112
с другими, отнесенными к иной системе отсчета, Эйнштейн представил себе человека, который движется вместе с системой и не видит никаких других систем. Он наблюдает только, совместились ли тела с отметками на измерительных стержнях данной системы отсчета. Этот "наблюдатель" фигурирует почти во всех изложениях теории относительности, но можно было бы обойтись и без него; он представляет собой столь же воображаемую фигуру, как и координатные оси и измерительные стержни, прибитые к движущемуся тепу и образующие движущуюся вместе с ним систему отсчета (систему отсчета, в которой это тело неподвижно). "Наблюдатели" так же мало затушевывают объективный смысл теории относительности, как выражение "если вы протянете веревку от Земли до Солнца..." ставит объективный факт - определенное расстояние между небесными телами - в зависимость от реальных или воображаемых измерений. Когда воображение рисует "наблюдателя", то появляется несколько неясный образ человека, привязанного к летящим в пространстве измерительным стержням и способного одновременно измерять положения тел при помощи этих бесчисленных и бесконечных по величине стержней. Этот образ может быть заменен менее точным, но более представимым образом пассажира в купе поезда с задернутыми занавесками на окнах или в каюте корабля (этой каютой пользовался, как мы помним, Галилей для демонстрации классического принципа относительности).
Представим себе корабль, движущийся с той же скоростью, что и волны на поверхности моря. Для находящегося на корабле "наблюдателя", т.е. для человека, который может измерить скорости только по отношению к кораблю, волны покажутся неподвижными. Не замечая ни неба, ни берегов, "наблюдатель" увидит как бы застывшую поверхность моря, он ничего не будет знать о движении волн - ведь они неподвижны по отношению к кораблю. Такие субъективные впечатления "наблюдателя" лишь условное выражение объективного факта: волны действительно неподвижны по отношению к системе отсчета, в которой неподвижен корабль (к системе, "привязанной" к кораблю).
113
Эйнштейна заинтересовал вопрос, сохранится ли неподвижность волн по отношению к кораблю (к системе отсчета, "привязанной" к кораблю, и к находящемуся на нем "наблюдателю"), если это будут не волны на водной поверхности, а электромагнитные волны, т.е. свет. Свет пробегает вдоль Земли со скоростью, приблизительно равной 300 000 километров в секунду. Пусть корабль движется по морю с такой же скоростью. Для "наблюдателя" на корабле свет имеет тогда нулевую скорость. Но в этом случае оптические процессы на корабле резко изменятся, например вспышка фонаря не осветит экрана, находящегося на носу корабля. Электромагнитное поле станет аналогичным застывшей поверхности моря, окружающей корабль, оно окажется переменным в пространстве, т.е. в пространство будут чередоваться гребни и впадины, но они не будут сдвигаться с течением времени. Такое изменение оптических процессов позволит "наблюдателю" зарегистрировать абсолютным образом движение системы. Вооруженный оптическими инструментами "наблюдатель" сможет отличить движущийся корабль от неподвижного. Но это противоречит теории Максвелла, в которой свет всегда представляет собой движущиеся электромагнитные волны. Противоречит это и интуитивному убеждению в невозможности зарегистрировать равномерное и прямолинейное движение при помощи внутренних эффектов в движущейся системе.
Об указанном парадоксе, овладевшем его мыслями в шестнадцать лет в Аарау, Эйнштейн говорит:
"Парадокс заключается в следующем. Если бы я стал двигаться вслед за лучом света со скоростью с (скорость света в пустоте), то я должен был бы воспринимать такой луч света как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует; это видно как на основании опыта, так и из уравнений Максвелла. Интуитивно мне казалось ясным с самого начала, что с точки зрения такого наблюдателя все должно совершаться по тем же законам, как и для наблюдателя, неподвижного относительно Земли. В самом деле, как же первый наблюдатель может знать или установить, что он находится в состоянии быстрого равномерного движения?" [1]
1 Эйнштейн, 4, 278.
По существу, указанный парадокс является конфликтом между двумя идеями классической механики, перенесенными в новую область электродинамических процессов.
Первая из них представляет собой классическое правило сложения скоростей. Если человек идет по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда он идет по направлению движения поезда, и со скоростью 50-5 = 45 километров в час, когда он идет в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55-50 = 5 километров в час. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30-30 = 0 километров в час, т.е. они остаются неподвижными. Что же произойдет в случае электромагнитных волн? Сохранится ли здесь столь очевидное правило сложения скоростей?
Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущейся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, т.е. можем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разность между их координатами в одной инерциальной системе отсчета - всегда равно их расстоянию в другой инерциальной системе.
Вторая идея - принцип относительности. Находясь на корабле, движущемся равномерно и прямолинейно, нельзя обнаружить его движение какими-либо внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое, электродинамическим эффектам? Интуиция (довольно явным образом связанная с классическим принципом относительности)
115
говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определенной скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантной по отношению к галилеевым преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом, электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми. Непротиворечивая картина мира могла быть только парадоксальной, "безумной", т.е. отказывающейся от привычного и поэтому "очевидного" положения. От какого именно - от правила сложения скоростей или от принципа относительности, - это должен был решить эксперимент.
В 1882 г. Майкельсон произвел решающий эксперимент. Он пользовался прибором, который называется интерферометром и позволяет обнаруживать очень небольшие различия в скорости света. В нем имеются две трубки, по которым пробегают лучи света. Одна трубка была направлена вдоль движения земной поверхности и находящегося на ней прибора, другая трубка находилась в поперечном положении. Движение Земли в мировом эфире должно было сказаться в увеличении скорости света, когда последний проходит по продольной к движению Земли трубке навстречу этому движению, и в уменьшении скорости, когда свет догоняет Землю. Измерить скорость света при прохождении по трубке от одного конца до другого невозможно. Удается измерить время, необходимое свету для движения по трубке туда и обратно. Пусть свет направлен по движению Земли. Тогда он придет к противоположному концу продольной трубки с запозданием, а обратный путь проделает с опережением. Но опережение на обратном пути не полностью компенсирует запоздание, и в целом получается небольшое запоздание. Свет пройдет туда и обратно в продольной трубке за большее время, чем туда и обратно по поперечной трубке. Сравнив скорость света в продольной и поперечной трубках, мы обнаружим это запоздание, если движение Земли оказывает влияние на скорость света относительно Земли.
116
Земля движется в мировом пространстве со скоростью около 30 километров в секунду, и изменение скорости света должно было оказаться величиной, которую интерферометр Майкельсона обязательно обнаружил бы. Однако скорость света оказалась независящей от движения Земли в эфире; опыт дал отрицательный результат. Можно было предположить, что прибор Майкельсона увлекает при своем движении эфир, так что трубка интерферометра и весь прибор в целом не движется относительно эфира. Но такое предположение было опровергнуто другими оптическими экспериментами.
В самом конце прошлого столетия Вильям Томсон говорил, что наука, наконец, вошла в гавань, разрешила все коренные вопросы и может теперь только уточнять детали. Но он упомянул о двух нерешенных проблемах. Одна из них состояла в некоторых затруднениях теории излучения - они-то и привели в 1900 г. Макса Планка к идее квантов. Второй нерешенной проблемой Томсон считал результаты опыта Майкельсона. За вычетом указанных проблем, по его мнению, науке ничто не угрожает и она может считать себя гарантированной от пересмотра своих коренных теоретических устоев. И как это часто бывает, не успели метеорологи объявить о наступлении ясной погоды, как грянул гром. Он грянул именно из тех тучек, о которых говорил Томсон. Результаты опыта Майкельсона и множество аналогичных опытов опрокинули, казалось бы, самые очевидные представления о мире. В 1905 г. инженер бернского патентного бюро заявил, что свет действительно распространяется с одной и той же скоростью относительно всех тел, движущихся с постоянной скоростью одно относительно другого - встречающихся, отстающих одно от другого, перегоняющих одно другое.
Чтобы подчеркнуть всю парадоксальность этого утверждения, нарисуем следующую картину. С палубы быстро движущегося корабля бросаются в воду два человека, плавающие с одной и той же быстротой. Один из них плывет от носа к корме, т.е. навстречу кораблю, другой от кормы к носу, догоняя корабль. Казалось бы, очевидно, что пловцы затратят различное время: тот, кто плывет по воде навстречу кораблю, достигнет кормы скорее, чем вто
117
рой пловец - носа корабля. И вот вопреки очевидности пловцы проходят этот путь в одно и то же время, т.е. с одной и той же скоростью. Разница в скорости показала бы, что корабль движется. Если такой разницы нет, то о движении корабля можно судить только по изменению его расстояния от берега или от другого корабля, движение его относительно; с тем же правом можно сказать, что берег движется относительно корабля. Свет ведет себя, как эти пловцы. Оптические процессы в теле не дают внутренних критериев движения, не дают основания говорить об абсолютном движении. Свет распространяется с одной и тон же скоростью относительно различных, движущихся одно относительно другого, тел. Мы уже говорили недавно о системах отсчета воображаемых измерительных стержнях, с помощью которых можно измерить скорость, в частности скорость света. Основную посылку теории относительности Эйнштейна выражают словами "скорость света одна и та же во всех системах отсчета, движущихся одна относительно другой без ускорения".
Мы можем прикрепить систему отсчета к кораблю и считать неподвижными стоящие на палубе предметы; можем прикрепить ее к берегу и зарегистрировать движение этих предметов с уплывающим кораблем; можем прикрепить систему отсчета к Земле, к Солнцу, к Сириусу, и каждый раз у нас получится другая картина покоящихся и движущихся тел во Вселенной. Но переход от одной системы отсчета к другой ничего не меняет в ходе внутренних процессов в теле. В одной системе тело неподвижно, в другой оно движется, по эти определения "неподвижно" и "движется" относительны, они имеют смысл только по отношению к некоторой системе отсчета; движение тела выражается в изменении расстояний от других тел - и только, а покой выражается в неизменности таких расстояний - и только. Внутренних различий, различий в ходе внутренних процессов нет, в том числе нет различий в скорости света.
Так была дискредитирована идея привилегированной абсолютной системы отсчета, убеждение, что в некоторой абсолютной системе отсчета при регистрации движения и при измерении скорости мы получаем "истинные" данные, а в других системах отсчета движение и покой представляют собой лишь кажущиеся состояния. Так была
118
завершена коперниканская революция, отнявшая у Земли ее абсолютную неподвижность, а у системы отсчета, в которой Земля неподвижна, - ее привилегированный характер. Когда Коперник и Галилей показали людям, что движение тел, каким оно представляется при наблюдении с Земли и при измерении в системе отсчета, привязанной к Земле, не имеет абсолютного характера, дальнейшее развитие идеи относительности уже не могло никого поразить. Но ликвидация последней линии укреплений, защищавших абсолютное движение, потребовала признания самой парадоксальной картины, какую только можно представить, - картины движения света с одной и той же скоростью в системах, которые сами движутся одна относительно другой.
Признание парадоксальности новой картины мира - исходный пункт анализа ее воздействия на характер научного мышления. Но парадоксальные утверждения Эйнштейна не вызвали бы такого широкого резонанса, если бы они не были так тесно логически и исторически связаны с "классическим идеалом" и с предыдущими переворотами в науке, освобождавшими ее от антропоцентрических абсолютов.
Убеждение, что человек, прохаживающийся по палубе корабля, движется с различной скоростью относительно этого корабля, относительно встречного корабля, относительно берега и т.д., было незыблемым. Весьма естественным казалось убеждение, что и свет распространяется с различной скоростью в движущихся одна по отношению к другой системах. Но без того чтобы разрушить это убеждение, нельзя было окончательно ликвидировать антропоцентрические призраки в науке и завершить освобождение науки от этих призраков, начатое в новое время Коперником и Галилеем. По сравнению с гелиоцентризмом новая революция против абсолютного движения принесла людям еще более парадоксальные представления. В XVI-XVII вв. движение приписали телу, которое до того считалось неподвижным, но само движение понимали так же, как и раньше. В этом отношении неевклидова геометрия с ее треугольниками, у которых сумма углов не равна двум прямым углам, с перпендикулярами к прямой, расходящимися по мере удаления от нее или сходящимися в некоторой точке, была более парадоксальной. Но здесь речь шла о геометрических теоремах, кото
119
рые могли казаться и часто казались свободными творениями мысли, выводящей их логически непротиворечивым образом из произвольных, в том числе парадоксальных, допущений. "Безумие" теории Эйнштейна одного порядка с "безумием" неевклидовой геометрии. Даже сейчас трудно представить себе одну и ту же скорость по отношению к движущимся одна относительно другой системам. Не менее трудно было представить себе соотношения неевклидовой геометрии. Но здесь налицо очень существенное различие. Безумный монолог не вызывает удивления. Удивительной будет безумная действительность, отступление от привычного в реальных явлениях и в достоверно отражающих эти явления понятиях. Мысль о произвольных допущениях, которую можно выразить столь частой фразой: "Чего только не придумают!", в случае теории относительности полностью исключена. Она исключена всей суммой экспериментов, лежащих в основе теории относительности. У Эйнштейна речь явно идет не о парадоксальных теоремах, а о парадоксальной реальности. Движение, само движение, противоречит и очевидности в смысле непосредственно наблюдаемого поведения окружающих тел и той, как казалось, априорной, логической, присущей разуму очевидности, которая свойственна геометрическим аксиомам. Эйнштейн отбросил в принципе и первую и вторую "очевидность" - и эмпирическую очевидность наблюдаемых явлений, и априорную очевидность геометрических аксиом.
Но несмотря на свою парадоксальность, теория относительности производит впечатление чего-то глубоко конструктивного, причем завершающего то здание, которое начали строить с самого возникновения современной науки.
Созданная в XVII в. классическая картина мира основана не только на "очевидном" правиле: если тело движется с одной скоростью относительно одной системы, оно должно двигаться с иной скоростью относительно другой системы, движущейся относительно первой. Классическая картина мира рассматривает его как совокупность тел, движущихся одно относительно другого. Эфир, заполняющий мировое пространство, выходит за рамки первоначальной классической картины мира. И теперь мы возвращаемся к ней, правда, пожертвовав для этого "очевидным" правилом сложения скоростей. В этом смысле
120
сама структура теории относительности весьма парадоксальна. С одной стороны, "безумная" идея - движение с постоянной, одной и той же скоростью по отношению к различным движущимся одна относительно другой системам. С другой стороны, устоявшаяся за много веков (начиная с Демокрита!) картина Вселенной, где нет ничего, кроме тел, движущихся одно относительно другого.
По отношению к этой картине классическая физика производила впечатление недостроенного здания. Тела движутся не только одно относительно другого, но и в абсолютном смысле в неподвижном эфире, позволяющем определить скорости тел по отношению к чему-то абсолютно неподвижному, т.е. определить абсолютные скорости тел. Движение в эфире должно воздействовать на скорость распространения света сквозь движущуюся среду, и, таким образом, оптика становится опорой абсолютного движения, которое устранено из мира прямолинейно и равномерно смещающихся материальных тел. Теория Эйнштейна, отказавшись от классического правила сложения скоростей, смогла подчинить принципу относительности все процессы, происходящие в равномерно и прямолинейно движущихся системах. Все эти процессы - не только механические, но и оптические - не изменяются под влиянием движения систем. Движение систем не вызывает каких-либо внутренних эффектов, сводится к изменению взаимного расположения тел в природе.
Близость этого вывода теории Эйнштейна к классическому принципу относительности облегчала ее усвоение и придавала убедительную достоверность этой теории, включая "безумный" тезис о постоянной и неизменной скорости света в движущихся различным образом и смещающихся одна относительно другой системах. Впечатление "достройки" классической картины мира переносило на новую теорию ореол достоверности. Этим ореолом были окружены и правило сложения скоростей, и классический принцип относительности. Задача состояла в том, чтобы определить, подчинятся ли, во-первых, принципу относительности и, во-вторых, классическому правилу сложения скоростей не только механические, по и оптические процессы. Оказалось, что оптические процессы подчиняются принципу относительности и не подчиняются правилу сложения скоростей. Таким образом, достройка принципа относительности потребовала перестройки классической
121
кинематики, т.е. картины перемещения тел в пространстве. Вскоре оказалось, что такая достройка требует перестройки и классической динамики, т.е. учения о силах и связанных с ними ускорениях. Связь теории относительности с классической физикой состоит не только в достройке классической физики. Когда тела движутся медленно, по сравнению со скоростью света, мы можем рассматривать скорость света как бесконечную. Тогда мы приходим к соотношениям старой, классической механики. Последняя оказывается приближенным описанием действительности. Теория относительности переходит в такую приближенную теорию, когда определенная величина отношение скорости движущегося тела к скорости света - стремится к нулю или, что то же самое, отношение скорости света к скорости тела стремится к бесконечности. Подобное соотношение между двумя теориями - одна переходит в другую, когда некоторый параметр стремится к нулю или к бесконечности, существовало в математике. Если на поверхности сферы начертить треугольник, то сумма его углов будет больше двух прямых углов, иначе говоря, здесь будут царить соотношения неевклидовой геометрии. Когда радиус сферы неограниченно растет, эти соотношения неограниченно стремятся к евклидовым, и мы можем сказать, что на поверхности сферы бесконечного радиуса неевклидова геометрия уступает место евклидовой.
Но отсюда еще не следует однозначная физическая теория, переходящая в иную при бесконечном значении некоторого параметра. В физике XIX в. существовало несколько сходное, но все же иное соотношение между теориями. В учении о движении молекул необратимые процессы появляются, когда число молекул становится достаточно большим, и законы необратимых процессов становятся все более точными по мере увеличения этого числа. Но основная проблема учения о теплоте и состоит в связи обратимых процессов в системах с небольшим числом молекул и необратимых процессов в больших статистических ансамблях. Уже это представление о различных теориях, законных, т.е. достаточно точно описывающих действительность, при различных масштабах явлений, ломает схемы Маха и Пуанкаре. Если макроскопические закономерности термодинамики наталкиваются на неожиданные, "удивительные" явления при переходе к
122
молекулярным масштабам, то что остается от априорной, либо условной, трактовки термодинамики? И что остается от представления о "чистом описании", если теория, служившая эталоном такого описания, термодинамика - переходит в теорию, где фигурируют непосредственно не наблюдаемые молекулы и их движения?
В учении о теплоте различие между макроскопической термодинамикой и механикой молекул не имеет парадоксального характера. Термодинамические законы надстраиваются на законах механики частиц и не колеблют их. Тот факт, что в больших ансамблях действуют статистические законы, не противоречит тому факту, что в мире отдельных молекул действуют абсолютно строгим и точным образом законы ньютоновой механики. В теории относительности появляется иная оценка классической механики. Дело не в том, что объяснение явлений природы не может свестись к решению простых механических задач. Дело в том, что старые законы механики оказываются неточными, строго говоря, всегда неверными. Поэтому здесь уже нельзя говорить о двух равноправных взглядах на физические явления. Здесь речь идет о выборе нового исходного образа картины мира. Вопрос идет не о сводимости или несводимости сложных закономерностей к исходному, самому простому и элементарному закону, а о том, каков именно этот закон. Если он отличается от ранее известного "очевидного" закона, то парадоксальная ситуация не может быть устранена разделом сфер влияния. Вместо равноправных аспектов появляется их иерархия.
В теории относительности учет конечной скорости света и неизменности этой величины во всех инерциальных системах представляет собой более глубокое, общее и точное воззрение. В теории относительности, подчеркнем это еще раз, речь идет о парадоксальности самых глубоких, точных и достоверных законов бытия. Мысль должна переработать не собственные апории, а то достоверное "чудо", которое лежит в основе "надличного" мира. Именно такое соотношение между теорией относительности и ньютоновой механикой позволяет дать обоснование последней, объяснить, почему при определенных значениях скорости движущихся тел наблюдения не противоречат ньютоновой механике. Тем самым все эксперименты И все данные практики, подтверждающие классическую механику Ньютона, становятся подтверждением новой механики Эйнштейна.
123
Ореол достоверности - именно он сделал теорию относительности самой удивительной теорией в истории физики. Впечатление, которое она оказала на широкие круги, объясняется прежде всего тем, что теория была непреложно достоверной и вместе с тем казалась совершенно парадоксальной. Это и вызывало интерес, подчас мучительный и всегда жгучий.
Парадоксы Зенона независимо от их логического анализа всегда считались затруднениями мысли, а не парадоксами бытия; ведь каждый понимал, что Ахиллес догонит черепаху. Парадоксы неевклидовой геометрии стали парадоксами бытия только после теории относительности. Признание достоверной, объективной, реальной парадоксальности самого бытия было связано с философскими концепциями Эйнштейна, работавшими на теорию относительности, т.е. стержневыми концепциями, перераставшими из личного мировоззрения в область идейных предпосылок теории относительности. Для Эйнштейна восприятие парадоксальных явлений - доказательство объективной природы мира, аргумент против априорного происхождения сведений о мире. За восприятиями находится объективная сущность вещей, она-то и раскрывается все больше и больше при последовательном столкновении логических конструкций с восприятиями и при вызванном этими столкновениями развитии конструкции. Классическая физика, достоверным образом описывающая мир, столкнулась с "удивительным", т.е. не укладывающимся в привычную логическую конструкцию фактом постоянства скорости света в различных, движущихся одна относительно другой системах. Привычная логическая конструкция охватывала и концепцию времени, текущего единым потоком во всем бесконечном пространстве, и ряд других фундаментальных основ классической картины мира. И вот Эйнштейн шаг за шагом создает новую универсальную конструкцию. Задача его в основном позитивная. Негативная сторона дела, т.е. разрушение старой картины мира, сводится к тому, что эта старая картина отныне трактуется как менее точное по сравнению с новой приближение к действительности. Каждая из таких картин ограничена определенными условиями, каждая может столкнуться и с течением времени столкнется с "удивительным" и путем "бегства от удивительного" перейдет в более общую и точную картину.
124
Лоренц пытался сохранить существование эфира и отнесенного к нему абсолютного движения, несмотря на результаты опыта Майкельсона. Он хотел объяснить наблюдаемую в интерферометре независимость скорости света от движения Земли, предположив, что все тела при движении относительно эфира сокращаются в своих продольных размерах. Такое сокращение Лоренц выводил из законов электродинамики, считая все тела состоящими из элементарных электрических зарядов. Движение относительно эфира вызывает силы, сдвигающие друг к другу заряды, движущиеся в эфире один за другим в направлении движения тела. Никакие электродинамические явления не требовали для своего объяснения такой гипотезы, и она была введена ad hoc специально для объяснения одного факта - отрицательного результата опыта Майкельсона и аналогичных опытов. Никакие прямые наблюдения не доказывали продольного сокращения тел при их движении в эфире. Но Лоренца это не могло смутить. Ведь линейка, которой мы измеряем в продольном направлении движущееся тело, также движется и также сокращается. Поэтому прямое измерение не может обнаружить лоренцево сокращение.
Гипотеза продольного сокращения объясняет результаты Майкельсона, не затрагивая основ классической механики. Свет распространяется в продольной трубке интерферометра медленнее, чем в поперечной, но продольная трубка сократилась и поэтому свету понадобилось то же время, что и для прохождения по поперечному плечу. Таким образом, постоянство скорости света теряет свой парадоксальный характер. Оно оказывается феноменологическим результатом взаимной компенсации двух чисто классических процессов. Один из них замедление света благодаря движению интерферометра по отношению к эфиру, благодаря тому, что свет вынужден догонять интерферометр. Второй процесс сокращение плеча интерферометра ровно настолько, чтобы замедленный луч прошел через трубку интерферометра в течение неизменного интервала времени. Продольное сокращение, о котором говорит Лоренц, такое же классическое явление, как сокращение отсыревшей веревки. Разница состоит в том, что сокращение отсыревшей веревки можно обнаружить
125
при помощи сухой веревки, а лоренцево сокращение нельзя обнаружить, так как в этом случае уже не может быть "сухой веревки" - несокращающегося при движении масштаба. Нетрудно видеть, что гипотеза Лоренца в очень малой степени удовлетворяет требованиям, которые Эйнштейн предъявлял научной теории. Гипотеза сокращения не сталкивается с какими-либо противоречащими ей фактами, но она не обладает "естественностью" и другими критериями "внутреннего совершенства". Именно в этом уязвимое место теории Лоренца. Она выдвинута ad hoc, она не вытекает из широких посылок, опирающихся на большой и разнообразный круг явлений. Тем не менее теория Лоренца давала простор развитию идеи относительности движения. Правда, относительность была в этой теории феноменологической. За внешней, видимой относительностью движения, вытекающей из видимого постоянства скорости света, таилось абсолютное движение, проявлявшееся в различной скорости света в неподвижных и движущихся системах. Но абсолютное движение здесь действительно таится. Если бы можно было прямым измерением обнаружить лоренцево сокращение при движении относительно эфира и отсутствие такого сокращения в неподвижных относительно эфира телах, мы имели бы доказательство абсолютного характера движения. Но обнаружить его нельзя. В теории Лоренца абсолютное движение царствует, но не управляет, царствует за кулисами видимой сцены и не управляет явлениями, доступными наблюдателю. Классическая, исходящая из абсолютного движения теория Лоренца не препятствовала поэтому разработке формального аппарата теории относительности, получению формул преобразования координат, оставлявших неизменной скорость света.
Развитие этого аппарата, установление указанных формул имело место в работах Лоренца и Пуанкаре, опубликованных почти одновременно со статьей Эйнштейна "К электродинамике движущихся тел". Но в этих работах не содержалось новой физической теории, которая стала основой физической картины мира и получила название теории относительности. Решающий пункт генезиса теории относительности - это мысль о субстанциальности относительного движения, о том, что свет действительно движется с одной и той же скоростью в различных, движущихся одна относительно другой системах.
126
Это постоянство скорости света не феноменологический результат компенсации различий в скорости в силу сокращений размеров, как в теории Лоренца.
Тем самым меняется угол зрения на лоренцево сокращение. Уже не может быть речи о какой-то нормальной длине, которая сокращается при движении и сохраняется при абсолютной (отнесенной к эфиру) неподвижности. Сокращение имеет взаимный характер. Возьмем две системы XYZ и X'Y'Z', которые движутся одна относительно другой. Измерим длину стержня, покоящегося в XYZ. Когда мы его измеряем в системе X'Y'Z' (в ней он движется), длина будет меньше, чем при измерении в системе XYZ (в ней он неподвижен). Но если мы возьмем стержень, покоящийся в X'Y'Z', то длина его в системе XYZ сократится по сравнению с длиной, измеренной в X'Y'Z'! Реально ли такое сокращение? Да, реально. Размеры тел действительно сокращаются, и реальной причиной сокращения (взаимного!) служит взаимное движение систем. Конечно, взаимное сокращение движущихся стержней кажется парадоксальным, но именно таково действительное, не зависимое от наблюдения соотношение размеров движущихся тел и зависит оно от реального, взаимного смещения тел, которые легче себе представить, чем абсолютное, не отнесенное к другим телам движение, фигурирующее в классической механике.
Теория Эйнштейна выводит лоренцево сокращение из самых основных и общих понятий науки - из более строгого и точного анализа понятий времени и пространства. Из него Эйнштейн выводит объяснение нового экспериментального факта - результата опыта Майкельсона. В этом смысле теория Эйнштейна укладывается в схему "внешнего оправдания" и "внутреннего совершенства". Когда новый, крайне парадоксальный факт - постоянство скорости света в интерферометре Майкельсона - потребовал какого-то объяснения, Лоренц выдвинул концепцию, согласующуюся с этим фактом и согласующуюся с ранее известными фактами, но не вытекающую из более общего принципа однозначным и естественным образом. Эйнштейн вывел объяснение нового парадоксального факта из перестройки всей картины мира, вытекающей из новой трактовки пространства и времени, т.е. из более глубокой, общей и конкретной интерпретации всей совокупности известных науке фактов. Таким образом, "бегство от чуда" завершилось теорией, сочетающей "внешнее оправдание" с "внутренним совершенством".
127
Именно в такой эпистемологической природе теории относительности и состоит ее отличие от концепций Лоренца и Пуанкаре, появившихся одновременно с ней. В начале 1955 г. Зелиг получил от Эйнштейна следующий ответ на вопрос о независимости его открытия от работ Лоренца и Пуанкаре:
"Если заглянуть в прошлое развития теории относительности, не будет сомнений в том, что в 1905 г. она созрела для своего появления. Лоренц уже знал, что уравнениям Максвелла соответствуют преобразования, названные потом его именем, а Пуанкаре углубил эту идею. Я был знаком с фундаментальной работой Лоренца, вышедшей в 1895 г., но позднейшей работы и связанного с ней исследования Пуанкаре не знал. В этом смысле моя работа была самостоятельной. Новое в ней состояло в следующем. Лоренцевы преобразования выводились здесь не из электродинамики, а из общих соображений..." [2]
2 Seelig, 116.
В этом все дело. Эйнштейн хотел в приведенном письме подчеркнуть подготовленность теории относительности, тот факт, что в статьях, написанных одновременно с его работой "К электродинамике движущихся тел", содержались важные идеи, прокладывавшие дорогу представлению о независимости скорости света от движения инер-циальных систем. Но при всей своей скромности он не мог не сказать главного: преобразования Лоренца (указывавшие на изменение длины стержней и хода часов и на неизменность скорости света) фигурируют в теории Эйнштейна в виде универсального закона, вышедшего за пределы электродинамики, связанного с общим пониманием пространства и времени.
Исходная идея Эйнштейна - необходимость опытной проверки логической конструкции. Понятие не может априорно соответствовать действительности. Оно должно приводить к результатам, допускающим сопоставление с опытом. Абсолютное движение не выдерживает такого испытания. Таким образом, все выводы теории относительности следуют не из специально созданных предположений, а естественно вытекают из общих принципов.
128
"То, что помимо прочего характеризует теорию Oтносительности, - пишет Эйнштейн, - это эпистемологическая точка зрения. В физике нет понятия, применение которого было бы a priori необходимо или оправданно. Понятие завоевывает свое право на существование только своей ясной и однозначной связью с явлениями и соответственно с физическими опытами" [3].
Способность исходить в построении конкретных физических теорий из самых общих, казалось бы решенных, проблем бытия - характерная черта Эйнштейна. Он говорил об этом однажды Джемсу Франку:
"Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребенок с нормальными наклонностями" [4].
3 Lettres a Soloviue, 21.
4 Seelig, 118-119.
При всей неожиданности такого объяснения (теория, пересматривающая понятия пространства и времени, обязана чуть ли не инфантильности своего творца) оно содержит глубокую и в основе правильную идею. У очень многих детей и юношей интеллектуальный онтогенез в известной мере повторяет развитие человеческой мысли в целом: общие размышления о бытии (вспомним, как герой "Отрочества" пытался проверить, сохраняют ли предметы свое существование, когда он поворачивается к ним спиной) сменяются более зрелыми, но ужо частными интересами. У Эйнштейна сохранилось это ощущение первого взгляда на мир - тайна многих великих мыслителей и художников - без "взрослой" уверенности в том, что коренные проблемы мира уже решены. Такое ощущение не было вытеснено и не потускнело при накоплении специальных знаний и интересов. Он думал о понятии движения и вернулся к идее, свойственной детству человечества, - к античной идее относительности, которую заслонили позднейшие идеи механики и концепция эфира, как абсолютного тела отсчета. Эта идея была положена в основу физики после того, как попытки обнаружить
129
эфирный ветер окончились неудачей. Эйнштейн предположил, что неудача вытекает из субстанциальных оснований, из отсутствия эфира в природе и бессодержательности понятия движения, отнесенного к эфиру. Теперь оставалось сделать все выводы из принципиальной невозможности абсолютного движения, отнесенного к привилегированной системе отсчета. Таким же путем шли создатели термодинамики. Они исходили из неудач при конструировании вечного двигателя, приписали этим неудачам принципиальный характер, предположив, что в природе нет исчезновения энергии и ее возникновения из ничего. После этого термодинамика могла отказаться от искусственных гипотез и систематически развивать выводы из сохранения энергии.
Эйнштейн приложил к одному из писем Морису Соловргау следующее короткое изложение основной идеи теории относительности:
"Несмотря на разнообразие экспериментальных истоков теории относительности, ее метод и содержание могут быть охарактеризованы в нескольких словах. Еще в древности было известно, что движение воспринимается только как относительное. В противоположность такому факту физика базировалась на понятии абсолютного движения. В оптике исходят из мысли об особом, отличающемся от других движении. Таким считали движение в световом эфире. К последнему относятся все движения материальных тел. Таким образом, эфир воплотил понятие абсолютного покоя, связанного с пустотой. Если бы неподвижный, заполняющий все пространство световой эфир действительно существовал, к нему можно было бы отнести движение, которое приобрело бы абсолютный смысл. Такое понятие могло быть основой механики. Попытки обнаружить подобное привилегированное движение в гипотетическом эфире были безуспешными. Тогда вернулись к проблеме движения в эфире, и теория относительности сделала это систематически. Она исходит из предположения об отсутствии привилегированных состояний движения в природе и анализирует выводы из этого предположения. Ее метод аналогичен методу термодинамики; последняя является не чем иным, как систематическим ответом на вопрос: какими должны быть законы природы, чтобы вечный двигатель оказался невозможным" [5].
5 Lettres a Solovine, 19.
Пространство, время, энергия и масса
Принцип относительности в связи с уравненинми Максвелла требует, чтобы масса била пропорциональна содержащейся в теле энергии. Свет уносит массу. Это соображение веселое и подкупающее. Но не смеется ли господь бог над этим и не водит ли он меня за нос - этого я не могу знать.
Эйнштейн
При изложении эйнштейновских критериев выбора научной теории и при анализе отношений Эйнштейна к классической механике уже говорилось о классической концепции абсолютного времени. Это понятие не вытекает из самых общих принципов классической картины мира, из того, что мы называли "классическим идеалом" пауки. В "классическом идеале" наука рисует картину мира, где нет ничего, кроме тел, движущихся одно по отношению к другому. Под движением подразумевается изменение положения тела относительно других тел с течением времени. "Течение времени", т.е. переход от одного мгновения к другому, представляется обязательным: классическая паука не ограничивала скорости тел, но бесконечная скорость тел в ней не фигурировала; напротив, казалось естественным, что тело, находящееся в данный момент в одном месте, не может быть в тот же момент в другом месте. Поэтому в "классическом идеале" паука рисует мир в четырехмерном аспекте: если речь идет о теле и характеризуется его положение, т.е. указываются три пространственные координаты, то вместе с ними указывается и время, когда тело достигло такого положения. Предполагается, что тело, вообще говоря, пе находится в покое и, во всяком случае, покоящееся тело не участвует в каких-либо событиях. Это классическое четырехмерное представление было нарушено понятием силы, распространяющейся с бесконечной скоростью. Постулат мгновенного дальнодействия не вытекал из более общих основ классической науки, противоречил ее "внутреннему совершенству", оставался произвольным дополнением к "классическому идеалу", нарушал естественную гармонию мироздания.
131
Восстановление гармонии было "надличным" стремлением Эйнштейна, определявшим всю его жизнь и все творчество. В данном случае задача была осложнена идеей эфира. Эфир, по выражению Планка, "дитя классической науки, зачатое во скорби", стал опорой понятия одновременности и распада четырехмерного "классического идеала" на самостоятельное время (его поток охватывает все пространство и не зависит от пространственных отсчетов) и самостоятельное пространство (в нем происходят события в течение непротяженного мгновения, в нулевое время). Мы видели, что регистрация событий, происшедших в одно и то же мгновение, может иметь место даже при конечной скорости сигналов, если существует неподвижный эфир как абсолютное тело отсчета для всех тел. Два сигнала из одного источника приходят в два пункта одновременно, если источник находится на равных расстояниях от этих двух пунктов и если сигналы передаются с одной и той же скоростью. Лучи света одновременно попадают на экраны, установленные на носу и на корме корабля, если они исходят из фонаря, зажженного посередине между носом и кормой. Если существует мировой эфир и движение корабля сказывается на скорости световых сигналов, то описанная синхронизация событий (попаданий света на экраны) возможна, пока корабль недвижен по отношению к эфиру. Представим себе другой корабль, который прошел рядом с первым в момент, когда зажегся фонарь. На втором корабле тоже есть экраны, но свет попал на них не одновременно, он должен был догонять экран на носу, а экран на корме шел навстречу свету (разумеется, если есть эфир, если второй корабль движется в эфире и если это движение сказывается в скорости световых сигналов на корабле). На первом корабле знают, что одновременность попаданий света имеет абсолютный характер, ведь их корабль неподвижен в эфире, неподвижен в абсолютном смысле. Пассажиры второго движущегося корабля не смогут с ними спорить, они знают, что неодновременное освещение их экранов объясняется движением корабля. Но если эфира нет и скорость света не зависит от движения, все
132
это меняется. Пассажиры второго корабля могут утверждать, что их корабль неподвижен (скорость сигналов действительно не обнаруживает движения) и что сигналы попадают па экраны в одно и то же время. Но пассажиры первого корабля имеют столько же оснований настаивать на неподвижности своего корабля и одновременности освещения своих экранов. Вместе с абсолютным движением теряет смысл и абсолютная одновременность. События, одновременные в одной системе отсчета, будут неодновременными в другой системе, и наоборот. Теория Эйнштейна покончила с фикцией единого потока времени, охватывающего всю Вселенную. Соответственно она покончила с фикцией чисто пространственных мгновенных процессов. Наступила эра четырехмерного, пространственно-временного представления о мире.
Математический аппарат такого представления был создан Германом Минковским в 1908 г. Минковский в это время жил в Гёттингене. Здесь издавна, со времен Гаусса, существовала традиция крайней изощренности в строгости математической мысли и интереса к основаниям математики. Почти за столетие до описываемого времени здесь встретила сочувственное понимание геометрия Лобачевского, здесь Риман изложил своп соображения о многомерной геометрии и здесь же он построил свой вариант неевклидовой геометрии. В Гёттпнгене любили математические тонкости. Их любили все: даже физики погружались в математические построения, не преследовавшие цели разъяснения физической сущности явлений. Эйнштейн как-то пошутил: "Меня иногда удивляют гёттингенцы своим стремлением не столько помочь ясному представлению какой-либо вещи, сколько показать нам, прочим физикам, насколько они превышают нас по блеску" [1].
1 Frank, 305.
В этом замечании чувствуется некоторая досада физика, ищущего необходимый ему аппарат и сталкивающегося с работами, блестящими по форме, но вносящими скудный вклад в собственно физические представления. Однако изощренность и строгость математической мысли у самых крупных мыслителей Гёттингена была связана с очень глубоким проникновением в ее физические истоки. Идею экспериментального решения вопроса: "какая
133
геометрия из возможных, т.е. непротиворечивых, геометрий соответствует реальности", мы встречаем и у Гаусса, и у Римана, и у гёттингенцев, современников Эйнштейна. В числе ученых, работавших в те годы в Гёттингене и обладавших "душою чисто гёттингенской" (в отличие от пушкинского героя, здесь дело не сводилось к идеальным романтическим порывам), были Герман Мипковский, Давид Гильберт, Феликс Клейн, Эмма Нётер, для которых теория относительности стала исходным пунктом блестящих математических обобщений.
Рассматривая математические исследования первой четверти XX в. в широком историко-культурном плане, видишь, как в работах названных гёттингенских ученых слились две струи научного прогресса. Разработка практически неприменявшихся концепций обоснования геометрии, изощренные, тонкие и строгие определения - все это, наконец, слилось с физической идеей, для которой указанное направление математической мысли стало рабочим аппаратом. Для этого, может быть, и требовался гениальный физик, мысль которого не была отягощена грузом традиционных философских и математических концепций пространства и времени.
Гильберт говорил: "На улицах нашего математического Гёттингена любой встречный мальчик знает о четырехмерной геометрии больше Эйнштейна. И все же не математикам, а Эйнштейну принадлежит то, что было здесь сделано" [2].
2 Frank, 206.
Гильберт объяснял это тем, что Эйнштейн не воспринял традиционного математическою и философского наследства в вопросе о пространстве.
Идея физической реальности некоторой новой, нетрадиционной, может быть парадоксальной, может быть неевклидовой, геометрии появилась у Лобачевского, Гаусса и Римана. Но она не стала физической теорией. Математика в своем развитии излучает некоторые "виртуальные" физические концепции; они поглощаются самой математикой подобно виртуальным фотонам, которые поглощаются тем же самым излучившим их электроном. Соответственно и физика излучает "виртуальные" математические образы, которые не становятся исходными точками новых направлений математической мысли.
134
Но теперь все получилось не так. Математика столкнулась с физической теорией, которая могла наполнить конкретным физическим содержанием соотношения четырехмерной геометрии. Очень важно, что речь шла не о феноменологическом, а субстанциальном содержании. Когда Пуанкаре, исходя из теории Лоренца, в которой постоянство скорости света не было субстанциальным, разработал очень общий и остроумный математический аппарат теории относительности, это не дало такого толчка и физике и геометрии, как идея Минковского, исходившего из субстанциального постоянства скорости света и открытой Эйнштейном субстанциальной неразрывности пространства и времени.
Минковский показал, что принцип постоянства скорости света может быть выражен в чисто геометрической форме. Он ввел уже знакомое нам понятие "события" (пребывания частицы в данный момент в данной пространственной точке) и представил "событие" в виде точки с четырьмя координатами (три пространственные координаты - место "события" - и четвертая координата, обозначающая время "события", измеренное особыми единицами). Такую точку Минковский назвал мировой точкой. Движение изображается последовательностью мировых точек - мировой линией, а совокупность всех возможных "событий", т.е. все, что происходит или может произойти во Вселенной, соответствует всем четырехмерным, мировым точкам - четырехмерному пространству-времени, которые Минковский назвал миром.
Подобное четырехмерное представление о движении содержалось уже в первоначальной формулировке теории относительности. Но Минковский высказал идею "мира" в явной и четкой форме, и это способствовало дальнейшему развитию теории относительности.
Когда представление о независимости пространства и времени сменилось представлением о четырехмерном пространственно-временном "мире", это было переходом от ньютоновой механики к иной механике того же типа, более гармоничной и непротиворечивой, с большим "внутренним совершенством" и "внешним оправданием", более близкой к "классическому идеалу". Теперь мы посмотрим, как теория относительности в своем логическом и историческом развитии пришла к выводам, угрожающим не только механике Ньютона, но и "классическому идеалу",
135
Это развитие шло через релятивистскую динамику, т.е. через утверждения теории относительности, касающиеся ускорений тел под действием сил, к их энергии и массе.
Из основных посылок теории относительности Эйнштейн вывел новое правило сложения скоростей. Из эйнштейновского правила сложения скоростей следует, что ни в одной системе отсчета скорость данного тела не может быть больше скорости света. Пусть тело движется с некоторой скоростью и получает добавочный импульс. К старой скорости прибавится новая. Из нового правила сложения скоростей следует, что при этом скорость тела не может превысить скорость света. Дополнительные импульсы будут давать все меньшее приращение скорости по мере того, как скорость тела будет приближаться к скорости света.
Тезис о предельном характере скорости света естественно вытекал из общих допущений и из конкретных наблюдений, и Эйнштейн считал его совершенно достоверным. Поэтому он очень энергично обрушился на одну популярную иллюстрацию конечной скорости света, в которой фигурировало движение быстрее света. Речь идет о фантастической повести Фламмариона "Люмен".
Герой этой повести Люмен движется со скоростью 400 000 километров в секунду, т.е. на 100 000 километров в секунду быстрее, чем свет. Догоняя последовательно световые волны, он встречает те из них, которые вышли из источника раньше. Поэтому Люмен видит финал битвы при Ватерлоо, потом ее начало, а в промежутке - снаряды влетают в жерла пушек, мертвые поднимаются и встают в ряды сражающихся и т.д.
В апреле 1920 г. Мошковский рассказал Эйнштейну о повести Фламмариона. Эйнштейн не жалел резких слов для характеристики изложенной в ней картины. Мошковский защищал Фламмариона и говорил, что дело идет об условной иллюстрации относительности времени.
Ответ Эйнштейна изложен в воспоминаниях Мошковского в следующем виде:
"С относительностью времени, как она вытекает из учений новой механики, все эти приключения и поставленные вверх ногами восприятия имеют не больше, а, пожалуй, даже меньше общего, чем рассуждения о том, что в зависимости от наших субъективных ощущений веселья и горя, удовольствия и скуки время кажется то
136
короче, то длиннее. Здесь, по крайней мере, сами-то субъективные ощущения суть нечто реальное, чего никак нельзя сказать о Люмене, потому что его существование покоится на бессмысленной предпосылке. Люмену приписывается сверхсветовая скорость. Но это не просто невозможное, это бессмысленное предположение, потому что теорией относительности доказано, что скорость света есть величина предельная. Как бы ни была велика ускоряющая сила и как бы долго она ни действовала, она никогда не может перейти за этот предел. Мы представляем себе Люмена обладающим органами восприятий и, значит, телесным. Но масса тела при световой скорости становится бесконечно большой, и всякая мысль о ее дальнейшем увеличении заключает в себе абсурд. Дозволительно оперировать в мысли с вещами, невозможными практически, т.е. такими, которые противоречат нашему повседневному опыту, но не с полнейшей бессмыслицей" [3].
3 Мошковский, 107-108.
После этой реплики Мошковский все же продолжал защищать допустимость фантазии Фламмариона о сверхсветовой скорости. Он предложил следующую мысленную конструкцию. Вращающийся со скоростью 200 оборотов в секунду маяк посылает луч света на расстояние в 1000 километров. Конец луча - "зайчик" движется по небосводу со скоростью 600 000 километров в секунду - вдвое большей скорости света.
Этот "зайчик" часто фигурировал в распространенных когда-то, а теперь справедливо забытых попытках опровержения теории Эйнштейна. Разумеется, он ничего не опровергает. Движение "зайчика" - это вовсе не движение тождественного себе тела. Мы могли бы повернуть маяк на 180 градусов и осветить два экрана на расстоянии 2000 километров один от другого. По освещение одного экрана и последующее освещение другого экрана не являются событиями, из которых второе служит следствием первого. Прибытие какого бы то ни было физического объекта из одной точки в другую не может произойти за время, меньшее, чем время, необходимое свету, чтобы пройти расстояние между этими точками. Событие, происшедшее раньше, не является результатом события, происшедшего в данный момент, т.е. в момент отправления сигнала.
137
Чтобы разъяснить вопрос, можно воспользоваться примером, уже приведенным в популярном изложении теории относительности [4]. В "Сказке о попе и работнике его Балде" бесенок по предложению Балды бежит наперегонки с зайцем. Когда он приближается к финишу, Балда вынимает из мешка второго зайца, бесенок принимает его за своего соперника и отказывается от дальнейших состязаний. Если бы бесенок знал теорию относительности, прошел дистанцию со скоростью света и увидел зайца, пришедшего раньше, он догадался бы об обмане. Вряд ли его наивность простиралась бы до критики теории относительности, - на такую наивность Балда, вероятно, не рассчитывал. Но именно подобной наивностью отличаются все попытки опровержения теории относительности с помощью мысленных оптических экспериментов, в которых вместо фигурировавших только что зайцев бегут световые "зайчики". Все дело в том, что с точки зрения Эйнштейна события, происшедшие в двух точках и разделенные интервалом, меньшим, чем время, необходимое свету, чтобы покрыть расстояние между этими точками, такие события не являются фактами биографии одного и того же тождественного себе физического объекта.
4 См.: Кузнецов Б. Г. Беседы о теории относительности. М., 1960, с. 148.
Теория относительности была выдвинута как теория поведения тождественных себе физических объектов - не исчезающих и не возникающих частиц, которые могут воздействовать одна на другую и передвигаться одна по отношению к другой. События, из которых состоит биография такой частицы, это ее пребывание в тех или иных точках в те или иные моменты. Такое пребывание означает, что частица находилась возле определенных делений измерительных стержней (начала которых приложены к осям системы отсчета) в момент, когда некий повторяющийся процесс (например, движение стрелки) совершил определенное число циклов после события, принятого за начало отсчета времени.
В своем дальнейшем развитии физика столкнулась с затруднениями: определенное положение частицы не всегда может получить такой простой физический смысл. То же относится к моменту времени, когда происходят события в жизни частицы. Создание единой теории, которая исходила бы из постулатов относительности и из указанной неопределенности координат и времени "событий", стало начиная с тридцатых годов одной из основных задач теоретической физики.
138
Чтобы подойти впоследствии к этой проблеме, нам нужно сейчас коснуться тех изменений, которые претерпели в работах Эйнштейна понятия массы и энергии.
Когда при скорости, приближающейся к скорости света, дополнительные импульсы дают все меньшее ускорение, дело происходит так, как будто масса тела растет по мере увеличения скорости и стремится к бесконечности, когда скорость тела стремится к скорости света. Именно таково соотношение между массой и скоростью. Отсюда Эйнштейн вывел соотношение между эпергией движущегося тела и его зависящей от скорости массой. Чтобы получить массу, зависящую от скорости, массу движения тела (этого понятия не было в классической физике), нужно разделить энергию движения на квадрат скорости света, т.е. на громадное число, которое получится, если скорость света, выраженную в сантиметрах в секунду, т.е. 30 000 000 000 (3x10 в 10 степени), возвести в квадрат. На это число (900 000 000 000 000 000 000, т.е. 9x10 в20 степени) нужно разделить энергию (выраженную в эргах), чтобы получить массу (в граммах) и соответственно на это число нужно умножить массу, чтобы получить энергию. Но тела обладают массой и тогда, когда они неподвижны. Эта масса называется массой покоя.
Не все тела обладают массой покоя; частицы электромагнитного излучения - кванты света, т.е. фотоны, - не обладают такой массой и никогда ни в одной системе отсчета не остаются неподвижными, ведь свет распространяется с одной и той же скоростью 300 000 километров в секунду во всех системах отсчета. Но другие частицы обладают массой покоя. Эйнштейн предположил, что масса покоя тела пропорциональна внутренней энергии подобно тому, как масса движения (дополнительная масса, обязанная движению тела) пропорциональна энергии движения тела. Внутренняя энергия тела равна массе покоя, умноженной на квадрат скорости света (на число 9x10 в 20 степени). Написанное только что число с двадцатью нулями указывало на ничтожный прирост массы при обычных скоростях. Этот прирост равен приросту энергии движения тела, деленному на колоссальное число. Теперь число
139
9x10 в 20 сепени в первую очередь указывает на огромную величину энергии, соответствующую единице массы. Число, которое было мерой отдаленности теории относительности от практически применяемых процессов, стало мерой ее мощного воздействия на эти процессы. Мы уже вступили в эпоху практического использования энергий, сопоставимых со всей, внутренней энергией частиц. В атомных реакторах освобождается энергия порядка тысячных долей этой полной внутренней энергии частиц, равной массе покоя, умноженной на квадрат скорости света. Раньше техника оперировала энергиями тел порядка миллионных долей их полной внутренней энергии. Впереди - быть может, использование энергии одного порядка со всей внутренней энергией тел. Такое использование основано на процессах перехода всей внутренней энергии тел (и, соответственно, массы покоя) в энергию движения (и, соответственно, в массу движения). Подобный переход означал бы, что частица с массой покоя превращается в частицу, лишенную массы покоя. Как мы увидим, такие переходы были предсказаны при объединении теории относительности с квантовой механикой и потом экспериментально обнаружены. Мы увидим также, что указанные переходы, т.е. превращения частиц одного типа в частицы другого типа, выходят за рамки не только ньютоновой картины мира, но и "классического идеала", т.е. картины движения тождественных себе тел. Такова общая судьба идей Эйнштейна. Выдвинутые с тем, чтобы упорядочить классическое представление о мире, они привели к более радикальным результатам.
Прага и Цюрих
Научный подвиг Кеплера стал возможным, когда мыслитель освободился в высокой степени от унаследованных интеллектуальных традиций. Речь идет не только о традициях, освященных авторитетом церкви, но и о всем, что ограничивает значение мысли и опыта в познании мира и в жизни людей.
Эйнштейн
Острота ситуации, созданной опытом Майкельсона, явная искусственность лоренцевой гипотезы, безукоризненная корректность и законченность концепции Эйнштейна - все это привело к признанию новой теории довольно широким кругом ученых. Среди них по крайней мере один (это был Планк) понимал, что в физике появился гений, какие рождаются раз в столетие. Вместе с признанием, распространением и развитием теории относительности росла слава Эйнштейна. В конце концов - как это бывает - она дошла до страны, в которой жил Эйнштейн. В Цюрихском университете захотели привлечь Эйнштейна в число профессоров. Но этого не допускали университетские правила: нельзя было назначить профессором человека, не получившего до того звания доцента. Решили пока пригласить Эйнштейна в Бернский университет на должность приват-доцента, т.е. преподавателя, получающего очень небольшую плату и читающего предметы, не входящие в программу. Обязанности приват-доцента можно было совмещать со службой в патентном бюро, в то же время это открывало Эйнштейну путь к должности профессора в Цюрихе.
Эйнштейн согласился, хотя и без особого энтузиазма. Он понимал, что патентное бюро не может стать ого жизненным поприщем. Но он боялся, что лекции отнимут время от исследований и выбьют из привычной колеи необременительной службы и досуга, отданного исследовательской деятельности.
141
В течение зимы 1908/09 г. Эйнштейн совмещал обязанности приват-доцента со службой в патентном бюро. Летом 1909 г. он испытал первые академические почести - Женевский университет удостоил его звания доктора honoris causa и пригласил на торжественный праздник 350-летия этого университета, основанного Кальвином. Участники юбилейных торжеств вспоминали потом, каким веселым, светлым пятном выглядели соломенная шляпа и обычный костюм Эйнштейна среди расшитых фраков французских академиков, средневековых мантий англичан и множества других экзотических нарядов двухсот представителей университетов всей Земли.
В том же году, вскоре после женевских торжеств, Эйнштейн узнал, что в Цюрихском университете открылась вакансия по курсу теоретической физики. На нее, кроме Эйнштейна, мог претендовать Фридрих Адлер, учившийся вместе с Эйнштейном в Политехникуме. Адлер в это время был приват-доцентом по физике в Цюрихском университете. Он пользовался большим влиянием в цюрихских организациях социал-демократической партии. Руководство Цюрихским кантональным департаментом просвещения находилось в руках социал-демократов, и, когда открылась профессорская вакансия, Адлер представлял для департамента наиболее желательную кандидатуру. Однако Адлер заявил, что как ученый он не идет ни в какое сравнение с Эйнштейном и что не следует упускать возможность приобрести человека, имя и деятельность которого повысят престиж и научный уровень университета.
Эйнштейн стал экстраординарным профессором. Должность экстраординарного, т.е. внештатного, профессора оплачивалась хуже, чем должность ординарного профессора, и заработок Эйнштейна оставался примерно таким же, как и в Берне. Жизнь же в Цюрихе была дороже. Вскоре Милеве пришлось дополнять заработок Эйнштейна приготовлением домашних обедов для студентов. Тем не менее жизнь в Цюрихе вспоминалась потом Эйнштейну как счастливое время. Он нашел здесь старых друзей, скромного и преданного товарища по студенческой скамье - Марселя Гроссмана.
Эйнштейн приступил к чтению лекций. Воспоминания его слушателей рисуют Эйнштейна на университетской кафедре.
142
Приведем некоторые воспоминания, относящиеся к 1909-1911 гг.
Ганс Таннер, слушавший в это время лекции Эйнштейна (читавшего в 1909-1910 гг. введение в механику, термодинамику, кинетическую теорию тепла, а в 1910- 1911 гг. - электричество и магнетизм и курс под названием "Избранные разделы теоретической физики"), рассказывает:
"Когда он поднялся на кафедру, в поношенном костюме, со слишком короткими брюками, когда мы увидели его железную цепочку от часов, у нас появилось скептическое отношение к новому профессору. Но с первых фраз он покорил наши черствые сердца своей неповторимой манерой чтения лекций. Манускриптом, которым Эйнштейн пользовался при чтении, служила заметка величиной с визитную карточку. Там были обозначены вопросы, которые он хотел осветить в лекции. Таким образом, Эйнштейн черпал содержание лекции из собственной головы, и мы оказались свидетелями работы его мысли. Насколько привлекательным был подобный метод для студентов, привыкших к стилистически безукоризненным, заглаженным лекциям, увлекавшим в первый момент, но оставлявшим ощущение пропасти между преподавателем и нами. А здесь мы сами видели, как возникают научные результаты - оригинальными путями. Нам казалось после лекции, что мы сами могли бы ее прочесть" [1].
1 Seelig, 171.
Это ощущение естественности научных результатов характерно не только для метода преподавания Эйнштейна, но и для метода его исследований и для содержания его идей. Между методом чтения лекций и их содержанием существовала глубокая гармония. Научные теории, отлившиеся в привычные формы и вместе с тем содержащие произвольные допущения, излагаются чаще всего в догматическом тоне. Когда веет дух парадоксальной, но глубоко естественной в своей основе научной идеи, изложение уже не может охватывать лишь результаты мысли, сама мысль, ищущая, творческая, часто парадоксальная сверкает перед аудиторией. Она становится естественной, "очевидной", она кажется слушателю "своей" по мере того, как парадоксальный тезис становится неизбежным выводом из новых исходных представлений о природе. Эйц
143
штейн излагал в лекциях главным образом классическую физику, но теперь, после пересмотра ее основ, классическая физика трактовалась по-иному и, соответственно, излагалась в иной манере. Перед студентами открывалось не упорядоченное здание, а строительная площадка, и Эйнштейн не столько объяснял студентам план здания, сколько обсуждал вместе с ними проект перестройки.
"В 1909-1910 гг., - пишет Таннер, - я слушал лекции Эйнштейна. Все были одинаково интересны. У меня сохранилось такое впечатление, будто мы сами могли устанавливать тему. Изложение касалось то классической механики (мы слушали ее и у других преподавателей и могли почувствовать разницу в подходе), то новых идей, например квантовой теории Планка, вызывавшей оживленные дискуссии" [2].
Идеям Эйнштейна соответствовали не только содержание и стиль лекций, но и манера поведения во время лекций и в перерывах. "Мы имели право в любой момент прервать его, если нам что-либо казалось неясным. Вскоре мы вовсе перестали стесняться и подчас задавали элементарно глупые вопросы. Непринужденности наших отношений способствовало то, что Эйнштейн и па перерывах оставался с нами. Импульсивный и простой, он брал студента под руку, чтобы в самой дружеской манере обсудить неясный вопрос" [3].
2 Seelig, 172.
3 Ibid., 171.
Таннер рассказывает о еженедельном вечернем коллоквиуме по физике. После него Эйнштейн спрашивал: "Кто пойдет со мной в кафе "Терраса"?" Там продолжалась дискуссия, часто переходившая с физических и математических вопросов на самые различные проблемы науки и жизни. Однажды Эйнштейн поздно вечером, когда в Цюрихе наступил так называемый "полицейский час" и кафе было закрыто, увел двух студентов домой, засадил их за новую статью Планка, потребовал, чтобы они нашли содержащуюся там ошибку, а сам ушел, чтобы сварить для них кофе. Когда кофе был готов, ошибка еще не была найдена. Эйнштейн указал на нее: ошибка была чисто математической и не колебала физического вывода. По этому поводу Эйнштейн в блестящей импровизации изложил свои соображения о математических методах и физической истине" [4].
Из своих старых товарищей по Политехникуму Эйнштейн общался больше всего с Гроссманом. Наиболее важные для науки беседы друзей имели место позже, по уже в 1909-1911 гг. Эйнштейну приходилось прибегать к советам Гроссмана, разрабатывавшего в это время проблемы неевклидовой геометрии. Встречался Эйнштейн и с Адлером, они жили в одном доме и иногда убегали от шума на чердак, чтобы поговорить. Беседы их, по всей вероятности, включали философские споры: Адлер был махистом, и ему была чужда уверенность Эйнштейна в объективной реальности мира. Он, как и Мах, был противником теории относительности.
Эйнштейн дружил также с двумя цюрихскими профессорами - цивилистом Эмилем Цюрхером и историком Альфредом Штерном. Эйнштейн писал, что он ценит в Цюрхере его тонкое понимание психологии людей, умение сопоставлять далекие одно от другого понятия, разнообразие интересов и добродушный юмор. "Круг интересов Цюрхера неограничен, и его здравые суждения о людях и вещах выходят за рамки профессиональных знаний. Эти суждения показывают недостаточность формальной логики - их можно постигнуть, если самому пришлось много читать и сопоставлять. Он - один из самых интересных людей, которые мне вообще когда-либо встречались" [5].
Для Эйнштейна характерно близкое и постоянное интеллектуальное общение с людьми, далекими от физики и математики. Он много беседовал с юристами, историками, врачами. По-видимому, такая склонность связана с характером основных идей Эйнштейна. Он поднимался от конкретных физических расчетов к коренным вопросам бытия и именно на этом пути подходил в конце концов к самым конкретным (иногда прямо выходящим в практику) заключениям. Многим это восхождение к вершинам казалось уходом от пауки в область общефилософских концепций. Даже такой живой и широкий мыслитель, как Нернст, говорил, что эйнштейнова теория броуновского движения выше теории относительности, потому что последняя уже не является физической теорией, а принадлежит к числу философских обобщений. Это типично "до-атомное" суждение.
4 Ibid., 173-174.
5 Ibid., 185.
145
Характер научных идей и интересов позволял Эйнштейну подчас находить собеседников по научным вопросам среди людей, далеких от официальной науки, во всяком случае от физики. Ведь этим людям доступны и близки общие соображения о пространстве и времени, "детские" размышления, не стертые уверенностью в "очевидности" традиционных понятий, уверенностью, вырастающей из привычного профессионального оперирования этими понятиями. У Эйнштейна подобные размышления были исходным пунктом физических концепций.
Эйнштейн дружил в Цюрихе с историком Альфредом Штерном, к которому он приходил в свои студенческие годы. Впоследствии, в день восьмидесятилетия Штерна, Эйнштейн писал о нем: "...Едва ли я знаю второго человека с такой чудесной непоколебимостью сохраняющего себя при катастрофической смене бытия, мнений и оценок" [6].
Очень близок Эйнштейну был всемирно известный специалист по паротурбостроению Аурел Стодола. Характеристика Стодолы, написанная Эйнштейном в 1929 г., интересна не только для оценки знаменитого теплотехника, она раскрывает черты самого Эйнштейна. Мы приведем эту характеристику почти полностью.
"Если бы Стодола родился в эпоху Ренессанса, он был бы великим художником или скульптором, потому что главным свойством его личности являются мощь фантазии и созидания. В минувшем столетии подобные натуры чаще всего обращались к технике. Здесь, в технике, нашла свое выражение созидательная мощь века, здесь страстная жажда прекрасного находила пути воплощения, превосходящего все, что мог бы предположить человек, не знакомый с этой областью. Могучий порыв Стодолы не остывал в течение многих лет преподавательской деятельности и перешел к ученикам - их глаза светятся, когда речь идет об учителе. Другая сильная сторона Стодолы неугомонная любознательность и редкая ясность научного мышления. Когда автор этих строк в качестве новоиспеченного преподавателя читал курс теоретической физики в Цюрихском университете, к его радости и ужасу в аудитории появился чудесный образ. Это был Стодола, занимавшийся теоретической физикой отчасти из бескорыстного интереса, отчасти для своих творческих задач... Чувство робости перед этим громадным человеком быстро исчезало под действием сквозивших в его словах доброты и лояльности. Он подавлял своей скромностью. С силой и живостью его ума странно контрастировали необычайная душевная кротость и мягкость. Его глубоко трогало страдание живого существа, особенно, если причиной была тупая жестокость людей. Ему были близки социальные проблемы современности. Этому одинокому, как все независимые люди, человеку было свойственно высокое чувство общественного долга. Страх, господствующий в отношениях между людьми, и ощущение бессилия у людей перед неумолимой трагедией мировых событий причиняли ему страдание. Успех и любовь многих людей не уменьшали его болезненной чувствительности, и он был одинок. Это компенсировалось любовью к музыке и привязанностью к двум дочерям. Одну из них, Елену, он потерял... В его глубокой скорби выразилось богатство души этого чудесного человека" [7].
6 Seelig, 185.
7 Ibid., 188-189.
Этот портрет кажется изображением самого Эйнштейна. Человек, никогда не думавший о себе, может создать автопортрет, рисуя черты близкой ему по духу натуры.
Семья Эйнштейна пополнилась еще одним сыном - Эдуардом, родившимся в июне 1910 г. Он был похож па отца чертами лица и большими ясными глазами, а впоследствии - музыкальностью.
В конце 1910 г. открылась вакансия ординарного профессора теоретической физики в Пражском университете - одном из старинных университетов Европы. В девяностые годы по указу австрийского правительства произошло разделение университета на два - немецкий и чешский. Покровительством властей пользовался немецкий университет. Это было звеном германизации славянских стран, подвластных Габсбургской монархии.
Первым ректором немецкого университета был Эрнст Мах. Когда он покинул университет, прочно утвердившееся влияние идей Маха сохранялось и поддерживалось его последователями и учениками, стоявшими во главе уни
147
верситета. Одной из наиболее влиятельных фигур был Антон Лампа, чех по происхождению и вместе с тем ярый сторонник германизации. Лампа - сын дворника, служившего в доме, принадлежавшем богатым немцам, мог сравнить бедность и бесправие своей чешской семьи с положением хозяев. Он решил превратиться из наковальни в молот, окончил немецкую гимназию, а затем немецкий университет и, заняв руководящее положение в университете, активно насаждал немецкую культуру и изгонял нее чешское. В Праге рассказывали, как Лампа, покупая почтовые открытки, раздраженно возвращал их, если надпись была на чешском и на немецком языках, требовал, чтобы ему продали открытку только с немецкой надписью, и поднимал крик, если ему в этом отказывали.
В 1910 г. Лампа и другие руководители немецкого университета хотели придать ему вящий блеск, пригласив в число профессоров человека с европейским именем. Быть может, имя Эйнштейна импонировало и философским симпатиям Лампы - ученика и усердного сторонника Эрнста Маха. Как уже говорилось, в отличие от самого Маха, разглядевшего антипозитивистское острие теории относительности, некоторые его ученики думали, что критика ньютоновой концепции мира приводит Эйнштейна к скептицизму в отношении объективности научных концепций в целом. Во всяком случае, Лампа пригласил Эйнштейна участвовать в конкурсе и запросил у ряда крупных физиков отзывы о цюрихском кандидате. От Макса Планка он получил ответ: "Если теория Эйнштейна окажется справедливой, на что я рассчитываю, его следует считать Коперником двадцатого столетия".
Снова, как и в Цюрихе, Эйнштейн был вторым кандидатом и снова его соперник отказался в пользу Эйнштейна. Только причины отказа были противоположны побуждениям, руководившим Фридрихом Адлером.
Первым кандидатом был Густав Яуманн, профессор физики в Технологическом институте в Брно, ярый последователь Маха, человек с большими претензиями. Венские чиновники склонны были предпочесть его как коренного австрийца, пражские профессора - как признанного махиста. Непредвиденное обстоятельство помешало ему. В списке кандидатов имя Эйнштейна стояло первым. Это взбесило Яуманна, он заявил, что в университете, где случайную популярность предпочитают действительным заслугам, ему делать нечего, и наотрез отказался от предлагаемого места.
148
Должность была предоставлена Эйнштейну. Он не без колебаний принял предложение. Милеве было очень тяжело снова бросить родную ей обстановку и оказаться изолированной в чуждой среде. Да и Эйнштейну не хотелось оставлять Цюрих. Но должность штатного профессора предоставляла ему большую независимость. Эйнштейн дал согласие и с осени 1911 г. начал преподавание в Праге.
В Австро-Венгрии при вступлении на государственную службу требовалось сообщить о вероисповедании. Император Франц-Иосиф категорически требовал не допускать на службу кого-либо, не принадлежавшего к официальной церкви. Поэтому даже для атеистов было в обычае указывать вероисповедание по национальной принадлежности. Так поступил и Эйнштейн.
Эйнштейн обосновался в Праге. Он видел города Италии, Мюнхен, ему был близок облик городов Швейцарии. Прага ничего не повторяла. Первая прогулка по ее улицам, первый взгляд на панораму Праги с одного из ее многочисленных холмов вызвали у пего любовь к городу.
Эйнштейн бродил по Праге и заодно наносил предписанные этикетом визиты. Их нужно было сделать почти сорок. Эйнштейн добросовестно знакомился с коллегами, их супругами и домочадцами, но постепенно визиты становились все более тягостными. Эйнштейн выбирал в первую очередь тех из своих коллег, которые жили в привлекавших его кварталах Праги. Архитектурно-эстетический критерий не совпадал с требованиями служебной иерархии, и Эйнштейна стали подозревать в недостаточном уважении к последней - подозрение очень тяжелое в годы, когда в университете энергично насаждалась чиновничья субординация.
В конце концов Эйнштейн прекратил визиты, так и не выполнив обязательной программы. Но прогулки по Праге продолжались. Эйнштейна увлек этот город с его старинными домами, ратушей, церквами и башнями и с молодой зеленью садов и парков. Он ходил вдоль берега Влтавы, делящей город на две части, и уже издали радовался виду, который всегда оставался новым, неожиданным - подлинным чудом: перед ним появлялся Карлов мост через Влтаву со скульптурами XV в. По этому мосту он переходил на другой берег, любовался "пражской Венеци
149
ей" - домами, лепящимися над водами Влтавы. Затем Эйнштейн поднимался на Градчаны. Здесь его встречала гармония различных архитектурных форм, в которой застыл тысячелетний труд чешского народа. Эта гармония потому и была такой естественной - она создавалась естественным течением истории и как бы символизировала нечто разумное, некое ratio, пробивавшее себе путь через хаос противоречий. Эйнштейн видел в Градчанах романскую церковь святого Георгия, построенную в XII в., затем заходил под своды собора святого Вита. Рациональные формы собора кажутся не столько воплощением мистического духа средневековья, сколько воплощением механики XIV в. Спускаясь затем мимо Златой улички - ремесленного квартала средневековой Праги, Эйнштейн видел сохранившиеся жилища и обстановку людей, которые, накопляя эмпирические знания, подготовляли Возрождение, новую картину мира и в конце концов блестящий взлет рационалистического "классического идеала". Прага навевала воспоминания о провозвестниках "классического идеала". В построенной в начале XV в. Тынской церкви находится гробница Тихо Браге, проведшего в чешской столице последние годы своей рано прервавшейся жизни. Здесь он оставил Иоганну Кеплеру колоссальные по объему записи астрономических наблюдений. Эйнштейн ходил по камням города, где были сделаны открытия, лежащие в основе классической картины мироздания.
Среди друзей, которых приобрел Эйнштейн в Праге, был молодой писатель Макс Брод. В истории идей и открытий Брод искал психологические черты выдающихся людей своей родины. Филипп Франк рассказывает, что, работая над образами Тихо Браге и Кеплера, Брод почувствовал общность характеров Эйнштейна и Кеплера [8]. Он написал новеллу "Искупление Тихо Браге". Трудно сказать, насколько верен в ней образ Кеплера, но всем было очевидно, что Брод придал ему черты Эйнштейна, обаяние которого Брод испытывал на себе в то время. Прочитав новеллу, Нернст сказал Эйнштейну: "Кеплер, это вы".
8 Frank, 85.
150
В новелле Брода Кеплер, равнодушный к жизненным благам, к земным утехам, черпает радость в поисках научной истины. Он возражает Тихо Браге, который хочет согласовать астрономическую систему с церковными догмами. Какова бы ни была астрономическая гипотеза - следует думать о ней самой, а не об императорской милости. Образ Кеплера был близок Эйнштейну не только подобной репликой, но и тем ощущением мировой гармонии, которым пронизано творчество пражского астронома.
По "мускулатуре мысли" - в данном случае механико-математической трудно указать мыслителя одного ранга с Кеплером. Он превосходил всех мыслителей своего поколения и своим отчетливым стремлением найти причины существующей структуры Солнечной системы. Законы Кеплера - первый непоколебимый камень, вошедший в фундамент науки нового времени, он не будет поколеблен и впредь при перестройке фундамента. На нем зиждется массив ньютоновой механики.
Но Кеплер не оказал такого преобразующею воздействия на духовную жизнь человечества, как Галилей. И не только потому, что галилеева идея инерции была ключом к повой пауке, и не в силу единства, последовательности и ясности идей Галилея, исключавших кеплеровы туманные грезы о "музыке сфер". Научный темперамент Кеплера тянул его к уединенным вычислениям. В них, конечно, потенциально содержались все духовные и материальные потрясения, вызванные созданием однозначной механической картины мира, рационалистической критикой и всем, что из этого вытекало. Но общественные бури лежали до поры до времени в ящике Пандоры, каким оказался новый взгляд па природу. Кеплер не был общественным борцом, законы Кеплера не были знаменем общественной борьбы.
Галилей был не только автором прозрачно-ясной картины мира, но и борцом за ее признание. Он хотел не только узнать истину о мире, но и возвестить эту истину.
Через тридцать с лишним лет после "Искупления Тихо Браге" Макс Брод выпустил роман "Галилей в плену" и отправил его Эйнштейну. В июле 1949 г. он получил письмо, излагавшее, помимо прочего, взгляд Эйнштейна на борьбу Галилея против канонизированных догматов. "Что касается Галилея, я представлял себе его иным. Нельзя сомневаться в том, что он страстно добивался истины - больше, чем кто-либо иной. Но трудно поверить, что зрелый человек видит смысл в воссоединении най
151
денной истины с мыслями поверхностной толпы, запутавшейся в мелочных интересах. Неужели такая задача была для него важной настолько, чтобы отдать ей последние годы жизни... Он без особой нужды отправляется в Рим, чтобы драться с попами и прочими политиканами. Такая картина не отвечает моему представлению о внутренней независимости старого Галилея. Не могу себе представить, чтобы я, например, предпринял бы нечто подобное, чтобы отстаивать теорию относительности. Я бы подумал: истина куда сильнее меня, и мпе бы показалось смешным донкихотством защищать ее мечом, оседлав Росинанта..." [9]
Свойственная Кеплеру погруженность в поиски и созерцание истины была ближе Эйнштейну, чем пламенный общественный темперамент Галилея.
Эйнштейну принадлежит характеристика идей и личности Кеплера, пронизанная ощущением глубокой конгениальности. Эйнштейн читал письма Кеплера, и они произвели на него впечатление, не меньшее, чем классические работы, в которых сформулированы законы движения небесных тел.
"В письмах Кеплера, - говорит Эйнштейн, - мы имеем дело с человеком тонких чувств, всецело и страстно увлеченным поиском пути к более глубокому проникновению в сущность явлений природы, с человеком, который, несмотря на внутренние и внешние трудности, сумел достичь поставленной перед собой возвышенной цели" [10].
9 Seelig, 210-211.
10 Эйнштейн, 4, 324.
Возвышенная цель Кеплера была первым наброском "классического идеала" - она состояла в каузальной картине мироздания. В чем же состояли внешние и внутренние трудности?
Внешние трудности вытекали из несовместимости каузального объяснения с господствующими взглядами. Такая несовместимость по-иному окрашивала внутренний мир Кеплера, чем внутренний мир Галилея. Кеплер не был склонен ни к идейным компромиссам, пи к идейной борьбе. Эйнштейн пишет о Кеплере.
152
"Ни бедность, ни непонимание современниками, довлевшее над всей его жизнью и работой, не смогли сломить его духа. Кроме того, надо учесть, что ему приходилось иметь дело с областью знания, непосредственно задевавшей сторонников религиозных догм. Но он принадлежал к числу тех немногих людей, которые не могут не высказывать открыто своих убеждений по любому вопросу. В то же время он не был одним из тех, кто получает инстинктивное удовлетворение от борьбы с другими, как это было, например, в случае Галилея, чей едкий сарказм и поныне доставляет удовольствие образованному читателю. Кеплер был правоверным протестантом и не делал секрета из того, что он согласен не со всеми установками церкви. Поэтому его считали своего рода умеренным еретиком и соответственно относились к нему.
Здесь будет уместно остановиться на тех внутренних трудностях, которые Кеплеру приходилось преодолевать и о которых я уже упоминал. Понять их не так легко, как трудности внешнего характера. Дело всей его жизни было, по-видимому, тем единственным делом, в котором ему удалось в значительной мере освободиться от тех интеллектуальных традиций, в обстановке которых он был рожден. Это были не только религиозные традиции, основанные на авторитете церкви, но и общие представления о природе, об ограниченных возможностях познания явлений в космосе и в человеческой жизни, а также идеи об относительной ценности мышления и опыта в науке.
Он должен был освобождаться от анимистической, телеологической манеры мышления в научном исследовании. Ему пришлось ясно осознать, что само по себе логико-математическое теоретизирование, каким бы ярким оно ни было, не гарантирует истины и что в естественных на уках самая изящная логическая теория ничего не стоит без сравнения с наиболее точными экспериментами и наблюдениями. Без подобного философского подхода его труд был бы невозможен. Он не говорит об этом ясно, но внутренняя борьба находит свое отражение в его письмах" [11].
11 Эйнштейн, 4, 325-326.
Эйнштейну понятен уход Кеплера с поля общественной борьбы за новые научные идеи (при полном отказе от каких-либо компромиссов!), но Эйнштейн видит также, что у Кеплера, в отличие от Галилея, сохраняются внутренние препятствия для чисто каузального понимания гармонии бытия. Эйнштейну оставалась несколько чуждой
153
активность Галилея в части идейных столкновений, но он понимал ее значение. Для самого Эйнштейна характерна не только кеплеровская погруженность во внутренний мир, не только кеплеровская неспособность к компромиссам, но и свойственная Галилею полная (гораздо более полная, чем у Кеплера) внутренняя свобода от всего, что препятствует каузальному пониманию гармонии мироздания.
Снова и снова приходится писать это слово "гармония" и злоупотреблять музыкальным термином, чтобы охарактеризовать чувства и мысли Эйнштейна: для жизни Эйнштейна наиболее характерно то, что сам он говорил о Нильсе Боре: "высшая музыкальность". Ощущение гармонии мироздания, мечта о гармоничном обществе, впечатление гармонии архитектурных форм города... И, конечно, гармония в прямом смысле - гармония звуков. В этом отношении Прага была источником очень важных для Эйнштейна впечатлений. Звуки органа в католических соборах, хоралы протестантских церквей, скорбные напевы еврейских мелодий, мощное звучание гуситских гимнов - все это сплеталось с народными песнями, с творчеством чешских, русских, немецких композиторов.
Среди общей, довольно безликой массы пражских профессоров были и незаурядные люди. С некоторыми из них Эйнштейн сблизился. Образовалась среда, отвечавшая потребностям Эйнштейна в научном и интеллектуальном общении. Она же отвечала и его музыкальным наклонностям.
Эйнштейн дружил с математиком Георгом Пиком. Близости последнего с Эйнштейном способствовал интерес к физическим проблемам, сохранившийся у Пика с молодости, когда он был ассистентом Маха по экспериментальной физике. Этот пятидесятилетний профессор был, как и Лампа, последователем Маха. Эйнштейн нашел в нем неутомимого оппонента в философских спорах. Кроме того, Эйнштейн в этот период преодолевал особенные трудности, связанные с математическим аппаратом общей теории относительности, и его очень интересовали беседы с Пиком по математическим вопросам. Именно Пик натолкнул Эйнштейна на труды итальянских математиков Риччи и Леви-Чивиты, обогатившие математический арсенал Эйнштейна. Пик играл на скрипке. Он познакомил Эйнштейна с другими любителями музыки, и их музыкальные встречи происходили почти ежедневно.
154
Впоследствии, во время гитлеровской оккупации Чехословакии, Пик был замучен в лагере смерти.
Эйнштейн бывал часто и в доме Морица Винтерница, профессора древней истории, специалиста по санскриту. Разделявшие их профессиональные интересы не мешали оживленным беседам на общие, в частности литературные, темы. Привлекала Эйнштейна и веселая стайка пятерых детей Винтерница, с которыми он подружился. Сюда Эйнштейн приносил и свою скрипку. Ему аккомпанировала двоюродная сестра Винтерница, учительница музыки, очень требовательная исполнительница - Эйнштейн ее называл своим строгим сержантом.
Скромность, доброта, общительность и юмор, большей частью незлобивый, создали Эйнштейну немало друзей. Но, как ни странно, именно эти свойства создавали и врагов. Скромность часто оборачивалась непочтительным отношением к профессорскому званию, шокировавшим гелертерские круги в университете и вне университета. Скромный костюм Эйнштейна (пожалуй, он был более чем скромным) казался бунтом против академической респектабельности. Расскажем, кстати, со слов Филиппа Франка [12] историю принадлежавшего Эйнштейну парадного университетского мундира, который полагалось иметь каждому профессору на случай представления императору. Этот мундир с золотыми галунами и треуголка с перьями были переданы Франку, сменившему Эйнштейна в Праге, потом мундир украшал фигуру и, главное, спасал от пражской зимы бежавшего из России казачьего генерала, разжалобившего жену Франка своим полузамерзшим видом. Затем шпага и треуголка Эйнштейна хранились как реликвия в университетском музее, сока в годы оккупации нацисты публично не сожгли их.
12 Frank, 100.
Многих раздражала доброта и общительность Эйнштейна. Они были направлены на людей различных социальных групп. В университете не могли простить Эйнштейну, что он в одинаковой сердечной манере разговаривает и с коллегами, и с университетскими служителями. И, наконец, наибольшее число врагов приносил Эйнштейну его юмор. Во-первых, он не всегда был беззлобным. Во-вторых, каждая шутка, выходившая за рамки стандартных профессорских острот, казалась подозрительной в глазах строгих ревнителей того смешного жеманства и важничанья, которое Ленин совсем в другое время и совсем в другой связи называл французским словом "pruderie" [13].
13 См.: Ленин В. И. Полн. собр. соч., т. 33, с. 452.
155
В 1911 г. Эйнштейн поехал из Праги в Брюссель на Сольвеевский конгресс. Весьма посредственный ученый и очень крупный инженер Сольве решил сообщить о своих физических идеях конклаву крупнейших физиков мира. В качестве владельца крупных химических предприятии и ревнителя науки он был знаком с немецким химиком и физиком Вальтером Нернстом. Они пришли к мысли собрать в Брюсселе ведущих физиков, обсудить животрепещущие проблемы, обменяться научными достижениями и критически осмыслить спорные положения. Нервет составил список приглашенных, а Сольво взялся финансировать это предприятие: каждому участнику оплачивались путевые расходы, содержание во время пребывания в Брюсселе и выдавалась еще тысяча франков.
В Сольвеевском конгрессе 1911 г. участвовала сравнительно небольшая группа ученых. В их числе были Резер-форд из Англии, Мария Склодовская-Кюри, Пуанкаре, Перрен и Ланжевен из Франции, Планк и Нернет из Германии, Лоренц из Голландии, Эйнштейн и Газенёрль из Австро-Венгрии. Вступительное приветствие Сольве и его сообщение о собственной теории не отняли много времени. Легко примирившийся с тем, что не стал гением, Сольве решил собирать аналогичные конгрессы и впредь; одно время они были наиболее важными регулярными международными встречами физиков.
На Сольвеевском конгрессе 1911 г. проходило оживленное обсуждение теории относительности. Эйнштейн в письме в Цюрих к своему другу доктору Генриху Цангеру говорил, что сущность теории относительности не была понята. В частности, Пуанкаре, по мнению Эйнштейна, несмотря на остроумие своих построений, слабо понимал ситуацию в физике.
Тем не менее конгресс произвел очень сильное впечатление на Эйнштейна. В письме к Цангеру он с особенной теплотой писал о Лоренце: "...Он является чудом интеллигентности и такта. Подлинное живое произведение искусства! По-моему, Лоренц - самый интеллигентный среди всех присутствующих теоретиков..." [14]
156
Впоследствии, в 1928 г., когда Лоренц умер, Эйнштейн произнес над его могилой речь, в которой повторил то же выражение:
"Свою жизнь он до мельчайших подробностей создавал так, как создают драгоценное произведение искусства. Никогда не оставлявшие его доброта, великодушие и чувство справедливости вместе с глубоким, интуитивным пониманием людей и обстановки делали его руководителем всюду, где бы он ни работал. Все с радостью следовали за ним, чувствуя, что он стремится не властвовать над людьми, а служить им. Образ и труды его будут служить на благо и просвещение еще многих поколений" [15].
14 Helle Zeit, 43.
15 Эйнштейн, 4, 95.
Лоренц был близок Эйнштейну не только кругом интересов. Это был человек, для которого "надличное" было самым личным. Когда новые открытия разбили классическую физику, Лоренц говорил, что жалеет, почему он не умер раньше крушения старых устоев. Интересен здесь вовсе не трагический реквием классической физике. Сожаление об ушедших ценностях было, вероятно, не таким уж органическим и сменялось радостным восприятием нового. Интересна здесь эмоциональная глубина впечатлений, полученных при анализе развития науки. Человек, для которого наука в такой степени была основой отношения к жизни, представлял собой действительно "чудо интеллигентности". У Эйнштейна отношение к науке было также очень эмоциональным, но если бы Эйнштейна спросили, не вызывают ли у него перевороты в науке мыслей о собственной жизни и смерти, он ответил бы, вероятно, что такие мысли у него вообще не появляются. Примерно так он отвечал на некоторые аналогичные вопросы. У Эйнштейна "надличное" не только заполняло сознание, но заставляло мысль парить на таких высотах, от куда собственная жизнь и собственная смерть уже казались несущественными.
157
Через год после Сольвеевского конгресса Эйнштейн покинул Прагу и вновь оказался в Цюрихе. В 1912 г. ему предложили занять кафедру теоретической физики в цюрихском Политехникуме, где он когда-то учился. Политехникум федеральное учреждение - был несравним но научному уровню с Цюрихским университетом, подчиненным кантональному управлению. Федеральному правительству Швейцарии удалось уже давно сделать Политехникум одной из лучших высших школ Европы и, в частности, добиться высокого - не ниже, чем в университетах, - уровня преподавания физико-математических дисциплин. Материальная независимость, самостоятельная кафедра, сохранившиеся воспоминания о Цюрихе - может быть, эти мотивы не были решающими для Эйнштейна, но они были решающими для Милевы. Она давно рвалась обратно в Швейцарию.
Уезжая из Праги, Эйнштейн забыл написать заявление в Вену, и его уход остался неоформленным, что очень тревожило каких-то чиновников министерства просвещения. Через несколько лет Эйнштейн узнал об их тревогах и поспешил выполнить все, что требовалось.
В Цюрихе Эйнштейна с нетерпением ждали не только в Политехникуме. Его ждали старые друзья, особенно Марсель Гроссман. Эйнштейн тоже хотел встретиться со старым другом. Он и теперь искал его помощи. Эйнштейн и Гроссман вспомнили, как двенадцать с лишним лет тому назад Гроссман избавлял своего друга от необходимости посещать лекции по математике. Сейчас эта система давала плоды, которые тревожили Эйнштейна. Он знал теперь, что именно ему нужно среди различных разделов математики. Речь шла о проблемах кривизны линий и поверхностей. Пик в Праге указал Эйнштейну на некоторые понятия геометрии, которые могли помочь ему справиться с трудностями при дальнейшем обобщении теории относительности. Но этих указаний было недостаточно. Нужно было применить понятие кривизны не только к линиям и поверхностям, но и к трехмерному пространству и к четырехмерному пространству-времени. Помимо глубины и ясности геометрического мышления, помимо определенных физических задач, подсказывавших выбор математических приемов, для этого требовалась обширная и систематическая математическая подготовка.
Гроссман вступал с Эйнштейном в длительные беседы, вводил его в круг математических приемов, пригодных для решения новой физической задачи. Затем оп уже один углублялся в математические детали проблемы. Работа перемежалась, как в студенческие годы, спорами о значе
158
нии физики и математики. Они оба понимали, что наступил период использования в физике таких разделов математики, которые возникли из потребности согласовать и обосновать "рабочие" разделы. Теперь любая, самая далекая, на первый взгляд, область математики могла оказаться "рабочей", и ограничиваться областями, уже получившими применение в физике, значило оставаться безоружным при разработке новых физических теорий.
Беседы с Гроссманом отражали существенный поворот во взаимоотношениях математики и физики. Мы знаем уже, что Эйнштейн различал в эволюции математики период, когда математика рассматривалась как полуэмпирическая наука, и следующий период, когда она приобрела независимый от физики характер, вызвавший иллюзии априорного или условного происхождения математических положений. Третий период наступил, когда математика, не возвращаясь к примитивному эмпирическому представлению, выявила свою связь с физическим экспериментом, когда эксперименту суждено было решать вопрос о реальном существовании математических построений. Позже мы познакомимся с общей теорией относительности, где эти фразы приобретают более конкретный вид, потому что в общей теории относительности физические процессы в пространстве и времени как раз и рассматриваются как изменения геометрических свойств пространства и времени. Именно об этих проблемах и шла речь в цюрихских беседах Эйнштейна и Гроссмана.
В цюрихском Политехникуме Эйнштейн читал лекции в течение зимнего семестра 1912-1913 гг. (аналитическая механика, термодинамика), летнего семестра 1913 г. (механика сплошных сред, кинетическая теория тепла) и зимнего семестра 1913/14 г. (электричество и магнетизм, геометрическая оптика). Кроме того, он руководил еженедельными коллоквиумами по физике. О них рассказывает Макс Лауэ, который в 1912 г. приехал в Цюрих в качестве экстраординарного профессора.
"Каждую педелю Эйнштейн проводил коллоквиум, на котором сообщалось о новых трудах по физике. Это происходило в Политехникуме, куда приходили и все доценты, а также много студентов-физиков из университета... После коллоквиума Эйнштейн со всеми, кто хотел к нему присоединиться, отправлялся ужинать в "Кронегалле". Теория относительности была в центре дискуссий... Осо
159
бенно оживленными были эти дискуссии летом 1913 г., когда темпераментный Пауль Эренфест посетил Цюрих. Как сейчас вижу перед собой Эйнштейна и Эренфеста в сопровождении целого ряда физиков, поднимающихся на Цюрихскую гору, и слышу ликующий голос Эренфеста: "Я понял"" [16].
16 Seelig, 132.
Общение и дружба с Эренфостом продолжались двадцать лет - до смерти Эренфеста в 1933 г. - и имели большое значение для Эйнштейна. Это был один из крупнейших физиков поколения, столь богатого талантливыми теоретиками, и в то же время человек исключительной скромности, чуткости и доброты. Он был одним из самых близких друзой Эйнштейна, может быть, самым близким среди европейских физиков.
Из Цюриха Эйнштейн осенью 1913 г. ездил в Вену на конгресс естествоиспытателей. Он сделал на этом конгрессе сравнительно популярный (рассчитанный не только на физиков) доклад, посвященный общей теории относительности. Теория еще не была построена, но Эйнштейн высказал общие соображения, которые можно привести ужо здесь, не дожидаясь предстоящего нам знакомства со смыслом общей теории относительности.
Эйнштейн говорил в Вене об этой теории как о новой теории тяготения. Он сравнивает теорию тяготения с теорией электричества в ее развитии. В XVIII в. об электричестве знали только то, что существуют заряды, которые притягивают или отталкивают друг друга обратно пропорционально квадрату расстояния. В области учения о тяготении мы знаем, в сущности, нечто аналогичное этому - закон взаимодействия тяжелых тел и только. Но учение об электричестве за полтора века подошло уже к понятию электромагнитного поля. Пора было перейти к более сложным представлениям и в учении о тяготении.
Речь идет, таким образом, о том, чтобы рассматривать тяготение как некоторую характеристику пространства. Эйнштейн приближался в эти годы к представлению о тяготении как об особом геометрическом свойстве пространства... Не следует, однако, забегать вперед и называть уже сейчас геометрическое свойство пространства, которое Эйнштейн отождествил с тяготением.
160
Во время пребывания в Вене Эйнштейн посетил Эрнста Маха, который жил в окрестностях Вены. Маху исполнилось 75 лет, он был разбит параличом. Эйнштейн увидел старика с всклокоченной бородой, с добродушным и хитроватым выражением лица. Франк, описывая эту встречу, отмечает, что Мах напоминал старого крестьянина из славянской страны... [17]
Содержание разговора с Махом Эйнштейн вспоминал в 1955 г. в беседе с Бернардом Коэном. По-видимому, спор шел в основном о существовании молекул и атомов [18].
17 См.: Frank, 104.
18 См.: Cohen В. An interview with Einstein. - "Scientific American", July 1955, v. 193, p. 69-73.
Немного позже, после изложения общей теории относительности, нам станет яснее, каким колоссальным интеллектуальным напряжением были отмечены годы ее разработки. У всех встречавших Эйнштейна оставалось впечатление почти непрерывной работы мысли у него, работы не прекращающейся и во время бесед с друзьями, и в семейном кругу.
Семейная жизнь Эйнштейна между тем шла к неизбежному финалу: Эйнштейн и Милева Марич становились все более далекими.
Берлин
...Я имею в виду свою склонность к долгому покою и тихим размышлениям, страстную и врожденную любовь к миру, к чуждым войне занятиям...
Нума Помпилий (Плутарх. "Сравнительные жизнеописания")
Революция в науке и в технике, произведенная электричеством, во многих отношениях была подготовкой и репетицией происшедшей на полвека позже атомной революции. В начале столетия возникали новые отрасли техники (такие, как радиотехника, рентгенотехника, применение вакуумных электротехнических приборов для преобразования тока и т.д.), в которых физический эксперимент стал необходимым и постоянным условием производства. Крупные электротехнические фирмы первыми были вынуждены создавать физические лаборатории, где велись исследования без заранее сформулированной прикладной задачи. В технике все большее значение начали приобретать наряду с ожидаемыми результатами неожиданные результаты исследований. Ограничиться прикладными, заранее сформулированными задачами значило закрыть путь к принципиально новым, выходившим за рамки известного практическим открытиям. Поэтому General Electric Company пригласила выдающегося электрофизика Карла Штейнмеца заведовать ее лабораториями с правом заниматься чем угодно, лишь бы все чаемые и нечаянные плоды доставались фирме. Такие случаи встречались все чаще. Создавались институты, в которых сосредоточивалась теоретическая мысль, становившаяся все более частым источником принципиально новых тенденций технического прогресса. Такими институтами оказывались в зависимости от условий и традиций университетские кафедры, лаборатории высшей технической школы, учреждения, входившие в состав академий наук и научных обществ, а в США частные институты.
162
Появлялись и специальные государственные или созданные на частные средства по инициативе правительств научные учреждения, в которых теоретические исследования должны были принести несомненный, но заранее не могущий быть определимым практический эффект. Германская империя, стремившаяся вырвать у Англии первенство в научно-техническом и промышленном развитии и пресловутым "бронированным кулаком" переделить рынки, источники сырья и сферы вывоза капитала, особенно энергично хотела бросить на чашу весов промышленного и военного соперничества реальную силу теоретической мысли.
Финансовая олигархия сочувственно отнеслась к замыслу германского императора, объявившего о создании общества и института, которым будет присвоено имя коронованного инициатора. "Общество кайзера Вильгельма" должно было состоять из банкиров и промышленников, финансирующих институт. Каждому из них присваивались звание сенатора, специальная мантия и право участвовать в торжественных обедах в присутствии кайзера. Кто из верноподданных мог устоять против подобной перспективы?
Институт кайзера Вильгельма проектировался в составе наиболее крупных ученых, со сравнительно большим жалованием, без педагогических обязанностей, с правом вести любые индивидуальные исследования. Не без основания предполагалось, что эти исследования принесут весьма эффективные плоды. Конкретные заботы о подборе ученых взяли на себя Планк и Нернст.
Макс Планк - гениальный создатель квантовой теории, физик с необычайно широким диапазоном научных интересов и тонкой интуицией, не только первым оценил внутреннюю стройность и красоту теории относительности. Он понял или почувствовал (трудно сказать, превалировала ли здесь логика или интуиция), что теория Эйнштейна надолго определит направление физических исследований, которые принесут неопределимые заранее, но безусловно важные результаты для всех областей науки и культуры. Планк пользовался непререкаемым авторитетом в академических кругах - не только научным, но и моральным. Эйнштейн очень любил этого стройного,
163
суховатого человека, романтическая душа которого раскрывалась, когда он садился за рояль и, быть может, но в меньшей степени, когда он садился за письменный стол, где из-под его пера выходили статьи, исполненные самой романтической преданности науке.
Планка уважали и в официальных кругах. Аристократическое происхождение, органическая приверженность условностям, сдержанные манеры, выправка импонировали офицерско-чиновничьей среде.
Кумиром буржуазии был Вальтер Нернст - один из самых крупных химиков XX в., человек поразительной активности и энергии, организатор но самой природе и вместе с тем глубокий и оригинальный мыслитель.
Планк и Нернст приехали к Эйнштейну в Цюрих со следующим предложением. Эйнштейн назначается директором Института кайзера Вильгельма. Его избирают в Прусскую Академию наук. Он становится профессором Берлинского университета и читает лекции в минимальном объеме, который он сам определит. Если Эйнштейн пожелает, он может принять участие в работе других институтов и корпораций. Но никаких обязательств на него не накладывают, он может разрабатывать любые проблемы.
Эйнштейн понимал, что согласие позволит ему сразу же целиком уйти в те размышления, которые в это время были направлены на обобщение теории относительности. Кроме того, в Берлине были выдающиеся физики и математики. В разговоре с Нернстом и Планком он услышал и этот аргумент. Когда речь зашла о теории относительности, Эйнштейн заметил, что, по мнению Ланжевена, в мире всего двенадцать человек понимают смысл теории. Из этих двенадцати восемь находятся в Берлине, ответил Нернст. Но все же Эйнштейн колебался. Ему не хотелось покидать мирную и терпимую атмосферу Цюриха и столкнуться с воинственной, чванной и нелояльной атмосферой Берлина. А столкнуться придется, несмотря на изолирующую академическую среду, - это Эйнштейн понимал хорошо.
Разговор окончился согласием Эйнштейна, но не окончательным. Эйнштейн попросил немного времени, чтобы подумать. Характерная для Эйнштейна постоянная игра (такая далекая от гелертерской респектабельности): Нернст и Планк должны были приехать снова в Цюрих; если Эйнштейн, встречая их на вокзале, будет держать в руках букет из красных цветов, значит он согласен переехать в Берлин. Белые цветы означали бы отказ.
164
Когда Нернст и Планк вновь оказались на перроне цюрихского вокзала, Эйнштейн встретил их с красными цветами.