Глава 1 Мягкое электромагнитное излучение

ОБМЕН ЭНЕРГИЕЙ ПУТЕМ ИЗЛУЧЕНИЯ

Мягким мы называем то электромагнитное излучение, длины волн которого лежат примерно в интервале от 0,1 до 100 мкм. При этом надо сделать еще одну оговорку. Говоря о мягком излучении, мы будем иметь в виду электромагнитные волны, которые создаются не радиотехническими способами. Эта оговорка необходима, ибо чисто радиотехническими методами можно «залезть» в область мягкого излучения.

Довольно часто мягкое излучение называют также световым. Пользуясь этим термином, надо не забывать, что видимый свет занимает лишь узкий участок длин волн, который для «среднего» человеческого глаза лежит в пределах от 380 до 780 нм (0,38—0,78 мкм).

Если дальше мы будем пользоваться термином «свет», то только в широком смысле слова, ибо законы, справедливые для видимого участка спектра, верны и для всех остальных представителей мягкого излучения.

Напомним также, что излучение более коротковолновое, чем видимый свет, носит название ультрафиолетового, а более длинноволновое — инфракрасного.

Теперь мы можем перейти к теме параграфа.

Как нам известно, существуют три способа обмена теплом. Явления носят названия теплопроводности, тепловой конвекции и теплового излучения. Для того чтобы исследовать обмен энергией, происходящий за счет теплового излучения, надо посмотреть, как ведут себя тела, находящиеся в вакууме (исключена конвекция) на некотором расстоянии друг от друга (исключена теплопроводность).

Опыт показывает, что если два или много тел образуют замкнутую систему (читатель помнит, что это означает отсутствие обмена энергией с предметами, которые в систему не входят), то температуры этих тел выравниваются. Каждое из тел системы является одновременно и излучателем, и поглотителем. Происходят бесчисленные акты переходов атомов и молекул с более высокого уровня на низкий (при этом испускается соответствующий фотон) и с более низкого уровня на высокий (фотон поглощается). В обмене энергией участвуют фотоны всех энергий, или, что то же самое, электромагнитные волны всех длин.

Разумеется, тело не поглощает всю энергию, которая на него падает. Могут быть такие тела, которые в большей степени рассеивают или пропускают через себя те или иные лучи. Но это дела не меняет: тепловое равновесие все равно наступает рано или поздно.

Условие теплового равновесия требует, чтобы отношение энергии поглощения к энергии испускания волны определенной длины было одинаковым для всех тел. Эту теорему строго доказал в 1860 г. немецкий физик Густав Кирхгоф (1824–1887). Для разных температур отношение может меняться, но если температура задана, оно будет одинаковым для фотонов заданной энергии.

Теорема в достаточной степени ясная. Можно сказать, что и в доказательстве она не нуждается. Смысл закона состоит в том, что число поглощенных фотонов данного сорта (т. е. данной энергии) при тепловом равновесии равно числу излученных фотонов того же сорта.

Отсюда следует такое правило: если предмет сильно поглощает какие-либо лучи, то эти же лучи он сильно излучает.

Это правило помогает предсказать условия, при которых наступит тепловое равновесие. Почему мало нагреется под действием солнечных лучей вода, заключенная в бутыль с посеребренными стенками, и сильно нагреется вода в фляжке из черного стекла? Объяснение очевидно: тело черного цвета сильно поглощает лучи, их энергия пойдет на повышение температуры, тепловое равновесие установится после сильного нагрева. Напротив, посеребренная поверхность является превосходным отражателем. Предмет поглощает мало энергии, нагревание будет идти лишь медленным темпом, равновесие установится при низкой температуре.

А теперь, так сказать, «переверните» опыт. Налейте горячую воду в обе фляжки и поставьте их в холодильник. В каком случае охлаждение произойдет быстрее? Быстрее нагрев, быстрее и охлаждение. Больше энергии поглощается, больше и отдается.

Очень эффектны опыты с цветной керамикой. Если предмет окрашен в зеленый цвет, то это значит, что черепок поглощает все цвета, кроме зеленого. Ведь глаз видит те световые лучи, которые отражаются или рассеиваются веществом. Теперь раскалим черепок. Каким мы его увидим? Ответ у вас уже на кончике языка: он нам представится фиолетовым, ибо фиолетовый — цвет, дополнительный к желто-зеленому. Про цвет говорят, что он дополнительный к такому-то, если в смеси эти два цвета дают белый.

Термин «дополнительные цвета» ввел в науку еще Ньютон, когда он с помощью стеклянной призмы разложил белый свет в спектр.


ИЗЛУЧЕНИЕ НАКАЛЕННЫХ ТЕЛ

Хорошо известно, что кусок металла, который начинают греть, сначала раскаляется докрасна, потом добела. Большинство химических веществ раскалить не удается. Они либо плавятся, либо разлагаются. Так что все сказанное ниже в основном относится к металлам.

Наиболее примечательным обстоятельством является то, что спектр излучения всех нагретых тел мало специфичен. Дело тут в следующем. Из основного закона об энергетических уровнях ясно, что спектр, излучения и спектр поглощения тела должны совпадать. Металлы непрозрачны для всей области спектра мягкого излучения. Отсюда следует, что они должны и излучать фотоны всех энергий.

Можно сказать и иначе: сплошной спектр возникает по той причине, что в многоатомной системе энергетические уровни атомов слились в перекрывающиеся полосы. В такой системе возможны любые энергетические переходы, т. е. любые разности энергий m-го и n-го уровней Еm Еn, а значит, и любые частоты излучения и поглощения. На рис. 1.1 показан вид спектра раскаленного тела для нескольких температур (мы привели теоретические кривые, справедливые для так называемого абсолютно черного тела).



Надо сказать, что теоретический вывод формы такой кривой, сделанный Планком в 1900 г., явился первым шагом в становлении квантовой физики. Чтобы получить совпадение теории с опытом, Планку пришлось допустить, что излучение и поглощение света происходят порциями. Планк не решился на следующий шаг, а именно на утверждение, что вполне правомерно говорить о частицах света — фотонах. Этот шаг был сделан Эйнштейном в 1905 г.



МАКС ПЛАНК (1858–1947) — выдающийся немецкий ученый, положивший начало квантовой теории. Пытаясь найти математическое выражение, которое правильно описывало бы спектральное распределение излучения абсолютно черного тела, Планк показал, что такая формула может быть получена введением в теорию «кванта действия». Планк допустил, что тело испускает энергию порциями, равными произведению константы, которая впоследствии получила его имя, на частоту света.


И только в 1913 г. Бор ввел представление о квантовании энергии. Что же касается логически стройной теории теплового излучения, то ее становление надо датировать 1926 г.

Сначала обсудим вид этих кривых, а потом уже поговорим о теории. Прежде всего обратим внимание на то, что по мере повышения температуры площадь под кривой быстро растет. Какой физический смысл имеет площадь, обнимаемая кривой излучения? Строя график, подобный приведенному на рисунке, говорят, что по оси ординат отложена интенсивность излучения для данной длины волны. Но что значит «для данной длины волны» — имеется ли в виду, скажем, 453 нм или 453,2 нм? А может быть, 453,257859987654 нм? Надеюсь, читателю ясно, что, говоря «для данной длины волны», ведут речь о маленьком интервале длин волн. Уславливаются, скажем, что это будет интервал, равный 0,01 нм. Отсюда следует, что физический смысл имеет не ордината, а столбик с основанием 0,01 нм. Площадь этого столбика равняется энергии, излученной волнами, имеющими длину в интервале, например, от 453,25 до 453,26 нм. Разбив на такие столбики всю площадь, которую охватывает кривая, и сложив их площади, мы получим суммарную интенсивность всего спектра. На этом примере я объяснил операцию, которая математиками называется интегрированием. Итак, площадь под кривой дает полную интенсивность излучения. Оказывается, она пропорциональна четвертой степени температуры.

На рисунке, который мы обсуждаем, видно, что с ростом температуры меняется не только площадь, обнимаемая кривой, но происходит сдвиг ее максимума влево, т. е. в область ультрафиолета.

Связь длины волны света в микрометрах, соответствующей наиболее интенсивному излучению (поглощению), с температурой в кельвинах дается следующей формулой:

λмакс = 2886/Т

При низких температурах максимум лежит в инфракрасной области. Вот поэтому инфракрасное излучение называют иногда тепловым. Замечательным обстоятельством является то, что мы располагаем приборами, способными почувствовать тепловое излучение, исходящее от тел, температура которых комнатная и даже ниже комнатной. Современная техника умеет «видеть» в полной темноте. Этой же способностью обладают некоторые животные. Странного тут ничего нет, ибо инфракрасные лучи имеют в принципе те же свойства, что и видимые.

В частности, не следует забывать, что любое животное является источником излучения. Зачастую говорят о том, что можно «почувствовать» в темноте присутствие человека. Это не мистика. Просто тот, кто «чувствует», обладает обостренным восприятием тепловых лучей.

Не могу удержаться, чтобы не рассказать читателю одну интересную историю, показывающую, что с тепловыми лучами надо считаться и тогда, когда в житейском понимании этого слова источниками лучей являются ненагретые тела. Несколько лет назад мне предложили разобраться в опытах, которые производил один человек, выдававший себя, за «мага», способного останавливать движение мотора силой своей воли. Моя задача заключалась в том, чтобы найти этим опытам (кудесники XX века любят прибегать к наукообразной терминологии и называют их телекинезом) рациональное объяснение.

Схема опыта показана на рис. 1.2.



На оси моторчика вращалось крылышко, и оно действительно останавливалось, когда «маг» садился рядом с коробкой, в которую была выведена ось мотора. Я быстро выяснил, что любой человек, подсевший к коробке с моторчиком, оказывал на крылышко такое же влияние. Остановка крылышка происходила через 10–15 мин. Останавливался не мотор, как утверждал «маг», а именно крылышко. Таким образом, было очевидно, что силе сцепления оси мотора с крылышком препятствует какая-то другая сила, связанная с присутствием человека.

Я показал, что крылышко можно остановить почти мгновенно, если поднести к стенке коробки электрическую лампу. Стало ясным, что дело в тепле, которое излучает тело человека. Пустив в коробку струю табачного дыма, я продемонстрировал, что внутри коробки возникают конвекционные потоки воздуха, которые направлены именно таким образом, чтобы воспрепятствовать крылышку вращаться. Точные измерения показали, что на стороне коробки, обращенной к человеку, возникает температура примерно на один градус выше, чем на далекой от него стороне коробки.

Инфракрасные лучи, исходящие от тела, нагретого до 60–70 °C, каждый может почувствовать, поднося ладонь. Разумеется, надо устранить тепловую конвекцию. Нагретый воздух поднимается кверху, а вы поднесите ладонь снизу. В этом случае можете быть уверены в том, что ощутили именно тепловые лучи.

Прежде чем расстаться с тепловыми лучами, поясним, почему большим прогрессом явился переход от электрической лампы накаливания с угольной нитью к современной лампе с вольфрамовой питью. Все дело в том, что угольную нить можно довести до температуры; 2100 К, а вольфрамовую — до 2500 К. Почему эти 400 К так важны? Все дело в том; что цель лампы накаливания — не греть, а давать свет. Следовательно, надо добиться такого положения, чтобы максимум кривой приходился на видимое излучение. Как видно из графика, идеалом было бы располагать такой нитью, которая выдерживала бы температуру поверхности Солнца, 6000. К. Но даже переход от 2100 К к 2500 К повышает долю энергии, приходящейся на видимое излучение, от 0,5 до 1,6 %


ТЕОРИЯ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Если система излучающих и поглощающих тел замкнута, то «газ» фотонов, с помощью которых тела обмениваются энергией, должен быть в равновесии с атомами, дающими жизнь этим фотонам. Число фотонов с энергией hv зависит от того, сколько атомов находится на уровне E1 и сколько на уровне Е2. Эти числа при равновесии неизменны.

Но равновесие носит динамический характер, поскольку одновременно идут процессы и возбуждения, и излучения. Каким-либо образом — то ли благодаря соударению с другой частицей, то ли из-за поглощения пришедшего извне фотона — атом или атомная система перебирается на высокий уровень. В этом возбужденном состоянии система существует некоторое неопределенное время (обычно измеряемое долями секунды), а затем возвращается на низкий уровень. Этот процесс называют самопроизвольным излучением. Атом ведет себя, как шарик, который с трудом удается удерживать на остроконечной вершине горки сложного профиля: ничтожное дуновение — и равновесие нарушено. Шарик скатывается в ямку, большей частью в самую глубокую, из которой его можно извлечь лишь сильным ударом. Про атом, спустившийся на самую низкую ступеньку, говорят: атом находится в стабильном состоянии.

Запомним, однако, что кроме положений «на вершине» и «в глубокой яме» существует еще и промежуточная ситуация: шарик может находиться в неглубокой ложбине, откуда его можно вызволить если не легким дуновением, то во всяком случае небольшим толчком. Такое положение (называется метастабильным. Так что кроме возбужденного и стабильного существует еще и третий вид уровней энергии — метастабильный.

Итак, переходы будут происходить в обе стороны. То один, те другой атом будут перебираться на верхний уровень. Через мгновение они будут спускаться на низкий уровень, излучая свет. Но в то же время другие атомы получат энергию и поднимутся на верхние уровни.

Закон сохранения энергии требует, чтобы число переходов сверху вниз равнялось числу переходов снизу вверх. Чем определяется число переходов вверх? Двумя факторами: во-первых, числом атомов, находящихся на нижнем этаже, и, во-вторых, числом ударов, которые поднимут их на верхний этаж. Ну, а число переходов вниз? Оно определяется, конечно, числом атомов, находящихся на верхнем этаже, и вроде бы больше ни от чего не зависит. Именно так сначала полагали физики-теоретики. Но концы с концами у них сходились плохо. Число переходов вверх, зависящее от двух множителей, росло с температурой куда быстрее, чем число переходов вниз, которое зависело только от одного фактора. Модель, казалось бы очевидная, приводила к нелепице. Получалось, что рано или поздно все атомы будут загнаны на верхний уровень: система атомов будет находиться в неустойчивом состоянии, а излучения не будет.

Вот этот невозможный вывод и выудил Эйнштейн в 1926 г. из рассуждений своих предшественников. Видимо, на переходы атомов с верхнего этажа на нижний влияет еще какое-то обстоятельство. Оставалось предположить, что кроме спонтанного (самопроизвольного) перехода на низкий уровень существует и переход вынужденный.

Что такое вынужденное излучение? Вот что это. Система находится на верхнем уровне. От нижнего уровня ее отделяет разность энергий E2 E1 = hv. Оказывается, если на систему падает фотон с энергией, равной hv, то он заставит систему перейти на нижний уровень. Сам падающий фотон при этом не поглотится, а пойдет дальше в том же направлении в сопровождении нового, порожденного им, в точности такого же фотона.

Не надо искать логики в этом рассуждении. Было озарение, догадка… А о ее справедливости должен судить опыт. С помощью предположения о вынужденном (стимулированном) излучении удается вывести количественную формулу, дающую график излучения в функции длины волны для нагретого тела. Теория блестяще совпадает с опытом и поэтому оправдывает выдвинутую гипотезу.

Интересно, что практические выводы из факта существования вынужденного излучении, приведшие к открытию лазеров, были сделаны спустя много лет.


ОПТИЧЕСКИЕ СПЕКТРЫ

Вообще говоря, любое тело является источником мягкого электромагнитного излучения. С помощью спектрографа — прибора, основной частью которого является призма или дифракционная решетка, — свет разлагается в спектр. Спектр может оказаться сплошным, полосатым, линейчатым. Спектры раскаленных твердых тел очень похожи друг на друга. Да и раскалить до свечения можно лишь небольшое число веществ. Разумеется, редкостью является раскаленная жидкость. Весьма информативными являются спектры излучения газов. Таковы спектры лучей, приходящих к нам от далеких звезд.

Важнейшие сведения о структуре Вселенной принесены на Землю световыми лучами звездной материи, находящейся в газообразном состоянии.

В земных условиях нетрудно создать спектры излучения атомов. Атомы заставляют светиться, либо пропуская через газ ток, либо нагревая газ. Следует отметить, что таким способом можно изучать спектры только атомов, но не спектры молекул. Прежде чем газ начнет светиться, молекулы распадутся на атомы. Поэтому, если исследователя интересуют жидкости или твердые тела, то он изучает спектры поглощения. В конечном счете картина определяется системой энергетических уровней. Переходы сверху вниз или снизу вверх несут одинаковые сведения. Надо действовать так, как удобней.

Спектры, состоящие из отдельных четких линий, мы получим лишь от газа или разбавленного раствора. Во 2-й книге говорилось о том, что поведение растворенных молекул напоминает во многих отношениях поведение газа. Это справедливо и для оптической спектроскопии. К сожалению, имеет место влияние растворителя на характер спектра, но, сопоставляя вид спектров молекул, растворенных в разных веществах, можно учесть это влияние и «вытянуть» из эксперимента дактилоскопию растворенной молекулы.

Получить характерный спектр — еще не значит установить систему энергетических уровней молекулы. Однако для многих практических целей это и не требуется. Располагая альбомом, в котором собраны данные о спектрах (т. е. список спектральных линий и их интенсивностей, или кривые зависимости интенсивности от частоты) какого-либо семейства химических веществ, снимая спектр неизвестного вещества и сопоставляя опытную картину картинками из альбома, мы узнаем вещество совершенно таким же образом, как по рисунку бороздок на пальце определяют преступника.

В последнее время оптический спектральный анализ получил соперника в лице радиоспектроскопии. Радиоспектроскопические методы уступают пока что (и это «пока» будет, видимо, длиться недолго) оптическим по чувствительности, но зато в огромное число раз превосходят оптические методы по возможностям идентификации и количественного анализа смесей веществ.

В нашу задачу не входит знакомство с конкретными спектрами веществ. Достаточно познакомить читателя с картиной уровней энергии атомов водорода и припципиальной схемой энергетических уровней свободной молекулы.

На рис. 4.3 изображена система энергетических уровней водорода. Обращаю ваше внимание на характерное сгущение уровней по мере увеличении расстояния от нулевой черты.



Кстати, не следует думать, что обозначенный на схеме нуль — это «настоящий» нуль. Разумеется, невозбужденный атом водорода обладает определенной энергией. Но поскольку в спектрах проявляются разности энергий, то отсчет удобно вести от нижней черты. В зависимости от силы полученного «щелчка» атом может подняться на любой из «этажей», ненадолго задержаться в этом неравновесном состоянии и далее любым из двух возможных способов (спонтанное или вынужденное излучение) опуститься вниз.

Возникающий спектр удобно разбить на ряд «серий». Каждая серия подчинена своему нижнему уровню. В видимой части лежит так называемая серия Бальмера. Ее объяснение было первым триумфом теории строения атома Нильса Бора.



НИЛЬС БОР (1885–1962) — знаменитый датский физик. Создал первую квантовую модель атома и таким образом открыл закон квантования энергии. Активно участвовал в разработке принципов квантовой механики. Показал принципиальную неприменимость к микромиру понятий подходящих для описания поведения макроскопических тел. Внес большой вклад в теорию строения атомного ядра.


Не все энергетические переходы равновероятны. Чем выше вероятность перехода, тем сильнее соответствующая линия. Есть и запрещенные переходы.

Большим торжеством физиков-теоретиков явилось то, что они исчерпывающим образом объяснили спектр атомов водорода, решая знаменитое уравнение квантовой механики, выведенное в 1926 г. Эрвином Шредингером.

На спектры атомов влияют внешние поля. Линии расцепляются на несколько компонент под действием электрического поля (эффект Штарка) и под действием магнитного (эффект Зеемана). Мы не станем объяснять эти интересные явления. Скажем лишь, что разобраться в некоторых из них удалось только после того, как Гаудсмит и Уленбек предположили, что электрон обладает спином. О том, как спин обнаруживает себя в опытах непосредственно, уже говорилось в 3-й книге.

И, наконец, последнее замечание, касающееся картинки энергетических уровней. Мы видим, что предел, к которому подходят уровни, обозначен числом 13,53. Что это за число? Это ионизационное напряжение. Если помножить заряд электрона на величину этого напряжения в вольтах, то мы получим величину работы, которую надо затратить, чтобы оторвать электрон от ядра, иными словами, чтобы разрушить атом водорода.

Спектры атомов возникают в результате электронных переходов. Как только мы переходим от атомов к молекуле, сразу же возникает необходимость в учете еще двух составляющих энергии. Молекула может вращаться, атомы молекулы могут совершать колебания по отношению друг к другу. Все эти виды энергии тоже квантуются, они могут иметь лишь определенные дискретные значения. Таким образом, энергетическое состояние молекулы описывается состоянием ее электронного облака (электронный уровень), состоянием колебательного движения (колебательный уровень) и состоянием вращения (вращательный уровень). Приходится оперировать тремя типами данных — так сказать, номером дома, этажа и квартиры.

Но что играет роль этажа, а что — квартиры? Какие энергетические уровни разделены большими промежутками, а какие малыми? На эти вопросы отвечает рис. 1.4.



На схеме показаны два электронных уровня е' и е' (номера домов). Этажи — колебательные уровни — помечены буквой v, а номера квартир — вращательные уровни — буквой j. Правда, такая нумерация домов не принята. Используется, как известно, сплошная нумерация квартир, а мы при описании спектров молекулы нумеруем квартиры на каждом этаже, начиная с нуля.

Как видите, промежутки между вращательными уровнями самые маленькие, а наибольшей является разность между электронными уровнями (е' и е").

Положим, у молекулы возможны электронные уровни, лежащие при 100, 200, 300…. единицах энергии, колебательные уровни — при 10, 20, 30…. единицах, вращательные — при 1, 2, 3…. единицах; тогда молекула, находящаяся на втором электронном уровне, первом колебательном и третьем вращательном, будет иметь энергию 213 единиц.

Итак, энергия молекулы может быть задана в виде

Е = Еэл + Екол + Евр.

Частота излученного или поглощенного света будет всегда соответствовать разности (значок Δ) двух уровней, т. е.

v = (1/h)∙(ΔЕэл + ΔЕкол + ΔЕвр).

Хотелось бы выделить такие переходы, при которых меняется только один «сорт» энергии. Практически это возможно, только для вращательных переходов, и мы легко поймем, почему.

Начнем исследовать поглощение электромагнитных воли группой молекул с самых длинных волн, т. е. с палых порций энергии hv. До тех пор, пока величина кванта энергии не станет равной расстоянию между двумя ближайшими уровнями, молекула поглощать не будет. Постепенно увеличивая частоту, мы дойдем до квантов, способных поднять молекулу с одной «вращательной» ступеньки на другую. Это произойдет, как показывает опыт, в области микроволн (край радиодиапазона), или, иначе говоря, в области, далекого инфракрасного спектра. Длины волн порядка 0,1–1 мм будут поглощаться молекулами. Возникнет чисто вращательный спектр.

Новые явления произойдут тогда, когда мы направим на вещество излучение, обладающее квантами энергии, достаточными для перевода молекулы с одного колебательного уровня на другой. Однако мы никогда не получим чисто колебательного спектра, т. е. такую серию переходов, при которой номер вращательного уровня сохранялся бы. Напротив, переходы с одного колебательного уровня на другой будут затрагивать различные вращательные уровни. Скажем, переход с нулевого (самого низкого) колебательного уровня на первый может состоять в подъеме с третьего вращательного уровня на второй или со второго на первый и т. д. Таким образом, возникнет колебательно-вращательный спектр. Мы будем наблюдать его в инфракрасном свете (3—50 мкм). Все переходы с одного колебательного уровня на другой будут мало отличаться по энергии и дадут в спектре группу очень близких линий. При малом разрешении эти линии сольются в одну полосу. Каждая полоса соответствует определенному колебательному переходу.

Мы попадем в новую спектральную область, в область видимого света, когда энергия кванта станет достаточной для перевода молекулы с одного электронного уровня на другой. И здесь, разумеется, невозможны ни чисто электронные переходы, ни электронно-колебательные. Возникнут сложные переходы, в которых энергетический переход сопровождается переменой и «дома», и «этажа», и «квартиры». Поскольку колебательно-вращательный’ переход представляет собой полосу, то спектр в видимой области будет практически сплошным.

Характеристические спектры атомов и молекул долгие годы исполняли (и продолжают исполнять и сегодня) скромную роль помощников в деле определения химического, строения и состава веществ. Революционные события и области спектроскопии произошли совсем недавно.


ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ

Первые тридцать лет нашего века ознаменованы фантастическими успехами теоретической физики. В эти годы были открыты такие важнейшие законы природы, как законы механики больших скоростей, законы строения атомного ядра, законы квантовой механики. Последующие сорок лет демонстрируют не менее феноменальные успехи приложения теории к практике. В эти годы человечество научилось извлекать энергию из атомных ядер, получило в свое распоряжение полупроводниковые транзисторы, революционизирующие радиотехнику и приведшие к созданию ЭВМ, и овладело лазерной техникой. Эти три приложения, по сути дела, и привели к событиям, которые именуют научно-технической революцией.

В этом параграфе речь пойдет о лазерах. Задумаемся над обстоятельствами, которые не позволяют нам, действуя традиционными методами, создать сильный направленный пучок света.

Самый мощный свет, собранный в предельно узкий пучок, расходится и теряет свою интенсивность на расстояниях. И лишь в научно-фантастическом романе Алексея Толстого герой придумывает «гиперболоид», позволяющий создавать лучи, способные жечь, резать, нести громадную энергию на далекое расстояние. Разумеется, можно изготовить такое вогнутое зеркало, которое создаст параллельный пучок света. Для этого надо в фокус зеркала поместить точечный источник. Но точечный — это математическая абстракция. Ну, пусть не точечный, а просто небольшой. Однако, даже накалив шарик до 6000 К (а больше ни один материал не выдерживает), мы получим пучок света жалкой интенсивности. А как только начнем, увеличивать размеры источника, так сразу же вместо параллельного пучка лучей получим веер световых «нитей» и интенсивность луча прожектора будет быстро убывать с расстоянием.

Итак, первое препятствие на пути создания сильного луча — это то, что атомы излучают свет во все стороны. Первое, но не последнее. Атомы и молекулы излучают, так сказать, не сговариваясь друг с другом. Поэтому лучи, исходящие из разных атомов, отправляются в путешествие несогласованно, не дожидаясь друг друга. Это приводит к тому, что излучения разных атомов не совпадают по фазе. A раз так, то лучи от разных атомов будут зачастую уничтожать друг друга. Последнее, как вы вспоминаете, происходит тогда, когда горб одной волны приходится на впадину другой.

Вот эти препятствия и удается преодолеть, создав лазерное излучение. Слово «лазер» — это сокращенное английское название: Light Amplification by Stimulated Emission of Radiation, что означает: усиление света с помощью стимулированного излучения.

Идея складывается из нескольких элементов. Прежде всего мы вспоминаем, что наряду со спонтанный излучением существует вынужденное. Как было сказано, этот вид излучения возникает тогда, когда фотон света встречается с возбужденным атомом. Если энергия возбуждения атома в точности равна энергии фотона, то фотон заставляет атом высветиться. Атом переходит на более низкий уровень и излучает фотон. Замечательной особенностью стимулированного излучения является то, что этот фотон будет таким же, как тот, который его породил, не только в отношении своей энергии; он отправится в путь с той же фазой и в том же направлении.

Второй элемент идеи состоит в следующем. Если систему излучающих атомов заключить в трубку, донышки которой находятся на определенном расстоянии друг от друга и могут явиться зеркалами для тех фотонов, которые нас интересуют, то мы можем за счет путешествий фотонов туда-обратно постепенно собрать в этом сосуде множество фотонов, порожденных одинаково возбужденными атомами.

Третий элемент идеи заключается в том, чтобы подольше удержать атомы в возбужденном состоянии, а затем после такой «накачки» заставить все атомы высветиться одновременно. Осуществление идеи лазера, т. е. размножение одного фотона и получение миллиардов тождественных, неотличимых по своим свойствам фотонов, должно привести к созданию светового луча беспрецедентной интенсивности. Такой пучок размывался бы в ничтожной степени, и на поперечное сечение луча приходилась бы огромная энергия.

Но как этого добиться? В течение долгих десятилетий никто не догадывался. Еще в 30-х годах важные соображения на этот счет были высказаны В. А. Фабрикантом; позднее настойчивые усилия будущих лауреатов Нобелевской премии советских ученых А. М. Прохорова и Н. Г. Басова и американского физика Ч. Таунса привели к созданию лазеров.

Положим, система обладает двумя энергетическими уровнями. Большинство атомов или молекул находится на нижнем уровне. Тепловые удары могут на короткое время перевести молекулу на верхний уровень. Но такое положение будет длиться недолго — молекула высветится. При этом подавляющее большинство атомов перейдет на нижний уровень спонтанно. Стимулированные переходы на нижний — уровень будут редки, так как возбужденных частиц мало.

Положим, удалось найти вещество, атомы которого обладают тремя энергетическими уровнями, обозначенными на рис. 1.5 цифрами 1, 2, 3.



Расстояние 1–3 соответствует частоте излучения зеленого света, расстояние 1–2 соответствует частоте красного света. Допустим, что вероятность перехода с уровня 3 на уровень 2 в тысячи раз больше частоты перехода с уровня 2 на уровень 1. Будем облучать вещество зеленым светом. Атомы поднимутся на третий этаж, спонтанными переходами перейдут на уровень 2 и задержатся на этом уровне. Этот переход называется безызлучательным. Выделившаяся энергия переходит в колебательную энергию атомов. Продолжим нашу фантазию и представим себе, что удалось большинство атомов перевести на уровень 2. Мы добились инверсии заселенности, т. е. «ненормальной» заселенности. Верхние уровни 2 заселены гуще, чем нижние 1 — явление, которое невозможно, когда процессом распоряжается одно лишь тепловое движение.

Переход с уровня 2 на более низкий уровень 1 все же начнет происходить. Соответствующий фотон будет встречать на своем пути другие атомы, находящиеся на возбужденном уровне 2. Такая встреча приведет не к поглощению, а к созданию нового фотона. К первому, случайно образовавшемуся фотону 2–1 будут присоединяться такие же фотоны стимулированного излучения.

Возникает поток фотонов 2–1. Все эти фотоны будут в точности одинаковы и создадут луч огромной интенсивности.

Такой процесс и удалось воспроизвести исследователям, фамилии которых мы назвали. Исторически первым был создан рубиновый лазер. Схема уровней, показанная на рисунке, как раз и характеризует рубин с примесью атомов хрома.

Для создания лазера необходим источник возбуждения, который производит «накачку» лазера, т. е. переводит атомы на высший уровень.

Если источником лазерного излучения является твердое тело, то оно изготовляется в виде цилиндра, основания которого играют роль зеркал. В случае жидкостей или газов создается трубка с зеркалами у основания колонки. Осуществляя микрометрическую подачу зеркал, фиксируя таким образом длину колонки, можно поставить в хорошие условия только те фотоны, целое число длин волн которых укладывается вдоль длины колонки. Только в этом случае все волны складываются.

Пожалуй, основная особенность лазера состоит в возможности создания остронаправленного потока излучения. Лазерный луч может иметь практически любое поперечное сечение. Технически это достигается тем, что луч заставляют путешествовать по узкому стеклянному капилляру достаточно большой длины. Фотоны, идущие под углом к оси капилляра, не примут, участия в процессе размножения фотонов. Резонансная полость (т. е. зеркала, отражающие фотоны то в одном, то в другом направлении в тот период работы лазера, пока идет накачка атомов) размножает только фотоны одного направления. В некоторых случаях; не удовлетворяясь угловой расходимостью пучка порядка одного градуса, на пути выпущенного на волю луча ставят еще дополнительную линзу.

Лазерная установка, когда речь идет о создании больших мощностей, — сложное инженерное сооружение. В колонке создается первоначальный импульс, затем он может быть подан на усилители, которые работают на том же принципе, что и первоначальная колонка, но накачиваются независимо от первичной колонки. Мы не будем останавливаться на этих деталях. Нас интересуют физические принципы накачки и создания лазерного излучения. А они могут существенно различаться, как это показывают рис. 1.6–1.8 со схемами действия лазеров, с помощью которых сегодня получают лучи максимальной мощности.

На рис. 1.6 показана схема так называемого неодимового лазера. Название может ввести в заблуждение. Телом лазера является не металл неодим, а обычное стекло с примесью неодима. Ионы атомов неодима беспорядочно распределены среди атомов кремния и кислорода. Накачка производится лампами-молниями. Лампы дают излучение в пределах длин волн от 0,5 до 0,9 мкм. Возникает широкая полоса возбужденных состояний.



Совершенно условно она изображена пятью черточками. Атомы совершают безызлучательные переходы на верхний лазерный уровень (на этой и на других двух схемах он помечен цифрой 2). Каждый переход дает разную энергию, которая» превращается в колебательную энергию всей «решетки» атомов.

Лазерное излучение, т. е. переход на пустой нижний уровень, помеченный цифрой 1, имеет длину волны 1,06 мкм.

Показанный пунктиром переход с уровня 1 на основной уровень «не работает». Энергия выделяется в виде некогерентного излучения.

Неодимовый лазер позволяет получить фантастическую мощность, равную 1012 Вт. Энергия выдается импульсами, которые длятся 0,1 нс.

Молодым конкурентом, стал лазер, использующий переходы в возбужденных атомах иода (рис. 1.7).



Рабочим веществом является газ C3F7I. И здесь для накачки употребляются лампы-молнии, но физические процессы иные. Для накачки используется ультрафиолетовый свет с длиной волны 0,25 мкм. Под действием этого излучения происходит диссоциация молекул. Замечательным является то обстоятельство, что атомы иода, отрываясь от молекулы, оказываются в возбужденном состоянии! Как видите, это совсем другой способ достижения инверсии заселенности. Рабочий переход 2 —> 1 приводит к лазерному излучению с длиной волны 1,3 мкм, после чего происходит воссоединение атома иода с молекулярным остатком.

Вероятно, читатель слыхал, что широко используются гелий-неоновые лазеры. С их помощью получают достаточно сильный инфракрасный луч с длиной волны 1,13 мкм. Эти лазеры не принадлежат к числу рекордсменов по мощности. Поэтому мы приводим схему уровней для другого лазера, работающего на смеси азота и углекислого газа (рис. 1.8).



Но прежде чем перейти к ее описанию, надо ответить на естественный вопрос: зачем надо пользоваться смесью газов? Ответ таков: одни атомы и молекулы проще возбудить, а другие легче высвечиваются. Так что в лазере, работающем на смеси, в основном накачиваются энергией частицы одного сорта, столкновениями они передают энергию другим атомам или молекулам, а уже эти последние создают лазерный луч.

B ходу системы, состоящие более чем из двух газов. В частности, и в лазере, где основная роль принадлежит азоту и углекислому газу, кроме этих двух веществ целесообразно использовать различные добавки, в том числе гелий.

Накачка лазера, в котором «работают» молекулы СО2, производится способом, отличным от двух описанных. Смесь газов помещается в газоразрядную трубку, напряжение подается достаточно высокое для того, чтобы система перешла в состояние плазмы. Быстро движущиеся электроны возбуждают колебания молекул азота. Схема показывает скачок этой молекулы на верхний этаж. Не безразлично, какое напряжение приложено к электродам. Оптимальной энергией для возбуждения молекул азота является энергия около 2 эВ.

Молекула азота играет роль лишь посредницы. Сама она не дает излучения, а полученную от электронов энергию передает молекуле СО2 и переводит ее на верхний лазерный уровень.

Верхними лазерными уровнями 2 являются «квартиры третьего этажа» молекул СО2. Время жизни молекулы газа на верхнем лазерном уровне — около 0,001 с. Это совсем не мало, и молекула имеет достаточно большой шанс дождаться встречи с фотоном подходящей энергии, который вынудит ее поселиться этажом ниже.

Надо заметить, что «межквартирные» переходы много чаще переходов между «этажами». Время жизни на вращательном уровне измеряется десятимиллионными долями секунды. Это удачное обстоятельство приводит к тому, что заселение квартир каждого этажа можно считать стабильным. Поэтому с помощью технического приема, о котором мы говорили, — создания подходящего расстояния между зеркалами, — удается выделить какой-либо один переход — допустим, с шестой квартиры третьего этажа в пятую квартиру второго.

Конструктор лазера должен располагать исчерпывающими сведениями о времени существования атома на том или другом подуровне и о вероятностях перехода. Тогда он сможет выбрать оптимальное излучение данной газовой смеси. Лазер, работающий на углекислом газе, настраивают обычно на длину волны 10,5915 мкм.

Для хорошей работы лазера надо чтобы молекулы не задерживались на нижнем лазерном уровне. Так сказать, сделал свое дело, дай место другому. Так вот, при давлении 1 мм. рт. ст. молекулы углекислого газа испытывают 100 соударений в секунду, освобождающих уровень. Соответствующие цифры при наличии гелия и воды — 4000 и 100 000. Разница огромная.

Подбирая подходящие примеси к углекислому газу, можно существенней влиять на мощность прибора. Как будто бы именно такой лазер специалисты считают золотым медалистом.

Лазер, работающий на СО2, дает луч, который можно фокусировать на площадь 0,004 см2 с интенсивностью 1000 кВт/см2 при постоянном режиме и 1 000 000 кВт/см2 в импульсном режиме при времени импульса, равном 1 нс.

Поиск подходящих материалов для лазеров является своего рода искусством. Надо обладать хорошей интуицией, выдумкой, памятью, чтобы создать эффективно действующий лазер.

Исключительно большая интенсивность и когерентность лазерного излучения революционизировали многие области техники. Производство лазеров за последнее десятилетие превратилось в важнейшую отрасль промышленности. Лазеры находят себе применение как генераторы излучения, передающие не только энергию, но и информацию. Ведется интенсивное исследование возможностей применения лазеров для создания термоядерной реакции. В практику вошли применения лазера как ножа, как инструмента для проведения тончайших хирургических операций, как средства для разделения изотопов. О некоторых применениях лазера мы поговорим в ходе дальнейшего изложения.


ЛЮМИНЕСЦЕНЦИЯ

Тепловое излучение является универсальным свойством всех тел. Тепловые лучи излучаются телом при любой температуре, начиная от абсолютного нуля. Тепловой спектр — сплошной и изображается кривой, характер которой мы обсудили. Правда была приведена кривая для черного тела, но кривая для окрашенных тел в принципе мало чем отличается от кривой для черных. Разница лишь в том, что у окрашенных тел кривая будет искажена. Но общее возрастание энергии излучения при росте температуры и смещение максимума в левую сторону (если по оси абсцисс отложены длины волн) являются общим законом.

Любое излучение состоит в переходе с более высокого энергетического уровня на более низкий. Но причины возбуждения атомов или молекул могут быть разными. В случае теплового излучения это удары, получаемые частицами вещества благодаря тепловому движению.

Но это не единственная причина, заставляющая тело излучать волны. Явление люминесценции, к описанию которого мы переходим, имеет другую природу. Этим явлением охватывают процессы возбуждения молекул, не связанные с повышением температуры тела. Причинами возбуждения частиц могут быть встречи с пучками фотонов или электронов, механические удары, трение и т. д.

Люминесцируют практически все вещества, Но лишь некоторые вещества — люминофоры — светятся ярко и имеют практическое значение.

Люминофоры используются как материалы, которыми покрываются экраны телевизоров и осциллографов. В этом случае свечение происходит под ударами электронов. Очень эффектно люминесцируют вещества под действием ультрафиолетового излучения. Энергия падающего фотона должна быть во всяком случае больше энергии излучаемого фотона. Так что падающий квант энергии может принадлежать невидимой части спектра, а излученный — видимой.

Миллиардные доли примесей люминесцирующего вещества заговорят о себе, если вещество облучить ультрафиолетом. Поэтому люминесцентный анализ используется иногда как средство химического анализа. С его помощью обнаруживаются следы нежелательных загрязнений.

Люминофорами покрываются стенки ламп дневного света.

Различают два вида люминесценции — флуоресценцию и фосфоресценцию. Флуоресценция — высвечивание атома или молекулы, происходящее без задержки молекулы на возбуждённом уровне. Напротив, фосфоресценция есть явление, которое может произойти с большим запозданием. Это случается, если при возбуждении система переходит на метастабильный уровень, переходы с которого вниз имеют малую вероятность. Излучение происходит, как правило, после того, как молекула сначала поглотит энергию и поднимется на верхний уровень, а потом уже произойдет высвечивание, причем переход на низший уровень совершается без остановки на промежуточном, метастабильном.

Несколько слов об электролюминесценции, происходящей в некоторых полупроводниковых диодах на границе р-n-слоя. Это интересное явление имеет огромное практическое значение, так как с его помощью можно изготовить полупроводниковые лазеры. В основе лежит следующий факт: электрон и дырка полупроводника могут воссоединиться (рекомбинировать) с излучением фотона.

Чтобы такие переходы происходили непрерывно, надо пропускать через диод электрический ток. Задача состоит в том, чтобы отыскать подходящий материал, который удовлетворяет нескольким требованиям. Прежде всего, ток должен, если так можно выразиться, впрыскивать электроны в полупроводник р-типа, т. е. в полупроводник, который содержит больше дырок, либо должен накачивать дырки в кристалл n-типа. Сказанное есть условие необходимое. Но другие факторы, такие, например, как скорость перехода с верхнего на нижний уровень, могут играть решающую роль. Встречаются такие случаи, когда все факторы благоприятствуют переходу электрона сверху вниз и возникает электролюминесценция.

Особенно удачным для создания электролюминесценции оказался полупроводник арсенид галлия. Он даст достаточное количество фотонов. Фотоны распространяются вдоль р-n-границы. Два участка диода, перпендикулярные границе, полируются, и этим создается резонансная полость. Фотоны, образующиеся при рекомбинации дырки и электрона, оказываются синфазными, и при достаточно больших токах излучение становится таким же, как у лазеров, описанных выше, со всеми вытекающими отсюда следствиями в отношении остроты, направленности и поляризации излучения.

Полупроводниковые лазеры работают в диапазоне волн от ультрафиолета до далекого инфракрасного света и широко используются для самых разнообразных целей.

Загрузка...