в Швеции. В Норвегии исчезла рыба в половине озер южной части страны.

Огромный урон кислотные дожди наносят лесам, садам, паркам. Опадают листья, молодые побеги делаются хрупкими, как стекло, и гибнут. Деревья становятся более подверженными воздействию болезней и вредителей, отмирает до 50 процентов их корневой системы, главным образом мелкие корни, питающие дерево. В ФРГ кислотными дождями уже погублена почти треть всех елей. В таких лесистых районах, как Бавария и Баден, пострадало до половины лесных угодий.

Ускоренная коррозия металлов под воздействием кислотных осадков, как отмечает американская печать, приводит к гибели самолетов и мостов в США. Серьезной проблемой, как известно, стало сохранение античных памятников в Греции и Италии. Все это в большой степени из-за кислотных осадков.

Борьбу с кислотными дождями печать Швеции и Норвегии считает "самой крупной проблемой защиты окружающей среды".

Почему дожди становятся кислотными? Причина в постоянно возрастающем в ряде стран загрязнении воздуха, главным образом за счет сжигания ископаемого топлива и выделения при этом кислотообразующих газов сернистого ангидрида и окислов азота.

Эти загрязнители надолго остаются в атмосфере и переносятся на большие расстояния, на сотни, а иногда и тысячи километров.

Средняя кислотность атмосферных осадков, как считают исследователи из Международного института прикладного системного анализа (город Вена, Австрия), возросла в 100 раз по сравнению с кислотностью осадков, взятых в Гренландии из льда 180-летней давности.

Ежегодно только в Европе, по имеющимся оценкам, в атмосферу выбрасывается около 60 миллионов тонн сернистого ангидрида и 20 миллионов тонн окислов азота, главным образом за счет предприятий Великобритании, ФРГ, Италии.

Выпадение вредоносных осадков, как показывают исследования, происходит в силу природно-климатических факторов далеко не всегда в районе их выброса. Так, значительная часть выбросов, производимых в Великобритании и ФРГ, попадает в северные страны. И конечно, наносит немалый ущерб их экономике и населению. Шведы считают, что более 80 процентов сернистого ангидрида в атмосферу "импортируется" к ним из других стран. Норвежцы более 90 процентов загрязнения атмосферы вредными окислами связывают с иностранными источниками.

Длительные тяжбы по дипломатическим, общественным и другим каналам между Скандинавскими странами и крупнейшими загрязнителями в Европе Великобританией и ФРГ - фактически не привели ни к каким серьезным мерам, ограничивающим опасное загрязнение или компенсирующим наносимый ущерб.

Ни ФРГ, ни Великобритания не желают идти на крупные расходы по установке современного газоочистного оборудования, которое могло бы задерживать от 80 до 95 процентов сернистого ангидрида. Правда, в 1983 году бундестаг ФРГ ввиду очевидного ущерба, наносимого собственной стране, вынужден был принять законодательство, предусматривающее снижение выброса загрязняющих атмосферу веществ.

Но это было отнесено только к 150 из полутора тысяч работающих в стране электростанций мощностью свыше 300 мВт.

В 1979 году Европейская экономическая комиссия ООН приняла Конвенцию о трансграничном загрязнении воздушной среды на большие расстояния. После этого были предприняты новые шаги по предупреждению загрязнения атмосферы кислотообразующими газами. В частности, состоялась в 1983 году встреча в Женеве, в результате которой разработан документ, призывающий страны-участницы принять меры к уменьшению опасных выбросов в атмосферу.

США были единственной из участвующих в работе комиссии страной, отказавшейся подписать этот документ.

И это не случайно. США - крупнейший загрязнитель воздуха. Промышленные предприятия Соединенных Штатов ежегодно выбрасывают s атмосферу почти 24 миллиона тонн сернистого ангидрида и немного менее 20 миллионов тонн окислов азота.

По поводу борьбы с кислотными дождями у США сложились особо сложные отношения с северным соседом - Канадой. За последние 25 лет содержание кислот в осадках, выпадающих над восточной частью Канады, даже по скромным подсчетам американских экспертов, увеличилось более чем в 50 раз. И это главным образом из-за возрастающего загрязнения атмосферы в США. Ежегодный урон хозяйству от кислотных дождей канадцы оценивают в 5 миллиардов долларов, а к 1995 году он, по имеющимся оценкам, может достичь 15 миллиардов долларов. Правительство Канады неоднократно заявляло официальный протест США по поводу фактического отказа их администрации принять конкретные меры в целях ограничения опасного загрязнения. На претензии своего соседа США ответили тем, что американская цензура запретила показ канадских документальных филь

мов о кислотных дождях, отнеся их к недозволенной "политической пропаганде".

Защищая денежные интересы своих промышленных монополий, американская администрация фактически отменила принятое еще в 1977 году решение об обязательной установке газоочистного оборудования и удаления до 90 процентов вредных выбросов в атмосферу при сжигании твердого топлива на энергетических и промышленных предприятиях. Длительные переговоры между США и Канадой не дали никаких результатов. Американские представители говорили о том, что для разрешения конфликта требуется "тщательная научная подготовка", дескать, еще мало научных данных, подтверждающих серьезность создавшегося положения. Совсем иначе, конечно, думают канадцы. Так, глава министерства по вопросам окружающей среды Канады еще в 1983 году отмечал:

"Научные данные неумолимо приводят к выводу о том, что меры необходимо принимать уже сейчас".

Кстати, специально назначенная в начале 80-х годов Белым домом группа ученых под эгидой Национальной академии наук США для изучения проблемы кислотных дождей пришла к тому же выводу, что и канадские исследователи,интенсивное загрязнение атмосферы в США ведет к выпадению кислотных осадков в Канаде. Но, поскольку подобные результаты исследований пришлись не по вкусу промышленным монополиям США - главным виновникам острой экологической ситуации в Канаде, которые расходы на охрану среды считают "непроизводительными",- администрация уволила ведущих сотрудников исследовательской группы и назначила других.

В высшем законодательном органе США до сих пор блокируется прохождение всех законопроектов, предусматривающих те или иные меры по борьбе с кислотными дождями.

литомониторинг

Недавно появившийся термин "мониторинг" сегодня уже довольно широко известен. Он означает систему наблюдений, надзора за изменениями окружающей среды с шалью ее охраны.

Слово "литомониторинг" означает надзор за литосферой - земной корой и подстилающими ее горизонтами общей мощностью около 100 километров.

Современная, во всем мире с каждым годом всевозрастающая добыча полезных ископаемых и связанные с этим сооружения шахт, карьеров, рудников, угольных разрезов, нефтяных и газовых скважин, образование отвалов, хранилищ отходов обогащения оказывают все большее и все более заметное воздействие на земную литосферу. Меняется облик целых регионов, а если учитывать последствия горнодобывающих работ во всем мире, то можно сказать: меняется лик Земли.

Каждый крупный карьер и сопутствующие ему предприятия оказывают заметное влияние на окружающую его территорию: на сотни квадратных километров вокруг и на сотни метров в глубину.

Происходит не только механическая перестройка земной коры в результате открытых и подземных горных работ - меняется и геохимический облик ландшафта. Например, при добыче цветных металлов ежегодно теряются сотни тысяч тонн меди, свинца, цинка. Они рассеиваются здесь же, поблизости, на участках, прилегающих к горнодобывающим предприятиям. Изменяется растительный покров, нарушается водный баланс.

В нашей стране в системе Министерства геологии СССР, в объединении "Аэрогеология", недавно создано специальное подразделение, которое занимается проблемами охраны литосферы. Связь с "Аэрогеологией" не случайна, поскольку именно дистанционные наблюдения - с самолетов, из космоса - наиболее эффективны для надзора за состоянием верхних слоев литосферы, за теми изменениями, которые происходят под влиянием хозяйственной деятельности человека как на земной поверхности, так и в более глубоких горизонтах. Руководит работой подразделения начальник партии космоаэрогеологической экспедиции А. Мирнова.

Для обследования и надзора выбраны такие крупные горнодобывающие объекты, как район Курской магнитной аномалии, Тюменский край, Хибинский горный массив, где ведется добыча апатитовой руды, Восточный Прикаспий.

Как проявляют себя эти районы на космических и аэрофотоснимках? Они отличаются от окружающего ландшафта отражательными и излучательными свойствами. Их альбедо (в дословном переводе - белизна) - способность отражать падающий поток света - всегда выше, чем на соседних участках.

На аэрокосмических изображениях поверхности это выражается более светлым фототоном и цветом.

Нефтегазодобывающие комплексы особенно наглядно дают о себе знать в ночное время суток. Интенсивное световое излучение, пятна горящих факелов хорошо видны на снимках.

Тепловые контрасты отчетливее всего проявляются на весенних снимках, когда начинает сходить снежный покр ров. Из-под него первыми проступают "горячие" карьеры, отвалы, дороги, по которым идет перевозка горной массы.

Каждый горнодобывающий комплекс "фотогеничен" по-своему. Один лучше выходит на черно-белых фотографиях, другой на цветных; третьи раскрываются при спектрозональных снимках, полученных путем съемки в одном, но широком интервале электромагнитного спектра, или многозоналычых, отснятых в нескольких узких интервалах; то, что может ускользнуть, например, на черно-белом снимке, проявится на многозональном или тепловом.

Космические и воздушные портреты выходят лучше или хуже в зависимости от времени года. Например, традиционная аэрофотосъемка для нужд топографии, геологии, геоморфологии зимой практически не проводится, поскольку она малоинформативна. А для литомониторинга именно зимние съемки оказались весьма "словоохотливыми". Снежный покров аккумулирует атмосферные загрязнения, собирает пыль, разносимую окрест из карьеров и угольных разрезов в момент добычи или во время транспортировки руды и угля, а также загрязнения от дымовых шлейфов перерабатывающих предприятий. Так, например, на зимних фотографиях района КМА видны темные полосы шириной в километры и длиной в десятки километров - это шлейфы пыли, законсервированные снегом. Их образовали частички руды и породы, день за днем разносимые ветрами преобладающих направлений.

Чтобы извлечь из аэрокосмического изображения как можно больше информации, используют электроннооптический преобразователь. Прибор способен различать и соответственно выделять более двух сотен оттенков, его зоркость в этом смысле значительно превосходит человеческие глаза.

В сером снежном покрове, который на черно-белой фотографии выглядит одинаково светлой полосой, преобразователь находит более темные участки, определяет их контуры. Это запыленные зоны.

Далее электронно-оптический преобразователь такое изображение может превратить в многокрасочный рисунок. Окрашивает в различные условные цвета, скажем, площади, захваченные отвалами, хранилищами шлака, рудной пылью, совсем иначе окрашивает нетронутые территории, поля, зоны отдыха, другой цвет придает застроенным площадям. В итоге появляется цветное изображение, на котором резко различаются все слагаемые данного ландшафта.

Итак, проведен анализ аэрокосмических материалов, наземные отряды собрали пробы почвы, снега, воды, все данные учтены и обобщены в виде карт различного содержания, на которых указаны источники загрязнения и пути миграции отходов горнодобывающего комплекса. По этим картам можно судить о воздействии горнодобывающего комплекса на окружающий ландшафт, на режим подземных вод, на состояние мерзлотных условий, можно определить его тепловое влияние на местный микроклимат... Вся сумма последствий горной добычи зафиксирована в документах литомониторинга. Ну а каковы же результаты?

Если надзор за горнодобывющим районом ведется регулярно, то накапливаются точные данные об изменениях, происходящих на контролируемой территории, выявляются новые черты на лике земной поверхности.

Ретроспективный подход показывает жизнь территории в динамике.

Такой литомониторинг дает возможность проанализировать, правильно ли выбраны места отвалов, подсчитать, сколько пустой породы там разместится безболезненно для окружающей среды или даже с пользой (засыпанные овраги, балки приостанавливают эрозию почвы). Поможет определить, в каких именно местах развеивание пыли надо преградить.

О последствиях подземной добычи удается судить по косвенным признакам. Шахты или рудники, сооруженные на глубине, оказывают влияние на состояние поверхностных или подземных вод, это, в свою очередь, сказывается на рельефе, на почвеннорастительном покрове. По таким изменениям, замеченным при дистанционных съемках, можно судить, насколько рационально ведется рудничное хозяйство. Заболачивание территории над рудником, появление просадок электромагнитных зондировании с использованием искусственных источников, сила тока в которых и его конфигурация заведомо задаются исследователем. Трудность была одна:

отсутствовали источники достаточно большой мощности.

Пороховой двигатель в упряжке геофизиков

Ученые Института атомной энергии имени И. В. Курчатова предложили мощные магнитогидродинамические (МГД) генераторы, развивающие в коротких импульсах колоссальную мощность-до 80-100 тысяч киловатт и создающие ток силой до 20 тысяч ампер!

Импульсный МГД-генератор представляет собой пороховой ракетный двигатель, преобразующий энергию сгорающего твердого топлива в электрический ток. В таком двигателе сгорает твердое топливо с добавками легкоионизирующихся веществ. Образующийся поток электропроводящей плазмы с температурой около 3000 градусов Цельсия с огромной скоростью проносится через сопло прямоугольного сечения. Верхняя и нижняя стенки этого так называемого МГД-канала выполнены из термостойкого электроизолирующего материала, боковые же имеют покрытия из тугоплавкого металла - они выполняют роль токосъемных электродов. Сверху и снизу от МГД-канала укреплены катушки с проводом (соленоиды), по которым одновременно с началом сжигания топлива пропускается ток большой силы. Он создает поперечное магнитное поле, в котором поток плазмы резко тормозится. В результате между электродами в МГД-канале возникает сильный импульс тока.

Этот импульс направляется либо к двум электродам, закопанным в землю на расстояниях от сотен метров до нескольких километров друг от друга, либо питает большую (диаметром до нескольких километров) петлю с про

водом, расположенную на поверхности Земли. В первом случае говорят, что в качестве источника первичного поля используется электрический диполь, а во втором - индукционная петля. Ток в диполе или петле весьма резко меняется во времени, причем форма импульса тока близка к прямоугольной, а его длительность меняется от 5 до 15 секунд.

Первичное переменное электромагнитное поле, возникающее при прохождении тока в диполе или петле, индуцирует в проводящих слоях Земли электрические токи, которые создают вторичное (индуцированное) поле, Специальные датчики, расположенные на поверхности, регистрируют суммарный эффект этих двух полей. При этом индуцированные в Земле токи и соответственно вторичные поля зависят от распределения электропроводности исследуемой области земной коры.

Электропроводность же земных недр может дать информацию о так называемом термодинамическом и фазовом состоянии горных пород на больших глубинах, а также о зонах, перспективных в отношении полезных ископаемых (рудные залежи - хорошие проводники, нефть и газ-плохие).

Токовые петли

В СССР разработано несколько типов геофизических МГД-установок. Одна из них-"Хибины"-установлена на узком перешейке, соединяющем Кольский полуостров и полуостров Рыбачий, и служит для "просвечивания" материковых недр и прилегающего шельфа Баренцева моря на глубину до нескольких десятков километров.

Ток, вырабатываемый МГД-генератором, идет по двум массивным алюминиевым проводам к металлическим заземлениям, расположенным в двух заливах, окружающих перешеек. Этот ток растекается в море, образуя вокруг полуострова Рыбачий расходящиеся петли радиусом 50-100 километров.

Токовые петли и являются первичными источниками электромагнитного поля, зондирующего глубины. Сила тока в излучателе, как уже сказано, составляет около 20 тысяч ампер, что в сотни раз больше, чем в применявшихся стандартных геофизических установках, основанных на использовании автомобильных генераторов.

Использование источников такой мощности позволило не только резко увеличить глубину зондирования.

Появилась возможность исследовать в поле одного излучателя огромные территории. В частности, на Кольском полуострове с помощью МГД-зондирования изучена структура проводимости земной коры на большой площади. И результаты, надо сказать, оказались неожиданными. Так, раньше считалось, что местный кристаллическийщит - это сравнительно однородная область, сложенная плохо проводящими породами. В действительности же обнаружено около десятка крупных блоков разного электрического сопротивления. В ходе эксперимента выявлены токопроводящие каналы, связанные с рудоносными объектами, определены зоны, перспективные с точки зрения поиска месторождений полезных ископаемых.

Голограммы залежей

Итак, применение в геофизике МГДгенераторов позволяет лучше разбираться в сложной мозаике электропроводности глубинных горных пород.

Возник вопрос: а нельзя ли с помощью описанного МГД-метода не только "высвечивать" скрытые залежи, а и получать их объемные изображения? Оказывается, можно. В СССР разработан и применяется метод, использующий идеи оптической голографии.

С той лишь разницей, что при зондировании с применением МГД-генераторов расположенные на земной поверхности специальные датчики вместо световых волн фиксируют амплитуду и фазу электромагнитного поля, создаваемого МГД-источником. Процедура освещения голограммы лучом лазера, свойственная оптической голографии, заменяется тем, что в точках земной поверхности, где расположены датчики поля, как бы мысленно размещаются вспомогательные источники тока, форма сигналов в которых меняется по закону, определяемому зарегистрированным полем. Электромагнитное поле, создаваемое такими "вспомогательными" источниками, называется миграционным полем. Оно так же, как и в обычной голографии, формирует изображение глубинного строения Земли.

Совсем "не такая"

Земля...

Лет двадцать назад молодой геолог Владимир Николаевич Ларин часто бывал в Казахстане. Занимали его месторождения редких металлов - те, что скрыты от нас на большой глубине. Месторождения эти гидротермальные, то есть образуются из горячих минерализованных вод, циркулирующих в недрах Земли. И никак не мог понять Ларин: откуда в гранитной магме, которая выплавляется из кристаллических пород земной коры, могла появиться вода? Никто над этим раньше не задумывался, а у Владимира Николаевича повод для вопроса появился вполне обоснованный. Вода состоит, как известно, из кислорода и водорода.

И как ни пытался Ларин "свести баланс", одно и то же получалось: кислорода достаточно (его, по современным представлениям, более 40 процентов в теле планеты), а водорода катастрофически не хватало. Но вода тем не менее есть - месторождения гидротермальные, этим все сказано.

Вот тогда впервые и подумал В. Ларин: а что, если водород поступает из более глубоких недр - из мантии Земли7

Подумал - и сам себе удивился:

откуда только смелость взялась? По нынешним понятиям, никакого водорода в мантии нашей планеты вообще нет. Кислорода сколько угодно, а про водород, кажется, до сих пор не слыхали...

А что мы вообще "слыхали" о составе и строении Земли?

Ядро железное, мантия силикатная (различные соединения кремния с кислородом) - так решили еще в прошлом веке. Позднее, в начале двадцатого века, сейсмологи установили, что в самом центре Земли более плотное и тяжелое ядро. Единственный тяжелый элемент, широко распространенный в природе,- это железо.

Вспомнили и про железные метеориты, по составу которых судят о строении Земли. В общем, ядро нашей планеты было окончательно признано железным. А силикаты? Тут на помощь пришло воображение: в начале столетия бурно развивались металлургия, доменные процессы. Землю без тени сомнения уподобили домне: в ней когда-то, мол, произошло плавление, тяжелое железо потекло вниз, к центру планеты, а легкие силикаты (подобно шлакам в домне) всплыли наверх, образовав мантию и кору Земли.

Все вроде хорошо: и аналогия впечатляющая, и состав Земли вполне объясним и понятен. Об одном забыли - аналогия была чисто умозрительной, не более. Домна как модель Земли всего лишь образное сравнение.

Никогда никем не подтвержденное и не доказанное, оно незаметно для всех превратилось в постулат. Из теоремы в аксиому.

Эта научная несправедливость не давала покоя В. Ларину. Откуда в таком случае мы знаем, что ядро Земли железное, а мантия силикатная? Специалисты, которых Ларин донимал вопросами, в поддержку "железосиликатного" состава Земли приводили только один довод: среди метеоритов, по которым принято судить о составе планет земной группы, встречались силикатные и железные.

"Вправе ли мы считать метеориты за образец? - подумал Владимир Николаевич.- Они приходят к нам из пояса астероидов, расположенного далеко за Марсом (последней планетой земного типа). Дальше- планетыгиганты, которые значительно отличаются по составу от своих меньших собратьев по Солнечной системе. Так по какому праву мы "записали" метеориты в кандидаты на модель Земли?

Скорее они характеризуют вещество именно из промежуточной зоны...

"Колосс-то, кажется, на глиняных ногах!" - решил для себя В. Ларин.

Итак, метеоритная гипотеза небезупречна. "Доменная модель" с ее силикатами была принята без доказательств, а потому вызывает справедливые сомнения.

Кто знает, возможно, и стерлись бы со временем у В. Ларина все эти сомнения и догадки, если бы в конце 60-х годов с новой силой не разгорелся спор об эволюционном развитии Земли. Спорили две мощные группировки ученых: мобилисты и фиксисты.

Первые уверяли, что 250 миллионов лет назад Атлантического океана не было и обломочный материал сносился ледниками из Африки в Южную Америку. Фиксисты ничего подобного и слышать не желали: материки как стояли незыблемо на одном месте, так и стоят по сей день. Доказательство? На том и другом континентах есть регионы, где из глубин поднималась по особым природным каналам расплавленная магма. И если бы материки начали движение, они, несомненно, оторвались бы от этих каналов.

А этого не произошло. Но, с другой стороны, флора, фауна, очертания Африки и Южной Америки подтверждают их движение - тогда правы мобилисты...

И появилась среди спорящих еще одна группа, очень небольшая. Ее представители, словно стараясь примирить фиксистов и мобилистов, выдвинули гипотезу расширяющейся изнутри Земли: материки действительно раздвигались, но вместе с каналами.

Правда, приверженцам этой гипотезы тут же досталось и от фиксистов, и от мобилистов. Антидоводов приводилось много, и главный - непонятен был механизм внутреннего расширения планеты: просто так ничего не расширяется.

Просто так... "Нет, не просто так, что-то здесь есть, причем вполне реальное".

А потом Владимир Николаевич, просматривая специальную литературу, усмотрел в ней то, на что раньше, возможно, и не обратил бы внимания.

Прочитал он про водородистые соединения металлов - гидриды. И подметил интересный факт: многие металлы, поглощая сотни объемов водорода на один свой объем, не разбухают при этом, а, наоборот, уплотняются. То есть в гидриде атомы металла упакованы более плотно, чем в самом металле.

Теперь представим, что гидрид начал разлагаться: водород из него уходит (дегазируется), а атомы металла, ничем не связанные, удаляются друг от друга. А раз удаляются, значит, металл в объеме увеличивается, расширяется?

Вот они, первые звенья логической цепи. Допустим, глубинные недра планеты содержат водородные соединения металлов - гидриды. Разлагаясь, они выделяют водород. Земля при этом за счет разбухания металлов, расставшихся с водородом, увеличивает свой объем.

Так постепенно обретала конкретные очертания новая гипотеза о геохимическом строении Земли. Многое из того, что раньше было неясно, она объясняла. Водород для гидротермальных месторождений? Он поступает с большой глубины за счет дегазации из гидридов. Спор между фиксистами и мобилистами, компромиссная версия "внутреннего расширения"

Земли? Опять же благодаря разложению гидридов: водород ушел, металлы разбухают. Водород, конкурируя с другими соединениями, претендовал на роль одного из главных компонентов в составе Земли. Кислороду отводилось куда более скромное место.

Поэтому в недрах должны преобладать гидриды, водородистые соединения металлов.

Теперь В. Ларину предстояло самое сложное: фактически обосновать предложенный им состав Земли.

И вновь Владимир Николаевич вспоминал, анализировал давно известные науке положения.

Как представляем мы себе "сотворение мира"? Вначале пылегазовая туманность, часть межзвездной материи. Пять миллиардов лет назад где-то вблизи взорвалась сверхновая. Былую гравитационную устойчивость туманность утратила и стала сжиматься к своему центру тяжести, одновременно раскручиваясь все быстрее и быстрее.

Вскоре превратилась в эллипсоид: по его экватору произошло истечение протопланетного вещества, из которого со временем и сформировались планеты. В центре былой туманности образовалось Солнце.

Этот "сценарий мироздания", предложенный еще Иммануилом Кантом более двухсот лет назад, оказался, как потом поняли, не в ладах с законами механики. По этим законам сжатию пылегазовой туманности до звезды, то есть до Солнца, должны были помешать центробежные силы.

В общем, ни Солнца, ни Солнечной системы? Но они есть!

Выход из "вселенского тупика" предложил известный астрофизик Ф. Хойл:

когда создавался протопланетный диск, пылегазовая туманность обладала мощным магнитным полем. Магнитные силовые линии, словно спицы в колесе, выполняли роль сцепки во вращающейся и сжимающейся туманности: они как бы тормозили ее вращение и раскручивали внешнюю оболочку. Внутри туманности, где ослабли центробежные силы, сформировалось Солнце, снаружи - планеты.

Вот этому магнитному полю В. Ларин отвел в своей гипотезе, пожалуй, самую ответственную роль.

Есть в физике такое понятие: потенциал ионизации. Что это? Вещества, как известно, состоят из молекул, те, в свою очередь, из атомов. А у каждого атома есть внешние электроны. Та энергия, которая необходима для отрыва электрона от атома, и характеризует потенциал ионизации. Оторвался электрон - атом превращается в положительно заряженную частицу, ионизируется.

А ведь на этапе формирования Солнечной системы вещества в пылегазовой туманности были ионизированными. И магнитное поле здесь же. Которое к ионизированным частицам явно неравнодушно: чем ниже потенциал ионизации, тем проще магнитному полю захватить частицу, помешать ее движению, не пустить дальше. Своеобразное магнитное сито, или, если хотите, магнитный сепаратор.

Все, логическая цепочка построена.

Формирующееся Солнце, создавая дочернюю систему, каждую секунду выбрасывало в пространство гигантское количество вещества - тех элементов, которые позднее станут основой химического состава планет. У каждого элемента свой потенциал ионизации.

От него и зависит, завязнет частица в магнитном сите, станет ли строительным материалом какого-либо небесного тела или помчится дальше.

Магнитная сепарация элементов по их потенциалам ионизации, считает В. Ларин, и определила состав планет Солнечной системы. Причем Владимир Николаевич действительно "считает":

им предложена специальная формула для аналитического расчета исходного состава Земли.

По новой гипотезе, в недрах нашей планеты среди металлов преобладают кремний, магний, железо. Но железа гораздо меньше, чем предполагали.

А газы: водород или доминирующий до недавнего времени кислород? Кислороду, увы, придется потесниться.

Его, по последним расчетам, в недрах Земли максимум три процента, а не сорок, как считали раньше. Зато водорода вполне достаточно, чтобы в исходном составе планеты преобладали соединения металлов с водородом гидриды.

На этом, пожалуй, теоретическая часть гипотезы В. Н. Ларина - гипотезы принципиально новой геохимической модели Земли - завершается.

Модель, между прочим, полностью соответствует современным данным по физике ядра и мантии планеты, ее разделяют и поддерживают сегодня многие ученые. И если некоторым исследователям порой нелегко найти подтверждение своих выводов на практике, у Владимира Николаевича ситуация иная: сама практика, сама реальность стали поводом к пересмотру теории.

Новая гипотеза позволила увязать в единую цепь многие природные явления (помимо тех, что уже названы), доказать их закономерность - то, что раньше объяснить не удавалось или вызывало сомнения. К примеру, образование океанов: теперь можно по-новому подойти к этой проблеме.

Но гипотеза В. Ларина не только "повторение пройденного". Это и взгляд в будущее.

"Еще немного - и Землю поразит энергетический кризис! Источники энергии истощаются, человечество обречено на гибель!" Многие ученые придерживаются этой версии, особенно зарубежные. Выходит, положение наше безнадежно?

Если принять гипотезу Ларина, вовсе нет.

Есть на территории Земли так называемые рифтовые зоны. Там, в этих зонах, очень близко к поверхности (10-15 километров) подходят "языки" (выбросы) бескислородной мантии. В "языках" - магний, кремний, и, конечно же, водород: те элементы, которые щедро испускало Солнце и задерживала магнитная сепарация.

Теперь вспомните, как ярко пылает "бенгальский огонь". Это горит магний, смешанный с кислородом. Не отстает от него и кремний. А ведь они в рифтовых зонах не так уж глубоко залегают; скоро мы научимся бурить скважины и до 15 километров-до 11 уже умеем, доберемся до залежей магния и кремния, закачаем туда воду. Температура там высокая, сотни градусов.

И произойдет химическая реакция, известная по лабораторным работам в школе: силицид магния плюс вода с подогревом (в данном случае с естественным) - и выделяется огромное количество тепла в виде горячего водорода. Вот они, гигантские, не освоенные пока источники энергии.

А глубинный водород, с которого когда-то все и началось? Он тоже послужит людям. В тех же рифтовых зонах к поверхности из недр Земли рвутся мощные водородные струи.

Бурим скважину и собираем водород - так же, как и обычный газ. Сжигая его, обеспечим планету топливом на многие столетия.

Новый взгляд на старые факты.

"Новое" прошлое и "новое" будущее планеты. Новые возможности земной цивилизации...

На одном из публичных выступлений В. Н. Ларина какой-то студент (видимо, воодушевленный новой гипотезой и поверивший в нее) воскликнул: "Земля, оказывается, может быть совсем не такой, какая она есть на самом деле!"

Совсем не такой? Что ж, очень может быть...

Предвидеть подземные бури

Еще совсем недавно казалось: процессы, вызывающие землетрясения, настолько грандиозны и сложны, что недоступны для прямого наблюдения и точный их прогноз невозможен. Но в последние годы получила реальное подтверждение мысль о том, что приближение разрушительных подземных бурь можно предугадать по изменению физических свойств пород, образующих верхний слой земной коры.

Ученые-геофизики установили, что отголоски чудовищных сдвигов в недрах Земли достигают ее поверхности в виде очень слабых, еле заметных движений, которые были названы ими "пляской гор". За несколько дней до подземного толчка горные колоссы начинают раскачиваться, расстояние между ними изменяется, хотя и на ничтожно малую величину. Заметить ее можно лишь с помощью квантового генератора - лазера.

...Неподалеку от столицы Киргизской ССР Фрунзе в верховьях реки Аламедин в 1979 году для изучения физических предвестников землетрясений была организована научно-исследовательская база Института высоких температур АН СССР (ИВТАН).

На полигоне установлен круглый застекленный павильон. В определенные сроки наблюдений открываются "окна", и луч гелийнеонового лазера направляется поочередно на восемь уголковых отражателей, подобных тем, что применялись в известном эксперименте точного измерения расстояния между Землей и Луной. Уголковые отражатели характерны тем, что луч, падающий на них, отражается точно в том же направлении, откуда и пришел. Они размещены на склонах гор, на противоположной стороне глубинного тектонического разлома, наличие которого выявлено геологами. Расстояние до них-порядка 10 километров. Отраженный луч возвращается в павильон не всегда точно через то время, которое нужно для преодоления хорошо известного расстояния:

то чуть-чуть позже, что чуть-чуть раньше. Это происходит, когда расстояние изменилось, когда горные массивы пришли в движение. Лазер-дальномер четко фиксирует: склоны гор разошлись или сблизились на несколько миллиметров за сутки (а порой на 2-3 сантиметра). Как правило, через 3-5-7 дней разражается землетрясение.

Конечно, желателен более точный прогноз. И он, очевидно, станет возможным при сочетании нескольких физических методов, дополняющих друг друга. Один из них испытывается на том же полигоне ИВТАНа в горах Киргизии.

Перед землятресением всегда заметно меняется электропроводность пород земной коры. Она может уменьшиться или увеличиться, но обязательно меняется. Но как измерить эти вариации электрического сопротивления пород на большой площади? Академик Е. Беликов и доктор физико-математических наук Ю. Волков предложили использовать для этого магнитогидродинамический (МГД) генератор. В нем электрический ток (очень большой силы) возникает в потоке раскаленных газов - плазмы, образующейся при быстром горении специального высококалорийного топлива, поперек магнитного поля. Этот импульс тока способен "пробить" горные породы на большое расстояние возбудить в них электромагнитное поле.

Мощный однократный импульс (25 мегаватт в течение 10 секунд) дает такие же результаты, как непрерывная работа долгое время стандартной аппаратуры, применяемой геофизиками, мощностью около 30 киловатт.

При этом обеспечивается полная независимость установки от промышленных энергетических сетей, а следовательно, возможность вести исследования в самых сложных природных условиях.

Под руководством академика Е. Велихова с осени 1983 года на полигоне ИВТАНа проводятся исследования состояния земной коры с помощью МГД-генератора. На одном из первых запусков МГД-генератора побывали участники VIII Международной конференции по МГД - преобразованию энергии, проходившей тогда в Москве.

Ведущие специалисты в этой области из разных стран мира единодушно заявили, что они нигде в мире не видели подобной высокогорной лаборатории, оснащенной самыми современными средствами физических наблюдений за состоянием верхней части земной коры.

...Когда происходит очередной "запуск" МГД-генератора и мощный импульс электрического тока уходит в недра Земли, стены ущелья озаряются ярким светом и принимают какой-то неземной, космический облик.

Электромагнитная волна, распространяющаяся во все стороны, пробивает здесь толщу горных пород на большие расстояния. Расположенные на пути, в радиусе до 60 километров, приемные станции воспринимают ее уже ослабленной их сопротивлением. А оно резко изменяется, когда в таинственных глубинах "готовится" очередной подземный толчок.

И еще об одном методе, помогающем предвидеть землетрясения, можно сказать. Это наблюдения за состоянием источников подземных вод. Грандиозные перевороты в недрах Земли непременно сказываются на их состоянии: какие-то намного сокращают свой расход, практически "закрываются", другие начинают "работать" более интенсивно. И все это происходит еще до того, как разразится катастрофа.

Бьющие из глубин ключи информируют о приближении катастрофы и на языке своего химического состава.

Изменяется соотношение изотопов химических элементов, растворенных в воде подземных источников: гелия, углекислого газа, углерода. Особенно чувствительными оказались гелий и пары ртути. Экспедиция Института геохимии и аналитической химии имени В. И. Вернадского, работавшая в Таджикистане, обнаружила, что чуть меньше чем за сутки до землетрясения, всего в течение каких-то семи часов, поток ртутных паров в почвенном газе возрос в 90 раз. Это произошло 28 сентября 1981 года: в Душанбе ощущались толчки силой три балла.

Директор института, член-корреспондент АН СССР В. Барсуков считает, что на основе только геохимических предвестников сильное землетрясение может быть предсказано за полтора месяца с точностью до 7-10 дней.

Комплексным анализом геологических, геодезических, геофизических и геохимических предвестников занимается Научно-методический центр Академии наук СССР по прогнозу землетрясений. В Институте физики Земли имени О. Ю. Шмидта сосредоточена информация с сейсмических станций нашей страны и всего мира.

Вместе с сейсмологами Таджикистана проводятся исследования в этой наиболее сейсмичной республике, где расположен региональный центр по прогнозу землетрясений. Уже составлена карта наиболее вероятных мест возникновения сильных "подземных бурь"

в Таджикистане в ближайшие 10-15 лет. Директор Института физики Земли имени О. Ю. Шмидта, академик М. Садовский считает, что прогнозы землетрясений стали уже "надежнее прогнозов погоды". Во всяком случае, недалеко то время, когда они станут точными.

Предсказуемы ли землетрясения!

Рассказывает член-корреспондент АН СССР И. Г у б и н.

Существует ли предчувствие землетрясении животными? Да. Рыбы, змеи, собаки, коровы начинают беспокоиться накануне сильных подземных толчков.

Ученые внимательно изучают это явление. Но опираться только на него в научных прогнозах сегодня просто невозможно. Не всегда животные беспокоятся, и не всегда беспокойство предшествует именно землетрясению.

Что касается точного времени землетрясения, это на сегодня наиболее сложная для ученых проблема. В настоящее время необходим и реален в первую очередь прогноз места, силы и повторяемости землетрясений.

Его результаты воплощаются в картах сейсмического районирования. На них показаны зоны ожидаемого возникновения землетрясений различной силы и повторяемости. Такие карты позволяют заранее выбирать участки, наиболее безопасные для строительства, проектировать сейсмостойкие здания и сооружения.

Уже в прошлом столетии было отмечено, что землетрясения связаны с активными тектоническими разрывами.

Районы наибольших разрушений совпадают с этими разрывами. К этому выводу пришли крупные ученые Э. Зюсс и И. Мушкетов. Однако в тот период результаты исследований представлялись только в виде карт уже происшедших землетрясений.

Позднее стали составляться государственные карты сейсмического районирования. До недавнего времени дело, по сути, сводилось к показу на картах соединенных площадей распространения сейсмических толчков или эпицентров, зарегистрированных за короткий исторический срок, когда проявилась лишь часть существующих потенциальных очагов землетрясений. На картах рисовались только обширные области сотрясений той или другой балльности. Не обозначались наиболее опасные места возможного возникновения сильных землетрясений и их повторяемость.

Данные карты не выдержали испытания временем из-за малой информативности и слабой обоснованности.

С течением времени сильные землетрясения возникали в непредусмотренных местах, при этом разрушались селения и города, например Ашхабад в 1948 году и Газли в 1976 и в 1984 годах, рассчитанные при строительстве на меньшую балльность сотрясений.

Недостатки карт - результат того, что при их составлении исходили не из причин явлений, а только из следствий - из землетрясений, зарегистрированных за недостаточный срок.

Нашим ученым удалось подтвердить, что очаг - это участок поверхности тектонического разрыва, по которому в результате очередного резкого смещения масс горных пород возникло землетрясение. Затем была разработана концепция сейсмогенных зон (зон возможного возникновения очагов землетрясений). Суть ее сводится к тому, что сильные толчки возникают не везде и не хаотично, а в строгом соответствии с геологическим строением, в сейсмогенных зонах, обусловленных активными разрывами, в результате резкого смещения по ним масс геологических структур. Такие зоны включают как зарегистрированные, так и потенциальные очаги сильных землетрясений. И это дает основание для более точных прогнозов.

Были сформулированы зависимости между элементами структуры земной коры и сейсмическими явлениями, составившие исходную теорию прогноза землетрясений.

Первая зависимость: в протяженной сейсмогенной зоне разрывов сильные землетрясения происходят не сразу по всему ее протяжению, а попеременно в разных местах.

Вторая зависимость: длина и глубина заложения очагов, а также магнитуда (энергия) самых сильных землетрясений, возможных в этой зоне, зависят от размера сейсмогенных структур земной коры (блоков).

И наконец, третья зависимость:

частота повторения землетрясений в зоне связана со скоростью движения геологических структур и соответствующего накопления тектонических напряжений по разрывам.

На основе перечисленных закономерностей устанавливаются сейсмические характеристики территории.

При этом используются взаимодополняющие методы - структурного анализа, геофизические, сейсмологические и другие, что позволяет выделять сейсмогенные зоны, обусловленные разрывами. По размерам нарушенных активных структур предсказываются характеристики вероятных в зоне, самых сильных для нее землетрясений, в том числе и там, где они еще не отмечались.

Прогнозируются следующие элементы: размер очага ожидаемого землетрясения (длина и глубина его заложения), его простирание, магнитуда, интенсивность (балльность) сотрясений в зоне и ширина полос распространения сотрясений определенных баллов в стороны от зон, в зависимости от глубины очага. Предсказываются также повторяемость и вероятная очередность землетрясений в различных местах зоны. В результате появляется возможность подробно дифференцировать сейсмическую опасность региона и составить прогнозные карты принципиально нового качества, с показанными на них сейсмогенными зонами.

Первая карта такого типа опубликована в 1949 году для Гармского региона в Таджикистане, затем для 17 других сейсмоактивных регионов. В последующие годы на закартированных территориях, в местах, где ранее сильные толчки не отмечались, произошло 23 разрушительных землетрясения. Все они возникли в сейсмогенных зонах, в том числе в "сейсмических окнах", в целом с предусмотренными характеристиками. С 1982 года зоны возможного возникновения очагов сильных землетрясений стали показываться на государственных картах сейсмического районирования территории СССР в качестве ведущего элемента.

При прогнозе землетрясений в последние годы в работах советских и зарубежных сейсмологов стало широко применяться представление о возникновении очередных землетрясений в сейсмогенных зонах, преимущественно там, где они давно не отмечались, в частности в "сейсмических окнах". Например, японские ученые установили "сейсмическое окно" вблизи острова Хоккайдо. В 1973 году в нем возникло землетрясение Немурооки с магнитудой около 7,5. Американский ученый Дж. Келлехер с коллегами выделил в 1973 году в сейсмогенной зоне тихоокеанского побережья Мексики несколько "сейсмических окон". Одно из них в провинции Оахака японский ученый М. Охтаке с коллегами определил в 1977 году как место наиболее вероятного возникновения крупного землетрясения в ближайшем будущем.

Оно действительно произошло в 1978 году.

Ну а как все-таки быть с предсказанием времени землетрясения? Установленные сейсмогенные зоны и, в частности "сейсмические окна", как вероятные места возникновения очередных землетрясений, составили основу для целенаправленных поисков предвестников их времени. Однако пока еще ясные, связанные с конкретными геологическими объектами, универсальные предвестники не обнаружены.

Можно отметить лишь один успешный краткосрочный прогноз времени ожидаемого сильного землетрясения, который удалось осуществить китайским ученым. Они выделили в провинции Ляонинг тектонические разрывы, в которых по ряду признаков можно было ожидать сильное землетрясение.

В их районе было организовано постоянное наблюдение за изменениями сейсмических, геофизических, гидродинамических и других факторов. В результате 4 февраля 1975 года в конкретном месте за семь часов было предсказано хайченгское землетрясение с магнитудой 7,3. В другом случае попытка прогноза времени землетрясения в Китае не удалась.

Исследования по поискам краткосрочных предвестников землетрясений следует вести с учетом разного характера движений блоков земной коры в сейсмогенных зонах, которые различаются по своим геологическим и геофизическим характеристикам.

Поиски любых краткосрочных предвестников, в том числе гидродинамических, геохимических, сейсмологических и биологических, проводимые в отрыве от конкретных геологических данных, вне связи с тектоникой сейсмогенных зон, желаемого успеха принести не могут. Предсказание времени сейсмического толчка может служить лишь дополнением к прогнозу, на основе результатов которого ведется сейсмостойкое строительство.

О цикличности извержения вулканов

Цикличность извержения вулканов на земном шаре выявил советский вулканолог Игорь Гущенко. Проанализировав все известные проявления вулканизма в истории Земли за 1200 лет, он установил несколько циклов, самый меньший из которых 5 лет, а наиболее длительный - 180 лет.

Среди факторов, предопределяющих размещение вулканов и их активность, ученый отмечает неравномерность вращения Земли вокруг своей оси, глубинные магматические процессы, космические воздействия (солнечную активность, лунные приливы и другие причины). Пяти-шестилетние циклы, например, предопределяют блуждающие полюсы планеты.

Ученым даны прогнозные оценки вулканической активности до 2312 года.

В частности, по его мнению, в 1959 году начался очередной, 180-летний цикл.

Кислород из земных глубин*

К неожиданным выводам, меняющим многие привычные представления об окружающем нас мире, приводит оригинальная гипотеза новосибирского профессора В. Бгатова. Посвятив почти два десятилетия изучению проблемы появления кислорода на нашей планете, он пришел к твердому убеждению:

основной поставщик кислорода в атмосферу не растения, а недра.

Из разломов земной коры на дне океанов, считает ученый, изливаются потоки базальтовой магмы, несущей в себе вместе с другими газами огромные массы кислорода. Затем насыщенные им холодные глубинные воды поднимаются на поверхность и, постепенно нагреваясь, отдают бесценный живительный дар земных глубин в атмосферу. Гипотеза основательно подкреплена фактами из геологического прошлого Земли, сплетена зримыми нитями с новейшими достижениями и находками биологов, океанологов, химиков, вулканологов, представителей других областей науки.

Странные, необъяснимые загадки Мирового океана выстраиваются в рассуждениях В. Бгатова в логически стройную цепочку взаимосвязанных явлений природы. Известно, что верхний слой воды в океане насыщен кислородом, выделяемым фитопланктоном.

По мере удаления от поверхности содержание этого газа постепенно уменьшается, достигая минимума на глубинах в семьсот - тысячу метров.

А вот после такого "мертвого" слоя вновь все более ощутимым становится присутствие кислорода, причем придонные воды им буквально пересыщены! На глубине уже иной кислород, более тяжелый, отличающийся по изотопному составу от выделяемого растениями. Иным, следовательно, должен быть и его источник. Мнение В. Бгатова нам уже известно: такой кислород поступает из земных недр.

В придонном мире найдены организмы, которые выглядят фантастически, например черви длиной до метра! Эту форму жизни академик Л. Бреховских назвал совершенно иной, уникальной, существующей в отличие от всего живого на Земле не за счет энергии солнца, а за счет собственной энергии планеты.

Именно такой кислород базальтовой магмы, не без влияния которого формируются глубинные "монстры", уносится к поверхности передвижениями океанических вод. Места подтока вод из глубин океанов к берегам континентов и выхода их на поверхность науке известны - калифорнийское и перуанское побережья Америки (Тихий океан), аравийско-сомалийское побережье (Индийский океан) и западное побережье Африки (Атлантический океан). Кстати, именно в этом месте Атлантики украинские исследователи зарегистрировали в результате замеров наибольшую концентрацию тяжелого изотопа кислорода.

И кислород, вырабатываемый в процессе фотосинтеза растительностью, и кислород глубинный заметно отличаются от атмосферного по изотопному составу, а значит, и по весу. Первый - легче, второй, наоборот, - тяжелее. Путем несложных расчетов можно прийти к выводу: чтобы при их смешении образовался газовый коктейль, аналогичный атмосферному кислороду, необходимо соединить их в пропорции один к двум. Выходит, главное пополнение "эликсира жизни"

атмосфера получает из земных недр, и слагается он из двух компонентов.

Грохочущая во тьме бездны огненная лава и залитая солнцем цветущая лужайка совместно, согласованно "трудятся", чтобы сохранить равновесие изотопного состава атмосферного кислорода.

Однако отнюдь не проблемы Мирового океана навели ученого на размышления, вылившиеся в гипотезу, привлекшую внимание научной общественности. К ним он обратился позднее.

Его профессиональные интересы ориентированы на земную твердь. Доктор геолого-минералогических наук, профессор, заместитель директора Сибирского НИИ геологии, геофизики и минерального сырья В. Бгатов широко известен работами, связанными с разведкой и поиском подземных кладовых в Сибири. Актуальные задачи наращивания минерально-сырьевой базы на востоке страны нацеливают исследователей на выявление закономерностей образования месторождений, изучение геологических процессов, происходивших в далеком прошлом. И в самых древних, и в промежуточных, и в современных породах геологи находят следы окисления - воздействия кислорода. А это противоречит общепринятому взгляду, по которому кислород появился на более поздних стадиях развития Земли в результате жизнедеятельности растений.

Свой доказательный выход из замкнутого круга предлагает новосибирский ученый: первый кислород появился в результате дегазации базальтовой магмы, подобно тому как образовались в атмосфере другие газы, и продолжает поступать из земных недр до сих пор. История кислорода насчитывает до четырех миллиардов лет. В связи с этим геологическим рубежом, названным В. Бгатовым, уместно вспомнить о редчайшей находке в Южной Африке, где обнаружены синезеленые водоросли возрастом 3,5-3,7 миллиарда лет. Эти водоросли уже производили кислород в результате фотосинтетических реакций.

В. Бгатов считает, что его гипотеза поддается экспериментальной проверке. Для этого надо провести изотопный анализ кислорода, вырывающегося временами из кратеров вулканов в газовых струях. Ранее вулканологи в своих исследованиях не интересовались изотопным составом вулканического кислорода, считая, что он проникает в эти выбросы из атмосферы.

Вывод ученого имеет, по оценке специалистов, большое практическое значение для воссоздания палеогеографических ландшафтов, существовавших на ранних этапах становления нашей планеты. Появляется возможность лучше проанализировать ход геологических процессов, приведших к образованию многих видов полезных ископаемых, точнее определить закономерности их размещения в земной коре, сокращая тем самым расходы на их поиски.

О чем шумит Земля

В мире инфразвуков Земля звучит как большой оркестр, включающий в себя инструменты разного размера, силы и высоты звучания. Земной оркестр не ведает антрактов. Чуткие сейсмографы, прижатые к телу планеты, фиксируют эту "музыку" - непрерывные, на первый взгляд хаотические колебания земной поверхности. Эти колебания очень слабенькие по сравнению с волнами от землетрясений, потому и название получили - микросейсмы. Бытует мнение (и отчасти это так), что микросейсмы - помехи, что они мешают выделению регулярных волн, отраженных и преломленных на границах нефтеносных куполов, рудных жил, разломов, вулканических резервуаров, слоев в коре, мантии, ядре планеты.

Но, как говорится, микросейсмы микросейсмам рознь. Иногда микросейсмы вызваны океаническими волнами, набегающими на материки, порывами ветра, даже деятельностью человека. Это и впрямь помехи.

Однако существует и другой шум Земли, внутреннего, "собственного"

происхождения. Эти микросейсмы полезны, они могут многое рассказать о недрах планеты. Эндогенные, как их называют, микросейсмы имеют относительно высокую частоту (15-60 колебаний в секунду), их легко спутать с ветровыми. Но это принципиально разные вещи. Еще основоположник российской сейсмологии академик Б. Голицын отмечал, что высокочастотные микросейсмы обнаружены в самых разных частях Земли и, стало быть, должны иметь отношение к некоему глобальному качеству планеты.

Но к какому именно? Над этим задумались несколько лет назад Л. Рыкунов, профессор физического факультета Московского государственного университета, ныне член-корреспондент Академии наук СССР, и его ученики, сейчас сотрудники Института физики Земли АН СССР, кандидат технических наук О. Хаврошкин и кандидат физико-математических наук В. Цыплаков.

Кропотливые исследования - теоретические разработки, конструирование новой аппаратуры, полевые наблюдения, обработка данных на ЭВМ - привели к открытию. Оно зафиксировано в Государственном реестре под номером 282 и состоит в том, что обнаружено неизвестное ранее явление:

длиннопериодные процессы, происходящие на Земле и в ее недрах, управляют высокочастотными сейсмическими шумами.

Шумы эти то усиливаются, то слабеют. Оказалось, что ослабление и усиление шумов происходит в такт с собственными колебаниями Земли, лунносолнечными приливами, волнами от сильных землетрясений и даже штормовыми микросейсмами. Открытие прояснило понимание важного качества земных недр - их активности, проявляющейся в такт называемой сейсмической эмиссии - излучении волн высокой частоты.

Исследователи шли несколькими путями: применяли аналогии с акустической эмиссией, изучали микросейсмы в широком диапазоне частот, опирались на опыт регистрации сверхслабых астрофизических сигналов.

Явление акустической эмиссии было известно физикам ранее: образцы материалов под нагрузкой "звучат" - излучают высокочастотные сигналы.

Это связано с существованием в образце дефектов структуры, трещин. Под давлением дефекты нарушаются, перестраиваются - излучают волны.

Оказывается, похожее явление имеет место и в столь большом и сложно устроенном "образце", каким является Земля, в особенности ее верхние слои. Сейсмическая эмиссия-свидетельство и следствие неоднородного устройства Земли, которая состоит из пород, блоков, кусков различного химического состава. Они находятся в разном энергетическом состоянии, разделены сложными переходными поясами, пронизаны трещинами, внедрениями магматических расплавов.

В Земле благодаря передвижению вещества существуют постоянные, так называемые "фоновые" напряжения, они концентрируются на границах неоднородностей. Если порода не выдерживает, рвется, происходит землетрясение. Микроземлетрясения, происходящие практически непрерывно, и есть сейсмическая эмиссия.

Высокочастотные шумы могут быть разными в зависимости от земной сейсмической "погоды". Земля как бы сама помогает ученым ее изучать: она создала шумы и изменяет их амплитуду в соответствии с ходом внутренних процессов, которые и характеризуют ее важные глобальные качества. Это напоминает то, как появление радиосвязи обеспечило передачу информации на расстояние: там речь, музыка модулируют, меняют несущую высокую частоту.

Сейсмическую эмиссию можно назвать "люминесценцией" - свечением в звуковом диапазоне: светятся неоднородно напряженные блоки, нагретые магматические очаги, рудные месторождения. А если вспомнить сравнение Б. Голицына сейсмической волны от землетрясения с фонарем, освещающим таинственные недра, и применить его к случаю микроземлетрясений, то становится ясно: сейсмическая эмиссия - это "карманные фонарики", позволяющие пристально присмотреться к деталям. И впрямь, без эмиссии собственные колебания планеты, приливные эффекты и прочее изучать непросто - нужна громоздкая аппаратура, специальная методика наблюдений и обработки. Но эти сами по себе слабые эффекты оказываются выразительными и ощутимыми, когда они "управляют" сейсмической эмиссией.

Специальная аппаратура для изучения высокочастотных шумов Земли оказалась относительно простой и портативной: сейсмометры, чувствующие фантастически слабые перемещения грунта, и фильтры с очень узкой частотной полосой, отрезающие помехи, словно острым скальпелем. Они позволяют отделить внутренний шум Земли от ветровых помех, как бы лучом прожектора высветить в хаосе земных микросейсм какие-то закономерности.

Аппаратура была поставлена во многих местах: в глубокой штольне Центральной сейсмической лаборатории города Обнинска, на сейсмостанциях Крыма и Кавказа, испытательном полигоне в Белоруссии, на плотине Нурекского водохранилища. Многие годы велись наблюдения, данные накапливались, отдельные нити фактов и доводов сплетались в клубок знаний о малоизвестных качествах Земли.

Амплитуда высокочастотных шумов обнаружила явно не случайное соответствие с ранее известными глобальными явлениями. В спектре шумов были выделены периоды, близкие к собственным колебаниям Земли; произошло это, в частности, после сильных землетрясений 1979 года в Мексике и на Аляске. Выделена известная приливная периодичность в половину и целые земные сутки. Была обнаружена связь высокочастотных микросейсм с энергией землетрясений земного шара. Когда же перешли к изучению штормовых микросейсм, оказалось, что и они отражаются в "подземной погоде" даже удаленных от океана районов.

Открытие № 282 имеет не только большое научное значение, оно послужит и практике. Во-первых, обнаружено новое свойство Земли - мера ее неоднородности и внутренней активности; наши представления о Земле стали многокрасочнее. И хотя пока еще не введен соответствующий "коэффициент сейсмической эмиссии", уже ясно, что повышенным шумом и способностью к переизлучению обладают неоднородные зоны: нефтяные ловушки, рудные жилы, магматические очаги.

Так что открытие, безусловно, может быть использовано для нужд народного хозяйства - поиска полезных ископаемых и прогноза землетрясений.

Далее, развивается методология исследований, проясняется общая картина событий, до сей поры не совсем ясных. Микросейсмы из разряда помех, где их раньше числили, переводятся в ряды помощников. Из-за "перекачки" напряжений в высокочастотные шумы происходит, вероятно, ослабление сейсмичности после сильных штормов в прибрежных районах.

Быть может, это намечает путь "управления" землетрясениями? Микросейсмы могут быть использованы и как источники зондирующих Землю сигналов.

Наконец, появляется перспектива использовать открытие для технически трудных сейсмических исследований планет земной группы и малых тел Солнечной системы. Портативная неприхотливая аппаратура, включающая чувствительные сейсмографы и узкополосные фильтры, может быть доставлена туда с помощью автоматических устройств. Регистрация эндогенных шумов, даже в небольшие интервалы времени, поможет оценить степень неоднородности структуры небесных тел, уровень их сейсмической активности, период собственных колебаний планет. Похоже, что открытие эмиссии и эффекта ее модуляции приведет к "эмиссии" новых открытий неведомых сторон нашего космического дома.

Алмаз в пузырьке

Более десяти лет назад в советских и зарубежных научных журналах появились работы профессора Э. Галимова (Институт геохимии и аналитической химии имени В. И. Вернадского АН СССР), в них излагалась любопытная гипотеза происхождения алмазов.

По этой гипотезе, углерод может кристаллизоваться в алмаз в кимберлитовой породе из-за кавитации. Образование кавитационных пузырьков в общих чертах можно представить себе так.

При резком перепаде давлений в потоке расплавленной породы, например при изменении профиля или сужении канала, в движущейся жидкости образуются не только области пониженного давления, но и разрывы, пустоты, пузыри ("кавитас" - по-латыни "полость"), которые охлопываются, когда жидкость выходит из сужения и давление выравнивается. Чем более текуча жидкость, чем с большей скоростью она движется, тем больше вероятность, что в ней образуются пузырьки кавитации. Особо склонны к кавитации жидкости, содержащие газ и твердые частицы, которые служат "ядрами" кавитации.

У кимберлитовых пород есть две особенности. Во-первых, они выделяются среди других магматических пород своей уникальной алмазоносностью. Во-вторых, в кимберлитовой магме часто рождаются кавитационные пузырьки. При схлопывании пузырьков находящийся в них газ испытывает удар, при резком сжатии развиваются огромные пиковые давления порядка тысячи килобар. Этого достаточно, чтобы родились мелкие кристаллики алмазов, но при условии, если в пузырьке был газообразный углерод.

Остается лишь ответить на вопрос:

откуда он берется?

Кавитационные пузырьки кимберлитовой магмы насыщены метаном, молекулы этого газа распадаются на углерод и водород при высокой температуре, возникающей в пузырьках из-за сильного сжатия. При схлопывании газообразный углерод кристаллизуется в алмаз, а водород выносится за пределы пузырька. Процессы рекристаллизации, которые могут идти в затвердевающей магме, приведут к объединению мелких кристалликов и образованию довольно крупных алмазов.

Образуются ли природные алмазы в процессе кавитации, или это лишь гипотеза? Ответить на этот вопрос можно, исследовав изотопы углерода в алмазах.

Долгое время ученые считали, что соотношение тяжелого С-13 и легкого С-12 изотопов углерода в алмазах очень стабильно. Это лишний раз подтверждало теорию их глубинного синтеза: раз все алмазы образуются на больших глубинах, как считалось раньше, то такие условия порождают и изотопную однородность углерода.

Однако в действительности оказалось, что изотопный состав углерода в алмазах меняется в довольно широких пределах. Это факт в пользу новой гипотезы: если алмазы могут синтезироваться на разной глубине, то и состав углерода в них может меняться в широких пределах.

Течения и Солнце

Дыхание Мирового океана

Определить, меняется ли уровень Мирового океана, практически можно, только измеряя, как поднимается или опускается средний уровень воды у побережья. В различных пунктах земного шара в одном и том же году получают при этом разные данные. Например, в Скандинавских странах наблюдаемый уровень воды постепенно понижается, суша, сбросив оледенение, поднимается под влиянием послеледниковой деформации земной коры.

В южной части Атлантического побережья Соединенных Штатов можно наблюдать, как понижается уровень океана благодаря обильным наносам почвы в дельте Миссисипи. Обобщая накопленные данные, ученые установили, что средний уровень Мирового океана повышается за столетие на 10-20 сантиметров. На это влияет ряд факторов, значение которых оценивается следующими цифрами. Во-первых, за последнее столетие средняя температура атмосферы повысилась на полградуса. При этом из-за теплового расширения воды в океане уровень ее повысился на три-шесть сантиметров, а из-за таяния горных ледников - еще на два-пять сантиметров. На два-три сантиметра опустился средний уровень суши в результате деформации земной коры. Ледовый панцирь Антарктиды, по мнению ученых, за последнее столетие существенно не изменился, но такая опасность ему угрожает при дальнейшем потеплении климата.

Издавна считалось, что главные причины океанических течений - это ветер и неравномерное распределение температуры и солености (плотности) воды в океане, а приливные движения, происходящие, как известно, под действием сил притяжения Луны и Солнца, вызывают лишь возвратные колебательные смещения воды (приливы - отливы) и не могут быть причиной течений.

Но вот в результате исследований, проведенных в Институте технической кибернетики АН БССР, родилась гипотеза о том, что и Солнце и Луна в принципе могут порождать течения в морях и океанах.

Из-за притяжения Луны и вращения нашей планеты на водной поверхности Земли, как известно, рождаются два приливных выступа, один из которых обращен к Луне, а другой - в противоположную сторону. Максимальная высота этих выступов в открытом океане составляет около пятидесяти сантиметров. Под действием силы притяжения Солнца и вращения Земли на водной поверхности океанов также появляются два приливных выступа, которые из-за большей удаленности от Солнца имеют высоту лишь двадцать сантиметров. Из-за вращения Земли приливные выступы постоянно перемещаются с востока на запад - в тропическом поясе Земли со скоростью около 1 500 километров в час,- сложным образом взаимодействуя между собой. Например, когда Луна, Земля и Солнце находятся на одной линии, то есть в полнолуние и новолуние, выступы от Луны и Солнца суммируются и образуют выступ высотой около 70 сантиметров.

Белорусские исследователи предполагают, что эти постоянно движущиеся с востока на запад приливные выступы должны переносить в том же направлении воду. В момент восхождения над восточными берегами океана светило образует на его поверхности приливный выступ, тем самым "загружая" в него воду, а затем движет этот приливный выступ к западу. У западных берегов океана выступ разрушается и "разгружает" содержащуюся в нем воду. Таким образом создается постоянный дефицит воды у восточных берегов океана и избыток у западных.

И в результате этого движения возникают океанические течения. Расчеты показали, что объем воды, переносимой приливными выступами, одного порядка с величинами переноса вод океаническими течениями.

Описанная гипотеза хорошо согласуется с известными в океанологии фактами. В ее пользу прежде всего свидетельствует схожесть картины крупномасштабных течений в трех тропических океанах: течения у восточных берегов океанов направлены от полюсов к экватору, а у западных - от экватора к полюсам. Все происходит так, как будто из восточной тропической части океанов постоянно происходит отток вод, а к западной части - приток. О возможной глобальной космической причине этого явления писали многие исследователи.

воссоздать основные гидрофизические, химические и биологические процессы на поверхности и в глубинах Азовского моря. В действие она приводится с помощью программ, разработанных для электронно-вычислительной машины.

Тайна "дьявольских кругов"

Южные моря часто светятся по ночам. Для науки большинство подобных явлений уже не являются загадкой.

Свечение морской воды могут вызвать медузы, рачки, микроорганизмы.

Однако тайну так называемых "дьявольских кругов" удалось раскрыть лишь недавно. Светящиеся кольца вращаются в морской пучине против часовой стрелки. Они наводят ужас на суеверных моряков. Ученые обследовали более двух тысяч подобных явлений и пришли к выводу, что светятся гигантские колонии микроорганизмов.

Создана модель Азовского моря

Первая полная модель крупного водоема - Азовского моря - создана украинскими учеными из города Одессы. Она позволяет вести конкретные исследования морской экологической среды, прогнозировать ее поведение в разных ситуациях.

Модель дает экологам возможность

Антициклон в океане

Весной 1983 года на снимках, сделанных со спутников в инфракрасном диапазоне, обнаружено колоссальное пятно теплой воды в океане, к востоку от острова Хонсю и к северу от основного стержня течения Куросио. Пятно круглой формы с диаметром около сотни миль. Недавно исследовательское судно "Академик Александр Несмеянов" провело здесь специальные работы, дважды пройдя через этот район сначала с севера на юг, а потом обратно. Каждые двадцать миль тщательно измеряли температуру и соленость воды на разных глубинах.

Результаты позволяют сказать, что это пятно - своего рода антициклон в океане, вращающаяся масса воды, образовавшаяся под воздействием ее перемешивания. Нижние слои вихря - арктические воды, верхние-субтропические. Изучая вихрь, можно лучше понять климат и на суше, потому что антициклон в океане исследовать намного проще, чем в воздухе: он движется медленнее и за ним легче следить.

Черное море в 2000 году

По своему гидрологическому режиму Черное море заметно отличается от других морей. Его воды четко делятся на два слоя. Верхний - сильно опресненный и соответственно более легкий - лежит на более плотном и соленом нижнем. Постоянство этого расслоения поддерживается выносом пресных вод из рек и опресненных из Азовского моря, а также поступлением глубинных - плотных и соленых вод - из Мраморного. Вертикальный же обмен в Черном море незначителен, именно поэтому в его глубинах отсутствует образующийся в верхних слоях и поддерживающий там жизнь кислород.

Водный баланс любого моря складывается не только из речных стоков и обмена с соседними морями. В "статью прихода" включаются атмосферные осадки, а в расход - испарение с поверхности. Все составляющие кругооборота вод не подвержены воздействию человека. Кроме стока с материка. На реках создаются многочисленные водохранилища, увеличивается потребление пресной воды для орошения и водоснабжения городов и поселков. Уже к 1980 году из рек Черноморского бассейна изымалось до 50 кубических километров воды в год. Пока это не отразилось на солености морских акваторий, но к концу нашего тысячелетия эта цифра увеличится почти втрое, и тогда, по мнению некоторых специалистов, дальнейшее осолонение Черного моря неизбежно.

В Азово-Черноморском научно-исследовательском институте морского рыбного хозяйства и океанографии усомнились в справедливости этого утверждения. Авторы пессимистического прогноза считают воды, потраченные на хозяйственные нужды, безвозвратно потерянными для моря. Повидимому, это заблуждение. Так, например, вопреки предсказаниям сток в Днепровско-Бугский лиман за десятилетие с 1971 по 1980 год в условиях интенсивного потребления не сократился.

Однако отдельные факты еще ничего не доказывают. Иное дело - результаты многолетних непрерывных измерений солености вод в разных местах побережья. Анализу подверглись данные наблюдений на гидрометеорологических станциях, расположенных в восьми крупных черноморских портах. В итоге ученые пришли к заключению, что предрекать Черному морю печальное будущее нет оснований.

На "Витязе"

в глубь времен

Доктор геолого-минералогических наук А. Городницкий рассказывает о подводном обследовании горы Ампер с обитаемого аппарата.

С борта "Аргуса"

Мотобот, раскачиваясь и подлетая на сильной волне, помчался к всплывшему "Аргусу", рубку которого почти захлестывала вода. Проскальзывая в люк и захлопывая за собой его тяжелую крышку, я второпях довольно чувствительно прихлопнул себе руку, отделавшись синяком и растяжением. Правда, в первый момент не обратил на это особенного внимания. Еще бы, ведь предстояло самому взглянуть на "развалины Атлантиды", да еще и в компании тех самых пилотов, которые ее "уже видели",- Булыги и Воронова! "Ну что,- спросил я у Виталия Булыги, как только плюхнулся на "свой" тюфяк,- то самое место?" - "Да кто его знает, вроде похоже",-ответил он. Мы связываемся по подводному телефону с "Витязем" и просим засечь наши координаты. Это необходимо, потому что сильное течение сносит нас в сторону от вершины. Надо торопиться. "Погружение разрешаю",- звучит в ушах. "Аргус" идет вниз. Привожу дальше выдержки из моей магнитофонной записи под водой.

"Аппарат лег на грунт в 13 часов 20 минут на глубине 110 метров на южном склоне вершины горы Ампер. Координаты точки погружения: широта 35°03 север, долгота 12°53 запад. В поле зрения скальные выходы коренных пород, хорошо видные на фоне белого песка. Выходы эти образуют правильные гряды высотой около полутора метров. На глубине 95 метров, в 200 метрах от точки погружения, располагается ограниченный грядами коренных пород замкнутый прямоугольник длиной около 20 метров и шириной около 10 метров. Высота "стенок" один-полтора метра, ширина окбПо полуметра. Дно "комнаты" засыпано песком. У края стен - отдельные глыбы. Стенки сложены сильно измененным базальтом, поросшим литатамнией.

Движемся дальше на восток. На глубине 90 метров по курсу следования вертикальная стена высотой примерно два метра. Она производит впечатление вертикальной дайки (застывшей базальтовой лавы), внедрившейся в разрушенные выветриванием базальтовые породы. Стена ограничена с двух сторон гладкими поверхностями, на фоне которых отчетливо видны следы "кладки".

Подходим к следующей гряде. В стене высотой около 20 метров - ниша диаметром около 15 метров. Всплыв над ней на несколько метров, обнаруживаем, что это - крупная трещина, заваленная глыбами, которая прослеживается вверх по склону. На фоне песка темнеют отдельные блоки породы, выпавшие из стены.

В конце стены на глубине около 90 метров прямоугольное сооружение, также напоминающее "комнату" длиной около 10 метров и шириной 3- 4 метра. Стены имеют четкую прямоугольную форму. На фоне красных литатамний хорошо виден отдельный "кубик". Садимся рядом со стенкой и детально его изучаем.

Внутренняя поверхность стены плоская, как будто обработанная орудиями. Стена упирается в скалу, однако характер контакта не виден, так как все заросло и завалено камнями. В верхней части стены свежие сколы. Обращает на себя внимание правильная форма кубиков с гранью 15-20 сантиметров.

Что это, дайка? Куда же девался материал породы, в которую дайка внедрилась? Может быть, более древние и сильно разрушенные базальты вмещающей породы размыты в результате эрозии, а стенка, сложенная более прочным и свежим материалом, осталась? Ответ на этот вопрос, по-видимому, может дать сравнительный геохронологический анализ образцов, отобранных из стенки и из вмещающих пород. Берем два образца, стараясь взять один верхний кубик и корочку из прослойки между соседними кубиками.

Движемся дальше вдоль гряды, ограниченнои двумя параллельными стенками. Внутренняя поверхность стен разбита ортогональными трещинами.

Впечатление такое, что плывешь на катере по каналу с каменной набережной, как когда-то на экскурсионном речном трамвае по родной Мойке. В конце "канала" между стенками - пещера с полуразрушенным навесом из крупных глыб выветрелых базальтов.

Следуем дальше на восток. Слева от нас - стена высотой около 20 метров, справа - равнина, засыпанная белым песком. В стене местами видны террасообразные площадки и ниши, которые могут быть следами волноприбойной деятельности. Кое-где зияют большие трещины, нечто вроде "ворот". В конце сходящегося ущелья между стенами видна пещера. Сильно разрушенный свод над пещерой отдаленно напоминает кладку радиально расходящихся камней. Неужели все это - формы эрозии? Выходим на плато. Справа по курсу - крутой склон, на фоне которого видны обрывки сетей и переметы.

Видимость несколько ухудшается. В поле зрения --г- параллельные стенки.

Вершина гряды напоминает полуразрушенную башню с резкими формами выветривания. В верхней части стен следы от выпавших камней. Обнажение это немного похоже на развалины старинной крепости.

Вдоль стены - как будто ступени лестницы, засыпанные песком. Ширина "ступеней" около двух метров. Аналогичные "ступени" видны на самой стене. Вниз по склону от внутренней "лестницы" расположен квадратный участок, засыпанный белым песком. Стена имеет прямоугольные грани и довольно гладкие поверхности, покрытые литатамниями.

Слева по курсу - стена с овальными нишами. У ее подножия углубление в дне, похожее на колодец с диаметром около трех метров. Делаем снимок. В 15 часов 30 минут отрываемся от грунта и начинаем всплытие с глубины 108 метров".

Что ищет "Витязь"!

А до этого было вот что. Поздним вечером "Витязь" покинул мерцающую разноцветными огнями Чивитавеккью и взял курс на запад. Путь наш лежит за Геркулесовы Столбы, в Атлантику.

Главная цель исследований - подводные горы Ампер и Жозефин. Обе они расположены в той самой зоне огромных разломов, тянущихся от Гибралтарского пролива до Азорских островов, по которой проходит граница между двумя гигантскими литосферными плитами - Африканской и Евроазиатской.

К восточной части этой зоны приурочена цепочка подводных гор, изогнутая как подкова. Она так и называется Хосшу - "Подкова". Самые крупные из этих подводных гор - Ампер и Жозефин. Для геологов они интересны еще и потому, что хотя и возвышаются неподалеку друг от друга, но расположены на разных плитах. Гора Ампер находится на Африканской литосферной плите, а ее близкая соседка Жозефин уже принадлежит Евроазиатской плите.

Этот район представляет особый интерес, детальное изучение геологического строения границы между плитами может пролить свет на то, как движутся плиты в области их соприкосновения и как связано образование и развитие подводных гор цепи Подкова, которые были когда-то вулканами, с этим взаимодействием.

Вопрос это непростой. Чтобы решить его, мало опуститься на дно и взять образцы. Необходимо, кроме того, исследовать глубинное строение литосферных плит вблизи их границы. Поэтому второе наше судно, "Рифт", сейчас отправилось туда же. На его борту установлена аппаратура для глубинных сейсмических исследований. Упругие волны, созданные "пневмопушкой", распространяются в воде и толще пород океанского дна. Отражаясь от слоев горных пород с разной плотностью, они снова приходят к поверхности воды и регистрируются специальными высокочувствительными сейсмоприемниками.

Электронно-счетная машина сама строит сейсмический разрез по маршруту движения судна. А этот разрез, по существу, отражает геологическое строение океанской коры.

Одновременно проводятся непрерывные измерения интенсивности аномального магнитного поля и поля силы тяжести. Обработка результатов этих измерений дает геологам возможность судить о том, как устроено дно океана в этом районе, смяты ли осадки, разбита ли твердая кристаллическая кора трещинами, куда направлены силы, толкающие литосферную плиту.

Что касается подводной горы Ампер, то интерес к ней не только геологический. На ее подводной вершине несколько лет назад были обнаружены странные скальные гряды, напоминающие рукотворные стены, что дало пищу для новых разговоров об Атлантиде. Нам предстояло провести обследование этой загадочной горы.

Мы вышли по эхолоту на вершину горы Ампер и, выбрав плоское место, поставили буй. Вокруг нас вблизи от вершины горы крутятся рыболовные суда - здесь, на мелководье, много всякой рыбы. Нам они изрядно мешают.

И дело не только в том, что эти суда все время ходят туда-сюда, волоча за собой рыболовецкие тралы и мешая нашей съемке, а еще и в том, что обрывки рыбацких сетей и переметы густо усеивают неглубокое дно в районе вершины горы и создают нешуточную опасность для подводного аппарата.

Зато погода нас на этот раз балует, поэтому нужно использовать каждый час. Решено ночью делать съемку рельефа дна и измерения магнитного поля, а также подводное фотографирование "Звуком", а все светлое время суток использовать для работы "Аргуса" и водолазного колокола.

Прежде всего нужно было найти участок со "стенами" и внимательно обследовать его. С помощью буксируемого аппарата "Звук" была сделана детальная фотопанорама вершины горы, на которой снова отчетливо проявились узкие вертикальные гряды, как бы сложенные из отдельных блоков. Может быть, это все-таки не гряды, а стены? Надо погружаться. Никакие фотографии и телевизионные осмотры сверху ничего толком об этом не скажут - смотреть надо не сверху, а сбоку.

Составили списки подводных наблюдателей. Поскольку подводная фотокамера может проводить фотографирование только очень близких объектов, а человеческий глаз видит дальше, то каждого наблюдателя просили делать зарисовки того, что он видит в иллюминаторе. Ведь в прошлые века, когда не было фотоаппарата, именно рисунки ученых и натуралистов были главными документами! Вспомним хотя бы рисунки Крашенинникова на Камчатке или Миклухо-Маклая в Океании! Решено было также каждый день после погружения "Аргуса" собирать научнотехнический совет для обсуждения результатов. В конференц-зал на эти обсуждения собиралось столько народу, что не могли вместиться все желающие.

Акванавты в это время усиленно готовили к спуску свой водолазный колокол, в котором после погружений на горе Верчелли обнаружили неполадки.

В первый же день работы "Аргуса"

на нем в качестве наблюдателя погрузился начальник экспедиции В. Ястребов, а за ним следом - я. Однако на участок "со стенами" в этот день выйти не удалось. Сильное подводное течение сносило аппарат, не давая удержаться на курсе. Правда, в первом же погружении я нашел, как мне показалось, амфору. Булыга долго и старательно маневрировал аппаратом, чтобы подойти к ней и ухватить ее манипулятором. Каждый раз при включении движителей мелкий песок вихрем взлетал перед иллюминатором и желанная находка скрывалась от нас. Наконец мы ухватили этот заросший ракушками явно рукотворный предмет и торжественно погрузили его в бункер, сообщив об этом на поверхность. Когда "Аргус"

поднялся, все население "Витязя"

пришло посмотреть на нашу находку. Каково же было разочарование, когда под слоем ракушек обнаружилась старая алюминиевая кастрюля...

В последующие дни тщательно обследовалась с "Аргуса" вся площадь вершины горы. Шаг за шагом просматривались и фотографировались выходы пород на склонах. Отбирались образцы базальтов, проводились фотосъемки и зарисовки скальных выходов. Уже на второй день геофизик Анатолий Шрейдер обнаружил в районе вершины какие-то круглые сооружения, напоминающие цирки диаметром 40-50 метров, в также квадратные формы рельефа, отдаленно похожие на "комнаты".

Однако стен с "кладкой" никто не видел. Пилоты наши пожимают плечами и никак не могут определить, где они видели в прошлом рейсе "развалины города". Только на четвертый день геолог Николай Прокопцев, человек тщательный и скрупулезный, а вслед за ним и наш болгарский коллега Петко Димитров обнаружили странные "стены", "комнаты" и даже что-то вроде "арки".

Вечером того же дня на "Витязь" пришла радиограмма из Новокузнецка.

Какой-то энтузиаст сообщил нам "точные координаты Атлантиды" и требовал, чтобы не теряли зря времени и немедленно шли туда.

На пятый день на участок, где были обнаружены "стены", погрузили представителей прессы А. Андрошина и Л. Почивалова, предложив им также зарисовать увиденные объекты. Последнее погружение было предложено сделать мне, чтобы описать найденные объекты. Это было уже четвертое погружение за день, однако пилоты, хотя и устали, охотно согласились "еще поработать", справедливо опасаясь, что погода не даст такой возможности в будущие дни. Мой репортаж со дна вы уже прочитали.

Водолазы берут образцы

На следующий день было проведено погружение водолазов на вершину горы Ампер, на этот раз уже прямо на найденные "Аргусом" "стены".

В воду пошел водолазный колокол с водолазами Анатолием Юрчиком и Николаем Левченко и оператором Владимиром Антиповым. Еще на борту экипаж, надев гидрокостюмы и дыхательные аппараты с кислородно-гелиевой смесью, прошел в водолазный колокол, который сначала был компрессован до давления в 90 метров водяного столба, а уже потом опущен в воду.

На глубине 93 метра Анатолий Юрчик опустился с платформы водолазного колокола прямо на участок, где "стены" соединялись между собой. Сверху поверхность "стен" оказалась полностью заросшей мелкими темно-коричневыми водорослями, напоминающими мох. На этом подводном ковре то тут, то там примостились колонии морских ежей и кораллов. Понадобилось много усилий, чтобы соскоблить цепкие водоросли с поверхности камня.

После этого Юрчик ломиком отбил образец, отметив предварительно, как он был ориентирован относительно самой "стенки".

Главная цель погружения водолазного колокола осуществилась - отобраны образцы пород с таинственных "стен", которые сразу же стали объектом пристального изучения геологов.

Последнее заседание научно-технического совета на "Витязе", раскачивавшемся над вершиной горы Ампер, было таким же бурным, как разбушевавшийся океан. После долгого обсуждения все сошлись на том, что "стены"

на вершине горы все-таки нерукотворные. Даже корреспондент "Литгазеты"

Леонид Викторович Почивалов, который яростно, с детской настойчивостью защищал идею существования Атлантиды, вынужден был отступить перед бесстрастными доводами геологов. "Я так понимаю, что сегодня выносится смертный приговор Атлантиде",- горько заявил он. "Ничего подобного,возразил я,- речь идет только о "стенах" на горе Ампер".

Так была Атлантида или нет!

После нашего возвращения состоялся ученый совет Института океанологии, на котором докладывались результаты рейса. Много видных геологов и геофизиков, специалистов по геологии океанского дна собралось в зале. Отчетный доклад о рейсе делал профессор В. Ястребов. Материалы,собранные в этом рейсе, оказались настолько интересными для ученых, что позднее был поставлен специальный доклад о подводных исследованиях на президиуме Академии наук. Ученый совет принял решение подготовить и опубликовать по результатам рейса отдельную монографию. Намечены обширные планы новых экспедиций с применением уже опробованной техники и методики подводных исследований.

Тщательное изучение поверхности горы Ампер показало, что этот старый, давно погасший вулкан разбит глубокими трещинами, которые строго вытянуты в двух направлениях: на северо-восток и на юго-восток примерно под прямым углом друг к другу. Точно такое же направление имеют и таинственные "стены". Вот и получается, что они не людьми сложены, а образовались в связи с этими трещинами. Дело в том, что по трещинам, разбившим старую, уже застывшую породу, могут внедряться новые порции лавы, которые, достигнув поверхности, застывают. Именно с такими двумя взаимно перпендикулярными системами базальтовых даек мы, по всей вероятности, и имеем дело.

"Стенки" сложены более молодыми базальтами, которые меньше поддаются разрушительному действию выветривания, чем старые породы, слагающие вершину. В результате эрозии более древние базальты в промежутках между "стенками" разрушились, и между ними образовались углубления, так похожие на "комнаты".

Ну а как же "кирпичная кладка"? Скорее всего это не что иное, как система небольших параллельных трещин на поверхности базальтовых гряд, иногда засыпанных белым песком, подчеркивающим зрительное впечатление "кладки". Подобное я видел не впервые, когда-то в молодости мне пришлось несколько лет работать в северо-западной части Сибирской платформы, на знаменитых сибирских траппах. Базальтовые образования при выветривании могут образовывать самые причудливые формы, напоминающие башни и стены. А вспомните известные всем Красноярские столбы!

Так что, как это ни прискорбно, складывается впечатление, что никаких "развалин древнего города" на вершине горы Ампер все-таки нет.

Мое сообщение о выводах по результатам подводного изучения вершины горы Ампер было выслушано с большим вниманием, но без особого сочувствия. Председатель совета, директор института, член-корреспондент АН СССР Андрей Сергеевич Монин в заключительном слове неодобрительно заметил: "Рано еще делать окончательные выводы. Городницкий говорит одно, а рисует другое. Посмотрите на его подводные рисунки. С этим еще нужно разбираться".

Так была Атлантида или нет? А если была, то, может быть, не в Атлантике, а в Эгейском море? Идея о гибели Атлантиды в Эгейском море была впервые высказана русским академиком А. Норовым еще в 1854 году. А о том, что под слоем пепла на Санторине найдены остатки древних построек, стало известно еще с 1883 года из работ французского вулканолога Ф. Фукэ.

Только вот одно мелкое несоответствие: древние поселения на Санторине относятся к бронзовому веку, а Атлантида Платона была на два тысячелетия раньше.

Так где же искать Атлантиду? Чтобы ответить на этот вопрос, вернемся снова к геологии океанского дна и тектонике литосферных плит. Еще совсем недавно, не более десятка лет назад, в отечественной геологии господствовала теория, которая основывалась на представлениях о том, что океанские впадины возникли в результате резких опускании блоков континентальной литосферы. Эта гипотеза как будто давала в руки искателей Атлантиды веские козыри: ведь если могли быть резкие опускания целых континентов, то могла быть и Атлантида, которая точно так же погибла! Именно на эту модель образования океанских впадин возлагал надежды К. Жиров в своей интересной книге об Атлантиде.

Теория тектоники литосферных плит и многочисленные факты, указывающие на отсутствие в океане погруженных участков континентальной коры, как будто на первый взгляд говорят против существования Атлантиды.

Один из основоположников отечественной тектоники литосферных плит, заведующий нашим отделом Олег Георгиевич Сорохтин, неоднократно насмешливо говорил мне: "Никакой Атлантиды быть не может. Это противоречит тектонике плит. Если ты будешь верить в оккультные науки, я тебя уволю".

Ну что же, континенты дейтвительно не могут погружаться. А архипелаги?

Ведь проведенные нами исследования убедительно показали, что подводные горы Ампер и Жозефин были когда-то островами. И весь подводный хребет Хосшу, в состав которого они входят, тоже, возможно, был когда-то на поверхности. А если были острова, то на них могли жить люди. Весь вопрос в том, когда возникли эти острова и когда, а главное - почему погрузились в океанские волны. Попробуем решить эту задачу.

Известно, что посреди океанов проходят гигантские рифтовые трещины, в которые снизу под большим давлением поступает расплавленная магма, раздвигая океанское дно. Застывая на поверхности, эта магма образует новые участки океанской литосферы. Образовавшаяся новорожденная литосфера тяжелее, чем расплав, из которого она кристаллизуется. Чем толще литосфера (а ее толщина с возрастом постоянно увеличивается), тем глубже она опускается в подстилающую ее полужидкую астеносферу. Это, в свою очередь, приводит к тому, что по мере раздвижения океанского дна в направлении от срединных хребтов к более древним районам океана уровень дна закономерно должен понижаться. Уже известный нам своими категорическими заявлениями Олег Георгиевич Сорохтин впервые показал, что величина этого погружения пропорциональна корню квадратному из возраста океанской литосферы.

Значит, поверхность океанского дна должна погружаться. Вместе со всем, что на ней находится,- островами, хребтами и архипелагами. Один из характерных признаков погружения океанского дна - подводные вулканы со срезанными плоскими вершинами.

Именно такими вулканами, как показали результаты нашего рейса, и оказались подводные горы Ампер и Жозефин. Американский исследователь Хесс, впервые детально изучавший подобные плосковершинные горы в Тихом океане, дал им название "гайоты", по одной из версий - в честь известного геолога А. Гюйо (Гайот). Всего в Мировом океане насчитывается не менее десяти тысяч подводных гор и островов. Больше всего гайотов и атоллов в Тихом океане. Но есть они и в Атлантике. Так крупный гайот Грейт-Метеор входит в ту же систему подводных гор Хосшу. Да и другие горы вулканического происхождения, входящие в эту цепь - Атлантис, Плейто, Круйзер, Йер и Эрвинг,- также имеют плоские вершины и другие неопровержимые признаки надводного существования.

Случайно ли это?

Что же касается изученных нами подводных гор Жозефин и Ампер, то расчеты, проведенные по формуле О. Сорохтина, показали, что не далее чем сорок тысяч лет назад оба эти вулкана могли быть островами. И это в том случае, если поверхность дна опускалась только под действием утолщения литосферы, а ведь могли быть и другие причины более быстрого опускания!

Там, где литосферные плиты сходятся, более тонкая и глубоко погруженная океанская литосфера, сталкиваясь с континентальной, ломается и пододвигается под нее, унося "на своей спине" в глубины океанские острова.

Именно такая картина наблюдается сейчас в Тихом океане, дно которого со сравнительно большой скоростью (около 5 сантиметров в год) пододвигается под край Азиатского континента - Камчатку, Курильскую и Японскую островные дуги. На восточной оконечности Камчатки, на полуострове Кроноцкий, геологи нашли остатки двух океанских гайотов, "впечатавшихся" в край полуострова и сорванных с погрузившейся под него океанской плиты. Вся эта огромная полоса, протягивающаяся на юг до Новой Зеландии, называется "огненным кольцом" Тихого океана. И не случайно-вдоль всей этой неспокойной линии располагаются многочисленные огнедышащие вулканы.

Нетрудно предположить, что аналогичная картина могла наблюдаться и при закрытии древнего океана Тетис.

Ведь известно же, что при "захлопывании" его восточной части около тридцати миллионов лет назад Индия ударилась об огромную плиту Евразии. От этого мощного удара край Евроазиатской плиты смялся в складки, образовались высочайшие в мире Гималайские горы, а сама Евроазиатская плита раскололась на много частей, которые до сих пор не могут сосчитать геологи.

Вспомним теперь про увиденный нами в первом рейсе нового "Витязя"

Троодосский офиолитовый комплекс на острове Кипр - остаток ложа древнего океана Тетис. Как он туда попал? Похоже, что был выдавлен наверх, когда при закрытии Тетиса огромный Африканский материк навалился на юг Европы, сминая ее край. А большая часть дна Тетиса вместе с островами ушла в глубину. Не случайно к западу от Кипра расположена Эллинская островодужная система, под которую задвигалось дно древнего океана. И катастрофические извержения средиземноморских вулканов-Санторина, Этны и Везувия, наводившие ужас на жителей окрестных городов,- все это тоже следствие закрытия океана Тетис.

"Хорошо,- возразят мне,- но ведь это все - в Восточном Средиземноморье! В Атлантике такого поддвига Африканской плиты под Евроазиатскую как будто нет!"

В том-то и дело, что есть. Во время рейса "Витязя" было сделано еще одно интересное открытие. Мы уже упоминали о том, что системы трещин, рассекающих океанскую литосферу в районе гор Ампер и Жозефин, имеют примерно одинаковое и строго упорядоченное простирание - северовосток и юго-восток. Такие трещины могут образовываться при сжатии граничащих в этой зоне литосферных плит.

И это не единственный признак сжатия: глубинное сейсмическое профилирование, проведенное поперек АзороГибралтарской зоны с научно-исследовательских судов "Профессор Штокман" и "Рифт", показало, что Африканская плита здесь как бы "ныряет" под Евроазиатскую. А это пододвигание, как нам уже известно, может привести к крупным катастрофам вдоль границы плиты - образованию глубоких огнедышащих трещин, грозным вулканическим извержениям, расколу и опусканию крупных блоков океанской коры вместе с находящимися на них островами.

Вспомним снова Платона. Он пишет, что катастрофа произошла одновременно на всем Средиземноморье - на востоке погибло афинское войско и все Праафинское государство. Это могло произойти при извержении вулкана Санторин в Эгейском море. На западе - по ту сторону Геркулесовых Столбов в результате той же катастрофы при столкновении Африканской и Евроазиатской плит - раскололся и погрузился в воду огромный архипелаг, протянувшийся от Азорских островов до Гибралтара, а вместе с ним и Атлантида.

Что же до развалин стен на самой макушке горы Ампер, то кому же придет в голову строить большой город на вершине вулкана? На вершине, по всей вероятности, могло быть только небольшое укрепление. Поэтому, если и искать дальше следы построек на Ампере, то на западном склоне горы, где на глубине около ста метров находится обширное плато, закрытое донными осадками. Для того чтобы найти Атлантиду, надо изучить подводные горы Азоро-Гибралтарской системы и выяснить, была ли вся эта огромная горная страна прежде на поверхности океана.

Ну а если считать, вслед за Аристотелем, Олегом Георгиевичем Сорохтиным и другими скептиками, что никакой Атлантиды вообще не было, а все это миф, выдуманный Платоном от начала и до конца, то и тогда следует признать, что миф этот полезный. Ведь не удалось же алхимикам в средние века синтезировать золото, найти секрет "философского камня", но сколько открытий, и нешуточных, принесли они науке! Проникновение человека на океанское дно сулит не мифические, а вполне реальные открытия. В то время как мы изучали подводные горы в Атлантике, другое научно-исследовательское судно нашего института - "Академик Мстислав Келдыш" - проводило изучение гайотов в Тихом океане.

На вершине одной из этих гор с подводного обитаемого аппарата "Пайсис" были взяты железомарганцевые конкреции с промышленным содержанием кобальта и меди. Так что есть что искать под водой и кроме Атлантиды.

Водопад уходит за границу

Новость, опубликованная газетами Республики Зимбабве, потрясла все население: страна может потерять свою часть водопада Виктория. А ведь это ее величайшее природное чудо и главнейший аттракцион для туристов. Водопад Виктория на реке Замбези, на границе между Замбией и Зимбабве, так энергично разрушает ложе реки, что вскоре, лет через 15-20, отодвинется вверх по течению реки и окажется целиком на территории Замбии. Мози-Оа-Тузи, "Дымящийся гром",- так называют африканцы могучий водопад. Ширина его около 1800 метров. Вода падает с высоты 108 метров. В период дождей здесь низвергаются в пучину 550 тысяч кубометров воды в минуту. Английский путешественник Дэвид Ливингстон, первый из европейцев увидевший в 1855 году и описавший водопад, исследовал берега Замбези и установил, что водопад уже сдвинулся на 25 километров вверх по течению. Теперь процесс эрозии идет быстрее, потому что базальты, образующие русло реки, имеют в этом месте трещины, заполненные глиноподобным материалом, так что сила падающей воды легко разрушает их. Итак, к концу нынешнего тысячелетия водопад Виктория уйдет с территории Зимбабве.

"Насос" в океане

Примерно 570 миллионов лет назад в кембрийском периоде на Земле произошло чрезвычайное событие, круто изменившее все развитие жизни на планете: появились и широко расселились животные, имеющие твердый скелет.

Без него, вероятно, были бы невозможны многие последующие биологические успехи, в том числе и восхождение к существам разумным. Скелеты, панцири, раковины появились как бы вдруг.

Причем не у отдельных единичных видов, а у подавляющего большинства морских животных. Почему? Что этому предшествовало? Что послужило толчком?

Вот уже полтора века геологи ищут этому объяснение. Гипотезы сменяют одна другую.

Высказывалось поедположение, что, мол, существовавшие прежде мягкотелые животные оказались не защищенными от хищников и потому погибли, выжили только те, кто обрел прочную оболочку. Обсуждали состав воды. Якобы сначала в океане был излишек углекислоты. Она растворяла карбонат кальция, пригодный для сооружения раковин. Позже расплодившиеся водоросли значительно уменьшили количество углекислоты, и тогда часть карбоната кальция оказалась нерастворенной, она могла пойти на строительство твердых оболочек для животных. Образование скелетов ставили в зависимость от соотношения солей кальция и магния, которое будто бы именно с кембрия резко изменилось. В этой гипотезе не учитывается, что у многих древнейших животных раковины были не кальциевые, а фосфатные и кремниевые, следовательно, соотношения кальция и магния тут явно ни при чем.

К решению загадки кембрия привлекали космические силы; резкое увеличение радиации от вспышки сверхновой звезды где-то вблизи от Солнечной системы.

У большинства из этих гипотез был общий недостаток-однобокость. В них не принимался в расчет комплекс кембрийской обстановки, а обсуждалась лишь какая-то отдельно взятая предположительная особенность того периода.

Но вот одна из недавних исследовательских работ, проведенная в Институте океанологии АН СССР доктором физико-математических наук О. Сорохтиным и доктором геолого-минералогических наук А. Городницким, кажется, открыла наконец путь к решению загадки. Работа посвящена не кембрию. Он в ней даже не упоминается. И вместе с тем...

Утонувшие острова

Всего несколько десятков лет назад дно океана считали ровным, похожим на выглаженную изнутри чашу. В годы второй мировой войны геолог Гарри Хесс, он тогда плавал в Тихом океане штурманом на американском транспорте "Кейп-Джонсон", внес в эти представления существенную поправку. Проходя глубоководные участки, он не выключал эхолот с самописцем, как это обычно делали на всех других судах, и открыл в океане отдельно стоящие подводные горы с плоскими вершинами, о существовании которых никто не подозревал. Хесс назвал свои горы гайотами, поскольку база, куда они возвращались после рейсов, носила имя "Гайот-холл". (По другой версии, горы названы в честь известного геолога XIX века Арнольда Гюйо.)

Будущий профессор Принстонского университета, теоретик морской геологии - Гарри Хесс сам дал и толкование происхождения открытых им гор.

Гайот - это потухший вулкан, вершина которого некогда поднималась над морской поверхностью в виде обычного острова. Со временем океанский прибой полностью размыл вершину, а опустившееся дно переместило усеченный конус на большую глубину.

В этой версии все выглядело настолько просто и естественно, что она просуществовала до наших дней. Возникал только вопрос: почему погружение оказалось столь глубоким - более километра?

Впрочем, в годы открытия гайотов в геологии еще господствовала фиксистекая теория, из которой как раз и следовало, что земная кора - на суше ли, на море ли - знала только вертикальные перемещения.

Версия Хесса поначалу устроила и неомобилистов (они громко заявили о себе в 60-х годах), поскольку, по их представлениям, морское дно, нарождающееся по оси срединно-океанических хребтов, заметно опускается, отодвигаясь к окраинам океана.

Но вот начались более детальные исследования гайотов. С их неровных площадок глубоководными драгами брали крупные образцы пород для исследования. Позже горы бурили. Все они действительно оказались потухшими вулканами, размытыми, перекрытыми сверху коралловыми рифами. Коралловые острова опустились на глубину, а их строители погибли. Произошло это в меловое время (в альбском и сеноманском ярусах), то есть примерно 100 миллионов лет назад.

Чем именно это время пришлось не по вкусу такому множеству кораллов?

Чарлз Дарвин еще в 1842 году в книге "Строение и распределение коралловых рифов" высказал идею происхождения атоллов. Вулканические острова быстро обрастают рифами, если вода вокруг достаточно тепла. Потухший вулкан начинает медленно погружаться, со временем его вершина полностью исчезает под водой, а полипы продолжают тянуться к поверхности моря, образуется лагуна, опоясанная рифом. Вулкан опускается все глубже.

Кораллы тянутся вверх: чтобы не погибнуть, они беспрерывно надстраивают свой дом.

Эта идея Дарвина оказалась абсолютно верной. Окончательно она подтвердилась, когда ряд атоллов (ближе к нашим дням) "просветили" сейсмикой и прорезали скважинами. Оказалось, что коралловая толща, например, на атолле Бикини достигает 800 метров, ниже залегает изверженный базальт. Известно, что колонии полипов, строящих рифы, живут на глубине не более ста метров. Значит, они в самом деле, как представлял себе это Дарвин, все время наращивают этажи своего дома, поселившись на тонущем вулкане.

Загрузка...