ГЛАВА 3 Нейтрино и бета-распад

Благодаря открытию нейтрона, искусственной радиации и делению ядра немногим больше чем за десятилетие, между 1927 и 1938 годами, ученым удалось проникнуть в тайны атомного мира. Модель Томаса — Ферми позволила понять феномен электрической проводимости и заложила основы современной электроники. Ферми получил Нобелевскую премию за доказательство возможности получения новых радиоактивных элементов и дал название новой частице — нейтрино. Сегодня идут споры о том, могут ли нейтрино развивать скорость, превышающую скорость света.

В 1926 году Ферми подал запрос на кафедру физики университета Кальяри. После работы в этом учебном заведении он смог бы рассчитывать на более престижные должности. Однако комиссия сочла блестящего ученого слишком молодым и предпочла ему Джованни Джорджи, имевшего более солидное резюме: он написал докторскую диссертацию на восемь лет раньше Ферми и был уже известен благодаря разработке системы МКС (в которой основными единицами измерения являются метр, килограмм и секунда). Тогда Орсо Марио Корбино, директор физического отделения Римского университета, решил создать новую кафедру теоретической физики в Риме. Корбино хотел собрать группу физиков-новаторов, а для этого ему нужны были талантливые молодые ученые, желающие произвести революцию в итальянской науке. Корбино организовал конкурс, в котором Ферми занял первое место, а Персико — второе. Так эти два давних друга начали тесное сотрудничество в научных исследованиях.

Когда Ферми вернулся в Италию, Лаура Капон была студенткой второго курса Римского университета. Она посещала лекции Корбино по электричеству, проходившие в здании на улице Панисперна, в бывшем монастыре, который в 1870 году был отдан университету под отделение физики. В другом бывшем монастыре, расположенном на той же улице, проходили занятия по химии, на которые в основном и ходила Лаура. В целом список предметов, которые она выбрала для изучения, был очень разносторонним, на стыке различных дисциплин, как лекции Корбино.

Сам Корбино хорошо представлял себе, чего хочет. Он пригласил Разетти из Флоренции в Рим на место, для которого не требовалось участвовать в государственном конкурсе (ученый знал, что Разетти отлично сойдется в работе с Ферми), и убедил некоторых блестящих студентов инженерного факультета заняться физикой. Среди них был Эдоардо Амальди, друг Лауры Капон, который вместе с ней ходил на лекции Корбино по электричеству. Вскоре к ним присоединились Эмилио Сегре, Бруно Понтекорво, замкнутый, но талантливый Этторе Майорана и другие. Корбино удалось создать вокруг Энрико Ферми рабочую группу, известную нам как «ребята с улицы Панисперна».


Изучение теплоты можно рассматривать как специальную отрасль механики.

Ферми во введении в свою «Термодинамику»


Ферми подталкивал группу соратников к выходу за рамки традиционных университетских курсов, как он сам делал это во время учебы. Молодость самого Ферми и поддержка со стороны Разетти способствовали его сближению с молодыми студентами, которыми он руководил. Обычно, отталкиваясь от одной задачи, Ферми соединял физическую теорию с необходимыми для ее решения математическими инструментами и объяснял ее эмпирические последствия. Ученый демонстрировал энциклопедические знания, говоря об излучении черного тела, теории относительности Эйнштейна, термодинамике, электродинамике или статистической механике и показывая связи между ними. Он всегда стремился дойти до сути проблемы и найти способ ее экспериментального решения, которое должно было предоставить необходимые данные, «основу объяснений».

По субботам во второй половине дня у профессора Кастельнуово обычно собирались семьи и студенты, так или иначе имевшие отношение к Римскому университету. На этих вечерах студенты и молодые профессора не только обсуждали научные вопросы, но и завязывали дружеские отношения. Там Лаура Капон и Энрико Ферми встретились вновь.


ТАЙНА АТОМА И МОДЕЛЬ ТОМАСА — ФЕРМИ

Когда Ферми опубликовал свою работу «О квантовании идеального одноатомного газа», ученые еще не имели ни малейшего представления о той вселенной элементарных частиц, которую мы кратко описали в конце предыдущей главы. Атом оставался совершенной загадкой. В 1920 году Резерфорд выдвинул гипотезу о существовании нейтрона (которая еще не была доказана эмпирически) и в том же году назвал ядро атома водорода протоном, который он обнаружил в ходе эксперимента в 1919 году.

Благодаря своей теории статистики Ферми начинал приобретать международную известность: в одном из писем Лоренцу в июне 1926 года Эйнштейн советовал коллеге пригласить на пятый Сольвеевский конгресс, который должен был состояться в октябре 1927 года, Ферми или Ланжевена, лучших ораторов и знатоков квантовой статистики. В результате туда поехал Ланжевен, и именно он запечатлен на одной из самых знаменитых фотографий в истории науки. Месяцем раньше, в сентябре 1927 года, в Комо прошла еще одна международная конференция по физике, посвященная 100-летию со дня смерти Алессандро Вольты. Корбино удалось собрать на ней, кроме своих «ребят с улицы Панисперна», большинство тех, кто должен был участвовать и в Сольвеевском конгрессе: приехали Планк, Паули, Гейзенберг, Резерфорд, Лоренц и Бор.

В Комо Бор изложил свой знаменитый принцип дополнительности квантовой механики, который постулировал, что для понимания мира квантов согласно копенгагенской интерпретации классическая физика должна дополняться волновой и корпускулярной теориями. Он переиначил принцип неопределенности Гейзенберга, выдвинутый последним в марте того же года, и предположил, что независимо от того, являются ли частицы объектом наблюдения, наблюдатель взаимодействует с квантовыми системами таким образом, что эта система не может считаться независимой. Другими словами, квантовая наука оформлялась как вероятностная, она положила конец классическому подходу Ньютона. Эпистемологические выводы, следующие из копенгагенской интерпретации, занимали философов на протяжении всего XX века: реальность — это физика вероятностей? В мире атомов все казалось другим и непонятным. В макроскопическом же мире, напротив, вероятности событий становятся настолько высокими, что статистика придает нам уверенность.


Английские астрономы могут стать американскими сенаторами, но реками — никогда.

Энрико Ферми о своем эпистемологическом видении


Ферми был очарован успехами статистической физики в объяснении квантового мира. Поэтому он решил использовать тот же метод, который он применил для статистики одноатомного газа, для подсчета эффективного потенциала, действующего на электроны. Он рассмотрел частицы как газ из фермионов при абсолютном нуле, которые поддерживают вокруг ядра электрическое притяжение.

В статье «Статистический метод определения некоторых свойств атома» Ферми изложил модель, известную сегодня как атомная модель Томаса — Ферми, поскольку Люэлин Хиллет Томас предложил похожую модель годом раньше, хотя Ферми ничего не знал о его работе. Согласно модели Томаса — Ферми облако электронов не падает на ядро, что должно было бы произойти из-за электромагнитного притяжения с протонами, имеющими противоположный заряд, потому что принцип исключения Паули ограничивает количество электронов на разных уровнях. Электроны ведут себя как идеальный газ Ферми, то есть как совокупность фермионов, не притягивающихся друг к другу и подчиняющихся принципу исключения. Эта простая модель хорошо работала для свободных электронов в металлах. Например, она объясняла их хорошую электрическую проводимость, а также, как продемонстрировал в 1930 году индийский физик Чандрасекар, поведение белых карликов, которые не коллапсируют, если их масса не превышает определенного верхнего предела.

Совокупность энергии Ферми-газа при абсолютном нуле больше суммы энергий фундаментальных состояний отдельных частиц. Это объясняется тем, что принцип Паули действует как давление, удерживающее фермионы отдельно друг от друга и в движении. Поэтому давление Ферми-газа ничтожно и при абсолютном нуле: давлением Ферми, или давлением вырождения, называют давление, которое стабилизирует звезды, и только в том случае, если звезда обладает достаточной массой для преодоления давления Ферми, она может провалиться в гравитационную сингулярность, или в черную дыру.

Наконец, модель Томаса — Ферми дала хорошее описание атомной плотности и объяснила, почему размеры каждого материального элемента являются следствием равновесия между внешними силами (электромагнитными или гравитационными, в зависимости от того, рассматриваются квантовые или астрономические явления) и давлением Ферми. В XX веке атомно-статистические теории Ферми успешно применялись также в науке о материалах.


СВОБОДНЫЕ ЭЛЕКТРОНЫ МЕТАЛЛА

В Ферми-газе как системе свободных фермионов частицы не взаимодействуют друг с другом, в отличие от Ферми-жидкости. В зависимости от того, как протоны и электроны описаны статистикой Ферми, можно сделать первые приблизительные выводы с помощью этой модели газа Ферми. Нельзя забывать, что когда была предложена модель Томаса — Ферми, нейтрон еще не был открыт, так что точность расчетов Ферми вызывает удивление.


ПОВЕРХНОСТЬ И СКОРОСТЬ ФЕРМИ

Энергия последнего заполненного электронами уровня (или уровня Ферми, nF) описывается следующим выражением:

εF = h2n2F/8mL2 = h2/8m·(N/2L)2,

где N — количество электронов, m — масса электрона, h — постоянная Планка, N/L — электронная плотность газа, которая зависит от L, глубины потенциальной ямы, считающейся в данном случае одномерной (краевая задача). Определим волновой вектор Ферми:

kF = 2πnF/L.

В идеальном случае со сферой с радиусом kF поверхность Ферми будет определена как поверхность, отделяющая населенные уровни от пустых в пространстве импульсов (см. рисунок). Энергию Ферми можно записать в зависимости от kF в данном случае

εF = h2k2F/8πm.

Определение скорости Ферми (vF) следующее: это скорость, с которой фермион двигается на поверхности Ферми:

vF = √(2εF/m) = hkF/2πm.

Эти параметры характеризуют электроны, населяющие последний энергетический уровень в металлах (уровень Ферми). Зная их, можно подсчитать, когда они перейдут в зону проводимости. Это позволило развиваться полупроводникам и современной электронике.



Распределение энергии фермионов в Ферми-газе устанавливается посредством плотности, температуры и совокупности свободных энергетических уровней, следуя статистике Ферми — Дирака, как мы видели в предыдущей статье.

В 1927 году Паули успешно использовал статистику Ферми для объяснения парамагнетизма щелочных металлов, таких как литий. В том же году Зоммерфельд применил ее к свободным электронам в металле, хотя уже в 1900 году немецкий физик Пауль Друде изучал проводимость на примере классического газа. Свободные электроны металлов являются причиной электрической проводимости, и их надо отличать от электронов, которые остаются связанными с атомными ядрами и не входят в так называемую зону проводимости.

При температуре ниже, чем температура Ферми, газ может считаться вырожденным, и следовательно, давление Ферми имеет место только благодаря принципу исключения. Температура Ферми зависит от массы задействованных фермионов и от плотности энергетических уровней. Для металлов она равна тысячам градусов Кельвина. Максимальная энергия фермионов при абсолютном нуле равна энергии Ферми, которая определяет границу перехода электронов, связанных с ядром, к электрической проводимости.

Итак, в металле одна часть электронов остается при атомах, которые формируют его структуру, а другая, находящаяся на внешних уровнях и орбиталях, становится газом свободных электронов (см. рисунок на следующей странице). Их можно легко сдвигать с помощью внешних электромагнитных полей. Таким образом, батарейка может легко вызвать движение электронов в металле и, следовательно, электрический ток.

Понимание явления проводимости металлов в середине XX века позволило создать полупроводниковые материалы, имеющие фундаментальное значение для современной электроники. Они стали основой технологической революции в нашу кремниевую эпоху.

Схема свободных электронов лития. Только некоторые из них перешли от последнего уровня, или уровня Ферми, к зоне проводимости — своего рода бульону, в котором электроны двигаются с большой легкостью и который обеспечивает хорошую проводимость металлов.


СЕМЕЙНАЯ ЖИЗНЬ ФЕРМИ

Во время субботних вечеринок у профессора Кастельнуово сложилась тесная компания студентов и молодых профессоров. Среди «ребят с улицы Панисперна» были такие студенты, как Амальди и Сегре, и близость к ним по возрасту Ферми, Персико и Разетти способствовала зарождению тесной дружбы. Лаура и Энрико тоже сближались все сильнее и в конце концов встали рядом перед алтарем. Они поженились жарким днем 19 июля 1928 года. Лаура была умной девушкой, очень непосредственной и эмоциональной. Она влюбилась не только в гений Ферми, в ученого, поражавшего (и даже иногда пугавшего) ее своими знаниями и открывавшего ей чудеса физики, но и в сердечного, простого человека, способного наслаждаться малым, получать удовольствие от жизни и мечтать.

Лаура редко сопровождала мужа в поездках и впервые оказалась вместе с ним в США в 1930 году, когда Энрико должен был прочитать лекцию на конференции в Энн-Арборе, в Мичиганском университете. Так она увидела страну, которая позже стала ее второй родиной, и так началась, как писала сама Лаура, ее «американизация». Вернувшись в Рим после медового месяца, чета переселилась в квартиру, где через несколько лет родилась их старшая дочь Нелла (1931), а потом сын Джулио (1936), названный в честь погибшего брата Энрико. Этот период был очень плодотворным для Ферми-ученого. Казалось, ничто не могло поколебать их счастье, но внешние обстоятельства оказались сильнее человека. Ужесточение фашистского режима вынудило семью Ферми эмигрировать.

Ферми с Лаурой Капой в 1954 году. Они поженились в 1928-м.

Корбино, создатель группы «ребята с улицы Панислерна».

Под наблюдением Корбино Ферми руководил «ребятами с улицы Панисперна». Слева направо: Оскар Д’Агостино, Эмилио Сегре, Эдоардо Амальди, Франко Разетти и Энрико Ферми. Около 1930 года.


СПЕКТР УЛИЦЫ ПАНИСПЕРНА

Спектроскопия позволяет проанализировать химический состав вещества на основе, например, его спектра излучения или поглощения (см. рисунок). Если газ подвергается действию высокочастотной радиации, то поглощает часть спектра и в результате получается спектр поглощения, в котором нет полос, соответствующих длине волн поглощенного излучения. С другой стороны, возбужденный газ может испускать излучение с длиной волн, обусловленной его химическим составом, поэтому каждый газ имеет собственный спектр излучения. В первые годы работы на улице Панисперна Ферми изучал молекулярную спектроскопию в тесном сотрудничестве с Разетти, так как понял, что это прямой способ получить сведения о структуре материи. Его догадку подтверждали и исследования спектра водорода, сделанные Иоганном Якобом Бальмером в 1885 году, и последующие дополнения Йоханнеса Ридберга. В 1908 году Ридберг опытным путем получил формулу частоты спектральных линий для перехода атома водорода между уровнями n и n':

Схема устройства для измерения атомных спектров.


Фотографическая пластина идет в комплекте с камерами переменного тока, подключенными к компьютеру. Наблюдаемые спектральные линии говорят составе вещества, его атомной и молекулярной структуре.

v = RH(1/n2 - 1/n'2),

где RH — постоянная Ридберга для водорода, на сегодняшний день равная RH = 10967 758,341 ± 0,001 м-1 (в то время это значение было гораздо менее точным). Американский физик Теодор Лайман (1874-1954) открыл новые линии в ультрафиолетовой зоне, а позднее Пашен, Браккет и Пфунд выявили новые линии в инфракрасной. Даже Бор, создавая в 1913 году свою атомную модель, предусмотрел, чтобы она соответствовала спектроскопическим прогнозам, так как частота излучения фотонов должна совпадать с переходами электронов на другие энергетические уровни. Этому условию должна соответствовать модель атома (см. рисунок на следующей странице).

Формула боровской модели

E = 13,6eV/n2

точно предсказывала переходы атомов водорода. Ферми очень интересовался атомной физикой. В 1928 году он опубликовал «Введение в атомную физику», в котором, помимо прочего, продемонстрировал свои незаурядные педагогические способности. Ферми был убежден: если кто-то действительно что-то понял, он должен быть в состоянии это объяснить. В последующие годы он много занимался популяризаторской работой. В 1928 году вышел учебник Ферми по физике для учеников старших классов, в 1929-м — серия статей для широкого круга читателей, например «Экспериментальное обоснование новых физических теорий» или «Современные задачи физики», а в 1930-м — «Современная физика», «Атомы и звезды» и «О квантовой электродинамике». Ферми считал, что ученые обязаны рассказывать обществу о своих открытиях, хотя в то время Италии только предстояло пройти долгий путь к всеобщей грамотности, а физика еще не до конца восприняла теории квантов и относительности. Разетти же, со своей стороны, был прекрасным экспериментатором и брал на себя большую часть работы по постановке опытов, оставляя на долю Ферми их продумывание и теоретическую интерпретацию результатов.

Энергетические уровни водорода с квантовым числом л на каждом уровне и приблизительное изображение некоторых переходов, которые появляются в спектре (серия Лаймана в ультрафиолетовом, Балмера в видимом и Пашена в инфракрасном). Шкала длины волны и частоты не линеарна. Энергия измеряется в электрон вольтах (эВ), длина волны — в ангстремах

(1А = 10-10 м), а частота — в герцах (Гц).


Ферми всегда стремился выйти за рамки простой констатации результатов, его интуиция подсказывала ему саму суть проблемы, а полученные данные ученый анализировал с большим математическим изяществом. Вместе с Разетти они дали хорошую техническую подготовку Сегре и Амальди, которые впоследствии сделали в спектроскопии большие открытия, имевшие огромное значение для развития итальянской физики.

Вслед за Сегре в 1928 году физикой решил заняться Этторе Майорана, обладавший уникальными вычислительными способностями и привлеченный успехами рабочей группы Ферми. Вместе с Джованни Джентиле, еще одним молодым профессором с улицы Панисперна, он начал заниматься квантовыми исследованиями в области спектроскопии, применением модели Томаса — Ферми к квантовым состояниям электронов, находящихся на нижних уровнях урана и гадолиния, а также изучением тонкой структуры цезия.

В первых атомных моделях, например в боровской, спектральные линии были соотнесены с переходами между квантовыми уровнями, основанными на квантовом числе n. Однако Уилсон и Зоммерфельд разработали правила квантования, объясняющие так называемую тонкую структуру, или расщепление спектральных линий на несколько составляющих. Оно наблюдается во всех спектрах при наличии достаточно точных спектрометров и обусловлено спин-орбитальным взаимодействием, которое в конце 20-х годов еще было окутано тайной. Разетти и Ферми изучали тонкую структуру из-за ее способности точно предсказать структуру атомных уровней.

В 1929 году Корбино перед Итальянским Обществом научного прогресса заявил: «Единственная существующая сегодня возможность сделать великие открытия в физике появится, когда кому-нибудь удастся изменить ядро атома». Переход к ядерной физике был неизбежен, и стажировки за рубежом были хорошей возможностью познакомить Италию с открытиями других ученых. Так, период с 1928 по 1929 год Разетти провел в Калифорнийском технологическом институте, где изучал эффект Рамана с американским физиком Робертом Эндрюсом Милликеном, а затем — год в Берлине, работая с австрийским физиком Лизой Мейтнер и овладевая техниками наблюдения в ядерной физике. В это же время Сегре поехал в Гамбург учиться у Отто Гана, а потом — в Амстердам, к Питеру Зееману, чтобы улучшить свои знания спектроскопии; Амальди изучал дифракцию рентгеновских лучей в жидкостях вместе с Дебаем в Лейпциге, а вернувшись в Рим, вместе с Ферми сконструировал первую в Италии туманную камеру (или камеру Вильсона). В 1933 году, как раз когда к власти в Германии пришли нацисты, Майорана тоже уехал в Лейпциг, чтобы работать с Гейзенбергом над новой ядерной теорией. Бруно Понтекорво в 1936 году уехал в Париж, где работал вместе с Ирен Кюри и Фредериком Жолио, открывшими в 1934 году эмпирическим путем нейтрон и искусственную радиацию. Будучи евреем, он больше не вернулся в Италию, где ужесточался фашистский режим, и позже оказался замешан в странном шпионском скандале.

Группа, которую Корбино удалось собрать вокруг Ферми, состояла из разносторонне одаренных исследователей. За годы своего существования она приобрела международный авторитет в физике и продолжала бы двигать вперед итальянскую науку, если бы Муссолини не спровоцировал побег ученых, ставший прелюдией ко Второй мировой войне. Дуче понял, что эксперименты, над которыми работали «ребята с улицы Панисперна», могли прославить Италию. Эти молодые ученые исследовали структуру материи и секреты атома, который очень скоро стал проявлять свои волшебные и даже пугающие свойства. В марте 1929 года Ферми вступил в Королевскую академию Италии, созданную Муссолини в 1926 году для пропаганды новых национальных ценностей. Помимо этого, Ферми, который всегда был вне фашизма в частности и вне политики вообще, пришлось вступить в Национальную фашистскую партию: это была единственная возможность гарантировать финансирование его исследовательской группы.


КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА И ПОЯВЛЕНИЕ НЕЙТРОНА

Ферми стал изучать квантовую теорию излучения летом 1929 года, познакомившись с работами Дирака. Он сконцентрировался на взаимодействии между электронами и электромагнитными полями, а также на процессах излучения и поглощения фотонов в области, названной квантовой электродинамикой. Она объясняет взаимодействия между фотонами и заряженными фермионами, теорию квантовых электромагнитных полей, создание и разрушение частиц. В серии статей, опубликованных между 1929 и 1932 годами, Ферми сформулировал описание заряженных частиц в магнитных полях с позиций теории относительности, представив частицы с точки зрения уравнения Шрёдингера и не прибегая к квантовому формализму Гейзенберга или Паули. В своей «Интерпретации принципа причинности в квантовой механике» (1930) Ферми трактовал с позиций квантовой механики тот факт, что будущие события не полностью детерминированы. Он подчеркнул, что в перспективе важнее неуверенность в определении физических состояний, чем узкий взгляд на временное развитие пространства событий. В его рассуждениях прослеживался интеллектуальный переход от классической физики к современной.


ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

На схеме представлены основные типы элементарных частиц, составляющие материю (слева) и являющиеся носителями взаимодействий (справа). Элементарные частицы и их взаимодействие управляют Вселенной. Под названием частиц — носительниц взаимодействий указаны области физики, их изучающие. Гравитоны еще не классифицированы.


В природе существует четыре основных вида взаимодействий: гравитационное, электромагнитное, сильное ядерное и слабое. Гравитационное взаимодействие происходит между частицами, обладающими массой, оно было описано Ньютоном. Электромагнетизм — взаимодействие между частицами с электрическим зарядом посредством электромагнитного поля. Сильное взаимодействие (или сильное ядерное взаимодействие) позволяет кваркам соединяться и образовывать адроны, то есть ядра атомов. Слабое взаимодействие (или слабое ядерное взаимодействие) — причина изменений «ароматов» кварков и лептонов; другими словами, оно отвечает за трансформацию кварков и лептонов в более легкие частицы и бета-распад, как объяснил Ферми. Электромагнитное взаимодействие, сильное и слабое, сегодня изучают в рамках так называемой стандартной модели. Целью теоретической физики является описание этих четырех взаимодействий как аспектов единой силы, но для этого необходимо экспериментально доказать существование гравитона.


Действительно, в своей первой работе «О квантовой электродинамике» (1929) он отталкивался от классической электродинамики, а потом сделал резкий переход к теории квантов. В последующих работах Ферми пытался сформулировать теорию электромагнитного излучения, которая не противоречила бы квантовой механике. В 1932 году он опубликовал блестящую статью «Современная физика. Новая антология», в которой заложил основы современной квантовой электродинамики, с поразительной простотой объясняя сложнейшую область науки. Ричард Фейнман всегда говорил об этой работе как об одном из столпов, на котором он построил современную квантовую электродинамику.

Когда американский физик немецкого происхождения Ханс Бете (1906-2005) приехал в Рим по стипендии Фонда Рокфеллера (престиж группы Ферми был так велик, что он начал принимать студентов), то был поражен способностью Ферми анализировать сложнейшие задачи, а затем решать их точными математическими методами. В 1932 году Бете и Ферми написали совместную работу «О взаимодействии двух электронов», в которой рассказывали о поведении фермионов в зависимости от обмена фотонами.

В начале 1929 года наиболее распространенная атомная модель представляла ядро с протонами А и электронами A-Z. То есть в ней были представлены электроны на орбиталях вокруг ядра и электроны в самом ядре вместе с протонами. Необходимо было выяснить, какой статистике подчинялось ядро: Бозе — Эйнштейна или Ферми — Дирака.

В 1928 году Вальтер Боте заметил, что при облучении альфа-частицами бериллий испускает проникающие и при этом электрически нейтральные частицы. Он решил, что это фотоны, гамма-излучение. Джеймс Чедвик (1891-1974) подверг воздействию излучения бериллия разные вещества и выяснил, что излучаемые частицы должны быть нейтральными и обладать массой, близкой к массе протона.


ДИАГРАММЫ ФЕЙНМАНА

В 1948 году американский физик Ричард Фейнман (1918-1988) предложил эффективный и наглядный способ упрощенного представления взаимодействия элементарных частиц. Его диаграммы нельзя пугать с пространственно-временными диаграммами или с реальными движениями частиц (которые получают при помощи туманной камеры). В своей самой строгой версии диаграммы Фейнмана показывают, как влияет возмущение на квантовый переход от начального квантового состояния к конечному. Например, при взаимодействии двух электронов, которые обмениваются фотоном, в одной вершине сходятся две фермионные линии (непрерывные прямые) и одна фотонная (представленная волнистой линией).

Пример диаграммы Фейнмана, на которой два электрона обмениваются фотоном.


Так были открыты нейтроны, существование которых предсказывал Резерфорд. В феврале 1932 года Чедвик теоретически доказал существование этой новой частицы, нейтрона. В январе того же года Гарольд Юри открыл новый изотоп водорода, дейтерий. В апреле Уолтон и Кокрофт получили первый ядерный распад путем облучения ускоренными протонами в электростатическом ускорителе легких ядер, а вскоре после этого Лоуренс, Ливингстон и Мильтон использовали для ядерного распада циклотрон, разработанный Эрнестом Лоуренсом. В 1933 году Олифант, Кинси и Резерфорд открыли тритий, подтвердив, что нейтрон имеет фундаментальное значение в атомной структуре и в новом представлении об изотопе. Хотя элементы периодической таблицы определялись по количеству их протонов, ядро атомов могло иметь большее или меньшее количество нейтронов. Атом X с N количеством нейтронов и Z протонов имел массовое число А = N + Z и обозначался обычно как ХAZ. Было доказано, что водород также может иметь изотопы с массовым числом А = 2 (дейтерий H21) и А = 3 (тритий, H31) с одним или двумя нейтронами соответственно.


Если бы я мог запомнить названия всех этих частиц, то стал бы ботаником.

Энрико Ферми


Анализируя космическое излучение, американский физик Карл Андерсон (1905-1991) впервые выявил позитрон, е+, частицу с такими же массой и спином, как у электрона, но с положительным зарядом. Таким образом, Андерсон подтвердил предсказания Дирака о квантовых моделях, сделанные в 1927 году, к которым также в 1928 году пришел Майорана. Карта элементарных частиц становилась все полнее. В атомной и ядерной физике начиналась революция. В 1932 году Ферми был приглашен в Париж на Пятую Международную конференцию об электричестве, где он выступил с докладом «Современное состояние физики атомного ядра», в котором объяснил несостоятельность модели атомного ядра, основанной на протонах и электронах, и изложил гипотезу Паули о существовании нейтрино.


БЕТА-РАСПАД, НЕЙТРИНО И СЛАБОЕ ВЗАИМОДЕЙСТВИЕ

Распад ядра случается всякий раз, когда ядро атома приходит в возбужденное состояние, то есть отличное от состояния с наименьшим возможным количеством энергии. Возбуждение атомов происходит естественным образом или может быть создано искусственно. Естественная радиоактивность была открыта французским физиком Анри Беккерелем в 1896 году, она изучалась Пьером и Марией Кюри и является следствием процессов ядерного распада. Существует три типа радиоактивности: альфа (α), бета (β) и гамма (γ) (см. рисунок). Гамма-излучение состоит из фотонов с высокой энергией, способных проникать в свинце на глубину до 7 см. Фотоны могут исходить, например, от протона в возбужденном состоянии ядра, который переходит на уровень с меньшей энергией: р+ → р + γ. Гамма-лучи образуются также в ходе ядерных реакций на звездах, например на Солнце, но, к счастью, они не проходят сквозь атмосферу и не достигают земной поверхности. Объяснение гамма-распада не представляло особой трудности в рамках теории Ферми, так как соответствовало теориям Планка и Эйнштейна. Экспериментальная же физика должна была разработать необходимые инструменты для его анализа и получения данных об атомных ядрах. В 1933 году Ферми и Разетти создали спектрометр с кристаллами висмута — пригодилась техника, которой Разетти научился за год до этого у Лизы Мейтнер. Альфа-распад состоит в излучении альфа-частицы (ядра гелия-4, Не42) ядром. Например, Мария Кюри открыла, что это происходит с радием, который естественным образом превращается в радон:

Ra22688 → Rd22286 + He42.

Каждый вид излучения имеет свою проникающую способность. Альфа-частицы останавливает обычный листок бумаги, бета- частицы —- тонкая деревянная доска, а гамма- частицы и нейтроны — брусок свинца толщиной в несколько сантиметров или кусок цемента толщиной в метр.

Было замечено, что альфа-распад обычно происходит в ядрах с атомным номером больше Z = 82.

Резерфорд использовал альфа-частицы для того, чтобы доказать существование атомного ядра. Энергия распада была известна, она зависела от масс участвующих в ядерной реакции ядер и могла быть записана в виде формулы эквивалентности массы и энергии Эйнштейна (E = mc2).


ВОЗРАСТ И РАДИОУГЛЕРОДНЫЙ АНАЛИЗ

Объяснение, которое Ферми дал явлению распада, легло в основу важных способов практического применения, например метода радиоуглеродного анализа. Если мы рассмотрим систему с множеством распадающихся атомных ядер (посредством альфа-, бета- или гамма-распада) в ритме, заданном постоянной λ (вероятность того, что ядро распадется за единицу времени), если в один момент времени t существует N ядер, которые не распались, то, применив дифференциальное вычисление, получим:

dN = -N·λ·dt → dN/N = -λdt

Минус означает, что количество ядер N со временем уменьшается. Взяв интеграл от предыдущего выражения, мы получим

N(t)N0 dN/N = -λ∫t0dt = -λt

lnN(t) - ln(N0) = -λt → ln(N(t)/N0) = -λt

где N0 — изначальное число нераспавшихся ядер. Если мы определим время жизни, T, как величину, обратную λ то получим закон экспоненциального распада.

N(t) = N0e-λt = N0e-t/T.


Обычно используется также период полураспада, или средний период жизни T1/2 , то есть время, прошедшее до момента, когда число ядер уменьшается наполовину:

T1/2 = (ln2)·T ≈ 0,693·T.

Сегодня мы знаем период полураспада большей части радиоактивных изотопов. Благодаря этому были разработаны системы геологической и археологической датировки, например метод углерода-14 (рисунок ниже), основанный на естественном присутствии ядер этого изотопа в углероде в органических останках не старше 50 тысяч лет.


Однако нестабильность структуры ядра, которая вела к альфа-распаду, и причина, по которой альфа-частица была именно ядром Не42, а не каким- либо другим, нашли объяснение только в 1928 году в контексте квантовой механики благодаря советскому физику Георгию Гамову (1904-1968).

Причина бета-излучения, состоящего из простых электронов, оставалась тайной. До того как Чедвик открыл нейтрон, считалось, что она объясняется присутствием в ядре электронов: они были необходимы, чтобы компенсировать переизбыток заряда, созданный протонами ядра, согласно той ошибочной атомной модели, в которой еще не использовались нейтроны. Ферми и до открытия Чедвика знал, что модель неверна. Самым странным в бета-распаде было то, что излученные электроны не обладали энергией, которой должны были бы обладать; другими словами, они не следовали предполагаемому энергетическому спектру. Бор даже предположил, что при бета- распаде локально нарушается принцип сохранения энергии.

Таково было положение дел, когда 4 декабря 1930 года Паули в своем знаменитом письме предположил существование новой, еще не обнаруженной нейтральной частицы, излучаемой в ходе распада. Ферми использовал свое влияние в Королевской академии и вместе с Корбино в октябре 1931 года организовал в Риме конференцию. На ней Паули в частном разговоре с Ферми и другими коллегами высказал гипотезу о существовании маленькой частицы, «нейтральной, легкой, с большой проникающей способностью, которая не нарушает принцип сохранения энергии при бета-распаде». Ферми уже подозревал о существовании этой частицы, но не осмелился опубликовать догадку из-за вмешательства Бора. А вот более дерзкий Паули обнародовал свою гипотезу.

Поскольку нейтрон уже был открыт, чтобы избежать путаницы в терминах и даже отчасти в шутку, Амальди и Ферми предложили назвать частицу Паули на итальянский манер — нейтрино, то есть что-то нейтральное и маленькое. Предложение прозвучало на Римском конгрессе 1931 года. Вскоре термин был принят мировым научным сообществом, таким образом «крещение» новой частицы стало одним из самых необычных во всей истории науки. Спустя 25 лет, в 1956 году, американские физики Клайд Коуэн и Фредерик Райнес впервые обнаружили нейтрино опытным путем.

В 1933 году Ферми опубликовал в журнале La ricerca scientifica фундаментальную статью «Попытка теоретического обоснования бета-излучения». Возможно, из-за скромного названия эта работа была отклонена журналом Nature: редакторы сочли, что в работе содержались «рассуждения, слишком далекие от реальности физической науки, чтобы быть интересными читателям». Позже Ферми расширил статью для публикации в Nuovo cimento, и в 1934 году она была переведена на немецкий язык для авторитетного журнала Zeitschrift fur Physik под названием «К теории бета-лучей». В этой новаторской работе Ферми рассматривал бета-распад ядра А, превращающегося в итоге в ядро В, как

А → В + е" + v.

Согласно современной физике частиц, на самом деле в итоге получаются электрон и антинейтрино. Создание и разрушение частиц описывались в квантовой теории Дирака, которая, как в 1927 году доказали Клейн и Джордан, могла применяться к любому виду частиц. Несмотря на дуализм де Бройля и на принцип соответствия Бора, ученые еще довольно сдержанно (это продемонстрировали редакторы Nature) относились к утверждению о том, что частицы и электроны могут с легкостью создаваться и разрушаться. Хотя в рамках теории поля было принято описывать явления в терминах создания и разрушения частиц, лишь Ферми в своей работе применил этот подход не только к фотонам. В основе его теории лежал постулат о том, что в природе материи происходит фундаментальное взаимодействие, которое вызывает переход от нейтрона к протону, при этом образуется один электрон и один электронный антинейтрино:

n0 → p+ + e- + v,

в строгой аналогии с гамма-излучением, при котором возбужденный протон лишается части своей энергии, испуская фотон. Ферми также смог объяснить, почему в одних случаях бета-распад идет быстрее, чем в других: одни процессы распада были разрешены в рамках квантовой теории и могли происходить в стационарных ядрах, в то время как для других, изначально запрещенных, ядро должно было находиться в движении.

В теории бета-распада Ферми не хватало только параметра G. Его надо было найти опытным путем, измерив среднее время жизни бета-распадов. Этот параметр, известный сегодня как постоянная Ферми, определяет интенсивность нового взаимодействия в атоме, вызвавшем бета-распад, которое, в противоположность сильным ядерным силам, обычно использующимся для придания стабильности атомному ядру, было названо слабым взаимодействием. Слабое взаимодействие имеет ограниченное воздействие, а нейтрино и антинейтрино взаимодействуют с материей очень мягко. В современной стандартной модели переносчиками слабого взаимодействия являются W- и Z-бозоны, о которых мы говорили в конце предыдущей главы (см. рисунок).

Диаграмма Фейнмана, на которой помазан распад нейтрона согласно современной физике частиц стандартной модели. Один из d-кварков нейтрона становится u-кварком, излучая р-частицу (электрон) и электронный антинейтрино.


Слабое взаимодействие применяется в инструментах медицинской диагностики и в методах геологической датировки, а также имеет основополагающее значение в той физической Вселенной, которая известна нам сегодня. Ферми и Паули обнаружили фундаментальное взаимодействие природы. Такие звезды, как Солнце, производят энергию посредством термоядерных реакций: например, в результате соединения двух атомов дейтерия получается гелий и энергия.

Н21 + Н21 → Не42 + энергия.

Но как получить дейтерий? В ходе слабого взаимодействия двух протонов типа:

p+ + p+ → H21 + e+ + v.


СЧЕТЧИК ГЕЙГЕРА

Счетчик Гейгера (или Гейгера — Мюллера) — это прибор, измеряющий интенсивность радиации: естественной и искусственной, космической и земной. Первый счетчик был создан в 1908 году немецким физиком Гансом Гейгером (1882-1945), но распознавал только альфа-частицы.

Спустя 20 лет его ученик Вальтер Мюллер (1905-1979) улучшил аппарат таким образом, что тот стал распознавать все остальные виды ионизирующей радиации. Счетчик состоит из изолированной нити, проходящей по трубке, внутри которой создан вакуум. Нить и трубка соединяются под высоким напряжением, поэтому когда заряженная частица попадает в счетчик, возникает поток, который можно увеличить и измерить. В некоторых счетчиках были установлены динамики, издававшие звуковой сигнал. Современные счетчики электронные. Они подсоединяются к компьютеру и высчитывают количество распадов на единицу времени.


В данном примере мы получаем один позитрон и один нейтрино. Тот факт, что для формирования плавящихся материалов необходимы реакции слабого взаимодействия, гарантирует, что водород Солнца расходуется медленнее, регулируя солнечную активность и увеличивая продолжительность жизни звезды. Ферми не упускал из виду связь своего открытия с космической радиацией. В 1933 году он воспользовался тем, что в Риме находился Бруно Росси, прославившийся разработкой цикла для измерения совпадений в спаренных счетчиках Гейгера и выявления таким образом траекторий частиц, и написал с ним совместную работу «Действие магнитного поля Земли на проникающее излучение». В этой статье объяснялось геомагнитное воздействие широты и долготы на космическую радиацию, достигающую Земли. Ферми был очень доволен результатами в области изучения слабого взаимодействия и считал их своими главными достижениями, достойными того, чтобы остаться в памяти потомков. На основе этой работы японский физик Хидэки Юкава (1907-1981) в 1935 году сформулировал свою теорию мезонов, и с нее началась революция в ядерной физике и физике элементарных частиц.


ИСКУССТВЕННАЯ РАДИАЦИЯ И ЦЕНА УСПЕХА

В январе 1934 года, бомбардируя альфа-частицами ядра бора и алюминия, Ирен Кюри и Фредерик Жолио получили первые искусственные радиоактивные изотопы. Ирен шла по стопам своих родителей, Пьера и Марии Кюри, которые детально изучили поведение естественных радиоактивных изотопов радия и полония и более тяжелых элементов, таких как уран и торий.

Легкие ядра, подвергавшиеся бомбардировке альфа-частицами, довольно быстро излучали позитроны, демонстрируя, таким образом, хорошие радиоактивные свойства, в то время как ядра более тяжелых атомов подобной наведенной радиации не проявляли. Альфа-частицы, как и положительные ионы гелия, не действовали на тяжелые ядра из-за повышенного содержания в них электронов, которые уменьшали воздействие на ядра вследствие электромагнитного отталкивания. Процесс усложнялся и за счет повышенного отталкивания тяжелых ядер.

В начале марта 1934 года в руки Ферми попала статья Кюри и Жолио. Он сразу предложил Разетти провести те же эксперименты, но не с альфа-частицами, а с нейтронами, чтобы избежать электромагнитных трудностей. Разетти разработал несколько источников нейтронов, полония и бериллия, а также еще один, более мощный, радона и бериллия. Он собирался ехать в отпуск, но Ферми не мог тянуть с началом опытов. В отсутствие Разетти ему пришлось самому сконструировать счетчик Гейгера (с чем он блестяще справился) и быстро получить радон для нейтронного источника. Надо сказать, что Ферми повезло: у профессора Джулио Чезаре Трабакки, директора хорошо оснащенных лабораторий итальянской санитарной службы, был радий и необходимые приборы для извлечения из него радона по методу Марии Кюри. Радон — это газ, образующийся при естественном альфа-распаде радия, как доказала Мария Кюри. Если смешать его с пылью бериллия, то порожденные альфа-частицы провоцируют выброс нейтронов.


Если результат подтверждает гипотезу, значит, вы сделали измерение. Если результат противоречит гипотезе, вы сделали открытие.

Энрико Ферми


Ферми начал систематическую бомбардировку в порядке периодической таблицы, взяв водород, литий, бор, углерод и азот. Результаты были отрицательными. Ученый немного упал духом: полученные данные заставили его сомневаться.

Тогда он решил попробовать новые элементы. Ферми пропустил кислород, потому что его бомбардировку надо было проводить в воде, и, бомбардируя фтор, сумел активировать элемент. Отреагировал счетчик Гейгера и на алюминий. Ферми отправил 25 марта 1934 года в журнал La ticerca sdentifica статью «Радиоактивность, наведенная нейтронной бомбардировкой. I», чтобы ее как можно скорее опубликовали.

В статье ученый давал интерпретацию полученных результатов для каждого элемента. Римская цифра I означала, что за этой статьей должны были последовать и другие из этой же серии, что и произошло.

Ферми понимал, что сила современной науки кроется в совместной работе. Он тут же подключил к новым исследованиям Амальди и Сегре. Помощники с энтузиазмом отнеслись к первым же результатам и предложили химику Оскару Д’Агостино присоединиться к ним (он как раз вернулся в Рим после работы в лаборатории Жолио-Кюри). Ферми отправил Разетти в Марокко телеграмму, в которой объяснял ситуацию и спрашивал, как приступать к сбору материала (речь шла обо всех элементах периодической таблицы!). Готовился поистине обширный эксперимент.

Команда исследовала более 60 элементов и открыла 40 новых радиоактивных изотопов. И это не все. При бомбардировке ядер более тяжелых элементов, тория (Z = 90) и урана (Z = 92), ученые обнаружили два новых элемента с атомным номером, превышающим 92. В статье Possible Production of Elements of Atomic Number Higher than 92 («Возможное образование элементов с атомным номером выше 92»), опубликованной в журнале Nature, элементы были названы гесперий и аузоний. Количество полученных данных и открытых радиоактивных элементов поразило группу исследователей. Возможно, поэтому ученые не обратили должного внимания на блестящую идею немецкого физика и химика Иды Ноддак (1896-1978) о возможности деления ядер урана на изотопы уже известных атомов. Время деления ядра еще не пришло.

В мае 1934 года Ферми предложил создавать искусственным образом несуществующие на Земле элементы, например элемент 93, который он, как ему казалось, получил в ходе некоторых экспериментов по бомбардировке урана. Корбино, выступая на конференции перед королем Виктором Имануилом III, рассказал о достижениях научной группы Ферми и обрисовал перспективу создания новых элементов. Фашистская пресса тут же подхватила эти слова, воздавая похвалы ученым и подчеркивая огромный вклад итальянской науки в развитие человечества — науки, «поощряемой фашистским режимом», и говоря об открытии элемента-93 как о свершившемся факте. Ферми очень рассердился на Корбино. Он не хотел никакой рекламы, особенно если речь шла о лжи мировому сообществу. Слишком много сил он потратил на то, чтобы заслужить репутацию, и ученый не хотел ее разрушить. Корбино понял сложность положения, однако было поздно: из скандальной европейской прессы новость докатилась до The New York Times.


МЕДЛЕННЫЕ НЕЙТРОНЫ

Осенью 1934 года Ферми поручил Амальди и Бруно Понтекорво подсчитать количество радиации, излучаемой каждым бомбардируемым элементом. Амальди тем летом был вместе с Сегре в Кембридже и опубликовал там в журнале Proceedings of the Royal Society анализ на тему «Радиоактивность, наведенная нейтронной бомбардировкой». Амальди знал, что условия эксперимента оказывали значительное влияние на количество испускаемой радиации.

Между 18 и 22 октября того же года Амальди и Понтекорво изучили поглощающие свойства таких материалов, как свинец, в зависимости от величины вещества и условий эксперимента. В свинцовую коробку они поставили цилиндр из серебра, а счетчик Гейгера разместили позади источника нейтронов радона-бериллия (см. рисунок на следующей странице). Ученые провели несколько опытов с цилиндрами одинаковых размеров, но из разных материалов, меняя их положение в коробке. Измеряемая радиоактивность менялась в зависимости от положения цилиндров, и ученые не понимали причин этого.

Амальди и Понтекорво поделились трудностями с Ферми и Разетти. Те изменили эксперименты так, чтобы устранить возможные причины ошибок: Разетти был уверен (и совершенно справедливо), что для уменьшения статистических ошибок нужна большая точность. Амальди вместе с Понтекорво поняли, что радиоактивность менялась в зависимости от того, проводились опыты на деревянном или мраморном столе. Тогда Ферми предложил проделать все то же самое вне свинцовой коробки: радиоактивность менялась даже при приближении металлических или других предметов. Тогда он посоветовал поместить между нейтронным источником и серебряным цилиндром различные материалы. Несколько дней все «ребята с улицы Панисперна» участвовали в опытах.

Некоторые свинцовые плиты, помещенные между источником и цилиндром, увеличивали радиоактивность. Тогда Ферми решил попробовать то же самое с блоком парафина, и радиоактивность выросла в огромное количество раз. Медленные нейтроны могли увеличивать радиоактивность.

Схема бомбардировки в эксперименте Ферми.


Объяснялось это так: при столкновении с легкими атомами, такими как атомы воды или парафина, некоторые нейтроны отдавали им часть своей энергии, не будучи при этом поглощенными, а затем, после нескольких столкновений, приобретали скорость, свойственную материалу, становясь так называемыми термическими нейтронами, которые увеличивали свою эффективность при столкновениях с цилиндром, так как с большей легкостью вступали в резонанс с ядрами атомов серебра. Поэтому деревянные столы способствовали небольшому увеличению радиации по сравнению с мрамором: они сильнее сдерживали нейтроны. В структуре парафина и дерева находятся ядра водорода, которые содержат протон с массой, близкой к массе нейтрона, поэтому торможение нейтронов облегчало их взаимодействие с ядрами атомов серебра.

Ферми предложил провести опыт с большим количеством воды. Если его теория была верна, то большое количество водорода в воде произвело бы такой же эффект, что и парафин. Исследователи решили пойти к фонтану в частном саду сенатора Корбино, который, будучи начальником отделения, жил на четвертом этаже здания на улице Панисперна. Погрузив нейтронный источник и серебряный цилиндр в воду, они увидели, что, как и ожидалось, радиоактивность значительно увеличилась. Ферми был прав. В ту же ночь ученые написали статью для La ricerca scientifica под названием «Влияние водородсодержащих веществ на радиоактивность, наведенную нейтронами», за которой последовали еще несколько работ, дополняющих ее.

Через пару дней после этого вторжения Корбино увиделся с исследователями в лаборатории и попытался убедить их больше ничего не публиковать о медленных нейтронах. Сначала Ферми был очень удивлен, но прагматичный Корбино объяснил ему свою позицию: их открытие могло быть использовано в промышленных целях, а потому его надо запатентовать. Он сразу понял, что радиоактивные изотопы можно применять, например, в медицине как маркеры, а также в ядерных технологиях. В декабре того же года ученые начали готовить документы, и 26 октября 1935 года Ферми, Разетти, Сегре, Амальди, Д’Агостино, Понтекорво и Трабакки (химический поставщик) получили первый патент (под номером 324458). В 1953 году после нескольких лет разбирательств правительство США выплатило 400 тысяч долларов за права на этот патент, по 24 тысячи долларов Ферми и каждому из членов группы, а также покрыло все судебные издержки.

К сожалению, когда в ходе бомбардировки урана Ферми увидел, что радиоактивность превышала предполагаемую, он не понял, что речь шла о делении ядра, о котором писала немецкий химик Ида Ноддак. Это была «большая ошибка Ферми», как он сам смиренно признавал, но именно благодаря ей ни у США, ни у Германии не оказалось перед началом Второй мировой войны готовой ядерной бомбы.

В диаграмме Сегре представлено число нейтронов (АО по сравнению с протонами (2) в каждом ядре. Стабильность ядер увеличивалась больше от нейтронов, чем от протонов. Серым обозначен период полураспада изотопов, а черным — зона стабильных ядер.


РАСПАД ГРУППЫ С УЛИЦЫ ПАНИСПЕРНА

Скорость частиц, с помощью которых осуществлялась бомбардировка, имела решающее значение для получения радиоактивных материалов. Получив финансирование от фонда Алессандро Вольты, Ферми между 1935 и 1936 годами отправил Разетти на стажировку в лабораторию Милликена в Пасадину и в Беркли (где Лоуренс разработал ускоритель частиц), Понтекорво — в Париж в лабораторию Жолио-Кюри, а д’Агостино — в Национальный химический институт. Тем временем Сегре в 1935 году женился и получил место заведующего кафедрой экспериментальной физики в Палермо. Вскоре Амальди и Ферми остались в Риме единственными, кто продолжал исследования, начатые с бомбардировок медленными нейтронами и с создания радиоактивных изотопов. Вместе они открыли, что процесс захвата нейтрона ядром обратно пропорционален скорости самого нейтрона. Ферми разработал уравнение диффузии, которое объясняло и поглощение нейтронов ядрами, и диффузию медленных нейтронов. В нем ученый анализировал время жизни нейтрона с момента его создания в источнике до того, как он становился частью материала, с которым сталкивался (то, что сегодня называется временем Ферми). Ферми и Амальди написали несколько статей для La ricerca scientifica и летом 1936 года, воспользовавшись пребыванием в Колумбийском университете, опубликовали полученные результаты в журнале The Physical Review в статье «О поглощении и диффузии медленных нейтронов» Амальди задержался в США на месяц и принял участие в создании линейного ускорителя протонов. Позже Сегре предложил графическое изображение различной способности ядер поглощать нейтроны, известное сегодня как диаграммы Сегре (см. рисунок на предыдущей странице).

Тем временем ситуация в Италии становилась все сложнее из-за радикализации фашизма. Муссолини захватил Эфиопию, что привело к международному кризису. Девятого мая 1936 года он провозгласил Италию империей, а Виктора Имануила III — императором. В октябре — создал ось Рим — Берлин, подписав с нацистской Германией пакт, по которому эти страны становили внешнеполитическими союзниками.

К рабочим успехам Ферми, плодам упорных трудов добавилась и личная радость: 16 февраля 1936 года у него родился сын Джулио. То ли из отцовского инстинкта, то ли из страха, возникшего после того, как Гитлер нарушил Версальский мирный договор и ввел войска в долину Рейна в марте 1936 года, однажды вечером Ферми принес домой противогазы для всей семьи, чем немало удивил жену. Группа «ребят с улицы Панисперна» распалась, и, хотя это расставание должно было быть временным, как это бывало и раньше, неспокойная обстановка в муссолиниевской Италии не обещала ничего хорошего. Словно в преддверии будущих трудностей все отделение физики переселили с улицы Панисперна в новый кампус на востоке Рима. В довершение всего 23 января 1937 года внезапно скончался сенатор Корбино. Для Ферми это было тяжелым ударом, и он посвятил наставнику хвалебную статью: «Учитель: Орсо Марио Корбино», еще не зная, что в том же году ему предстоит написать еще одну — «Памяти лорда Резерфорда* для журнала Nature — и что в июле умрет и Гульельмо Маркони. Уход этих ученых не оставил Ферми равнодушным. Он был им бесконечно благодарен за помощь и поддержку в создании новой физики. И Маркони, и Корбино отстаивали перед дуче его идеи, последней из которых было создание новой национальной физической лаборатории с большим ускорителем частиц.

Как и следовало ожидать, Ферми не стал преемником Корбино: на это место был поставлен приближенный к Муссолини сенатор Антонио Ло Сурдо. Ферми решил сконцентрироваться на изучении ускорителей частиц. В новой лаборатории был сконструирован прототип на 200 кВ и был открыт способ простого получения ускоренных до 200 кэВ ионов дейтерия.


ОСОБЫЙ ПАСПОРТ

Влияние немецкого национал-социализма в Италии становилось все сильнее. Когда в июле 1938 года Муссолини издал Итальянский расовый манифест, антисемитские настроения уже нашли поддержку среди населения. Однако Лаура была еврейкой, и Ферми не соблюдал законы, установленные режимом,— собственно, именно это и стало причиной, по которой ему не позволили занять место Корбино и отказали в открытии нового исследовательского центра. Ферми понимал, что эмигрировать всей семьей будет сложно: до этого, когда они выезжали за границу, по крайней мере дочь Нелла оставалась в Италии. После публикации Расового манифеста евреев исключили из университетов и других государственных учреждений, а приветствие в виде римского салюта стало обязательным. Энрико и Лаура твердо решили покинуть страну. Они намерились отправиться в Соединенные Штаты — ученый уже получил приглашения от ряда американских университетов.


ВОЗМОЖНОСТИ ДЕЛЕНИЯ УРАНА-235

Деление ядра — это его расщепление на два или более маленьких ядра и другие элементарные частицы, например нейтроны или фотоны. Процесс происходит при бомбардировке тяжелого атома нейтронами, поэтому, если в результате деления также образуются нейтроны, может возникнуть цепная реакция. Атом урана-235 можно делить разными способами. Статистически наиболее вероятно, что при его делении появляются ксенон и стронций, образуя два нейтрона с высвобождением энергии, или криптон и барий (см. рисунок), образуя три нейтрона с высвобождением энергии. Нейтроны, появляющиеся в процессе деления, могут поглощаться или провоцировать цепную реакцию. Также уран может делиться на рубидий и цезий, опять же с высвобождением двух нейтронов. Чтобы контролировать цепную реакцию, необходимо определить, сколько нейтронов высвобождается в среднем и какова их энергия.


Последней каплей стала гибель Этторе Майораны — в конце марта он пропал при невыясненных обстоятельствах, когда плыл на пароме из Неаполя в родной Палермо. Итальянским физикам стало не по себе: в накалявшейся военной обстановке они были ценной добычей. Тем летом Ферми оставил свою обычную осторожность и написал дуче письмо, в котором советовал продолжать исследования, начатые его другом:


«Вне всякого сомнения, я могу сказать, что из всех итальянских и зарубежных ученых Майорана больше всего поразил меня глубиной своего гения».


Ферми был научным руководителем дипломной работы Майораны на тему «Квантовая теория радиоактивных ядер», которую тот защитил в 1929 году. В этот период Ферми убедился в невероятных способностях Майораны и его гениальности, несмотря на всю замкнутость и чрезвычайную застенчивость. По свидетельству Сегре и Амальди, Майорана опередил Чедвика в открытии нейтрона, а Гейзенберга — в теории атомного ядра, образованного нейтронами и протонами, но не опубликовал своих работ.

Ферми был в отчаянии. В сентябре на конференции в Копенгагене Бор спросил его, принял бы он Нобелевскую премию, если бы ему ее дали, или, скорее, позволят ли ему фашистские власти принять эту награду. Ферми не предполагал, что сказал бы Муссолини, но понимал: будучи самым молодым академиком, он олицетворял «успехи фашистской науки». Конечно, ученый хотел бы получить эту награду и надеялся, что дуче из чувства гордости позволит ему поехать за ней.

Поэтому, когда утром 10 ноября 1938 года раздался долгожданный звонок от Академии, Ферми обрадовался не только Нобелевской премии по физике «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами», но и открывшейся возможности сбежать из Италии со всей семьей. И Лауре, и Нелле, и Джулио выдали специальную визу, чтобы они смогли присутствовать на награждении.


Загрузка...