Если бы среди профессиональных математиков был проведен опрос, в котором попросили бы составить список из десяти самых выдающихся и влиятельных математиков в истории, мы уверены, что почти все они включили бы в него Карла Фридриха Гаусса. Эта гипотеза (как мы увидим далее, выдвигать гипотезы — метод работы, очень характерный для математики) основана на двух причинах. Первая — огромная важность его вклада в науку. Вторая причина — это широта тем, к которым Гаусс с огромным успехом проявил свой интерес. Сегодня математика — настолько обширная наука, что те, кто посвящает себя ей, глубоко знают только часть, близкую к области их специализации. Однако гений Гаусса позволил ему продвинуться почти во всех сферах математики. Следовательно, специалисты как по математическому, так и по числовому анализу, как геометры, так и алгебраисты, статистики или даже специалисты по математической физике видят в Гауссе «одного из своих».
Мы очень часто пользуемся такими определениями, как «вундеркинд» или «математический гений». Мало кто из математиков мог бы возразить против того факта, что эти эпитеты применимы к Гауссу. Число новых идей и открытий, к которым пришел этот немецкий математик еще до того, как ему исполнилось 25 лет, кажется необъяснимым.
Гауссу, сыну бедных родителей, удалось воспользоваться своим математическим талантом. Он родился в эпоху, когда математика еще была привилегированной сферой деятельности, которую финансировали придворные и меценаты или которой в свободное время занимались любители, такие как Пьер Ферма. Покровителем Гаусса был Карл Вильгельм Фердинанд, герцог Брауншвейгский, что позволило ученому посвятить себя призванию без необходимости зарабатывать на жизнь другим, более экономически выгодным делом. В качестве благодарности Гаусс посвятил покровителю свою первую книгу, «Арифметические исследования» (1801), и таким образом имя герцога оказалось связанным с одним из основных трудов в истории математики.
Гаусс жил в эпоху необычайных политических и социальных потрясений. Отрочество математика совпало с Великой французской революцией — ему было 12 лет, когда была взята Бастилия. Он пережил подъем Наполеона в молодости и его разгром при Ватерлоо в 38 лет. Он застал Мартовскую революцию в Германии в 1848 году в возрасте более 70 лет. В это время произошла первая индустриальная революция, которая оказала очень сильное воздействие на политическую и социальную жизнь Европы. Развитие промышленности позволило осуществить эксперименты, невозможные до этого времени, с телескопами и другими оптическими инструментами. Как мы увидим, все эти события повлияют на жизнь Гаусса.
К счастью, коллекция его трудов сохранилась в достаточно полном виде; многие из важных писем математика были опубликованы. Однако Гаусс трепетно относился к своему первенству в математических открытиях и даже использовал шифр, чтобы защитить их. По мнению некоторых исследователей, нераспространенность его работ вызвала отставание в развитии науки на целых полвека: если бы Гаусс позаботился о том, чтобы опубликовать хотя бы половину своих результатов, и не шифровал бы так тщательно свои объяснения, возможно, математика развивалась бы быстрее. Математический дневник Гаусса, хранившийся в его семье, стал доступен публике только в 1898 году. Его изучение подтвердило, что ученый доказал, не публикуя, многие результаты, которые другие математики пытались получить в течение всего XIX века. Гаусс всегда утверждал, что математика — это как архитектурное произведение: архитектор никогда не оставит строительные леса, чтобы люди не видели, как было построено здание. Естественно, такой взгляд на науку не способствовал лучшему пониманию его трудов коллегами-современниками.
Логическая структура подхода к математическим проблемам, предложенная Гауссом, в которой сначала формулируют результаты или теоремы, затем переходят к их доказательству и завершают выводами или следствиями, до сих пор остается обычным способом представления математических доказательств. Немецкий математик отказывался публиковать недоказанные результаты, и эта позиция определила переломный момент в подходе математиков к их науке. Хотя идея важности доказательства как необходимая составляющая научного процесса появилась еще в Древней Греции, до эпохи Гаусса всех намного больше интересовало применение научных открытий: если математика работала, никто особо не заботился о том, чтобы в строгой форме изложить, почему так происходит.
Когда Гаусс занялся арифметикой и теорией чисел, эти дисциплины состояли из множества разрозненных результатов, никак не связанных между собой. Ученый собрал существующие знания и объединил их в общую систему, указав на имеющиеся ошибки и исправив их. Он возвел математику XIX века на уровень, которого невозможно было достичь несколько лет назад, и поднял арифметику на вершину математики. Говоря его словами, «Математика — царица наук, а арифметика — царица математики».
Первым огромным результатом, полученным еще до того, как Гауссу исполнилось 19 лет, было открытие метода построения с помощью линейки и циркуля многоугольника с 17 сторонами (17-угольника). Построение правильных многоугольников волновало математиков со времен классической Греции, при этом результаты были нерегулярными, поэтому некоторые многоугольники (например, многоугольник с семью сторонами, или семиугольник) невозможно было построить точно: линейки и циркуля было недостаточно, а более совершенных приборов не существовало. Как писал сам Гаусс, который очень гордился этим открытием в течение всей жизни, «это абсолютно не связано со случайностью, поскольку это был плод усиленных размышлений. Еще не встав с кровати, я увидел очень четко всю эту связь, так что я тут же применил к 17-угольнику соответствующее числовое утверждение». Гаусс не только решил эту задачу, но и нашел общий способ разрешения вопроса, может ли многоугольник быть построен с помощью линейки и циркуля. В своем завещании Гаусс попросил, чтобы на его могильной плите выгравировали многоугольник с 17 сторонами, построенный по его методу. Однако этого не было сделано: резчик счел задачу слишком сложной.
Без сомнения, результат, который принес ученому славу среди его современников, — это вычисление орбиты Цереры, карликовой планеты, открытой в 1801 году Джузеппе Пиацци из Палермской обсерватории. Общее признание побудило Гаусса углубиться в астрономию, и он стал директором Гёттингенской обсерватории. Скорее всего, астрономические наблюдения отвлекли ученого от работы в области чистой математики, где было сложнее найти славу. Для математики определение орбиты Цереры может быть анекдотическим фактом, но метод, использованный для ее вычисления, существенно подтолкнул развитие науки. Это был метод наименьших квадратов. В этом случае большую важность имеет процесс, использованный для достижения результата, чем сам результат. Приписывание авторства этого метода Гауссу вызвало некоторую полемику, поскольку Адриен Мари Лежандр, который был на 25 лет старше Гаусса, также оспаривал первенство этого открытия. Соперничество с Лежандром длилось много лет и распространилось на многие области математики. Очень часто оказывалось, что если Лежандр утверждал, что открыл новую математическую истину, Гаусс опровергал это, аргументируя, что он знает ее и уже использовал этот результат. В письме Гаусса от 30 июля 1806 года коллеге-астроному по фамилии Шумахер, с которым их связывала большая дружба, ученый сетовал: «Похоже, что мне предназначено совпадать с Лежандром почти во всех своих теоретических работах». Такое соперничество встречалось очень часто и объяснялось методами работы и распространения результатов у ученых того времени. В течение всей своей жизни Гаусс упорно вступал в открытую борьбу за первенство своих открытий. И только после его смерти, когда были изучены все дневники и письма, стало ясно, что правда была на стороне Гаусса. В чем нет никаких сомнений, так это в том, что метод наименьших квадратов оказался очень полезным инструментом для разрешения многих проблем, в которых речь идет об установлении функции, наилучшим образом приближающейся к множеству данных с критерием минимизации. Наиболее важные примеры применения этого метода находятся в области статистики, где они достигают вершины в оценке параметров населения с помощью модели, построенной благодаря такому известному заключению, как теорема Гаусса — Маркова. Любопытно, что имя Гаусса в области статистики обычно связывают со знаменитым «гауссовым колоколом», однако на самом деле открытием нормального распределения мы обязаны Абрахаму де Муавру.
Гаусс очень рано подступился к так называемой основной теореме алгебры, в которой установлено, что у многочлена столько корней (то есть значений, при которых многочлен равен нулю), сколько показывает его степень. Эта проблема была темой диссертации ученого. В течение жизни он представил несколько доказательств этого результата, каждый раз все более утонченных и понятных. Как и в случае с открытием орбиты Цереры, во время поиска доказательств Гаусс выявил новые и очень полезные математические конструкции, такие как комплексные числа. В 1799 году ученый доказал, что основываясь на таком особом числе, как корень из -1 (или числе i), математики могут решить любое полиномиальное уравнение.
Числовой анализ и особенно изучение простых чисел, возможно, самая известная часть работы Гаусса, которой он посвятил больше всего времени. В молодости ученый получил в качестве подарка таблицу с несколькими миллиардами простых чисел. На его взгляд, эти числа шли беспорядочно. Когда Гаусс смотрел в числовые таблицы, он не мог определить никакого правила, которое показывало бы ему, на сколько единиц нужно продвинуться вперед, чтобы найти следующее простое число. Казалось, такого правила не существует. Гаусс не мог принять подобную идею: первичная потребность в жизни математика — это находить упорядоченные структуры, описывать и объяснять правила, лежащие в основе природы, и предвидеть, что произойдет в дальнейшем. Эта мысль, которая стала для него навязчивой, привела к формулировке некоторых великих гипотез распределения простых чисел и их нахождения с помощью математических процедур. Проблема нахождения простых чисел очень актуальна сегодня, поскольку на их свойствах основаны многие процессы шифрования информации.
С 1818 по 1832 год Гаусс руководил обширным проектом топографирования королевства Ганновер. Речь шла об огромной работе, включавшей, кроме научных, политические и военные составляющие. Гаусс не только являлся директором, но и участвовал в полевых работах, что отняло у него очень много времени, которое можно было посвятить математическим исследованиям более теоретического характера. С другой стороны, эта работа позволила Гауссу обнаружить новые типы геометрии, не основанные на аксиомах Евклида, и придать форму идеям, которые он вынашивал еще в студенческие годы. Работы по измерению Земли в рамках геодезии также дали ему возможность внести большой вклад в дифференциальную геометрию. В последние годы своей жизни, благодаря сотрудничеству с Вебером, ученый заинтересовался проблемами физики, особенно в области оптики, механики и электричества.
Влияние Гаусса на других математиков огромно: достаточно указать, что он был учителем Бернхарда Римана и Юлиуса Вильгельма Рихарда Дедекинда — великих математиков XIX века. Как уже было сказано ранее, он сделал значительный вклад во все области математики, как чистой, так и прикладной.
Кроме того, Гаусс занимает почетное место и среди физиков, поскольку его работы по магнетизму, оптике и геодезии входят в число самых значимых научных трудов той эпохи.
Все это свидетельствует о том, что титул короля математиков, полученный Гауссом посмертно и увековеченный по приказанию короля Георга V Ганноверского на памятной медали, не является преувеличением. По мнению математика и историка этой науки Эрика Темпла Белла, разделяемому большинством его коллег, Гаусс занимает на пьедестале великих математиков место рядом с Архимедом и Ньютоном.
1777 В Брауншвейге, Германия, родился Карл Фридрих Гаусс, единственный сын Гебхарда Дитриха Гаусса и Доротеи Бенце.
1784 Гаусс поступает в начальную школу в Брауншвейге. Его учителями становятся Бюттнер и Мартин Бартельс, которые видят способности мальчика и подвигают его их развивать.
1791 Гаусс представлен герцогу Брауншвейгскому, который станет в дальнейшем его покровителем.
1795 Гаусс оставляет Брауншвейг и поступает в Гёттингенский университет.
1796 Открывает метод построения многоугольника с 17 сторонами с помощью линейки и циркуля. После этого успеха решает посвятить себя математике как основному занятию.
1799 Представляет докторскую диссертацию в Хельмштедтском университете. В этой работе Гаусс предлагает первое доказательство основной теоремы алгебры.
1801 Публикует «Арифметические исследования» — свой самый большой вклад в теорию чисел. В этой работе ученый собирает исследования прошлых лет, в том числе связанные с модульной арифметикой, посвященные комплексным числам и квадратичному закону взаимности. Определяет орбиту Цереры методом наименьших квадратов.
1805 Женится на Иоганне Остгоф. В этом браке родится трое детей: Иосиф, Минна и Луи, умерший в возрасте несколько месяцев.
1809 Умирает первая жена Гаусса. Ученый публикует свою самую важную работу по астрономии — «Теорию движения небесных тел».
1810 Гаусс заключает второй брак, с Минной Вальдек, в котором также родится трое детей: Ойген, Вильгельм и Тереза. Этот брак длится до смерти Минны в 1831 году.
1818 Правительство Ганновера поручает Гауссу триангуляцию и измерение королевства. Ученый посвящает несколько лет геодезии.
1827 Публикует «Общие исследования о кривых поверхностях» — свою основную работу по дифференциальной геометрии, в которую включена Theorema egregium — основная теорема теории поверхностей.
1831 В Гёттинген переезжает Вебер, и начинается его плодотворное сотрудничество с Гауссом в области физики.
1849 Гаусс представляет новое доказательство основной теоремы алгебры в связи с 50-летием своей докторской диссертации.
1855 Ученый умирает во сне на рассвете, 23 февраля, в возрасте 77 лет.